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Abstract

We introduce some new proximal quasi-Newton methods for unconstrained multiobjective

optimization problems (in short, UMOP), where each objective function is the sum of a twice con-

tinuously differentiable strongly convex function and a proper lower semicontinuous convex but

not necessarily differentiable function. We propose proximal BFGS method, proximal self-scaling

BFGS method, and proximal Huang BFGS method for (UMOP) with both line searches and

without line searches cases. Under mild assumputions, we show that each accumulation point of

the sequence generated by these algorithms, if exists, is a Pareto stationary point of the (UMOP).

Moreover, we present their applications in both constrained multiobjective optimization problems

and robust multiobjective optimization problems. In particular, for robust multiobjective opti-

mization problems, we show that the subproblems of proximal quasi-Newton algorithms can be

regarded as quadratic minimization problems with quadratic inequality constraints. Numerical

experiments are also carried out to verify the effectiveness of the proposed proximal quasi-Newton

methods.

Key words Multiobjective optimization; Proximal quasi-Newton method; Pareto stationarity;

Robust optimization

1 Introduction

Scalarization approach is one of the most effective methods to solve the multi-objective op-

timization problem, which transforms the multiobjective optimization problem into a single ob-

jective optimization problem (see [12, 13, 22]). In recent years, the descent method for multiob-

jective optimization problems has attracted wide attention in the optimization field [11]. Fliege

and Svaiter [10] proposed the steepest descent method for computing a point satisfying the first-

order necessary condition of an unconstrained multiobjective optimization problem. Bello Cruz,

Lucambio Prez and Melo [1] proposed the projection gradient method for quasiconvex multiobjec-

tive optimization problems and showed that the sequence generated by the algorithm converges
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to a stationary point. Bonnel, Iusem and Svaiter [4] proposed some proximal point method for

vector optimization problems. Da Cruz Neto, Da Silva, Ferreira, et al. [7] proposed a subgradient

method for quasiconvex multiobjective optimization problems and established the convergence to

Pareto optimal points of the sequences produced by the method. Fliege, Grana Drummond and

Svaiter [9] introduced the Newton’s method for unconstrained multiobjective optimization prob-

lems and showed that the method is locally superlinear convergent to optimal points. Povalej [17]

introduced a quasi-Newton method for unconstrained multiobjective optimization problems and

showed that the convergence of this method is superlinear.

Tanabe, Fukuda and Yamashita [21] introduced some proximal gradient methods with line

searches and without line searches for a unconstrained multiobjective optimization problem, where

each objective function is the sum of a continuously differentiable convex function and a proper

convex but not necessarily differentiable function. And they also showed that each accumulation

point of these sequence generated by these algorithms, if exists, is Pareto stationary. They also

pointed out in [21] that an interesting topic for future research is to propose some new proximal

Newton-type algorithms for the multiobjective optimization problems.

In this paper, we consider the following unconstrained multiobjective optimization problems

(in short, UMOP):

min F (x)

s.t. x ∈ Rn,
(1)

where F : Rn → (R ∪ {∞})m is a vector-valued function with F := (F1, .., Fm)
T and T denotes

transpose. We assume that each Fi : R
n → R ∪ {∞} is defined by

Fi(x) := gi(x) + hi(x), i = 1, ...,m, (2)

where gi:R
n → R is a twice continuously differentiable strongly convex function, hi : Rn →

R∪{∞} is proper convex and lower semicontinuous but not necessarily differentiable. It is worthy

noting that if hi(x) ≡ 0 for all x ∈ Rn and i = 1, 2, ...,m, then (1) reduces the multiobjective

optimization problems studied in [1, 4, 7, 9–11, 17].

In order to solve the above (UMOP) (i.e., problem (1) with (2)), we propose some new

proximal quasi-Newton methods with line searches and without line searches based on both the

proximal point method and the quasi-Newton method. Here, the quasi-Newton method is used for

the twice continuously differentiable strongly convex function gi, and the proximal point method

is used for the proper convex but not necessarily differentiable function hi.

The main contents of this paper are as follows: In Section 2, we give some notations and

some concepts about Pareto optimality and Pareto stationarity. In Section 3, we propose some

new proximal quasi-Newton methods, which are called to be proximal BFGS method, proximal

self-scaling BFGS method, and proximal Huang BFGS method, with line searches and without

line searches for the (UMOP). In these new proximal quasi-Newton methods, we approximate

the Hessian matrices of gi by using the well known BFGS method, self-scaling BFGS method,

and the Huang BFGS method. We prove the global convergence of the proposed algorithms in

Section 4. In Section 5, we apply the proposed algorithms to both constrained multiobjective
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optimization problems and some robust multiobjective optimization problems. Finally, in Section

6, we verify the effectiveness of the proposed algorithms through numerical experiments to solve

robust multiobjective optimization problems.

2 Preliminaries

For the convenience and brevity of the following discussion, some notations are given in this

section, and relevant definitions and lemmas are reviewed.

Let R denote the set of real numbers and N denote the set of positive integers. The Euclidean

norm in Rn will be denoted by ‖·‖. We define the relationship ≤ (<) in Rm as u ≤ v(u < v) if

and only if ui ≤ vi(ui < vi) for all i = 1, ...,m.

We call the twice continuously function g : Rn → R is strongly convex if for all x, y ∈ Rn,

(∇g(x)−∇g(y))T (x− y) ≥ a‖x− y‖
2

(3)

for some a > 0, where ∇f(x) denote the gradient of g at x (see [16]).

It’s easy to see that (3) is equivalent to

∇2g(x) ≥ aI, for all x ∈ Rn,

where ∇2g(x) denote the Hessian matrix of g at x.

