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Abstract—Mirror descent (MD) is a powerful first-order op-
timization technique that subsumes several optimization algo-
rithms including gradient descent (GD). In this work, we develop
a semi-definite programming (SDP) framework to analyze the
convergence rate of MD in centralized and distributed settings
under both strongly convex and non-strongly convex assump-
tions. We view MD with a dynamical system lens and leverage
quadratic constraints (QCs) to provide explicit convergence rates
based on Lyapunov stability. For centralized MD under strongly
convex assumption, we develop a SDP that certifies exponential
convergence rates. We prove that the SDP always has a feasible
solution that recovers the optimal GD rate as a special case. We
complement our analysis by providing the O(1/k) convergence
rate for convex problems. Next, we analyze the convergence of
distributed MD and characterize the rate using SDP. To the best
of our knowledge, the numerical rate of distributed MD has
not been previously reported in the literature. We further prove
an O(1/k) convergence rate for distributed MD in the convex
setting. Our numerical experiments on strongly convex problems
indicate that our framework certifies superior convergence rates
compared to the existing rates for distributed GD.

I. INTRODUCTION

Over the last two decades, distributed optimization over
multi-agent networks has received a lot of attention in control,
optimization, machine learning, and signal processing. In dis-
tributed optimization, a group of n agents are connected via a
graph and can communicate locally with their neighbors. Each
agent is assigned a local objective function fi : Rd → R, and
the agents aim to collectively minimize the global objective
function,

min
x∈Rd

{
f(x) ,

1

n

n∑
i=1

fi(x)

}
. (1)

The most intuitive gradient-based algorithm to tackle the
problem above is distributed gradient descent [1], where at
each iteration k, each agent i updates its decision variables by
a (private) local gradient descent combined with an averaging
of its neighbors variables. In the unconstrained case, this
update is given by

x
(k+1)
i = x

(k)
i − η

(k)∇fi(x(k)i ) + β
∑
j∈Ni

(x
(k)
j − x

(k)
i ),

where η(k) > 0 is the step-size and β > 0 is the consensus
parameter. In the form given above, this update is able to
achieve optimal rates for convex problems using a diminishing
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step-size sequence. Optimality here refers to matching the
centralized convergence rate (iteration complexity) up to some
errors related to the network structure. However, when the
local functions are smooth, the centralized GD algorithm
employs a constant step-size sequence for which the above
distributed counterpart fails to converge.

The mirror descent (MD) algorithm [2] is a primal-dual
method that has been actively studied in recent years. MD
can be seen as a generalization of GD, in which the squared
Euclidean distance is replaced by Bregman divergence as the
regularizer. The freedom in the choice of Bregman divergence
makes MD suitable for various problem geometries. MD has
been proven to have the same iteration complexity as GD
for non-strongly convex problems [3], and it may even scale
better with respect to the dimension of the decision variables
[4]. In the strongly convex scenario, MD is less studied,
and very recently its exponential convergence was established
under the Polyak-Łojasiewicz (PL) condition [5]. Inspired by
the success of MD in centralized optimization, MD has also
been studied in the distributed setting. To the best of authors’
knowledge, the convergence rate of distributed MD is not
established for strongly convex and smooth problems, and only
recently [6] provided a continuous-time analysis suggesting
local exponential rate (without explicitly characterizing the
rate).

In this paper, we leverage the framework of Quadratic
Constraints (QCs) to certify numerical exponential conver-
gence rates for centralized as well as distributed MD for
strongly convex and smooth problems using SDP. For merely
convex and smooth problems, we also establish an ergodic
O(1/k) convergence rate. We first analyze centralized MD, for
which we derive linear matrix inequalities (LMIs) as sufficient
conditions for convergence of the algorithm at a specified
rate (Theorem 2, Theorem 6 and Proposition 3). For the
strongly convex case, we prove that these LMIs always have
a feasible solution that matches the optimal convergence rate
of GD when the Bregman divergence is chosen as the squared
Euclidean distance (Proposition 4 and Corollary 5). Next, we
analyze the convergence of distributed MD and characterize
the rate using LMIs (Theorem 8, 9). To the best of our
knowledge, the exponential rate of distributed MD has not
been previously established in the literature. Our numerical
experiments on strongly convex problems indicate that our
framework certifies superior convergence rates compared to
the existing rates for distributed GD.

A. Related Literature
1) Distributed Optimization: To ensure that distributed

GD (or sub-gradient descent) reach consensus, many meth-
ods [1], [7], [8] use diminishing step-size (commonly 1/k).
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For distributed MD, similar studies have been conducted
for stochastic optimization [9], [10] and online optimization
[11], [12]. Doan et al. [13] provide convergence results for
both centralized and decentralized MD algorithms. However,
convergence rates obtained using diminishing step-size are
sub-exponential and sub-optimal under assumptions of strong
convexity and smoothness.

To address this issue, a number of recent works introduce an
additional variable in the state vectors to track past gradients
(see e.g., [14]–[17]). One of the earlier works in this direction
is the EXTRA algorithm proposed by Shi et al. [14], which
uses the information from past two iterations to perform
each update. For smooth problems, EXTRA provably achieves
O(1/k) convergence rate under the convexity assumption
and exponential convergence rate under the strong convexity
assumption, respectively.

A closely relevant literature is the continuous-time dis-
tributed GD, where the algorithms are constructed by a set
of ordinary differential equations (ODEs). These works are
mostly based on the idea of integral feedback, which can
be thought as the continuous-time analog of gradient track-
ing. In this case, each agent uses an integration term as a
part of the ODE (see e.g., [18]–[21]). In these works, the
analysis is carried out by proving the Lyapunov stability for
the corresponding continuous-time dynamics, and exponential
stability can be obtained in certain cases [20]. For MD, the
continuous-time algorithm in [6], [22] and the discrete-time
algorithm in [23] both adapt the integral feedback (or gradient
tracking) method and propose algorithms that do not suffer
from sub-optimal convergence rates. Specifically, Sun et al.
[6] propose a continuous-time distributed MD that achieves
a “local” exponential rate for strongly convex problems, and
Yu et al. [23] provide an O(1/k) convergence rate under
the convexity assumption in discrete time. Nevertheless, the
exponential rate of (discrete-time) distributed MD for strongly
convex and smooth problems remains an open problem, which
we target in the current work.

