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Abstract

High-quality labeled datasets play a crucial role

in fueling the development of machine learning

(ML), and in particular the development of deep

learning (DL). However, since the emergence of

the ImageNet dataset and the AlexNet model in

2012, the size of new open-source labeled vision

datasets has remained roughly constant. Conse-

quently, only a minority of publications in the

computer vision community tackle supervised

learning on datasets that are orders of magnitude

larger than Imagenet.

In this paper, we survey computer vision research

domains that study the effects of such large

datasets on model performance across different

vision tasks. We summarize the community’s cur-

rent understanding of those effects, and highlight

some open questions related to training with mas-

sive datasets. In particular, we tackle: (a) The

largest datasets currently used in computer vision

research and the interesting takeaways from train-

ing on such datasets; (b) The effectiveness of pre-

training on large datasets; (c) Recent advance-

ments and hurdles facing synthetic datasets; (d)

An overview of double descent and sample non-

monotonicity phenomena; and finally, (e) A brief

discussion of lifelong/continual learning and how

it fares compared to learning from huge labeled

datasets in an offline setting. Overall, our find-

ings are that research on optimization for deep

learning focuses on perfecting the training rou-

tine and thus making DL models less data hun-

gry, while research on synthetic datasets aims to

offset the cost of data labeling. However, for the

time being, acquiring non-synthetic labeled data

remains indispensable to boost performance.
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1. Introduction

Deep neural networks (DNN) generalize very well to test

data (Huang et al., 2020). It has almost been a decade since

DNNs became widely adopted and DNNs are now the state-

of-the-art algorithm on a wide variety of common tasks

ranging from computer vision (CV) to natural language pro-

cessing, graph analysis, and more; however, we still can-

not explain the generalization phenomenon exhibited by

DNNs. Over the last decade, the research community fo-

cused on improving DNN performance by designing bet-

ter neural network architectures (Elsken et al., 2019), train-

ing optimization routines (Ruder, 2017), and data pipelines

(Zhang et al., 2018; Shorten & Khoshgoftaar, 2019). Con-

currently, ML community has been working on curat-

ing novel benchmark labeled datasets. These benchmark

datasets are essential in driving new developments because

they allow researchers to quickly compare their new meth-

ods against previous work.

DNNs require enormous amounts of data to train effec-

tively and generalize robustly in large scale CV settings;

however, compiling such datasets is often cost prohibitive.

Nonetheless, in some industries, notably the autonomous

vehicle (AV) industry, DNNs are deployed at scale in mis-

sion critical scenarios, with models continually improving

as they train on a never ending stream of data. For instance,

Tesla deploys its vehicles to operate as a fleet. Vehicles in

the fleet can collect images and video snippets from their

surroundings to send back to centralized servers. At Tesla,

the data is manually annotated and added to the training

set, which is later used to refine their deep learning mod-

els. However, collecting and labeling all data points is pro-

hibitively expensive. Therefore, the fleet uses active learn-

ing, a set of machine learning algorithms that help users

decide which raw unlabeled data is most informative, and

therefore worth labeling. By employing active learning, the

fleet is selectively collecting ”interesting” videos from its

surroundings and collecting them to be labeled and used

as training data for improving the ML models1. To this

end, it is important to understand how modern DNNs be-

have when training with seemingly infinite datasets. Can

1see Andrej Karpathy’s talk on Tesla’s Autonomy Day
https://youtu.be/Ucp0TTmvqOE at 2:06:00.

http://arxiv.org/abs/2108.00114v1
https://youtu.be/Ucp0TTmvqOE
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neural networks benefit from training on seemingly infinite

datasets? Do we have the compute power and model ca-

pacity to take full advantage of seemingly infinite data?

Are the adverse effects of label noise amplified when the

datasets are significantly larger, and if so, how can we mea-

sure these effects for different computer vision tasks? How

does more data affect an algorithm’s fairness?

This survey summarizes the community’s current under-

standing of training with seemingly infinite data.

2. Pre-training with large amounts of labeled

data

Few works in computer vision have tackled the question of

training with seemingly infinite labeled data, and none have

studied the effects of label noise in that regime, as the data

is usually scraped from the internet.