It is clear that strong convexity of g implies both the strict convexity and convexity of g.

And it is easy to see that g is strongly convex, its Hessian matrix ∇2g(x) is positive definite for

all x ∈ Rn.

Let f :Rn → R ∪ {+∞}, and let x ∈ dom(f) := {x ∈ Rn : f(x) < +∞}. Then the directional

derivative of f at x in the direction d ∈ Rn is defined to be the limit

f ′(x; d) = lim
α→0+

f(x+ αd)− f(x)

α
,

if it exists (see [18]). It’s easy to see that f ′(x; d) = ∇f(x)Td when f is differentiable at x.

Lemma 1 [18] Let f :Rn → R ∪ {∞} be a convex function and let x ∈ dom(f). Then for

each d ∈ Rn, the function ϕ:(0,+∞) → R defined by ϕ(α) = f(x+αd)−f(x)
α

is non-decreasing. In

particular, it follows that

f(x+ d)− f(x) ≥
f(x+ αd)− f(x)

α
for all α ∈ (0, 1).

Definition 1 [10, 11] Recall that x∗ ∈ Rn is a Pareto optimal point for (UMOP), if there

is no x ∈ Rn such that F (x) ≤ F (x∗) and F (x) 6= F (x∗). The set of all Pareto optimal values is

called Pareto frontier. Likewise, x∗ ∈ Rn is a weakly Pareto optimal point for (UMOP), if there

is no x ∈ Rn such that F (x) < F (x∗).

It’s well known that the Pareto optimal point of (UMOP) is also a weakly Pareto optimal

point of (UMOP), and the converse is not true in general.

Definition 2 [21] We say that x̄ ∈ Rn is Pareto stationary (or critical) of (UMOP), if and

only if

max
i=1,...,m

F ′

i (x̄; d) ≥ 0 for all d ∈ Rn.
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It is worthy to noting that Definition 2 generalizes the corresponding ones in [10] and the

following important results hold true.

Lemma 2 [21] (1) If x ∈ Rn is a weakly Pareto optimal point of (UMOP), then x is Pareto

stationary.

(2) Let every component Fi of F be convex. If x ∈ Rn is a Pareto stationary point of (UMOP),

then x is also a weakly Pareto optimal point of (UMOP).

(3) Let every component Fi of F be strictly convex. If x ∈ Rn is a Pareto stationary point of

(UMOP), then x is also a Pareto optimal point of (UMOP).

The most popular quasi-Newton’s method for nonlinear optimization problems is BFGS

method which was introduced by Broyden, Fletcher, Goldfarb and Shanno [5, 8, 14, 19]. It is

a line search method with a descent direction

dk = −(Bk)−1∇f(xk),

where f : Rn → R is the twice continuously differentiable objective function, Bk ∈ Rn×n is an

approximation matrix to ∇2f(xk), which is updated at every iteration as follows:

Bk+1 = Bk −
Bksk(sk)

T
Bk

(sk)
T
Bksk

+
yk(yk)

T

(sk)
T
yk

, (4)

where sk = xk+1 − xk and yk = ∇f(xk+1)−∇f(xk). As the authors shown in [16], Bk+1 remains

positive definite whenever Bk is positive definite. The new iterate is

xk+1 = xk + λkd
k,

where the step length λk > 0.

We recall the updating formula of Bk related to the self-scaling BFGS (in short, SS-BFGS)

method [20] as follows:

Bk+1 =
(sk)

T
yk

(sk)
T
Bksk

Ç

Bk −
Bksk(sk)

T
Bk

(sk)
T
Bksk

å

+
yk(yk)

T

(sk)
T
yk

. (5)

It is worthy noting that both the BFGS method and the SS-BFGS method will be successful

if the secant equation Bk+1sk = yk and the curvature condition (sk)Tyk > 0 are satisfied.

We recall the updating formula of Bk related to the Huang BFGS (in short, H-BFGS) as

follows:

Bk+1 = Bk −
Bksk(sk)

T
Bk

(sk)
T
Bksk

+
ŷk(ŷk)

T

(sk)
T
ŷk

. (6)

where ŷk = yk + θk

(sk)T yk
yk and θk = 6[f(xk)− f(xk+1)] + 3[∇f(xk) +∇f(xk+1)]T sk.

It is also worthy noting that the H-BFGS method will be successful if the Huang quasi-Newton

equation [20, 23] Bk+1sk = ŷk and the curvature condition (sk)T ŷk > 0 hold true.

Based on the above statements, if f is a strongly convex function, then the matrix Bk+1

obtained from each of the mentioned updating formulae for approximating the Hessian matrix

always preserves positive definiteness. Thus, in this paper, we assume that all gi in (UMOP) are

strongly convex.
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3 Proximal quasi-Newton methods

Throughout the rest of this paper, we always assume that the function gi is the twice continu-

ously differentiable strongly convex, and the function hi is proper convex and lower semicontinuous

but not necessarily differentiable for i = 1, 2, ...,m.

In this section, we propose some new proximal quasi-Newton methods for (UMOP) with line

searches and without line searches.

Now, We define the function θx : Rn → R by

θx(d) := max
i=1,...,m

{∇gi(x)
Td+

1

2
dTBi(x)d+ hi(x+ d)− hi(x)}, (7)

where ∇gi(x) denotes the gradient of gi at x, Bi(x) is some approximation of ∇2gi(x), i =

1, 2, ...,m. By the convexity of gi and hi, we get θx is convex and θx(0) = 0.