2) Integral Quadratic Constraints: Deriving convergence
rates for iterative optimization algorithms in the worst-case is
an integral part of algorithm design. However, this procedure
is not principled, requires a case-by-case analysis, and might
lead to conservative rates. To automate convergence analysis
and derive sharp convergence rates, several past works have
used Integral Quadratic Constraints (IQCs) and semidefinite
programming in various settings [24]–[30], pioneered by the
work in [24]. IQCs are a tool from robust control to analyze
dynamical systems that contain components that are nonlinear,
uncertain, or difficult to model [31]. The basic idea is to
abstract these troublesome components by constraints on their
input and output signals. This approach to algorithm analysis
can also guide the search for parameter selection in algorithm
design. [32], [33] are of particular relevance to our work. They
both provide IQC-based analysis of distributed gradient-based
algorithms in strongly convex settings. Compared to these
works, our framework focuses on distributed mirror descent
in both strongly convex and convex settings.

II. PRELIMINARIES

A. Notations

The identity matrix of dimension n is denoted by In and the
n-dimensional vector with all entries 1 is represented by 1n.
We denote the set of n-dimensional symmetric matrices by
Sn. The positive (negative) semi-definiteness of matrix M is
denoted as M � 0 (M � 0). We use ⊗ and ‖·‖ to denote the
Kronecker product and spectral norm, respectively. We define
the norm of vector v with respect to a positive semi-definite
matrix M as ‖v‖M . The indicator function of a set X ⊆ Rd is
defined as IX (x) = 0 if x ∈ X and IX (x) = +∞ otherwise.

Definition 1 (Strong convexity). A differentiable function f :
Rd → R is µf -strongly convex on Rd if the following inequality
is true for all x, y ∈ Rd.

f(x) +∇f(x)>(y − x) +
µf
2
‖y − x‖2 ≤ f(y).

Definition 2 (Lipschitz smoothness). A differentiable function
f : Rd → R is Lf -smooth on Rd if Lf

2 ‖x‖
2 − f(x) is convex,

which implies that for all x, y ∈ Rd.

f(y) ≤ f(x) +∇f(x)>(y − x) +
Lf
2
‖y − x‖2 .

We further denote the condition number of function f by
κf , Lf

µf
≥ 1. When µf = 0, the function is only convex.

Proposition 1. Suppose f is µf -strongly convex and Lf -
smooth on Rd. Then, the following inequality holds for all
x, y ∈ Rd, and u = ∇f(x), v = ∇f(y),[

x− y
u− v

]> [−µfLf
µf+Lf

Id
1
2Id

1
2Id

−1
µf+Lf

Id

] [
x− y
u− v

]
≥ 0. (2)

The above QC follows from the combination of strong
convexity and Lipschitz smoothness [24], [34].

B. Centralized Mirror Descent Algorithm

We start by providing some background on the centralized
MD algorithm. For simplicity in the exposition, we study the
unconstrained case, but our analysis can also be extended to
the constrained case. Let us start with the GD algorithm, whose
update is equivalent to the following minimization,

x(k+1) =argmin
x

{
f(x(k)) +∇f(x(k))>(x−x(k))

+
1

2η
‖x−x(k)‖2

}
,

where η > 0 is the step-size. In each iteration, the algorithm
seeks to minimize a first-order approximation of the function
with a Euclidean regularizer. As a generalization of gradient
descent, MD replaces the squared Euclidean distance with
Bregman divergence, which is defined with respect to a
distance generating function (DGF) φ : Rd → R as follows

Dφ(x, x′) , φ(x)− φ(x′)− 〈∇φ(x′), x− x′〉. (3)

Assumption 1. The distance generating function φ : Rd → R
is µφ-strongly convex and Lφ-smooth.



The centralized (unconstrained) MD algorithm with step-
size η is written as

x(k+1) =argmin
x

{
f(x(k)) +∇f(x(k))>(x− x(k))

+
1

η
Dφ(x, x(k))

}
,

(4)

where if we choose the Bregman divergence to be the squared
Euclidean distance, the update above reduces to GD.

We can also view the MD update through a different
lens using the convex conjugate of function φ. The con-
vex conjugate of function φ, denoted by φ?, is defined as
φ?(z) , supx∈Rd{〈x, z〉 − φ(x)}. Assumption 1 guarantees
that φ? is L−1φ -strongly convex and µ−1φ -smooth. We refer
the reader to [35] for further details. Correspondingly, the
following equivalence can be established,

z′ = ∇φ(x′)⇐⇒ x′ = ∇φ?(z′).

Then, the centralized MD update can be rewritten in the
following form,

z(k+1) = z(k) − η∇f(x(k))

x(k+1) = ∇φ?(z(k+1)),
(5)

or, equivalently, z(k+1) = z(k)−η(∇f ◦∇φ?)(z(k)), which is
reminiscent of GD. We can see that MD is more general than
GD in that we can exploit the geometry of the problem using
an appropriate choice of φ, which makes MD more suitable
for problems such as convex clustering, matrix optimization
with regularization, etc. [36], [37].

Denoting x? and z? as the fixed points of (5), we have

z? = z? − η∇f(x?) x? = ∇φ?(z?),

which implies that x? is a minimizer of f .

III. CONVERGENCE ANALYSIS OF CENTRALIZED MIRROR
DESCENT

In this section, we provide a convergence analysis of the
centralized MD using semidefinite programming. Our starting
point is to describe all the nonlinear functions in the algorithm,
namely ∇f and ∇φ? by QCs on their input-output pairs,
resulting in a quadratically-constrained linear system. We
then find a suitable “rate-generating” Lyapunov function for
this constrained system using semidefinite programming. We
derive exponential (respectively, sub-exponential) convergence
rate for strongly convex (respectively, convex) functions.

A. Exponential Convergence for Strongly Convex f

In the following theorem, we characterize an LMI that
depends on parameters of f (µf and Lf ), parameters of φ (µφ
and Lφ), and several decision variables (including the step-size
η and the convergence rate ρ ∈ (0, 1)). We prove that if the
LMI is satisfied, the iterates converge exponentially fast to the
unique fixed point (x?, z?) with the rate ρ.

Theorem 2. Let Assumption 1 hold and assume that f is µf -
strongly convex and Lf -smooth. Define matrices Msc,Mf ,Mφ

as follows,

Msc =


1−ρ
2µφ

Id 0 0

0 0 −η
2 Id

0 −η
2 Id

η2

2µφ
Id


Mf =

0 0 0

0
−µfLf
µf+Lf

Id
1
2Id

0 1
2Id

−1
µf+Lf

Id


Mφ =


−1

µφ+Lφ
Id

1
2Id 0

1
2Id

−µφLφ
µφ+Lφ

Id 0

0 0 0

 .
(6)

If there exist some ρ ∈ (0, 1), η > 0, σf ≥ 0, σφ ≥ 0, such
that the following matrix inequality holds

Msc + σfMf + σφMφ � 0, (7)

then the mirror descent algorithm in (5) converges exponen-
tially fast with the rate of ρ. In particular,

‖x(k) − x?‖2 ≤ 2Dφ?(z(0), z?)

