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On the Controllers Based on Time Delay Estimation for Robotic

Manipulators

M. Reza J. Harandi

Abstract— Assurance of asymptotic trajectory tracking in
robotic manipulators with a smooth control law in the presence
of unmodeled dynamics or external disturbance is a challenging
problem. Recently, it is asserted that it is achieved via a rigorous
proof by designing a traditional model-free controller together
with time delay estimation (TDE) such that neither dynamical
parameters nor conservative assumptions on external distur-
bance are required. The purpose of this note is to show that
this claim is not true and the stability proof of the method
is incorrect. Finally, some modified versions of this controller
with rigorous proof is presented for robotic manipulators.

Index terms— Time delay estimation, robotic manip-

ulators, proof of stability, uncertain system.

I. INTRODUCTION

The performance of a robotic system is subject to some

common challenges such as unmodeled dynamics, external

disturbance, parameter uncertainties, etc. Several methods

have been proposed to address these problems, and as a

representative, adaptive controllers to address parametric un-

certainties [1]–[5] and robust controllers to reject unmodeled

dynamics/ external disturbance [6]–[9] could be listed. In

adaptive control, it is usually assumed that the structure of

the model is known, but the parameters are uncertain. Robust

controllers can reject special types of disturbance, while

some of them suffering from chattering in response. Under

these assumptions and cumbersome calculations in some

methods, asymptotic trajectory tracking is mathematically

ensured.

Recently, it has been claimed that the design of a simple

model-free controller with time delay estimation (TDE)

makes it possible to guarantee trajectory tracking; see for

example [10]–[15] and references therein. In this method,

the robot’s dynamic model is not required to be known in

the controller synthesis, but instead, the dynamic behavior of

the system in the previous time steps is used. By this means,

a desired model with a constant inertia matrix is considered,

and a simple controller synthesis without knowing the system

dynamics is performed. Hereupon, it is claimed that trajec-

tory tracking is ensured mathematically. For this purpose, it

is asserted in their proof (see for example, Theorem 1 of

[12]–[14] and section 5 of [15]) that the dynamic of TDE

error is represented by a set of linear discrete-time equations

with an Hurwitz matrix and thus, the TDE error has an upper

bound. A claim which is totally questionable.

In this note, the stability of TDE-based controllers for

robotic manipulators is investigated. It is shown that the

upper bound of TDE error is limited only if the stability

of the manipulator is ensured. Hence, the upper bound of

the TDE error is state-dependent and it is not independent

of the system’s stability. Furthermore, the dynamic of TDE

error is represented by a set of discrete-time linear time-

varying equations and thus, its stability may not be achieved

by merely Hurwitz condition [16, ch. 4]. Therefore, the

stability of TDE-based controllers for robotic manipulators

is doubtful.

II. TDE-BASED CONTROLLER SYNTHESIS FOR ROBOTIC

MANIPULATORS

Here, the main concept of TDE-based controllers for

robotic systems is proposed. Consider dynamical formulation

of a n-DOF robot in the following form [13], [14], [17]

M(q)q̈ + C(q, q̇)q̇ + g(q) + f(q, q̇) + d = τ, (1)

in which q ∈ R
n is joint position, q̇ ∈ R

n denotes

velocity and q̈ ∈ R
n is acceleration. M(q) ∈ R

n×n and

C(q, q̇) ∈ R
n×n are the positive definite inertia matrix, and

the centrifugal and Coriolis matrix, respectively, g(q) ∈ R
n

is the vector of gravity terms, f(q, q̇) ∈ R
n denotes the

system natural damping terms, and d, τ ∈ R
n denotes the

external disturbance and control input, respectively. Note that

in some papers, e.g., [14], the dynamic of the actuators is

also considered. However, for simplicity, it is not considered

in this note. Dynamic model (1) is rewritten in the following

form

Mq̈ + h(q, q̇, q̈) = τ, (2)

where M ∈ R
n×n is a constant matrix. The vector h that

describes the remaining terms in the dynamic formulation is

given by:

h(q, q̇, q̈) = (M −M)q̈ + C(q, q̇)q̇ + g(q) + f(q, q̇) + d.
(3)

The TDE–based control law is designed as follows

τ = Mu+ ĥ, (4)

in which u is the main controller that is chiefly different

types of sliding mode controller and ĥ is estimated value of

h which is derived base on TDE method as follows

ĥ(t) ≈ h(t− ρ) = τ(t − ρ)−Mq̈(t− ρ), (5)

in which ρ denotes the time delay. The last term in (5) is

usually unknown. Hence, the following numerical differen-

tiation is used

q̈(t− ρ) ≈
(

q(t)− 2q(t− ρ) + q(t− 2ρ)
)

/ρ2.