We show an important property of θx as follows:

Lemma 3 For all d ∈ Rn, the following equality holds:

θ′x(0; d) = max
i=1,...,m

F ′

i (x; d).

Proof. Since θx(0) = 0, By the definition of directional derivative, we get

θx
′(0; d) = lim

α→0+

θx(αd)

α
.

By the definition of θx, we have

lim
α→0+

θx(αd)

α
= lim

α→0+
max

i=1,...,m

∇gi(x)
T
(αd) + 1

2
(αd)

T
Bi(x)(αd) + hi(x+ αd)− hi(x)

α

= max
i=1,...,m

lim
α→0+

∇gi(x)
T
(αd) + 1

2
(αd)

T
Bi(x)(αd) + hi(x+ αd)− hi(x)

α

= max
i=1,...,m

{∇gi(x)
T d+ h′

i(x; d)}

= max
i=1,...,m

F ′

i (x; d),

where the second equality follows from the continuity of the max function and the third one comes

from the definition of directional derivative.

Let ω be a positive constant. We define ϕω,x : Rn → R as

ϕω,x(d) := θx(d) +
ω

2
‖d‖

2
,

where the function θx is defined in (7). Clearly, ϕω,x is strongly convex and ϕω,x(0) = 0. We would

like to define the proximal quasi-Newton direction at an iteration k as dk = dω(x
k), where

dω(x) := argmin
d∈Rn

ϕω,x(d). (8)

Remark 1 (1) Since ϕω,x is strongly convex, (8) has a unique solution dω(x).

(2) Since ϕω,x(0) = 0, we have ϕω,x(dω(x)) ≤ 0.
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Let βω(x) be the optimal value in (8), i.e.,

βω(x) := min
d∈Rn

ϕω,x(d) = ϕω,x(dω(x)). (9)

The following lemma characterizes the Pareto stationarity of (UMOP) in terms of dω(·) and

βω(·).

Lemma 4 Let dω(x) and βω(x) be defined in (8) and (9), respectively. Then, the following

statements hold.

(1) If x is a Pareto stationary point of (UMOP), then dω(x) = 0 and βω(x) = 0. Conversely,

if dω(x) = 0 and βω(x) = 0, then x is a Pareto stationary point of (UMOP).

(2) If x is not a Pareto stationary point of (UMOP), then dω(x) 6= 0 and βω(x) < 0. Con-

versely, if dω(x) 6= 0 and βω(x) < 0, then x is not a Pareto stationary point of (UMOP).

(3) The mappings dω(·) and βω(·) are continuous.

Proof. (1) Let x be Pareto stationary of (UMOP). Suppose, for the purpose of contradiction,

that dω(x) 6= 0 or βω(x) < 0. From statements (1) and (2) in Remark 1 it follows that dω(x) 6= 0

if and only if βω(x) < 0. This means that dω(x) 6= 0 and βω(x) < 0.

Therefore, we obtain

βω(x) = θx(dω(x)) +
ω

2
‖dω(x)‖

2
< 0. (10)

It follows from the convexity of θx, θx(0) = 0 and (10) that for all η ∈ (0, 1),

θx(ηdω(x)) =θx(ηdω(x) + (1− η) · 0)

≤ηθx(dω(x)) + (1− η)θx(0)

=ηθx(dω(x))

<−
ηω

2
‖dω(x)‖

2
.

Thus, for all η ∈ (0, 1) we have

θx(ηdω(x))

η
< −

ω

2
‖dω(x)‖

2
.

Since dω(x) 6= 0, letting η → 0+ we obtain

θ′x(0; dω(x)) ≤ −
ω

2
‖dω(x)‖

2
< 0.

It then follows from Lemma 3 that

max
i=1,...,m

F ′

i (x; dω(x)) < 0,

which contradicts the Pareto stationarity of x.

Let us now prove the converse. Then, suppose that dω(x) = 0 and βω(x) = 0. From the

definition of βω(x) given in (9), we have

ϕω,x(d) = θx(d) +
ω

2
‖d‖

2
≥ βω(x) = 0 for all d.
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Let η ∈ (0, 1), we get

θx(ηd) +
ω
2
‖ηd‖

2

η
≥ 0 for all d.

Letting η → 0+ and by Lemma 3, we know that for all d ∈ Rn

θ′x(0; d) = max
i=1,...,m

F ′

i (x; d) ≥ 0,

which implies that x is a Pareto stationary point of (UMOP).

(2) This statement is equivalent to statement (1).

(3) It is easy to see that the function

max
i=1,...,m

{∇gi(x)
Td+

1

2
dTBi(x)d+ hi(x+ d)− hi(x)}+

ω

2
‖d‖

2

is continuous with respect to x and d. Therefore, the optimal value function βω(·) is also continuous

from [2, Maximum Theorem]. Moreover, since the optimal set mapping dω(·) is unique, dω(·) is

continuous from [15, Corollary 8.1].

3.1 Some new proximal quasi-Newton methods for (UMOP) with line

searches

Now, we present some new proximal quasi-Newton methods for (UMOP) with line searches.

To compute the step length λk > 0, we use an Armijo rule. Let τ ∈ (0, 1) be a prespecified

constant. The condition to accept λk is given by

Fi(x
k + λkd

k) ≤ Fi(x
k) + λkτθxk(dk), i = 1, ...,m. (11)

We begin with λk = 1 and while (11) is not satisfied, we update

λk := ζλk,

where ζ ∈ (0, 1). The following lemma demonstrates the finiteness of this procedure.