µφ
ρk.

Proof. Denote u(k) , ∇f(x(k)) and define the stacked vector

e(k)
>

=
[
(z(k) − z?)> (x(k) − x?)> (u(k) − u?)>

]
. (8)

Then, from Proposition 1, we obtain the following quadratic
inequalities

e(k)>Mfe
(k) ≥ 0, e(k)>Mφe

(k) ≥ 0 ∀k,

which are imposed by ∇f and ∇φ, respectively. Consider
the Lyapunov candidate V (k) = ρ−kDφ?(z(k), z?). Recall
that φ? is L−1φ -strongly convex and µ−1φ -smooth, so the
Lyapunov function is indeed non-negative and continuously
differentiable. Using Lemma 10 (provided in the appendix
of [38]), we can calculate the Lyapunov function difference
between two consecutive iterations as

V (k+1) − V (k) ≤ ρ−k−1e(k)>Msce
(k). (9)

Utilizing the two quadratic inequalities imposed by the non-
linearities, we can write

V (k+1) − V (k) ≤ ρ−k−1e(k)>Msce
(k)

≤ ρ−k−1e(k)>(Msc + σfMf + σφMφ)e(k).

Now if the LMI in (7) holds, the Lyapunov function is non-
increasing, which yields

Dφ?(z(k), z?) = ρkV (k) ≤ ρkV (0) = ρkDφ?(z(0), z?). (10)

Observing Dφ?(z(k), z?) = Dφ(x?, x(k)) and
µφ
2
‖x(k) − x?‖2 ≤ Dφ(x?, x(k)),

completes the proof.

Theorem 2 provides a matrix inequality feasibility problem
that establishes the exponential convergence rate of MD for a



given ρ. This matrix inequality is linear in (ρ, σf , σφ) (but not
in η), allowing us to find the smallest ρ by the semidefinite
program

minimize
ρ,σφ,σf

ρ (11)

subject to 0 < ρ ≤ 1

η, σφ, σf ≥ 0

Msc + σfMf + σφMφ � 0.

If in addition we want to optimize ρ over the step-size η,
we can use Schur Complements to “convexify” the matrix
inequality with respect to η. We state this result formally in
the next proposition.

Proposition 3. The optimization problem in (11) is equivalent
to the following SDP,

minimize
η,ρ,σφ,σf

ρ

subject to 0 < ρ ≤ 1

η, σφ, σf ≥ 0

(12)


σφ

µφ+Lφ
+ ρ−1

2µφ

−σφ
2 0 0

−σφ
2

µφLφσφ
µφ+Lφ

+
µφ
2 +

µfLfσf
µf+Lf

−σf
2

−√µφ√
2

0
−σf
2

σf
µf+Lf

η√
2µφ

0
−√µφ√

2

η√
2µφ

1

 � 0

We refer to the appendix of [38] for the proof of this
proposition. We now show that the SDP in (12) has a feasible
solution for which we can analytically calculate the conver-
gence rate.

Proposition 4. The following selection

η = σf =
2µφ

µf + Lf
(13)

σφ =
4µfLf

(µf + Lf )2
(1 + κφ)

κφ(κφ − 1)

ρopt = 1− 4µfLf
(µf + Lf )2κ2φ

,

is a feasible solution to the SDP in (12).

The proof of the proposition can be found in the appendix
of [38]. Note that ρopt is an upper bound on the optimal value
of (12).

The recent work of [5] also proposed an explicit rate of 1−
1

5κ2
φκ

2
f

for MD under the PL condition. Though PL condition
is weaker than strong convexity, ρopt is strictly smaller than
the rate of [5]. Furthermore, in our result we do not make
full use of strong convexity: we only require the quadratic
inequality (2) to hold for the pair (x, x?) (x arbitrary and x?

the fixed point of the algorithm), whereas for strongly convex
f this inequality holds for all (x, y). Our rate also recovers
the optimal rate of GD as a special case.

Corollary 5. For φ(x) = 1
2 ‖x‖

2 the optimal rate ρopt in
(13) coincides with the optimal convergence rate of gradient
descent.

Proof. If φ(x) = 1
2 ‖x‖

2, we have that φ?(z) = 1
2 ‖z‖

2 and
(5) is equivalent to GD. In this case, the condition number
κφ =

Lφ
µφ

= 1, and ρopt reduces to the optimal convergence
rate for GD (see Theorem 2.1.15 in [34]).

B. O(1/k) Convergence for Convex f
We now propose an LMI which estbalishes subexponential

convergence rate for the MD algorithm when the objective
function is convex (µf = 0).

Theorem 6. Let Assumption 1 hold and assume that f is
convex (µf = 0) and Lf -smooth (0 < Lf < ∞), and define
the matrix Mc as follows,

Mc =

0 0 0
0 0 ε−η

2 I

0 ε−η
2 I η2

2µφ
I

 . (14)

If there exist some η > 0, σf ≥ 0, σφ ≥ 0, ε ≥ 0, such that
the following matrix inequality holds

Mc + σfMf + σφMφ � 0, (15)

then the ergodic mean of function value at iteration K satisfies

f(x̄(K))− f(x?) ≤ Dφ
?(z(0), z?)

εK
,

where x̄(K) = 1
K

K∑
i=1

x(i).

We remark that a similar analysis can be applied to Theorem
6 to find the best step-size that maximizes ε. The details are
omitted due to space limitation.

Remark 1 (Constrained Mirror Descent). Consider the con-
strained version of centralized (lazy) MD [39],

z(k+1) = z(k) − η∇f(x(k))

s(k) = ∇φ?(z(k))
x(k) = arg min

x∈X
Dφ(x, s(k)),

(16)

where X is a convex subset of Rd. By defining g(x) = IX (x)
as the indicator function of the set X and denoting its sub-
differential by ∂g, the optimality condition that characterizes
x(k) is

∇φ(x(k))− zk ∈ ∂g(x(k)),

Using the fact that the subdifferential ∂g is monotone (since
X is convex), we can rewrite (16) as

z(k+1) = z(k) − ηu(k) (17)

u(k) , ∇f(x(k))

v(k) , ∇φ(xk),

subject to the quadratic constraint

(v(k) − v? − (z(k) − z?))>(x(k)−x?) ≥ 0 ∀k,
Furthermore, we can write two separate quadratic constraints
for the relationships u(k) = ∇f(x(k)) and v(k) = ∇φ(x(k)).
We can therefore employ the same approach and derive an LMI
as a sufficient condition to establish exponential and O(1/k)
convergence rates for strongly convex and convex problems,
respectively.