It is not straightforward to compare the size of two

datasets, especially across different data modalities and

ML tasks; however, it is widely believed that the largest

public computer vision datasets are almost exclusively im-

age classification datasets. The largest open-source image

datasets are the Google Open Images dataset (9M images)

(Kuznetsova et al., 2020), the Tencent Ml Images dataset

(17.5M) (Wu et al., 2019), the YFCC-100M dataset (99.2M

images) (Joulin et al., 2016), and the PlaNet dataset (126M

images) (Weyand et al., 2016). Meanwhile, the largest im-

age datasets to feature in publications to-date are Google’s

internal JFT-300M dataset (Hinton et al., 2015; Sun et al.,

2017; Chollet, 2017; Dosovitskiy et al., 2021), and Insta-

gram’s hashtag dataset (Mahajan et al., 2018) which con-

tains 3.5 billion images.

In this section we discuss the most obvious use-case for

large datasets: pre-training. We will only survey works that

have used the JFT-300M and the Instagram datasets, as they

are by far the largest, then we discuss avenues for generat-

ing massive datasets cheaply. Later we survey works on

self-supervised learning, and finally, we study the limita-

tions of pre-training and the trade-offs between pre-training

and fine-tuning dataset sizes.

2.1. JFT-300M and Instagram Hashtag Datasets.

The JFT-300M image classification dataset is an internal

dataset used by Google for ML research and applications.

The dataset contains 300M images with 375M noisy

labels across 18,291 classes - approximately 20% of the

labels are incorrect. The dataset distribution is heavily

long-tailed - e.g. 2M images of flowers but more than

3k classes with less than 100 images per class, and more

than 2k classes with less than 20 images per class. Here,

we discuss the major takeaways from papers (Sun et al.,

2017; Dosovitskiy et al., 2021; Brock et al., 2021) that

report results on JFT-300M. These works pre-train neural

networks on JFT-300M then finetune them on different tar-

get datasets across different tasks: image classification on

Imagenet (Deng et al., 2009), object detection on COCO

(Lin et al., 2015) and PASCAL-VOC (Everingham et al.,

2015), semantic segmentation on COCO, and human pose

estimation on COCO.

The Instagram hashtag dataset (Mahajan et al., 2018;

Dosovitskiy et al., 2021) is composed of 3.5B images and

17k classes. It is unknown how much label noise the dataset

contains. The dataset is publicly visible, such that users

can look at the images through Instagram, however it is not

possible to scrape the data and use it for research purposes.

The papers surveyed here pretrain on Instagram data and

finetune on various subsets of ImageNet.

The major takeaway is simple to state: if the pre-training

task is similar to the target task, then pre-training on mas-

sive datasets unequivocally helps. We list here other take-

aways in order of relevance. These takeaways assume the

pre-training and target tasks are both natural image classifi-

cation, if the tasks were different these observations don’t

necessarily hold - we discuss this case in section 2.4.

1. Logarithmic Improvement: (Sun et al., 2017;

Mahajan et al., 2018) have found the network’s

performance to grow as a logarithmic function of the

pre-training dataset size.

2. Model Capacity: Larger models are crucial to

fully capture the performance boost offered by

pre-training on massive datasets (Sun et al., 2017;

Dosovitskiy et al., 2021; Mahajan et al., 2018). All

papers found that pre-training performance appears

bottle-necked by model capacity. We will tackle

model capacity in more detail when discussing the

double descent phenomenon in section 4.1.

3. Fine-tuning Hyperparameters: Fine-tuning hyper-

parameters are drastically different from the parame-

ters used during pre-training. (Mahajan et al., 2018)

found that Instagram data requires fine-tuning learn-

ing rates that are up to an order of magnitude lower

than pre-training.

In the case of (Sun et al., 2017), pre-training on JFT-300M

took 2 months across 50 Nvidia K80 GPUs. Meanwhile

(Mahajan et al., 2018) managed to pre-train their model on

the full Instagram dataset in 22 days across 336 GPUs. It is

not possible to conduct a thorough hyperparameter sweep

in this regime. Therefore, these efforts present a lower

bound on the actual performance gains that can be achieved

when training on these massive datasets. Additionally, both

papers did not saturate on model capacity.
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2.2. Synthetic datasets

Large-scale real-world labeled datasets are notoriously

challenging to collect. Synthetic data presents an attractive

shortcut, enabling organizations to quickly collect large

amounts of task-relevant and strongly-labeled data. How-

ever, because neural networks are notoriously sensitive to

distribution shift, the common wisdom is still to finetune

a model trained on synthetic images with real data from

the target distribution. In this section, we investigate how

combining real and synthetic data impacts performance on

a variety of computer vision tasks.