Lemma 5 Let dk be defined in (8) with x = xk and τ ∈ (0, 1), If xk is not Pareto stationary,

then there exists some λ̄k > 0 such that

Fi(x
k + λdk) ≤ Fi(x

k) + λτθxk(dk), i = 1, ...,m

for any λ ∈ (0, λ̄k].

Proof. Let λ ∈ (0, 1]. Since hi is convex for all i = 1, ...,m, we have

hi(x
k + λdk)− hi(x

k) =hi((1− λ)xk + λ(xk + dk))− hi(x
k)

≤(1− λ)hi(x
k) + λhi(x

k + dk)− hi(x
k)

=λ(hi(x
k + dk)− hi(x

k)).

7



Therefore, from the second-order Taylor expansion of gi we obtain

gi(x
k + λdk) + hi(x

k + λdk)

≤gi(x
k) + λ∇gi(x

k)Tdk +
1

2
(λdk)TBi(x

k)(λdk) + hi(x
k) + λ(hi(x

k + dk)− hi(x
k)) + o(λ2)

=gi(x
k) + hi(x

k) + λ[∇gi(x
k)T dk +

λ

2
(dk)TBi(x

k)(dk) + hi(x
k + dk)− hi(x

k)] + o(λ2)

≤gi(x
k) + hi(x

k) + λ[∇gi(x
k)T dk +

1

2
(dk)TBi(x

k)(dk) + hi(x
k + dk)− hi(x

k)] + o(λ2)

≤gi(x
k) + hi(x

k) + λθxk(dk) + o(λ2)

=gi(x
k) + hi(x

k) + λτθxk(dk) + λ

ï

(1− τ)θxk(dk) +
o(λ2)

λ

ò

,

where Bi(x
k) is some approximation of ∇2gi(x

k), i = 1, ...,m, the second inequality follows from

the positive definiteness of Bi(x
k) and λ ∈ (0, 1], and the third one comes from the definition of θx.

Since xk is not Pareto stationary, we have θxk(dk) < 0 from Lemma 4. It follows from τ ∈ (0, 1)

that there exists some λ̄k > 0 such that

gi(x
k + λdk) + hi(x

k + λdk) ≤ gi(x
k) + hi(x

k) + λτθxk(dk), i = 1, ...,m, ∀λ ∈ (0, λ̄k].

To simplify the notation we will use Bk
i to denote Bi(x

k) for all i = 1, ...,m and k = 0, 1, 2, ....

Based on the previous discussions, we would like to state our new proximal quasi-Newton

methods with line searches for (UMOP) as follows:

Algorithm 1

Step 1 Choose ω > 0, τ ∈ (0, 1), ζ ∈ (0, 1), x0 ∈ Rn, symmetric positive definite matrix

B0
i ∈ Rn×n, i = 1, ...,m and set k := 0;

Step 2 Compute dk by solving subproblem (8) with x = xk;

Step 3 If dk = 0, then stop. Otherwise, proceed to the next step;

Step 4 Compute the step length λk ∈ (0, 1] as the maximum of

Λk := {λ = ζj |j ∈ N,Fi(x
k + λdk) ≤ Fi(x

k) + λτθxk(dk), i = 1, ...,m};

Step 5 Set xk+1 = xk + λkd
k, update {Bk

i } by either one of following three formulae

Bk+1
i = Bk

i −
Bk

i s
k(sk)

T
Bk

i

(sk)
T
Bk

i s
k

+
yki (y

k
i )

T

(sk)
T
yki

, (12)

Bk+1
i =

(sk)
T
yki

(sk)
T
Bk

i s
k

Ç

Bk
i −

Bk
i s

k(sk)
T
Bk

i

(sk)
T
Bk

i s
k

å

+
yki (y

k
i )

T

(sk)
T
yki

, (13)

or

Bk+1
i = Bk

i −
Bk

i s
k(sk)

T
Bk

i

(sk)
T
Bk

i s
k

+
ŷki (ŷ

k
i )

T

(sk)
T
ŷki

, (14)

8



where sk = xk+1 − xk = λkd
k, yki = ∇gi(x

k+1) − ∇gi(x
k), ŷki = yki + θk

i

(sk)T yk
i

yki and θki :=

6[gi(x
k)− gi(x

k+1)] + 3[∇gi(x
k) +∇gi(x

k+1)]T sk. Set k := k + 1, and go to Step 2.

It is worthy noting that, when using (12), (13) and (14) to update {Bk
i }, the above proximal

quasi-Newnon methods for (UMOP) will be called PQNM(BFGS) method with line searches,

PQNM(SS-BFGS) method with line searches and PQNM(H-BFGS) method with line searches,

respectively.

Observe that from Lemma 4, Algorithm 1 stops at Step 3 with a Pareto stationary point or

produces an infinite sequence of nonstationary points {xk}. If Step 4 is reached in some iteration

k, it means that in Step 3, dk 6= 0, or equivalently, βω(x
k) < 0. Thus, we have θxk(dk) < 0. It

follows from the Armijo condition that objective values sequence {F (xk)} is Rm
+ -decrease, i.e.,

F (xk+1) < F (xk) for all k.

3.2 Some new proximal quasi-Newton methods for (UMOP) without line

searches

In this section, we assume that ∇gi is Lipschitz continuous with constant L for all i =

1, 2, ...,m. Let the step length λk ≡ 1 for k = 0, 1, 2, .... Now we introduce some new proximal

quasi-Newton methods for (UMOP) without line searches.