IV. CONVERGENCE ANALYSIS OF DISTRIBUTED MIRROR
DESCENT

In the distributed setup, we have a network of agents,
characterized by an undirected graph G = (V, E), where
each node in V = {1, . . . , n} represents an agent, and the
connection between two agents i and j is captured by the edge
{i, j} ∈ E . We use Ni , {j ∈ V : {i, j} ∈ E} to denote the
neighborhood of agent i. The graph Laplacian is represented
by L ∈ Rn×n.

Assumption 2. The graph G is undirected and connected, i.e.,
there exists a path between any two distinct agents i, j ∈ V .

The connectivity assumption implies that L has a unique
null eigenvalue; that is, L1n = 0.

A. Distributed Mirror Descent Algorithm

We first introduce the distributed MD update, in which
each agent i in the network implements the following iterative
algorithm,

zi
(k+1) = zi

(k)− η1
(
∇fi(xi(k))+yi

(k)
)
− η2

∑
j∈Ni

(zi
(k)−zj(k)),

yi
(k+1) = yi

(k)+η2
∑
j∈Ni

(zi
(k)−zj(k)),

xi
(k+1) = ∇φ?(zi(k+1)).

(18)
The first update uses private gradient information as well as the
dual variables from the neighbors. It also depends on a variable
yi

(k) which acts as an integrator. This algorithm is similar
to the discretized version of the distributed MD proposed in
[22] using the idea of integral feedback. However, the method
differs slightly in the local averaging in that the algorithm
in [22] performs local averaging with respect to the primal
variable, and here the averaging is done on the dual variable
zi

(k).
It is evident that the behavior of this system relies on the

network structure through the dependence on the Laplacian of
the graph capturing the network. Since L ∈ Sn, the LMIs will
consist of matrices whose dimensions scale with n, which is
not suitable when n is large. Following the idea in [32], [33],
we transform the updates such that the dependence on the full
structure of the network is avoided. Define

W , In − η2L = ∆W +
1

n
1n1

>
n ,

and further denote the spectral norm of ∆W by λ , ‖∆W‖.
The quantity 1− λ is also known as the spectral gap.

To represent the updates collectively for all the agents, we
define the stacked vectors

z(k) = [z
(k)>
1 , . . . , z(k)>n ]> (19)

y(k) = [y
(k)>
1 , . . . , y(k)>n ]>

u(k) = ∇f(x(k)) , [∇f1(x
(k)
1 )>, . . . ,∇fn(x(k)n )>]>

x(k) = [∇φ?(z(k)1 )>, . . . ,∇φ?(z(k)n )>]>

v(k) = (∆W ⊗ Id)z(k).

We can now rewrite (18) as

z(k+1) = (
1

n
1n1

>
n ⊗ Id)z(k) − η1(u(k) + y(k)) + v(k)

y(k+1) = y(k) + ((In −
1

n
1n1

>
n )⊗ Id)z(k) − v(k)

v(k) = (∆W ⊗ Id)z(k)

x(k) = ∇φ?(z(k))
u(k) = ∇f(x(k)).

(20)

To represent (20) in state-space form, we can write[
z(k+1)

y(k+1)

]
=

[
1
n1n1

>
n ⊗ Id −η1Ind

(In − 1
n1n1

>
n )⊗ Id Ind

] [
z(k)

y(k)

]

+

[
0 −η1Ind Ind
0 0 −Ind

]x(k)u(k)

v(k)

 . (21)

Additionally, we know the following constraints on the up-
dates,

[
0
0

]
=

[
0 1n1

>
n ⊗ Id

0 0

] [
z(k)

y(k)

]
+

[
0 0 0
0 0 1n1

>
n ⊗ Id

]x(k)u(k)

v(k)

.
(22)

We define the state vector ξ(k)> ,
[
z(k)> y(k)>

]
as well

as the input vector ζ(k)> ,
[
x(k)> u(k)> v(k)>

]
. We can

rewrite (21) and (22) as

ξ(k+1) = Aξ(k) +Bζ(k) 0 = Fξ(k) +Gζ(k), (23)

where A,B, F,G are of appropriate dimensions. For the ease
of notation we denote H ,

[
F G

]
.

For the purpose of convergence analysis, we characterize the
fixed point of (21). Define x? , 1n⊗ x?, where x? ∈ Rd is a
minimizer of (1), and let z? , ∇φ(x?), u? , ∇f(x?), y? ,
−∇f(x?) and v? = 0. By letting z(k), y(k), v(k), x(k), u(k) in
(21) take the values of z?, y?, v?, x?, u?, it is easy to show
that z(k+1) = z(k), y(k+1) = y(k) using Assumption 2.

B. Exponential Convergence of Distributed Mirror Descent

In the following theorem, we present the main result of this
section. We provide two LMIs to characterize the convergence
rate of distributed MD. The LMIs are written in terms of
several decision variables, including the step-size η1 and the
convergence rate ρ. If we can find a feasible solution for
these LMIs, the distributed MD is guaranteed to converge
exponentially fast.

Before stating the theorem, we state the following lemma,
which will allow us to simplify the resulting SDP.

Lemma 7 (Lemma 6 in [32] ). Suppose that square matrices
J1, J2 satisfy J2

1 = J1, J
2
2 = J2, J1J2 = J2J1 = 0. For

square matrices Q1 and Q2, define Q , Q1 ⊗ J1 + Q2 ⊗
J2. Then, the following are equivalent: 1) Q � 0. 2) Q1 �
0, Q2 � 0.



Theorem 8. Let Assumptions 1 and 2 hold and assume all
local functions fi are µf -strongly convex and Lf -smooth.
Define the following matrices,

A1 =

[
0 −η1
1 1

]
, B1 =

[
0 −η1 1
0 0 −1

]
,

A2 =

[
1 −η1
0 1

]
, B2 =

[
0 −η1 1
0 0 −1

]
,

H1 =

[
0 0 0 0 0
0 0 0 0 0

]
, H2 =

[
0 1 0 0 0
0 0 0 0 1

]
.