In order to ensure trajectory tracking in the relevant articles,

first, it has been shown that the TDE error and its derivatives
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are bounded, and then, the stability of the closed-loop system

is guaranteed via the direct Lyapunov method. The critical

part of the proof is to ensure the boundedness of h− ĥ and

its derivative. In the next section, this issue is analyzed in

detail.

III. MAIN RESULTS

A. Analysis of TDE error

For the sake of simplicity, define

e = M
−1

(ĥ− h).

Using (1-5), the following equations are derived

Me = M(q̈ − u) = τ − d− f − g − Cq̇ −Mu

=
(

M −M
)

u+ ĥ−N (t) =
(

M −M
)

u

+
(

M(t− ρ)−M
)

q̈(t− ρ) +N (t− ρ)−N (t), (6)

with

N (t) = d(t) + f(t) + g(t) + C(t)q̇(t).

Note that all the vectors and matrices are at time t unless

indicated. Since q̈(t−ρ) = e(t−ρ)+u(t−ρ), (6) is rewritten

as follows

Me = (M −M)e(t− ρ)− (M −M)
(

u− u(t− ρ)
)

+
(

M(t− ρ)−M
)

q̈(t− ρ) +N (t− ρ)−N (t), (7)

where ±Mq̈(t − ρ) was added to the last equation of (6).

Therefore, the error e may be expressed in the following

form

e(t) = De(t− ρ) + ξ (8)

with

D = I −M−1(t)M

ξ = D
(

u− u(t− ρ)
)

+M−1

(

(

M(t− ρ)−M
)

q̈(t− ρ)

+N (t− ρ)−N (t)
)

. (9)

Equation (8) may be interpreted as a discrete system with

input ξ. In the literature, it is asserted that bv suitable

design of M , the system (8) is bounded-input bounded-

output and therefore, TDE error is bounded if ξ is bounded.

Additionally, the upper bound of derivative of TDE error is

given as:

‖ė‖ ≈ ‖
e(t)− t(t− ρ)

ρ
‖ =

1

ρ
‖ −M−1Me(t− ρ) + ξ‖

≤
1

ρ
(‖M−1‖‖M‖‖e(t− ρ)‖+ ‖ξ‖). (10)

Thus, the derivative of the TDE error is bounded if TDE

error and ‖ξ‖ are bounded. By considering (9), it is clear

that ξ depends on the position, velocity, and acceleration.

Thus, boundedness of ξ is only ensured if q, q̇ and q̈ are

bounded. This means that for the boundedness of the TDE

error, stability of the system is required. It is a common

technical error in TDE-based papers, in which the cause and

effect are intertwined. Additionally, the matrix D given in

(9) ic not clearly constant. Hereupon, the system (8) is linear

time-varying and its stability is not deduced from Hurwitz

condition [16, ch. 4] and should be analyzed via other meth-

ods such as Lyapunov. Hence, according to these reasons,

it is inferred that the stability of TDE-based controllers is

not correct, and the proposed experiments/ simulations in

the related articles are not confirmed by mathematical proof.

Remark 1: In some papers, such as [13], [14] the authors

have tried to address this problem through another unreal-

istic assumption. They have presumed that the velocity and

acceleration are bounded. Although in practical implemen-

tations this might be observed; however, this assumption

is equivalent to assuming the stability of the closed-loop

system. Furthermore, it is clear that an assumption should be

defined such that it is verifiable at least in simulation, e.g.,

type of external disturbance, initial conditions, the precise

values of states, etc. The boundedness of states and their

derivatives should be assured by suitable control law and

rigorous stability analysis. Therefore, this assumption does

not rectify the problem while it is an obvious contradiction

with the aim of the stability analysis.

Remark 2: As explained in section II, designing a TDE-

based controller is based on a traditional controller together

with a TDE-based component. Therefore, an extension of

the method which could be applicable to a wide range of

systems seems to be simple and is proposed as follows. As an

example, consider interconnection and damping assignment

passivity-based control (IDA-PBC) approach, which is a

comprehensive method that stabilizes the general system ẋ =
f(x)+g(x)u at the equilibrium point x∗ through solving a set

of partial differential equations (PDEs) [6], [18]. It may seem

that combining IDA-PBC with a TDE-based component,

makes it possible to stabilize a system since the solutions

of PDEs are selected freely and the remaining terms in the

closed-loop dynamics resulted from the terms not satisfying

the matching equations, could be considered as disturbance

and rejected by TDE part. However, as explained before, the

stability proof of TDE-based controllers is incorrect. Hence,

the difficulty of solving a set of PDEs is the expense of

precise stability assurance.