Algorithm 2

Step 1 Choose ω > L/2, x0 ∈ Rn, symmetric positive definite matrix B0
i ∈ Rn×n, i = 1, ...,m

and set k := 0;

Step 2 Compute dk by solving subproblem (8) with x = xk;

Step 3 If dk = 0, then stop. Otherwise, proceed to the next step;

Step 4 Set xk+1 = xk + dk, update Bk+1
i by either one of the formula (12), (13) or (14). Set

k := k + 1, and go to Step 2.

When using (12), (13) and (14) to update {Bk
i }, we call the proximal quasi-Newton methods

for (UMOP) in Algorithm 2 to be PQNM(BFGS) method without line searches, PQNM(SS-BFGS)

method without line searches and PQNM(H-BFGS) method without line searches, respectively.

And it is easy to see that the algorithm 2 stops at Step 3 with a Pareto stationary point or

generates an infinite sequence of nonstationary points {xk}. Moreover, as we can see from the

proof of Lemma 9, the objective function values also decrease in each iteration, i.e.,

Fi(x
k + dk) < Fi(x

k), i = 1, ...,m.

4 Convergence analysis

In this section, we prove that the sequences generated by both Algorithm 1 and Algorithm 2

converge to Pareto stationary points of (UMOP).

Lemma 6 (Three points property) [6, Lemma 3.2] Let σ : Rn → R ∪ {∞} be proper convex

and define

x∗ = argmin
x∈Rn

ß

σ(x) +
1

2
‖x− y‖

2

™

.
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Then, for all z ∈ Rn, we have

σ(x∗)− σ(z) ≤ −
1

2
‖z − x∗‖

2
−

1

2
‖y − x∗‖

2
+

1

2
‖z − y‖

2
.

Lemma 7 Let {dk} be generated by Algorithms 1 or 2. Then, we have

θxk(dk) ≤ −ω
∥

∥dk
∥

∥

2
for all k,

where θx in defined in (7).

Proof. Defining σ(d) := θxk(d)/ω, we can rewrite (8) with x = xk as

dk = argmin
d∈Rn

ß

σ(d) +
1

2
‖d− 0‖

2

™

.

Thus, substituting x∗ = dk and y = z = 0 into Lemma 6, we get

σ(dk)− σ(0) ≤ −
∥

∥dk
∥

∥

2
.

It follows from θxk(0) = 0 that

θxk(dk) ≤ −ω
∥

∥dk
∥

∥

2
for all k.

4.1 Convergence of Algorithm 1

Lemma 8 Let {dk} be generated by Algorithm 1 and suppose that {Fi(x
k)} is bounded from

below for all i = 1, ...,m. Then, it follows that

lim
k→∞

λk

∥

∥dk
∥

∥

2
= 0.

Proof. It follows from Lemma 7 and step 4 of Algorithm 1 that

Fi(x
k + λkd

k) ≤ Fi(x
k)− λkτω

∥

∥dk
∥

∥

2
, i = 1, ...,m.

Adding up the above inequality from k = 0 to k = k̂, where k̂ is a positive integer, we obtain

Fi(x
k̂+1) ≤ Fi(x

0)− τω

k̂
∑

k=0

λk

∥

∥dk
∥

∥

2
. (15)

Since {Fi(x
k)} is bounded from below for all i = 1, ...,m, there exists F̂i ∈ R such that

F̂i ≤ Fi(x
k) for all i and k.

It follows from (15) that

k̂
∑

k=0

λk

∥

∥dk
∥

∥

2
≤

1

τω
(Fi(x

0)− Fi(x
k̂+1))

≤
1

τω
(Fi(x

0)− F̂i).

Taking k̂ → ∞, we have
∞
∑

k=0

λk

∥

∥dk
∥

∥

2
< ∞

and hence lim
k→∞

λk

∥

∥dk
∥

∥

2
= 0.
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Theorem 1 (i) Suppose that {Fi(x
k)} is bounded from below for all i = 1, ...,m. Then

every accumulation point of the sequence {xk} generated by Algorithm 1, if it exists, is a Pareto

stationary point.

(ii) Moreover, if the level set of F in the sense that {x ∈ Rn | F (x) ≤ F (x0)} is bounded,

then {xk} has accumulation points and they are all Pareto stationary.

Proof. We now prove the first statement.

Let x̄ be an accumulation point of {xk} and let {xkj} be a subsequence converging to x̄.

From statement (3) of Lemma 4, we have dkj = dω(x
kj ) → dω(x̄). Here, it is sufficient to show

that dω(x̄) = 0 because of statements (1) and (3) of Lemma 4. Suppose for contradiction that

dω(x̄) 6= 0. Then, it follows from Lemma 8 that λkj
→ 0. Therefore, by the definition of λkj

in

Step 4 of Algorithm 1, for sufficiently large j there exists some ikj
∈ {1, ...,m} such that

Fikj
(xkj + ζ−1λkj

dkj ) > Fikj
(xkj ) + ζ−1λkj

τθ
x
kj (d

kj ).

Since i only takes finite number of values in {1, ...,m}, we can assume that ikj
= ī without

loss of generality. We thus obtain

Fī(x
kj + ζ−1λkj

dkj )− Fī(x
kj )

ζ−1λkj

> τθxkj (d
kj ). (16)

Recall that 0 < ζ−1λkj
< 1. It follows from the definition of θx that

θxkj (d
kj ) ≥∇gī(x

kj )Tdkj +
1

2
(dkj )TBī(x

kj )(dkj ) + hī(x
kj + dkj )− hī(x

kj )

≥
ζ−1λkj

∇gī(x
kj )

T
dkj + 1

2
ζ−1λkj

(dkj )
T
Bī(x

kj )(dkj ) + hī(x
kj + ζ−1λkj

dkj )− hī(x
kj )

ζ−1λkj

=
gī(x

kj + ζ−1λkj
dkj ) + hī(x

kj + ζ−1λkj
dkj )− gī(x

kj )− hī(x
kj ) + o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

=
Fī(x

kj + ζ−1λkj
dkj )− Fī(x

kj )

ζ−1λkj

+
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

,

where Bī(x
kj ) is some approximation of ∇2gī(x

kj ), the second inequality comes from the convexity

of hi and Lemma 1, and the first equality follows from the second-order Taylor expansion of gi.