Furthermore, define

Mf =


0 0 0 0 0
0 0 0 0 0

0 0
−µfLf
µf+Lf

1
2 0

0 0 1
2

−1
µf+Lf

0

0 0 0 0 0



Mλ =


λ2 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0
0 0 0 0 −1



Mφ =


−1

µφ+Lφ
0 1

2 0 0

0 0 0 0 0
1
2 0

−µφLφ
µφ+Lφ

0 0

0 0 0 0 0
0 0 0 0 0

 .
If there exists ρ ∈ (0, 1), η1 ≥ 0, P ∈ S2, P �
0,Σeq ∈ S2, σf ≥ 0, σφ ≥ 0, σλ ≥ 0, such that the following
matrix inequalities hold for i = 1, 2[

A>i PAi−ρP A>i PBi
B>i PAi B>i PBi

]
+ σfMf + σλMλ

+ σφMφ +H>i ΣeqHi � 0,

(24)

then the distributed MD algorithm (18) initialized at y(0) = 0
converges exponentially with a rate of ρ as follows

‖ξ(k) − ξ?‖2P⊗Ind ≤ ρ
k‖ξ(0) − ξ?‖2P⊗Ind .

Proof. Define the vector e(k)> = [ξ(k)> ζ(k)>]. We can
establish the following (in)equalities,

e(k)>(Mf ⊗ Ind)e(k) ≥ 0,

e(k)>(Mφ ⊗ Ind)e(k) ≥ 0,

e(k)>(Mλ ⊗ Ind)e(k) ≥ 0,

e(k)>H>(Σeq ⊗ Ind)He(k) = 0.

The first two inequalities are derived from Proposition 1, the
third inequality is due to the fact that λ = ‖∆W‖, and the
equality follows from the affine constraint in (22).

Define the Lyapunov function

V (k) = ρ−k(ξ(k) − ξ?)>P ′(ξ(k) − ξ?),

where P ′ , P ⊗ Ind. Then, using (23) we can write

V (k+1) − V (k) = ρ−k−1e(k)>
[
A>P ′A− ρP ′ A>P ′B

B>P ′A B>P ′B

]
e(k).

Now, if the following LMI holds[
A>P ′A− ρP ′ A>P ′B

B>P ′A B>P ′B

]
+ σfMf ⊗ Ind

+ σλMλ ⊗ Ind + σφMφ ⊗ Ind +H>(Σeq ⊗ Ind)H � 0,
(25)

then for any e(k), we have that

ρ−k−1e(k)>
[
A>P ′A− ρP ′ A>P ′B

B>P ′A B>P ′B

]
e(k) ≤ 0,

or, equivalently,

(ξ(k) − ξ?)>P ′(ξ(k) − ξ?) ≤ ρk(ξ(0) − ξ?)>P ′(ξ(0) − ξ?).

In words, the squared norm of system variables decreases
exponentially fast to zero.

Next, we simplify the LMI such that the dimension is not
dependent on the agent number n. Our approach follows that
of [32]. Define J1, J2 in Lemma 7 as J1 = (In − 1

n1n1
>
n )⊗

Id, J2 = 1
n1n1

>
n ⊗ Id. It is easy to verify that these matrices

satisfy the constraints in Lemma 7. We then have that

A = A1 ⊗ J1 +A2 ⊗ J2,
B = B1 ⊗ J1 +B2 ⊗ J2,
H = H1 ⊗ J1 +H2 ⊗ J2.

Since matrices J1, J2 satisfy the conditions in Lemma 7, if
we consider Q,Q1, Q2 as the negative left hand side of (25),
(24) respectively, then a feasible set of solutions that satisfy
(24) is equivalently a feasible set of solutions for (25), which
completes our proof.

The theorem provides two LMIs that establish the expo-
nential convergence rate of distributed MD. As we can see
the LMIs are more involved compared to the centralized case,
and it is challenging to find even a suboptimal analytical rate.

We finally remark that common analysis on distributed
MD involves general primal-dual norms [11], whereas QCs
are defined with respect to the Euclidean norm. The use of
general primal-dual norms in non-strongly convex problems
helps with improving the rate up to a multiplicative factor of√
d. However, in strongly convex case the rate is exponentially

fast, and a more general analysis can only change the iteration
complexity by at most logarithmic factors of d, which is an
interesting avenue to investigate in the future.

C. O(1/k) Convergence for Convex Functions

In the following theorem, we present the counterpart of
Theorem 8 for convex problems.

Theorem 9. Let Assumptions 1 and 2 hold and
assume all local functions fi are convex (µf = 0)
and Lf -smooth. Recall the definitions of matrices
A1, A2, B1, B2, H1, H2,Mf ,Mλ,Mφ in Theorem 8 and
define the following additional matrices,

M1 =


0 0 0 0 0
0 0 0 0 0
0 0 Lf 0 0
0 0 0 0 0
0 0 0 0 0

 M2 =


0 0 0 0 0
0 0 0 0 0
0 0 0 1

2 0
0 0 1

2 0 0
0 0 0 0 0

 .
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Fig. 1: Optimal convergence rate for Distributed MD obtained by solving LMIs under various assumptions.

If there exist η1 ≥ 0, P ∈ S2, P � 0,Σeq ∈ S2,σf ≥ 0, σφ ≥
0, σλ ≥ 0, ε ≥ 0, such that the following matrix inequalities
hold for i = 1, 2[

A>i PAi − P A>i PBi
B>i PAi B>i PBi

]
+σfMf + σλMλ

+ σφMφ + εMi +H>i ΣeqHi � 0,

(26)

then, the iterates of the distributed MD algorithm (18) initial-
ized at y(0) = 0 satisfy the following inequality,

n∑
i=1

(
f(x̄

(K)
i )− f?

)
≤ V (0)

εK
,

where x̄(K)
i , 1

K

K−1∑
k=0

x
(k)
i .

We refer to the appendix of [38] for the proof of this
theorem. Given that f(x̄

(K)
i )−f? is non-negative, it is easy to

see that the function evaluated at the ergodic average of each
agent iterate converges to minimum with a rate of O(1/K).

D. Evaluating the Tightness of Results
For the distributed MD algorithm, we provide numerical

results based on Theorem 8. First, we demonstrate the in-
fluence of the network structure, and then we compare the
rate recovered by Theorem 8 to existing theoretical rates on
distributed GD when it achieves exponential convergence.

1) Impact of the Network Structure on Convergence Rate:
We calculate the worst-case convergence rate with several
choices of λ and plot it with respect to the step-size η1. We
set the local functions to have condition number κf = 2 and
the DGF to have condition number κφ = 2. Each curve in the
plot represents a certain λ and is obtained by scanning feasible
values for the decision variables in the LMIs (24). From Fig.
1a, we can see that there exists an optimal step-size to obtain
the best convergence rate, and that as λ increases, the best
rate becomes worse. Hence, for any given network structure
and its corresponding Laplacian matrix, we should select η2
such that λ is minimized. This is consistent with results on
distributed optimization, where having a larger λ deteriorates
the performance.

In Fig. 1b, we keep κφ = 5 constant and study the optimal
convergence rate for different λ and κf . When the condition
number increases, the optimal rate worsens. This behavior
aligns with gradient descent, where κφ = 1.