We note that for some computer vision applications, syn-

thetic data is the only way to gather appropriate labels

since human annotation is impossible or time consum-

ing. For example, geometric information such as optical

flow and depth can only be reliably generated in simula-

tion (McCormac et al., 2016) and it is challenging to col-

lect noise-free human annotations for robot manipulation

(Mandlekar et al., 2018; 2019). We consider here seman-

tic tasks like semantic segmentation or 2D box annotation

where human labels are unambiguously correct and can

scale to massive dataset sizes.

For self-driving applications, finetuning a model pretrained

on synthetic data on a small real dataset can significantly

improve performance. In some instances, pretraining on

synthetic data is the single most beneficial addition to the

training pipeline as it exhibits the highest performance

gains. A seminal work in this space, (Richter et al., 2016)

demonstrated that a model trained with just 1/3 of the real

data along with synthetic renders from a video game en-

gine could outperform training on all the real data on the

CamVid semantic segmentation task (Brostow et al., 2009).

However, the real data was crucial to achieving this perfor-

mance, accounting for an increase of over 20 percentage

points from the zero shot synthetic data baseline. MetaSim

(Devaranjan et al., 2020) learns to generate scenes that

match the content found in real scenes. The paper demon-

strates significant gains on the Kitti (Geiger et al., 2012)

validation test from simply finetuning a model trained with

MetaSim synthetic scenes on 100 Kitti training samples, re-

porting an increase on the ”moderate” data category from

66.3 AP @ 0.5 IOU to 73.9 on MetaSim data and an in-

crease from 63.7 to 72.7 on baseline synthetic data. In com-

parison, we only observe an increase from 66.3 to 67 from

MetaSim to MetaSim2 (Kar et al., 2019), an extension on

the method that learns scene structure alongside parame-

ters. For practical consideration, both of these results sug-

gest that collecting a small dataset in the target distribution

can be better for downstream performance than iterating on

the quality of the synthetic data.

Methods that use deep generative models to mimic the task

distribution exhibit better zero-shot transfer performance

compared to graphics-based approaches which are typically

used in self-driving tasks. (Li et al., 2020) consider gener-

ating synthetic volumetric images for medial applications.

The authors use a conditional generative adversarial net-

work (GAN) (Goodfellow et al., 2014; Mirza & Osindero,

2014) to generate shape and material maps which are then

fed through a differentiable CT renderer to create a voxel

map. Models trained only on GAN-generated images were

able to closely match and outperform baselines trained on

the full original dataset, even though the GAN model was

trained on a small subset of the data. (Zhang et al., 2021)

trains a small MLP on StyleGAN (Karras et al., 2018) fea-

tures to additionally predict labels for each pixel, where hu-

man annotators segment model-generated images. Perfor-

mance on downstream segmentation tasks similarly shows

models trained on these images can consistently outper-

form ”upper bound” models trained on the fully labeled

dataset. In both cases, we see that GAN generated syn-

thetic images seem to transfer well to downstream tasks,

provided a set of human annotations to learn to imitate.

In conclusion, accessing the desired data distribution

tremendously improves transfer performance from syn-

thetic data to the target domain. For models trained on ren-

dered scenes using traditional graphics, finetuning on even

a small set of real visual scenes results in significant gains

relative to iterating on the network’s architecture, optimiza-

tion routine, or the quality of synthetic data. Approaches

to synthetic data that directly mimic the real data distribu-

tion have shown great zero shot transfer, but still rely on

the initial set of data to train the generative model and are

currently limited to certain task types.

2.3. Self-supervised learning

Self-supervised learning gives us effective representations

and is a good starting point for downstream tasks in

an environment where it’s nearly impossible to anno-

tate all the data available. However, large-scale la-

beled data has historically required to train deep learn-

ing models in order to achieve better performance in

both Natural Language Processing (NLP) and CV do-

main. Are self-supervision or predictive unsupervised

learning beneficial when massive labeled datasets ex-

ist for the downstream tasks? (Hendrycks et al., 2019;

Jing & Tian, 2019) showed that while self-supervision

does not substantially improve accuracy when used in

tandem with standard training on annotated datasets, it

can improve different aspects of model robustness: noisy

labels (Zhang & Sabuncu, 2018), adversarial examples

(Madry et al., 2019), and common input corruptions such

as fog, snow, and blur (Hendrycks & Dietterich, 2019).