Therefore, we get

θxkj (d
kj ) ≥

Fī(x
kj + ζ−1λkj

dkj )− Fī(x
kj )

ζ−1λkj

+
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

. (17)

From (16) and (17), we get

Fī(x
kj + ζ−1λkj

dkj )− Fī(x
kj )

ζ−1λkj

> τ
Fī(x

kj + ζ−1λkj
dkj )− Fī(x

kj )

ζ−1λkj

+ τ
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

.

It follows that

Fī(x
kj + ζ−1λkj

dkj )− Fī(x
kj )

ζ−1λkj

> (
τ

1− τ
)
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

. (18)

11



On the other hand, Lemma 7 yields

θ
x
kj (d

kj ) ≤ −ω
∥

∥dkj

∥

∥

2
.

Since dkj → dω(x̄) 6= 0, it follows from the above inequality and (17) that there exists

γ = ω‖dω(x̄)‖
2
> 0 such that

−γ ≥θxkj (d
kj )

≥
Fī(x

kj + ζ−1λkj
dkj )− Fī(x

kj )

ζ−1λkj

+
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

for sufficiently large j. Therefore, for sufficiently large j, the following inequality holds.

Fī(x
kj + ζ−1λkj

dkj )− Fī(x
kj )

ζ−1λkj

≤ −γ −
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

. (19)

From (18) and (19), we know that for sufficiently large j

(
τ

1− τ
)
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

< −γ −
o((ζ−1λkj

∥

∥dkj

∥

∥)
2
)

ζ−1λkj

.

Taking j → ∞, we have 0 < −γ, which contradicts the fact that γ > 0. Therefore, we

conclude that dω(x̄) = 0.

We now prove the second statement. It is easy to see that the set {x ∈ Rn | F (x) ≤ F (x0)}

is bounded and that objective values sequence {F (xk)} is Rm
+ -decrease. Therefore, the sequence

{xk} generated by Algorithm 1 is contained in the above set and so it is also bounded and has

at least one accumulation point, which is a Pareto stationary point of (UMOP) according to the

first statement.

4.2 Convergence of Algorithm 2

Lemma 9 Let {dk} be generated by Algorithm 2 and suppose that {Fi(x
k)} is bounded from

below for all i = 1, ...,m. Then, we have

lim
k→∞

∥

∥dk
∥

∥

2
= 0.

Proof. From the so-called descent Lemma [3, Proposition A.24] and by Lipschitz continuity

of ∇gi, we obtain for all i = 1, ...,m,

gi(x
k + dk) ≤ gi(x

k) +∇gi(x
k)T dk +

L

2

∥

∥dk
∥

∥

2
.

Moreover, since the positive definiteness of Bi(x
k) implies (dk)TBi(x

k)(dk) > 0 for all i = 1, ...,m.

Therefore, we get

gi(x
k + dk) < gi(x

k) +∇gi(x
k)Tdk +

1

2
(dk)TBi(x

k)(dk) +
L

2

∥

∥dk
∥

∥

2
. (20)

12



At the kth iteration, we get for i = 1, 2, ...,m,

gi(x
k + dk) + hi(x

k + dk)

=gi(x
k) + hi(x

k) + gi(x
k + dk)− gi(x

k) + hi(x
k + dk)− hi(x

k)

<gi(x
k) + hi(x

k) +∇gi(x
k)T dk +

1

2
(dk)TBi(x

k)(dk) + hi(x
k + dk)− hi(x

k) +
L

2

∥

∥dk
∥

∥

2

≤gi(x
k) + hi(x

k) + θxk(dk) +
L

2

∥

∥dk
∥

∥

2

≤gi(x
k) + hi(x

k) +
L− 2ω

2

∥

∥dk
∥

∥

2
.

Here, the first inequality follows from (20), the second inequality follows from the definition

of θx, and the third inequality comes from Lemma 7. Since {Fi(x
k)} is bounded from below, there

exists F̂i ∈ R such that F̂i ≤ Fi(x
k) = gi(x

k) + hi(x
k) for all i, k. Adding up the above inequality

from k = 0 to k = k̂, where k̂ is a positive integer, we obtain

gi(x
k̂+1) + hi(x

k̂+1) < gi(x
0) + hi(x

0) +
L− 2ω

2

k̂
∑

k=0

∥

∥dk
∥

∥

2
.

Since ω > L/2, we have

k̂
∑

k=0

∥

∥dk
∥

∥

2
<

2

2ω − L
(gi(x

0) + hi(x
0)− (gi(x

k̂+1) + hi(x
k̂+1))

≤
2

2ω − L
(gi(x

0) + hi(x
0)− F̂i).

Taking k̂ → ∞, we obtain
∞
∑

k=0

∥

∥dk
∥

∥

2
< ∞

and hence lim
k→∞

∥

∥dk
∥

∥

2
= 0.

Theorem 2 (i) Suppose that {Fi(x
k)} is bounded from below for all i = 1, ...,m. Then every

accumulation point of the sequence {xk} generated by Algorithm 2 is a Pareto stationary point.