2) Comparison with Distributed Gradient Descent: To the
best of our knowledge, there is currently no work that provides
an exponential convergence rate for distributed MD algorithm.
Hence, we select two previous works on distributed GD,
namely [14] and [15], and compare our performance with
the theoretical rates provided in these works. In order to
provide a fair comparison, we must set κφ = 1 to ensure
that MD reduces to GD. We also set the local functions to
have condition number κf = 3.

Of the two related works above, EXTRA [14] is of particular
relevance to our algorithm. If the matrix W̃ in EXTRA is set to
be In+W

2 , the EXTRA algorithm coincides with our algorithm
with the exception of having a coefficient difference of 1

2
for the tracking term. Note that the theoretical convergence
rate of EXTRA relies on the spectral norm of ∆W as well
as the smallest non-zero eigenvalue λn of W . We plot the
convergence rate of EXTRA under three different scenarios:

1) λn = λ, (EXTRA pos)
2) λn = −λ, (EXTRA neg)
3) λn ≈ 0, (EXTRA)
From Fig. 1c, we can see that when λ is small, the rate

recovered by Theorem 8 significantly outperforms EXTRA.
As λ increases, the convergence rate calculated for our method
starts increasing. We also include the theoretical convergence
results from Qu et al. [15], which is consistently outperformed
by EXTRA.

Note that the point of this plot is not to declare a winner
among algorithms. The goal is to show that the richness of
the Lyapunov function and QC analysis provides a machinery
to obtain better convergence rates, especially compared to the
rates that are algorithm specific. In this case, our algorithm can
coincide with EXTRA, but still our analysis provides better
rates. Our observation is in line with empirical results of [32].

V. CONCLUSION

In this paper, we proposed a SDP framework to characterize
the convergence rate of the mirror descent algorithm for both
centralized and distributed settings, and empirical evaluations
were performed under the assumption of strongly convex and
smooth local objective functions. For the centralized case, we
derived a closed-form feasible solution to the SDP for the
convergence rate, which depends on the condition number of
the distance generating function. For the decentralized case,



we numerically derived the convergence rates using SDP.
These SDPs do not scale with the ambient dimension and the
network size. Using the QC framework, we further proved the
O(1/k) convergence rate for centralized and distributed MD in
the convex and smooth setting. It would be interesting to derive
analytical rates for the distributed case. Another important
direction is the analysis of the mirror descent algorithm with
primal-dual norms. This is a challenging problem as current
SDP approaches rely on the Euclidean norm and they do not
lend themselves to general primal-dual norms.
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ysis. Springer Science & Business Media, 2012.

[36] D. Lashkari and P. Golland, “Convex clustering with exemplar-based
models,” Advances in Neural Information Processing Systems, vol. 20,
2007.

[37] A. Benfenati, E. Chouzenoux, and J.-C. Pesquet, “Proximal approaches
for matrix optimization problems: Application to robust precision matrix
estimation,” Signal Processing, vol. 169, p. 107417, 2020.

[38] Y. Sun, M. Fazlyab, and S. Shahrampour, “On centralized and distributed
mirror descent: Exponential convergence analysis using quadratic con-
straints,” arXiv preprint arXiv:2105.14385, 2021.

[39] E. Hazan, “Introduction to online convex optimization,” Foundations and
Trends in Optimization, vol. 2, no. 3-4, pp. 157–325, 2016.

APPENDIX

A. Preliminary Lemmas for Proof of Theorems

In this section we provide a few lemmas used in the proof
of main theorems later.

Lemma 10. Let Assumption 1 hold and consider the Lya-
punov function V (k) = ρ−kDφ?(z(k), z?). Then, the following
inequality,

V (k+1) − V (k) ≤ ρ−k−1e(k)>Msce
(k),

is satisfied, where Msc is given in Theorem 2, and e(k) is
defined in (8).



Proof. From the definition of Lyapunov function and Bregman
divergence, we have that

V (k+1) − V (k)

=ρ−k−1Dφ?(z(k+1), z?)− ρ−kDφ?(z(k), z?)

=ρ−k−1(φ?(z(k+1))− φ?(z?)− 〈∇φ?(z?), z(k+1) − z?〉)−
ρ−k(φ?(z(k))− φ?(z?)− 〈∇φ?(z?), z(k) − z?〉)

=ρ−k−1φ?(z(k+1))− ρ−k−1〈x?, z(k) − z? − ηu(k)〉
+ρ−k〈x?, z(k) − z?〉 − (ρ−k−1 − ρ−k)φ?(z?)− ρ−kφ?(z(k)).

Since φ? is µ−1φ -smooth, we get

V (k+1) − V (k)

≤ ρ−k−1[φ?(z(k)) + 〈x(k),−ηu(k)〉+
η2

2µφ
‖u(k)‖2]

− ρ−k−1〈x?, z(k) − z? − ηu(k)〉+ ρ−k〈x?, z(k) − z?〉

− (ρ−k−1 − ρ−k)φ?(z?)− ρ−kφ?(z(k))

= (ρ−k−1 − ρ−k)(φ?(z(k))− φ?(z?)) +
ρ−k−1η2

2µφ
‖u(k)‖2

− (ρ−k−1 − ρ−k)〈x?, z(k) − z?〉 − ρ−k−1〈x(k) − x?, ηu(k)〉.

Applying smoothness again, we can bound V (k+1)− V (k) by

(ρ−k−1 − ρ−k)(∇φ?(z?)>(z(k) − z?) + 1

2µφ
‖z(k) − z?‖2)

+ ρ−k−1〈x(k) − x?,−ηu(k)〉+ ρ−k−1η2

2µφ
‖u(k)‖2

− (ρ−k−1 − ρ−k)〈x?, z(k) − z?〉

= ρ−k−1(
1− ρ
2µφ

‖z(k) − z?‖2 − η〈x(k) − x?, u(k)〉+ η2

2µφ
‖u(k)‖2)

= ρ−k−1e(k)>Msce
(k),

and observing u? = 0 finishes the proof.

Lemma 11. Let Assumption 1 hold and consider the Lyapunov
function V (k) = ε

∑k−1
i=0 (f(x(i)) − f(x?)) + Dφ?(z(k), z?),

defined for ε > 0. Then, when f is convex, the following
inequality holds

V (k+1) − V (k) ≤ e(k)>Mce
(k),

where Mc is given in Theorem 6, and e(k) is defined in (8).

Proof. Following the proof of Lemma 10 and by setting ρ = 1,
we know that

Dφ?(z(k+1), z?)−Dφ?(z(k), z?) ≤ −η〈x(k) − x?, u(k)〉+ η2

2µφ
‖u(k)‖2.