Additionally, self-supervision has also shown its effec-

tiveness in out-of-distribution detection on difficult and

near-distribution outliers (Hendrycks et al., 2019) and has
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been essential in video tasks where annotation is costly

(Vondrick et al., 2016; 2018).

Since the introduction of Word2Vec (Mikolov et al., 2013)

and Glove (Pennington et al., 2014) self-supervised learn-

ing has been more extensively used in NLP compared

to CV domains. Pretraining embeddings on large

unlabeled text and finetuning them on large-scale la-

beled datasets enabled large performance boosts. To

take advantage of these massive unlabeled datasets, re-

searchers developed adequately large models such as

BERT (Devlin et al., 2018), RoBERTa (Liu et al., 2019),

and XLM (Lample & Conneau, 2019). These models are

trained in a predictive fashion, meaning the model is trained

to predict the words or tokens that were masked or replaced.

Upon obtaining the pretrained embedding, we resume train-

ing, this time with supervision, for different types of NLP

downstream tasks such as question answering, machine

translation, summarization, natural language inference,

sentiment analysis, semantic parsing. (LeCun & Misra,

2021) pointed out that NLP’s discreteness is the reason why

it can make deep learning prediction problems tractable

because, in NLP, there is only a finite number of words

to be predicted. This also makes NLP problems great

candidates to use predictive architectures. On the other

hand, discreteness makes some tasks more difficult. For in-

stance natural language generation usually fails when the

input text is modified, even if its meaning is preserved,

or when slight perturbations are added to the learned

embeddings (Belinkov & Bisk, 2017; Fedus et al., 2018;

Sato et al., 2018; Iyyer et al., 2018; Dong et al., 2021). In

contrast, small perturbations are not really perceptible in

generated images or audio, which are continuous signals.

Compared to NLP, the development and the adoption of

self-supervision in CV domain have been relatively limited.

(Dosovitskiy et al., 2021) trained a network to discriminate

between surrogate classes which are formed by applying

transformations to a randomly sampled seed image patch.

In contrast to supervised training, the resulting feature rep-

resentation is not class specific; however, this generic rep-

resentation improves classification results. (Doersch et al.,

2015) predict the relative position of image patches and

use the resulting representation in order to improve object

detection. (Gidaris et al., 2018) predict image rotations in-

stead. Other proxy tasks have also been suggested, such as

predicting per-pixel color histograms (Larsson et al., 2016),

DeepCluster, a clustering method that jointly learns the pa-

rameters of a neural network and the cluster assignments

of the resulting features (Caron et al., 2018), and maximiz-

ing mutual information between an input and the output of

a deep neural network encoder (Hjelm et al., 2019). These

works focus on the utility of self-supervision for learning

without labeled data and do not considered its effect on ro-

bustness and uncertainty.

Most recently, vision transformers (ViT)

(Dosovitskiy et al., 2020) have shown impressive per-

formance across various CV problems while requiring

lower computational resources to train. These models are

based on a multi-head self-attention architecture that can

attend to a sequence of image patches to encode contextual

cues. DINO (Caron et al., 2021) developed self-supervised

ViT features which contain explicit information about

the semantic segmentation of an image. These features

do not emerge as frequently when training ViTs in a

fully supervised fashion. (Bao et al., 2021) propose a

masked image modeling task, one of the successful NLP

pre-training approaches in order to pretrain ViTs. Their

method tokenizes the original image into visual tokens

then create a masked image modeling task.

Ultimately, self-supervision can dramatically reduce the

number of annotations required to train. However, without

the paradigm shift from the well-established workflow of

ML practitioners – pretraining then fine-tuning, human in

the loop learning including the data annotation will remain

indispensable to train deep learning models on various ma-

chine learning tasks. For the time being, self-supervision

is best used in tandem with full-supervision. This can in-

duce strong regularization that improves robustness, while

requiring fewer manual annotations to train.

2.4. Striking a balance: the tradeoff between

pre-training and fine-tuning dataset sizes.