(ii) Moreover, if the level set of F in the sense that {x ∈ Rn | F (x) ≤ F (x0)} is bounded,

then {xk} has accumulation points and they are all Pareto stationary.

Proof. (i) Let x̂ be an accumulation point of {xk} and let {xkj} be a subsequence converging

to x̂. From statement (3) of Lemma 4, we have dkj = dω(x
kj ) → dω(x̂). Here, it is sufficient to

show that dω(x̂) = 0 because of statements (1) and (3) of Lemma 4. Suppose for contradiction

that dω(x̂) 6= 0, which contradicts the fact that Lemma 9. Therefore, we conclude that dω(x̂) = 0.

(ii) By similar augument with that of (ii) of Theorem 1, it is easy to know the result holds

true.

5 Applications
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In this section, we consider two applications of the unconstrained multiobjective optimization

problem (1) with (2), and discuss how to solve subproblems (8) in a particular application.

5.1 Application to constrained multiobjective optimization

In this section, we consider the following constrained multiobjective optimization problem:

min g(x)

s.t. x ∈ S,
(21)

where g : Rn → Rm is a vector-valued function with g := (g1, ..., gm)T and S ⊂ Rn is convex.

Suppose that each component gi of g is twice continuously differentiable. Let h : Rn → Rm be a

vector-valued function with h := (h1, ..., hm)T , where each hi is indicator function of S, i.e.,

hi(x) =

{

0, x ∈ S,

∞, x /∈ S.

Then, we can rewrite the search direction given in (4) with x = xk as

dk := argmin
d∈S−xk

ß

max{∇gi(x
k)d+

1

2
dTBi(x

k)d}+
ω

2
‖d‖

2

™

.

5.2 Application to robust multiobjective optimization

Now, let us apply the proposed proximal quasi-Newton algorithms to the robust multiobjec-

tive optimization including uncertain parameters which is exactly the multiobjective optimization

problem discussed in [21]. In other words, we will solve the (UMOP) with the convex function hi

defined as follows:

hi(x) := max
u∈Ui

ĥi(x, u), (22)

where Ui ⊆ Rn is an uncertainty set, and ĥi : R
n × Rn → R is convex with respect to the first

argument.

It is easy to see that hi is also convex. However, hi is not necessarily differentiable even if ĥi

is differentiable. First, let us reformulate the subproblem (8) by using an extra variable µ ∈ R as

min
µ,d

µ+
ω

2
‖d‖

2

s.t. ∇gi(x)
T d+ 1

2
dTBi(x)d+ hi(x+ d)− hi(x) ≤ µ, i = 1, ...,m.

It is worthy noting that hi is not easy to calculate, and thus, the subproblem is difficult to

solve. When ĥi and Ui have some special structure, the constraints of the above problem can be

written as explicit formulae by using the duality of (22). Now, assume that the dual problem of

the maximization problem (22) is written as follows:

min
wi

h̃i(x,wi)

s.t. wi ∈ Ũi(x),

14



where h̃i : Rn × Rm → R and Ũi : Rn → 2R
m

. If strong duality holds, then we see that the

subproblem (8) is equivalent to

min
µ,d,wi

µ+
ω

2
‖d‖

2

s.t. ∇gi(x)
Td+ 1

2
dTBi(x)d+ h̃i(x+ d, wi)− hi(x) ≤ µ,

wi ∈ Ũi(x+ d), i = 1, ...,m.

(23)

When h̃i and Ũi have some explicit form, this problem is tractable. As we mention below, in

this case, we can convert the above subproblem to some well-known convex optimization problems.

This idea can be also seen in [21]. In the following, we will introduce a robust multiobjective

optimization problem where the subproblem can be written as a quadratic programming.

Suppose that ĥi(x, u) = uTx and Ui = {u ∈ Rn|Aiu ≤ bi}, where Ai ∈ Rd×n and bi ∈ Rd,

that is, ĥi is linear in x, and Ui is a polyhedron. Suppose also that Ui is nonempty and bounded.

Then, follow the ideas of Tanabe, Fukuda and Yamashita [21], problem (22) can be rewritten as

the following linear programming problem:

max
u

xTu

s.t. Aiu ≤ bi,
(24)

and its dual problem is given by

min
w

bi
Tw

s.t. Ai
Tw = x,

w ≥ 0.

Since the strong duality holds, we can convert the subproblem (8) [or, equivalently (23)] to a

nonlinearly constrained quadratic programming problem:

min
µ,d,wi

µ+
ω

2
‖d‖

2

s.t. ∇gi(x)
T d+ 1

2
dTBi(x)d+ bi

Twi − hi(x) ≤ µ,

Ai
Twi = x+ d,

wi ≥ 0, i = 1, ...,m.

(25)

6 Numerical experiments

In this section, we present some numerical results using Algorithms 1 and 2 for the nonlinearly

constrained quadratic programming problem in Section 5.2. The experiments are carried out on

a machine with a 2.2GHz Intel Core i3 CPU and 6GB memory, and we implement all codes in

MATLAB R2018b. We consider the problem (UMOP) (i.e., the problem (1) with (2)), where

n = 5, m = 2, gi(x) = 1
2
xTQix + qi

Tx, hi(x) = max
u∈Ui

ĥi(x, u), Qi ∈ Rn×n, qi ∈ Rn, and ĥi :

Rn × Rn → R, i = 1, ...,m. Here, we assume that each Qi is positive definite, so it can be

decomposed as Qi = MiMi
T , where Mi ∈ Rn×n. We generate Mi and qi by choosing every

component randomly from the standard normal distribution. To implement Algorithms 1 and 2,

we make the following choices.
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Remark 2 (1) Every component of x0 is chosen randomly from the standard normal distri-

bution.