Therefore, we can bound V (k+1) − V (k) using the convexity
of f and observing u? = 0, as follows

− η〈x(k) − x?, u(k)〉+ η2

2µφ
‖u(k)‖2 + ε(f(x(k))− f(x?))

≤− η〈x(k) − x?, u(k)〉+ η2

2µφ
‖u(k)‖2 + ε〈u(k) − u?, x(k) − x?〉

=e(k)>Mce
(k).

Lemma 12. Assume all local functions fi are convex (µf = 0)
and Lf -smooth. Then, the following inequality holds for the
distributed algorithm in (20)

n∑
i=1

(f(xi
(k))− f?) ≤ e(k)>Me(k),

where f? , minx f(x) and M ∈ R5nd×5nd is defined as

M ,


0 0 0 0 0
0 0 0 0 0
0 0 Lf (In − 1

n1n1
>
n )⊗ Id 1

2n1n1
>
n ⊗ Id 0

0 0 1
2n1n1

>
n ⊗ Id 0 0

0 0 0 0 0

 .
Proof. Recall that we denote an optimal solution of the
function in (1) as x? ∈ Rd. From the definition of f , we
know that

∑n
i=1∇fi(x?) = 0. We note that the dimension of

x? differs from that of the stationary point of the distributed
system x? ∈ Rnd. Specifically, we have x? , 1n ⊗ x?.

For any x(k)j at agent j, we have that

n(f(xj
(k))− f?) =

n∑
i=1

(fi(xj
(k))− fi(x?))

=
n∑
i=1

(
fi(xj

(k))− fi(x(k)i ) + fi(x
(k)
i )− fi(x?)

)
≤

n∑
i=1

(
∇fi(x(k)i )>(xj

(k) − x(k)i ) +
Lf
2
‖xj(k) − x(k)i ‖

2 + fi(x
(k)
i )− fi(x?)

)
≤

n∑
i=1

(
∇fi(x(k)i )>(xj

(k) − x(k)i ) +
Lf
2
‖xj(k) − x(k)i ‖

2 +∇fi(x(k)i )>(x
(k)
i − x?)

)
=

n∑
i=1

(
∇fi(x(k)i )>(xj

(k) − x(k)i + x
(k)
i − x?) +

Lf
2
‖xj(k) − x(k)i ‖

2
)

=

n∑
i=1

((
∇fi(x(k)i )−∇fi(x?)

)>
(xj

(k) − x?) +
Lf
2
‖xj(k) − x(k)i ‖

2
)
,

where the two inequalities are induced by the Lipschitz-
smoothness and convexity of fi, respectively. Since x? is a
global optimal solution, we also have
n∑
i=1

(∇fi(x?)>(xj
(k)−x?)) = (

n∑
i=1

∇fi(x?))>(xj
(k)−x?) = 0.

Summing over j, we get

n

n∑
j=1

(f(xj
(k))− f?)

≤
n∑
j=1

n∑
i=1

(
∇fi(x(k)i )−∇fi(x?)

)>
(xj

(k) − x?)

+

n∑
j=1

n∑
i=1

Lf
2
‖xj(k) − x(k)i ‖

2.

Writing above in matrix form and dividing by n, we derive
n∑
j=1

(f(xj
(k))− f?)

=(u(k) − u?)>(
1

n
1n1

>
n ⊗ Id)(x(k) − x?)

+ Lf (x(k) − x?)>
(

(In −
1

n
1n1

>
n )⊗ Id

)
(x(k) − x?)

=e(k)>Me(k).



B. Proof of Proposition 3

We start with the following lemma, which helps with turning
the non-affine constraint to an affine constraint in the SDP.

Lemma 13. If matrix M ∈ Rn×n can be decomposed as
M = N + SS>, where S ∈ Rn×m, then a negative semi-
definite constraint on M can be equivalently represented by
an affine constraint on N and S.

Proof. Consider the following matrix M ′ ∈ R(n+m)×(n+m)

M ′ =

[
−N S
S> Im

]
.

By properties of Schur complement, we have that

M ′ � 0 ⇐⇒ −N − SS> � 0 ⇐⇒ M � 0.

Therefore, we can equivalently use M ′ � 0 as the constraint
(in lieu of M � 0). This constraint is affine with respect to
both N and S.

We now provide the proof for Proposition 3.

Proof. For brevity, in this proof we use I = Id. Given the
matrices defined in Theorem 2, we can write the last LMI in
(11) as


1−ρ
2µφ

I 0 0

0 0 −η
2 I

0 −η
2 I

η2

2µφ
I

+ σf

0 0 0

0
−µfLf
µf+Lf

I I
2

0 I
2

−1
µf+Lf

I


+σφ


−1

µφ+Lφ
I I

2 0
I
2

−µφLφ
µφ+Lφ

I 0

0 0 0

 � 0,

which implies

 1−ρ
2µφ

I 0 0

0
−µφ
2 I 0

0 0 0

+ σf

0 0 0

0
−µfLf
µf+Lf

I I
2

0 I
2

−1
µf+Lf

I



+σφ


−1

µφ+Lφ
I I

2 0
I
2

−µφLφ
µφ+Lφ

I 0

0 0 0

+

 0
−√µφI√

2
ηI√
2µφ


 0
−√µφI√

2
ηI√
2µφ


>

� 0

We can then remove I inside the block matrix elements in the
equation above and apply Lemma 13 to getρ−12µφ

0 0

0
µφ
2 0

0 0 0

+

0 0 0

0
µfLfσf
µf+Lf

−σf
2

0
−σf
2

σf
µf+Lf



+


σφ

µφ+Lφ

−σφ
2 0

−σφ
2

µφLφσφ
µφ+Lφ

0

0 0 0

−
 0
−√µφ√

2
η√
2µφ


 0
−√µφ√

2
η√
2µφ


>

� 0

=⇒


σφ

µφ+Lφ
+ ρ−1

2µφ

−σφ
2 0

−σφ
2

µφLφσφ
µφ+Lφ

+
µφ
2 +

µfLfσf
µf+Lf

−σf
2

0
−σf
2

σf
µf+Lf



−

 0
−√µφ√

2
η√
2µφ


 0
−√µφ√

2
η√
2µφ


>

� 0

=⇒


σφ

µφ+Lφ
+ ρ−1

2µφ

−σφ
2 0 0

−σφ
2

µφLφσφ
µφ+Lφ

+
µφ
2 +

µfLfσf
µf+Lf

−σf
2

−√µφ√
2

0
−σf
2

σf
µf+Lf

η√
2µφ

0
−√µφ√

2

η√
2µφ

1

 � 0,

thereby completing the proof.