Conventional wisdom in computer vision up until recently

was to pre-train models on a large labeled image classifica-

tion dataset before fine-tuning on a target dataset tailored

for a specific use-case. Recently, however, (He et al., 2019)

challenged this notion by showing that pre-training on Im-

ageNet does not boost performance for object detectors on

the COCO dataset. So how does performance change as we

vary the ratio of pre-training to target dataset sizes? This

question is particularly relevant when deciding which data

to spend labeling effort on. Consider for instance a large

company looking to allocate funds for data labeling across

multiple teams, with each team working on a slightly dif-

ferent computer vision task. How should the funds be al-

located? Is it better to allocate more budget for labeling a

large general purpose dataset -with cheaper classification-

only labels- that would be shared across teams to pre-

train their respective models? In this scenario each team

would receive less funding to label their specialized, target

datasets, which include more expensive labels - i.e. bound-

ing boxes or segmentation labels. Or would it be better to

avoid funding the shared dataset altogether and allocate the

entire budget evenly across teams, enabling each team to

work with larger specialized datasets?

In (He et al., 2019; Ghiasi et al., 2018), the authors show
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that pre-training on ImageNet does not help when fine-

tuning on a different task, namely object detection on

COCO; (Poudel et al., 2019) make a similar remark for im-

age segmentation on CityScapes (Cordts et al., 2016); fi-

nally, and perhaps less surprisingly (Raghu et al., 2019)

also find ImageNet pre-training ineffective when fine-

tuning on medical images.

It is true that if a model is initialized from a pre-trained

checkpoint and fine-tuned on a target dataset, it will train

faster than a model that is randomly initialized. This speed-

up is in part what has fueled the pre-training craze. How-

ever, (He et al., 2019) show that if the randomly initialized

model trains to saturation, then both models exhibit a simi-

lar performance. This observation holds true even when the

target dataset is significantly smaller than the pre-training

dataset. The authors only find significant performance de-

terioration for the randomly initialized model when using

less than 10% of the COCO dataset2. In this case, fine-

tuning outperforms training from scratch.

Similarly, in section 3.2 of (Mahajan et al., 2018), the au-

thors tried pre-training on Instagram’s hashtag dataset (an

image classification dataset) and fine-tuning on COCO ob-

ject detection. They computed the results using the default

COCO average precision (AP) metric and AP@50. The

former emphasizes exact object localization, while the lat-

ter allows loose localization and emphasizes correct ob-

ject classification. They have found that pre-training pro-

vides a significantly larger performance boost with respect

to the AP@50 metric over the AP metric. In other words,

pre-training helped the model achieve better classification

(same task), but not necessarily better localization (differ-

ent task).

Furthermore, even when both the pre-training and tar-

get datasets are natural image classification datasets,

(Mahajan et al., 2018) noticed that by pruning the pre-

training dataset and only keeping those images with labels

matching the target dataset’s labels, the model pre-trained

on the pruned Instagram dataset outperforms the model

pre-trained on the entire Instagram dataset. This is further

evidence that aligning the pre-training and target tasks as

much as possible is more beneficial than collecting more

pre-training data across a larger range of classes. These

observations are inline with our discussion on synthetic

datasets above.

There are many open questions in this area, especially

when the target dataset is small. However, these results

show that for mission critical applications, it is necessary

to collect a large amount of data for the target dataset to

achieve adequate performance. This is true regardless of

the pre-training dataset’s size or quality. In this regime,

2The authors do not narrow down the exact point of perfor-
mance deterioration, but find that it is somewhere between 10%
and 3.5% of the data.

since the target dataset is already large, it follows that pre-

training is unnecessary. Finally, following the observation

in (He et al., 2019), we would like to clarify that the re-

sults presented here are not an argument against the com-

munity’s ultimate goal, namely universal representations;

in fact, the results laid out here should help guide future

dataset curation efforts towards achieving this goal.

3. Lifelong/Continual Learning and Active

Learning.

The computer vision research usually take place in an iso-

lated setting, compared to industry cv applications. The

researcher chooses a fixed model architecture and large la-

beled datasets, trains the model on the training set until it

achieves adequate performance on the test data, then de-

ploys the model. There are many underlying assumptions

that take place in this isolated learning paradigm:

1. Closed-world assumption: Performance on the test

data is indicative of performance upon deployment.

2. Fixed-model assumption: Keeping the model architec-

ture fixed upon deployment will not poorly affect per-

formance.

3. Data distribution is fixed: The training and test data-

sets are drawn from the same fixed distribution en-

countered in real life. There is no need to continually

refine the model on newly collected data samples.