B. Overall stability analysis

Under the boundedness of TDE error, it is easy to ensure

boundedness of the tracking error with a continuous control

law, or asymptotic trajectory tracking with a non-continuous

controller. However, in some of the papers that the main

controller is based on higher order sliding mode such as

[13], [14], [19], [20], it is argued that asymptotic stability is

ensured via a continuous controller. Consider the case where

the main controller is the super-twisting algorithm. It has

been asserted that the closed-loop equations are expressed

in the following form

ṡ = −K1Λ(s)sign(s) + Ω

Ω̇ = −K2sign(s) + ė (11)

with Λ(s) = diag[|s1|0.5, ..., |sn|0.5] and s is sliding surface.

Then by considering a Lyapunov function in the form V =



ηTPη with η = [Λ(s)sign(s)T ,ΩT ]T , it has been shown

that the derivative of the Lyapunov function is in the form

−ηTQη such that by suitable values of K1 and K2, the

matrix Q is positive definite with respect to boundedness

of ė. Although it was shown that boundedness of ė is not

independent of stability, the model (11) is not correct since

from (??) it is clear that ė is a function of q̈ which is not a

state of a robotic system. The correct representation of (11)

is in the following form

ṡ = −K1Λ(s)sign(s) + Ω + e

Ω̇ = −K2sign(s) (12)

By considering the same Lyapunov function, its derivative

is −ηTQη while the matrix Q is indefinite. This shows the

stability proof is not correct.

In the sequel, this method is modified and applied to a

robotic system for some particular cases. Notice that the

aim is designing TDE-based controllers with precise proof

of stability, and then, compare that to the state-of-the-art

controllers.

C. Design of TDE-based controller

1) Case 1: Consider a robotic manipulator with the dy-

namic equation (1). Assume that the dynamic parameters and

q̈(t−ρ) are known. Additionally, presume that ‖ḋ‖ ≤ ǫ with

ǫ being a positive known value. The control law which is the

combination of Slotine-Li controller [21] and a TDE term is

given as follows

τ = Mν̇ + Cν + g −KS + d̂(t), (13)

with

ν = q̇d − Γq̃, S = q̇ − ν, q̃ = q − qd,

d̂(t) = d(t− ρ) = τ(t − ρ)−Mq̈(t− ρ)

− C(t− ρ)q̇(t− ρ)− g(t− ρ), (14)

where qd ∈ R
n is the desired trajectory and Γ,K ∈ R

n×n

are positive definite gains. Consider

V =
1

2
STMS, (15)

as a Lyapunov function candidate, it is straightforward to

compute the upper bound of its derivative, which is given as

V̇ = −STKS − ST
(

d(t)− d̂(t)
)

,

in which the property that Ṁ − 2C is skew-symmetric, was

used. Since ḋ is bounded, d(t) − d̂(t) is also bounded with

the upper bound ‖d(t)− d̂(t)‖ ≤ ρǫ. Thus

V̇ ≤ −STKS + ρǫ‖S‖ ≤ −‖S‖(λmin{K}‖S‖ − ρǫ),

which shows that V̇ ≤ −β‖S‖2 if

‖S‖ ≥
ρǫ

λmin{K} − β
,

with β being an arbitrary small value. Hence, S and conse-

quently q̃ have an ultimate bound. Since

1

2
λmin{M}‖S‖2 ≤ V ≤

1

2
λmax{M}‖S‖2,

the ultimate bound of ‖S‖ is derived as follows

‖S‖ ≤

√

λmax{M}

λmin{M}

ρǫ

λmin{K} − β
.

Note that boundedness of error is ensured in the presence

of (possibly unbounded) disturbance with the expense of the

precise knowledge of q̈(t − ρ). This is certainly one of the

superiority of the TDE-based controller compared to other

reported controllers in the literature. Notice that if d is a

constant external disturbance, the ultimate bound is replaced

by asymptotic trajectory tracking.

2) Case 2: Now, consider a class of robotic systems in

which g(q) is bounded with the upper bound ‖g(q)‖ ≤ κ.

This is a very light and feasible assumption fully applicable

in many case studies [22], [23]. In this case, it is possible

to compensate the gravity term g(q) using the TDE method.

Therefore, the control law (13) is modified as follows

τ = Mν̇ + Cν −KS + ĥ(t), (16)

ĥ(t) = h(t− ρ) = d(t− ρ) + g(t− ρ) = τ(t− ρ)

−Mq̈(t− ρ)− C(t− ρ)q̇(t− ρ).