C. Proof of Proposition 4

If η = σf =
2µφ

µf+Lf
, the LMI in (11) becomes


(1−ρ)
2µφ

Id 0 0

0 0
−µφ
µf+Lf

Id

0
−µφ
µf+Lf

Id
2µφ

(µf+Lf )2
Id


+σφ


−1

µφ+Lφ
Id

1
2Id 0

1
2Id

−µφLφ
µφ+Lφ

Id 0

0 0 0


+

0 0 0

0
2µφ

µf+Lf

−µfLf
µf+Lf

Id
µφ

µf+Lf
Id

0
µφ

µf+Lf
Id

2µφ
µf+Lf

−1
µf+Lf

Id

 � 0,

which, after removing Id, simplifies to
(1−ρ)
2µφ

0 0

0
−2µφµfLf
(µf+Lf )2

0

0 0 0

+ σφ


−1

µφ+Lφ
1
2 0

1
2

−µφLφ
µφ+Lφ

0

0 0 0

 � 0,

and we get[
(1−ρ)
2µφ

0

0
−2µφµfLf
(µf+Lf )2

]
+ σφ

[ −1
µφ+Lφ

1
2

1
2

−µφLφ
µφ+Lφ

]
� 0

⇐⇒

[
(1−ρ)
2µφ

− σφ 1
µφ+Lφ

σφ
2

σφ
2

−2µφµfLf
(µf+Lf )2

− σφ µφLφ
µφ+Lφ

]
� 0

This is equivalent to the following constraints on the principal
minors of the matrix:



1)

− (1− ρ)

2µφ
+ σφ

1

µφ + Lφ
≥ 0

2)
2µφµfLf

(µf + Lf )2
+ σφ

µφLφ
µφ + Lφ

≥ 0

3) (
− (1− ρ)

2µφ
+ σφ

1

µφ + Lφ

)(
2µφµfLf

(µf + Lf )2

+ σφ
µφLφ
µφ + Lφ

)
−
σ2
φ

4
≥ 0

The last constraint is the most strict of all constraints. Hence,
we will focus on the last constraint, where we can alternatively
write

ρ ≥ 1− 2σφ
1 + κφ

+
σ2
φ

2

(
2µfLf

(µf + Lf )2
+ σφ

κφ
1 + κφ

)−1
.

The right-hand side can be seen as a function of σφ; it takes
its minimum when derivative of σφ is zero. We denote the
optimal σφ by σ?φ. Therefore,

d

dσφ

(
1− 2σφ

1 + κφ
+
σ2
φ

2

(
2µfLf

(µf + Lf )2
+ σφ

κφ
1 + κφ

)−1)
= 0

The positive solution for the equation above is

σ?φ =
4µfLf

(µf + Lf )2
(1 + κφ)

κφ(κφ − 1)
,

and the corresponding solution for ρ is

ρopt = 1−
2σ?φ

1 + κφ
+
σ?2φ
2

(
2µfLf

(µf + Lf )2
+ σ?φ

κφ
1 + κφ

)−1
= 1− 4µfLf

(µf + Lf )2κ2φ
,

thereby completing the proof.

D. Proof of Theorem 6

Proof. We consider the following Lyapunov candidate

V (k) = ε

k−1∑
i=0

(f(x(i))− f(x?)) +Dφ?(z(k), z?).

Using Lemma 11, we can calculate an upper bound for the
following term

V (k+1) − V (k) ≤ e(k)>Mce
(k). (27)

Combined with the two QCs, the above implies that

V (k+1) − V (k) ≤ e(k)>Mce
(k)

≤ e(k)>Mce
(k) + σfe

(k)>Mfe
(k) + σφe

(k)>Mφe
(k)

= e(k)>(Mc + σfMf + σφMφ)e(k).

(28)

If the LMI in (15) is feasible, then the Lyapunov function
satisfies V (k+1) ≤ V (k), which is equivalent to

Dφ?(z(k+1), z?)−Dφ?(z(k), z?) ≤ −ε(f(x(k))− f(x?)).
(29)

Summing up both sides and rearranging terms, we obtain∑K
i=1(f(x(i))− f(x?))

K
≤ Dφ

?(z(0), z?)

εK
.

The left hand side is again lower bounded by f(x̄(K))−f(x?)
due to the convexity of f , which completes the proof.

E. Proof of Theorem 9

Proof. Recalling Proposition 1, based on the assumptions, we
have that

e(k)>(Mf ⊗ Ind)e(k) ≥ 0,

e(k)>(Mφ ⊗ Ind)e(k) ≥ 0.

Note that for the mapping z 7→ ∆Wz, given that λ = ‖∆W‖,
we can write

e(k)>(Mλ ⊗ Ind)e(k) ≥ 0.

Using Lemma 12, we know that
n∑
i=1

(f(xi
(k))− f?) ≤ e(k)>Me(k),

where M ∈ R5nd×5nd is defined as

M ,


0 0 0 0 0
0 0 0 0 0
0 0 Lf (In − 1

n1n1
>
n )⊗ Id 1

2n1n1
>
n ⊗ Id 0

0 0 1
2n1n1

>
n ⊗ Id 0 0

0 0 0 0 0

 .
Also, from (22), we have the following equality for any Σeq ∈
S2,

e(k)>H>(Σeq ⊗ Ind)He(k) = 0.

Now, let us define the Lyapunov function

V (k) = (ξ(k) − ξ?)>P ′(ξ(k) − ξ?),

where P ′ = P ⊗ Ind. Then, using (23) we can derive

V (k+1) − V (k) = e(k)>
[
A>P ′A− P ′ A>P ′B
B>P ′A B>P ′B

]
e(k).

If the following LMI holds[
A>P ′A− P ′ A>P ′B
B>P ′A B>P ′B

]
+H>(Σeq ⊗ Ind)H

+ εM + (σfMf + σλMλ + σφMφ)⊗ Ind � 0,

(30)

then for any e(k), we have that

e(k)>(

[
A>P ′A− P ′ A>P ′B
B>P ′A B>P ′B

]
+ εM)e(k) ≤ 0.

This inequality implies that

V (k+1) − V (k) + ε

n∑
i=1

(f(xi
(k))− f?) ≤ 0,

due to Lemma 12. By summing up both sides from k = 0 to
K − 1, applying convexity of f and rearranging, we have

n∑
i=1

(
f(x̄

(K)
i )− f?

)
≤ V (0)

εK
,



where x̄
(K)
i , 1

K

K−1∑
k=0

x
(k)
i . Again, the LMI in (30) can be

simplified by defining J1, J2 in Lemma 7 similar to the proof
of Theorem 8, which completes the proof.
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