These assumptions limit the use-case of DNNs. On the

other hand, humans take a different approach to learning,

by continuously accumulating knowledge and adapting to

our surroundings. Lifelong machine learning is a paradigm

under which ML models can learn in a similar manner as

humans. (Chen et al., 2015; Liu, 2016) define a lifelong

learning algorithm as an algorithm that has performed a se-

quence of N learning tasks, T1, T2, . . . , TN . When faced

with the (N +1)th task TN+1 with data DN+1, the learner

can leverage the prior knowledge in its memory to help

learn TN+1. The memory stores and maintains the knowl-

edge learned and accumulated in the past learning of the N

tasks. After learning TN+1, the memory is updated with

the learned results from TN+1. The algorithm should then

hopefully be proficient in all tasks T1, T2, . . . , TN+1. We

purposefully do not define the concept of a ”task” as it is

very application dependent. In general, a new task can

be thought of as a new batch of data with new class la-

bels, or a new domain distribution, or a new output space

(Delange et al., 2021).

Lifelong learning for DNNs assumes infinite training data.

A prominent example that combines lifelong learning with

DL can be found in the autonomous vehicle industry. Self-

driving car companies intend to operate their vehicles as a

fleet. Vehicles in a fleet use an object detection DNN to



On The State of Data In Computer Vision: Human Annotations Remain Indispensable for Developing Deep Learning Models.

identify moving objects and avoid collisions. This DNN

was trained offline on a computing cluster using a large la-

beled dataset. After training, identical duplicates of this

DNN are deployed to every vehicle in the fleet over the in-

ternet.

Simultaneously, vehicles in the fleet are constantly apply-

ing data querying algorithms 3, if the querying algorithm

deems a scene particularly relevant, the vehicle sends the

scene back to the cluster to be annotated and added to the

training set. The DNN is then re-trained on the newly ac-

quired data and redeployed on the fleet. This cycle allows

the fleet to continuously improve its driving performance

by refining its model.

The above example is still closer in nature to the isolated

learning paradigm than it is to the general lifelong learning

paradigm. For instance, the network does not need any con-

cept of memory since it can retain old training data. In other

words, the training data is not treated as a stream where

each new batch is discarded after training the model; in-

stead, all previously collected data is stored on the server,

and the network can be trained offline on all the available

data4. More generally, a lifelong learning algorithm should

be able to operate even when training data pertaining to

previous tasks expires5.

3.1. Catastrophic Forgetting

When training data pertaining to previous tasks cannot be

re-used, lifelong learning becomes more difficult. DNNs

are prone to catastrophic forgetting. This phenomenon is

one of the biggest hurdles for achieving lifelong learning

across a wide range of tasks. Catastrophic forgetting oc-

curs when a network, previously trained to perform a cer-

tain task, is now trained to perform a new task. When train-

ing on the new task, the neural network is susceptible to

abruptly forget how to perform the original task. In this

case, the model must implement some form of (implicit

or explicit) memory to avoid forgetting the older tasks.

There is a large body of research concerned with design-

ing the memory (Delange et al., 2021), including, pseudo-

rehearsal methods (Shin et al., 2017) where the memory

is in the form of a generative model trained on previ-

ous tasks, regularization-based methods (Kirkpatrick et al.,

2017) which focus on finding network parameters that can

learn new tasks without forgetting older tasks, and parame-

ter isolation methods (Aljundi et al., 2017) which introduce

a new set of parameters to the network every time a new

task is encountered. (Delange et al., 2021) compare sev-

3These algorithms constitute a separate branch of ML called
active learning.

4This type of continual learning falls under ”replay methods
using rehearsal”. See section 3.1 of (Delange et al., 2021).

5see section 7 in (Delange et al., 2021) for a list of characteris-
tics that an ”ideal” lifelong learning algorithm should incorporate.

eral of these methods by dividing Tiny ImageNet (a subset

of 200 classes from Imagenet with each class containing

500 images) into different tasks, each containing a differ-

ent set of labels, they find that parameter isolation methods

perform best, followed by regularization methods.

Unfortunately, to the best of our knowledge, lifelong learn-

ing research still lags behind conventional offline CV re-

search, and there are no results on lifelong learning in the

huge data regime.

4. Model Selection

In section 2.1 we mentioned that a good choice of model

capacity is crucial in order to fully exploit massive datasets.

In this section we study the effect of model capacity (also

known as complexity) on the performance of DNNs trained

on massive amounts of data6. A large body of works stem-

ming from the ML theory community studies this effect in

an attempt to explain the puzzling generalization exhibited

by deep neural networks - see section 3 of (Huang et al.,

2020) for a brief survey. However, there still remains a lot

of unanswered questions in this area. Here we focus on

more empirical observations from the literature regarding

the relation between model complexity and training on mas-

sive datasets, then we tackle the double descent and sample

non-monotonicity phenomena and what they entail in the

massive data regime.

