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1 Introduction

Throughout the paper, H is a real Hilbert space which is endowed with the scalar product 〈·, ·〉, with
‖x‖2 = 〈x, x〉 for x ∈ H. We consider the convex minimization problem

min {f(x) : x ∈ H} , (1)

where f : H → R is a convex continuously differentiable function whose solution set S = argmin f is
nonempty. We aim at finding by rapid methods the element of minimum norm of S. Our approach is
in line with the dynamic approach developed by Attouch and László in [19] to solve this question. It
is based on the asymptotic analysis, as t→ +∞, of the nonautonomous damped inertial dynamic

(TRIGS) ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0,

where the function f and the Tikhonov regularization parameter ε satisfy the following hypothesis1:

(H0)


f : H → R is convex and differentiable,∇f is Lipschitz continuous on bounded sets;

S := argminf 6= ∅. We denote by x∗ the element of minimum norm of S;

ε : [t0,+∞[→ R+ is a nonincreasing function, of class C1, such that limt→∞ ε(t) = 0.

The Cauchy problem for (TRIGS) is well posed. The proof of the existence and uniqueness of a
global solution for the corresponding Cauchy problem is given in the appendix (see also [19]). It is
based on classical arguments combining the Cauchy-Lipschitz theorem with energy estimates. Our
main contribution is to develop a new Lyapunov analysis which gives the strong convergence of the
trajectories of (TRIGS) to the element of minimum norm of S. Precisely, we give sufficient conditions
on ε(t) which ensure that limt→+∞ ‖x(t)− x∗‖ = 0. This improves the results of [19].

1.1 Attouch-László Lyapunov analysis of (TRIGS)

The main idea developed in [19] consists of starting from the Polyak heavy ball with friction dynamic
for strongly convex functions, then adapting it via Tikhonov approximation to deal with the case of
general convex functions. Recall that a function f : H → R is said to be µ-strongly convex for some
µ > 0 if f − µ

2 ‖ · ‖
2 is convex. In this setting, we have the following exponential convergence result for

the damped autonomous inertial dynamic where the damping coefficient is twice the square root of
the modulus of strong convexity of f :

Theorem 1 Suppose that f : H → R is a function of class C1 which is µ-strongly convex for some µ > 0.

Let x(·) : [t0,+∞[→ H be a solution trajectory of

ẍ(t) + 2
√
µẋ(t) +∇f(x(t)) = 0. (2)

Then, the following property holds:

f(x(t))−min
H

f = O
(
e−
√
µt
)

as t→ +∞.

1 In section 4, we will extend our study to the case of a convex lower semicontinuous proper function f : H →
R ∪ {+∞}.
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To adapt this result to the case of a general convex differentiable function f : H → R, a natural idea
is to use Tikhonov’s method of regularization. This leads to consider the non-autonomous dynamic
which at time t is governed by the gradient of the strongly convex function

ϕt : H → R, ϕt(x) := f(x) +
ε(t)

2
‖x‖2.

Then, replacing f by ϕt in (2), and noticing that ϕt is ε(t)-strongly convex, this gives the following
dynamic which was introduced in [19] (δ is a positive parameter)

(TRIGS) ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0.

(TRIGS) stands shortly for Tikhonov regularization of inertial gradient systems. In order not to
asymptotically modify the equilibria, it is supposed that ε(t) → 0 as t → +∞2. This condition
implies that (TRIGS) falls within the framework of the inertial gradient systems with asymptotically
vanishing damping. The importance of this class of inertial dynamics has been highlighted by several
recent studies [3], [6], [9], [11], [20], [30], [41], which make the link with the accelerated gradient method
of Nesterov [37,38].
The control of the decay of ε(t) to zero as t → +∞ plays a key role in the Lyapunov analysis of
(TRIGS), and uses the following condition.

Definition 1 Let us give δ > 0. We say that t 7→ ε(t) satisfies the controlled decay property (CD)λ, if
it is a nonincreasing function which satisfies: there exists t1 ≥ t0 such that for all t ≥ t1,

d

dt

(
1√
ε(t)

)
≤ min(2λ− δ, δ − λ), (3)

where λ is a parameter such that δ
2 < λ < δ for 0 < δ ≤ 2, and δ+

√
δ2−4
2 < λ < δ for δ > 2 .