Consider (15) as the Lyapunov function candidate, and derive

its derivative as:

V̇ = −STKS − ST
(

g(t)− g(t− ρ)
)

− ST
(

d(t)

− d(t− ρ)
)

≤ −‖s‖(λmin{K}‖s‖ − 2κ− ρǫ),

where ‖g(q)−g(q−ρ)‖ ≤ 2κ was substituted. Hence, similar

to previous case, the tracking error has an ultimate bound

such that the upper bound ‖S‖ is

‖S‖ ≤

√

λmax{M}

λmin{M}

2κ+ ρǫ

λmin{K} − β
.

Note that these two cases are applicable to regulate a robotic

system without any knowledge about requirement Dynamic

matrices M and C. In this situation, the control law (13) and

(16) are modified respectively, as

τ = −Kpq̃ −Kdq̇ + g + d̂,

and

τ = −Kpq̃ −Kdq̇ + ĥ,

with d̂ and ĥ defined in (14) and (16), respectively, and 0 <
Kp,Kd ∈ R

n×n. Consider

V =
1

2
q̇TMq̇ +

1

2
q̃TKpq̃,

as a Lyapunov candidate, its derivative in the first case is

V̇ = −q̇TKdq̇ − q̇T
(

d(t)− d̂(t)
)

≤ −‖q̇‖(λmin{Kd}‖q̇‖ − ρǫ),

and in the second case is derived as

V̇ = −q̇TKdq̇ − q̇T
(

d(t)− d̂(t)
)

− q̇T
(

g(t)− g(t− ρ)
)

≤ −‖q̇‖(λmin{Kd}‖q̇‖ − ρǫ− 2κ),

which show that the error has an ultimate bound.



Note that in the cases where the inertia matrix or the

centrifugal and Coriolis matrix are unknown, as explained in

section II, it is not possible to ensure the system’s stability

with a TDE-based controller since the upper bound of the

TDE error is related to velocity and acceleration of the

system which are bounded if the manipulator is stable.
3) Case 3: The results of Case 1 are applicable to the

problem of stabilization of port Hamiltonian (PH) systems

with matched disturbance. Invoking [24], consider the fol-

lowing PH system

ẋ = [J(x)−R(x)]∇xH +G(x)
(

u− d(t)
)

, (17)

where H denotes Hamiltonian, J = −JT ∈ R
n×n is

interconnection matrix, 0 ≤ R(x) ∈ R
n×n is damping

matrix, G ∈ R
n×m is the input mapping matrix and d

denotes external disturbance such that ‖ḋ‖ ≤ ǫ. Assume that

x∗ = arg minH(x).

Note that (17) may represent the closed-loop equation of

nonlinear input–affine systems such as underactuated robots,

see [25] for more details. Under the assumption that all the

terms in (17) are known except the disturbance, the control

law is given as

u = −KGT∇xH + d̂(t)

d̂(t) = d(t− ρ) = G†(t− ρ)
(

− ẋ(t− ρ) + [J(t− ρ)

−R(t− ρ)]∇xH(t− ρ)
)

+ u(t− ρ),

where K ∈ R
m×m is positive definite gain, and G† denoted

the left pseudo-inverse of G. Consider H as the Lyapunov

function, and find its derivative as

Ḣ = −(∇xH)T
(

(R+GKGT )∇xH +Gd(t)

−Gd(t− ρ)
)

≤ −(∇xH)TR∇xH − ‖(∇xH)TG‖
(

λmin{K}‖(∇xH)TG‖ − ρǫ
)

,

which shows that x − x∗ has an ultimate bound. Clearly,

if d is constant, then x∗ is (asymptotically) stable. In com-

parison to [24], the advantage of the proposed TDE-based

controller is its independence to disturbance dynamics, and

the disadvantage is considering a particular disturbance and

requirement to know ẋ(t− ρ).
Based on the proposed cases, we may deduce that TDE-

based controllers are practical to reject particular types of

external disturbance if dynamics of the system and also q̈(t−
ρ) are known. Otherwise, they are not outperforming the

state-of-the-art adaptive and robust controllers developed in

the literature.

IV. CONCLUSION

In this note, TDE-based controllers for robotic systems

were analyzed. It was elaborated that the stability proof of

this method is wrong since the upper bound of TDE error

is a function of the position, velocity and acceleration of

the system and thus, it is bounded if system’s stability is

previously ensured. Furthermore, due to the representation

of TDE error by a set of discrete-time linear time-varying

equations, Hurwitz condition does not imply the stability.
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