The papers surveyed in section 2.1 (Mahajan et al., 2018;

Sun et al., 2017; Dosovitskiy et al., 2021) found it im-

portant to use appropriately large models when training

with massive datasets, as small models are susceptible

to under-fitting the data. In fact, (Mahajan et al., 2018)

have found that pre-training small models on more and

more data can have a negative effect on performance

after fine-tuning on the target task. In (Hestness et al.,

2017), the authors built on prior theoretical works, by

devising experiments to determine the optimal model

capacity as a function of dataset size. In their experiments,

the optimal model complexity increases sub-linearly

according to a power law with the size of the dataset. As

the authors note, their experiments consistently exhibited

this power law behavior, suggesting that their line of

work could be leveraged to systematize a host of tasks,

such as neural architecture design and model size selection.

4.1. Double Descent and Sample Non-Monotonicity

The double descent phenomenon postulates that medium

sized models are more susceptible to overfitting than their

6We are intentionally using the term ”model capacity” loosely
as there is not a single agreed upon definition in the literature and a
discussion of formal definitions is outside the scope of this paper.
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smaller or larger counterparts. The name stems from

plotting the test errors of different ML models trained

for a fixed large number of epochs against the number of

parameters in each model. As model complexity increases,

the test error will start off as a large number, decrease,

increase, then finally decrease again. The middle region

on the plot where the loss increases as a function of model

complexity is called the critical regime. Double descent is

a fairly universal phenomenon that occurs across a variety

of tasks, architectures, and optimization methods.

Neural networks defy classical statistical learning theory

because they do not overfit despite having more parame-

ters than samples in the training set. Double descent was

first postulated in generality in (Belkin et al., 2019), who

demonstrated it for decision trees, random features, and 2-

layer neural networks with l2 loss, on a variety of learning

tasks including MNIST and CIFAR-10. It has been the-

oretically analyzed in the tractable setting of linear least

squares regression (Belkin et al., 2019; Hastie et al., 2020;

Bartlett et al., 2020; Mitra, 2019). In (Nakkiran et al.,

2019), the authors find that the double descent phenomenon

for DNNs is most prominent in settings with added label

noise. When using early stopping to train deep neural net-

works, the double descent phenomenon becomes less pro-

nounced. In other words, the set of model complexities that

are susceptible to overfitting shrinks, making it highly un-

likely to select a poor model.

Early stopping is easy to implement and is already widely

adopted by ML practitioners; on the other hand, label noise

is a common and difficult problem to eliminate. It is

therefore important to carefully select models when train-

ing with noisy data as is typically the case in the massive

dataset regime.

In their work, (Nakkiran et al., 2019) also evaluate the test

performance as a function of the number of training sam-

ples. Sample non-monotonicity is a phenomenon that oc-

curs when comparing two medium sized models trained

for a fixed (large) number of epochs on different amounts

of data. Surprisingly, the model trained with less data out-

performs its counterpart. This observation only holds for

medium-sized models, and only after training for a fixed

number of epochs. In the presence of early stopping the

authors could not reproduce sample non-monotonicity for

any model complexity.

While there are still many open questions regarding optimal

model sizing in small data regimes, we are far from saturat-

ing on model capacity in massive data regimes. In general,

we conclude that, given sufficient labeled data, with little

label noise, larger models trained with early stopping are

generally more likely to outperform smaller models.

5. Huge Datasets and Algorithmic Fairness

As applications of machine learning grow more

widespread, it becomes increasingly important to un-

derstand the sociopolitical implications of algorithmic

decision making. Numerous studies have shown that

across applications, deep learning models have a tendency

to reinforce existing inequalities. For example, authors

(Buolamwini & Gebru, 2018) showed that commercial

face recognition algorithms have significantly higher error

rates for dark-skinned women than light skinned men,

and a 2019 NIST study showed that a majority of facial

recognition algorithms misidentify racial minorities 10 to

100 times more often than whites (Grother et al., 2019).