(2) B0
i is the identity matrix, i.e., B0

i = I, i = 1, ...,m.

(3) We set the constant ω = 5, τ = 1
2
, and ς = 1

2
.

(4) The terminate criteria is replaced by
∥

∥dk
∥

∥ < ε := 10−6.

Also, we run each one of the following experiments 100 times from different initial points,

and with δ = 0, 0.05, 0.1. Naturally, when δ = 0, no uncertainties are considered.

In order to solve the nonlinear constrained quadratic programming problem (25), the following

numerical experiments are performed. We assume that hi(x) = max
u∈Ui

uTx, i = 1, 2, where U1 =

{u ∈ R5| − δ ≤ ui ≤ δ, i = 1, ..., 5} and U2 = {u ∈ R5| − δ ≤ (Bu)i ≤ δ, i = 1, ..., 5}. Here, every

component of B ∈ R5×5 is chosen randomly from the standard normal distribution and δ ≥ 0.

For simplicity of the notation, from now on, the proximal gradient method for (UMOP), which

was introduced in [21] is denoted by PGM, the proximal quasi-Newton methods for (UMOP) re-

lated to BFGS, self-scaling BFGS, and Huang BFGS methods are denoted by PQNM(BFGS),

PQNM(SS-BFGS), and PQNM(H-BFGS), respectively. We will use the toolbox of convex opti-

mization in MATLAB to solve (24) and (25).

6.1 Numerical experiment of algorithm 1

On one hand, the experimental result obtained by using PGM with line searches (i.e., Al-

gorithm 3.1 in [21]) with different δ for (UMOP) is shown in Fig. 1. The experimental results

obtained by using PQNM(BFGS), PQNM(SS-BFGS), and PQNM(H-BFGS) with line searches

for (UMOP) with deferent δ is shown in Fig. 2, Fig. 3 and Fig. 4, respectively. For each δ, we

obtained part of the Pareto frontier of (UMOP). And it is easy to see that the Pareto frontier

of (UMOP) becomes lower when δ is smaller. On the other hand, Fig. 5 shows the comparison

among the (PGM), PQNM(BFGS), PQNM(SS-BFGS) and PQNM(H-BFGS) with line searches

for (UMOP) when δ is 0, 0.05 and 0.1, respectively. When δ is same, we observed that the Pareto

frontier of (UMOP) produced by PQNM(H-BFGS) with line searches is the lowest, the Pareto

frontier of (UMOP) produced by PGM with line searches is the highest, and the Pareto frontier

of (UMOP) produced by PQNM(SS-BFGS) with line searches is lower than that produced by the

PQNM(BFGS) with line searches. And so PQNM(H-BFGS) with line searches for (UMOP) is the

most effective method and the introduced new proximal quasi-Newton methods with line searches

for (UMOP) are more effective than PGM with line searches for (UMOP).
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Fig.4 Result for PQNM(H-BFGS)

6.2 Numerical experiment of algorithm 2

Firstly, the experimental result of the PGM without line searches (i.e., Algorithm 3.2 in [21])

for (UMOP) is shown in Fig. 6. And the experimental results obtained by using PQNM(BFGS),

PQNM(SS-BFGS), and PQNM(H-BFGS) without line searches for (UMOP) with deferent δ is

shown in Fig. 7, Fig. 8, Fig. 9, respectively. It is obvious that the Pareto frontier produced by

the same method become smaller as δ gets smaller. Secondly, Fig.10 shows the comparison among

the (PGM), PQNM(BFGS), PQNM(SS-BFGS) and PQNM(H-BFGS) without line searches for

(UMOP) when δ is 0, 0.05 and 0.1, respectively. When δ is same, we also observed that the Pareto

frontier of (UMOP) produced by PQNM(H-BFGS) without line searches is the lowest one, the

Pareto frontier of (UMOP) produced by PGM without line searches for (UMOP) is the highest

one, and the Pareto frontier of (UMOP) produced by PQNM(SS-BFGS) without line searches is

lower than that produced by the PQNM(BFGS) without line searches. And so PQNM(H-BFGS)

without line searches for (UMOP) is the most effective method and the introduced new proximal

quasi-Newton methods without line searches for (UMOP) are more effective than PGM without

line searches for (UMOP).
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Fig.5 Comparison of PGM, PQNM(BFGS), PQNM(SS-BFGS) and PQNM(H-BFGS) when δ is

0, 0.05 and 0.1, respectively
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Fig.7 Result for PQNM(BFGS)
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Fig.10 Comparison of PGM, PQNM(BFGS), PQNM(SS-BFGS) and PQNM(H-BFGS) when δ

is 0, 0.05 and 0.1, respectively

7 Conclusion

First, for unconstrained multiobjective optimization problems, where each objective function

is the sum of a twice continuously differentiable strongly convex function and a proper convex but

not necessarily differentiable function, the proximal quasi-Newton method with line searches and

the proximal quasi-Newton method without line searches are proposed. Secondly, under appro-

priate conditions, we prove that each cluster point of the sequence generated by these two types
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of algorithms is the Pareto stationary point of the multiobjective optimization problem. Thirdly,

we give their applications in constrained multiobjective optimization and robust multiobjective

optimization. In particular, for robust multiobjective optimization, we show that the subproblems

of the proximal quasi-Newton method can be regarded as quadratic programming problems. Fi-

nally, numerical experiments are performed to verify the effectiveness of the proposed algorithms.

In the future, we will analyze the convergence rate of the proposed algorithms.
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