Why is racial and gender bias so pervasive in deep

learning applications? The majority of evidence sug-

gests that non-diverse training datasets are the largest

factor driving racially disparate results. Indeed, many

open source facial recognition datasets are biased to-

wards light-skinned faces. For example, Labeled Faces

in the Wild is 83.5% white, and the IJB-A dataset, which

was specifically created to emphasize geographic diversity,

draws only 21.4% of its examples from faces with darker

skin tones (Buolamwini & Gebru, 2018). Researchers

(Krishnan et al., 2020) compared models trained on the

UTKFace dataset with models trained on the FairFace

dataset (which is designed to be balanced with respect to

race), and found that across 3 model architectures, model

results were substantially less biased after training FairFace

(Krishnan et al., 2020). These findings underscore the need

for better public, large scale datasets labeled with demo-

graphic data in order to enable further empirical study of

algorithmic bias. The effect of dataset size and dataset bal-

ance on algorithmic fairness remains an open question in

the literature.

Training datasets collected in the real world contain soci-

etal and historical biases7. (Tiwald et al., 2021) are hope-

ful about the potential for synthetic data to incorporate fair-

ness constraints. Using a generative model, they produced

a synthetic version of the UCI Adult census dataset which

resulted in a more fair classifier (Tiwald et al., 2021). How-

ever, whether such methods will prove effective for more

complex and unstructured data types such as images re-

mains an open research question.

6. Label Noise

The labels of datasets crawled from the Internet are

inherently noisy. For example, in the Instagram-1B

7In this review we’ve omitted the topic of federated learning.
Federated learning is concerned with training using data available
only on edge devices, please refer to (Kairouz et al., 2019) for an
overview.
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dataset, hashtags are not necessarily visually relevant.

(Mahajan et al., 2018) found that when 50% of hashtags are

randomly replaced (i.e. noise injection), the accuracy of the

target task is reduced by 7.31% to 14.29% depending on

the number of classes in the target task. This behavior per-

sisted when tested in smaller datasets as well. Meanwhile,

(Rolnick et al., 2017) showed that test accuracy above 90

percent is achievable on smaller datasets (e.g. MNIST)

even after each clean training example has been diluted

with 100 randomly-labeled examples. These results sug-

gest that we could potentially identify and prune a certain

percentage of data with no effect on accuracy. Therefore,

when it comes to pretraining, resources are generally bet-

ter spent on gathering additional labeled data in the down-

stream target dataset rather than improving the quality of

labels in the pretraining data.

To model systematic label noise (or class-dependent la-

bel noise), there exists methods such as loss correction

(Patrini et al., 2017) or label smoothing (Lukasik et al.,

2020). In particular, (Patrini et al., 2017) produces a

stochastic matrix indicating the probability of one class

being mislabeled as another class and shows that, on the

Clothing 1M dataset (Xiao et al., 2015), accuracy is im-

proved by 16.59%.

7. Conclusion

We’ve surveyed several topics related to training neural net-

works on seemingly infinite data. Due to budget constraints

and the lack of large-scale open-source datasets, only a few

members of the ML community are able to conduct exper-

iments at massive scale. However, there are many under-

studied areas of research where experiments with relatively

smaller datasets (e.g. ImageNet) could yield scientifically

interesting results. For instance, how can we achieve bet-

ter active learning? Not all training examples are created

equal, some could be more informative than others, and

ideally we should focus our labeling effort on annotating

more informative samples. There are other promising re-

search areas which revolve around fairness: How might we

use synthetic data to improve deep learning performance

relative to quantitative definitions of fairness? How do we

ensure models are fair when training on a long tailed distri-

bution?

Despite years of research, we still cannot clearly pin point

why over-parameterized DL models can generalize so well.

Solving this mystery will require the community to expand

on existing statistical learning theory. This improved theo-

retical paradigm will pave the way for a myriad of research

directions, including fundamental questions such as: how

should we design a model’s architecture given some data?

how well can we predict the model performance, given a

specific model and data? And, how much data do we really

need to achieve adequate generalization?

To conclude, training on seemingly infinite data is hard,

and we’re only beginning to understand the benefits and

pitfalls of training in this regime. Training in this regime

is costly at every step: collecting and labeling the data is

a costly process whether carried out manually, via genera-

tive models, or via graphics engines. Training large enough

models requires access to a lot of compute resources, and

finally, deploying and maintaining such models at scale

can also be very costly, especially if they’re continually

learning. In the long run, the cost of each step will be

reduced. Our point of concern – the cost of human anno-

tation – also should be mitigated through large-scale self-

supervised learning. However, without the paradigm shift

from the well-established workflow of ML practitioners –

pretraining then fine-tuning, human in the loop learning in-

cluding the data annotation will remain indispensable to

train deep learning models on various machine learning

tasks.
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