By integrating the differential inequality (3), one can easily verify that this condition implies
that ε(t) is greater than or equal to C/t2. Since the damping coefficient is proportional to

√
ε(t),

this means that it must be greater than or equal to C/t. This is in accordance with the theory of
inertial gradient systems with time-dependent viscosity coefficient, which states that the asymptotic
optimization property is valid provided that the integral on [t0,+∞[ of the viscous damping coefficient
is infinite, see [9], [29]. Let us state the following convergence result obtained in [19].

Theorem 2 (Attouch-László [19]) Let x : [t0,+∞[→ H be a solution trajectory of (TRIGS). Let δ be

a positive parameter. Suppose that ε(·) satisfies the condition (CD)λ for some λ > 0. Then, we have the

following rate of convergence of values: for all t ≥ t1

f(x(t))−min
H

f ≤ λ‖x∗‖2

2

1

γ(t)

∫ t

t1

ε
3
2 (s)γ(s)ds+

C

γ(t)
, (4)

where

γ(t) = exp

(∫ t

t1

µ(s)ds

)
, µ(t) = − ε̇(t)

2ε(t)
+ (δ − λ)

√
ε(t)

and C = (f(x(t1))− f∗) + ε(t1)
2 ‖x(t1)‖2 + 1

2‖λ
√
ε(t1)(x(t1)− x∗) + ẋ(t1)‖2.

2 This is the key property of the asymptotic version (t→ +∞) of the Browder-Tikhonov regularization method.
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The proof is based on the following Lyapunov function E : [t0,+∞[→ R+,

E(t) := (f(x(t))−min f) +
ε(t)

2
‖x(t)‖2 +

1

2
‖c(t)(x(t)− x∗) + ẋ(t)‖2, (5)

where the function c : [t0,+∞[→ R is chosen appropriately. Based on this Lyapunov analysis, it
is proved in [19] that lim inft→+∞ ‖x(t) − x∗‖ = 0. We will improve this result, and show that
limt→+∞ ‖x(t)−x∗‖ = 0. For this, we will develop a new Lyapunov analysis. Let us first recall some re-
lated previous results showing the progression of the understanding of these delicate questions, where
the hierarchical minimization property is reached asymptotically.

1.2 Historical facts and related results

In relation to hierarchical optimization, a rich literature has been devoted to the coupling of dynamic
gradient systems with Tikhonov regularization, and to the study of the corresponding algorithms.

1.2.1 First-order gradient dynamics

For first-order gradient systems and subdifferential inclusions, the asymptotic hierarchical minimiza-
tion property which results from the introduction of a vanishing viscosity term in the dynamic (in
our context the Tikhonov approximation [42,43]) has been highlighted in a series of papers [2], [5],
[13], [15], [22], [32], [35]. In parallel way, there is a vast literature on convex descent algorithms in-
volving Tikhonov and more general penalty, regularization terms. The historical evolution can be
traced back to Fiacco and McCormick [33], and the interpretation of interior point methods with the
help of a vanishing logarithmic barrier. Some more specific references for the coupling of Prox and
Tikhonov can be found in Cominetti [31]. The time discretization of the first-order gradient systems
and subdifferential inclusions involving multiscale (in time) features provides a natural link between
the continuous and discrete dynamics. The resulting algorithms combine proximal based methods (for
example forward-backward algorithms), with the viscosity of penalization methods, see [16], [17], [24],
[27,28], [35].

1.2.2 Second order gradient dynamics

First studies concerning the coupling of damped inertial dynamics with Tikhonov approximation
concerned the heavy ball with friction system of Polyak [39], where the damping coefficient γ > 0 is
fixed. In [14] Attouch-Czarnecki considered the system

ẍ(t) + γẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (6)

In the slow parametrization case
∫+∞
0

ε(t)dt = +∞, they proved that any solution x(·) of (6) converges
strongly to the minimum norm element of argmin f , see also [36]. A parallel study has been developed
for PDE’s, see [1] for damped hyperbolic equations with non-isolated equilibria, and [2] for semilinear
PDE’s. The system (6) is a special case of the general dynamic model

ẍ(t) + γẋ(t) +∇f(x(t)) + ε(t)∇g(x(t)) = 0 (7)

which involves two functions f and g intervening with different time scale. When ε(·) tends to zero
moderately slowly, it was shown in [18] that the trajectories of (7) converge asymptotically to equilibria
that are solutions of the following hierarchical problem: they minimize the function g on the set of
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minimizers of f . When H = H1×H2 is a product space, defining for x = (x1, x2), f(x1, x2) := f1(x1)+
f2(x2) and g(x1, x2) := ‖A1x1 − A2x2‖2, where the Ai, i ∈ {1, 2} are linear operators, (7) provides
(weakly) coupled inertial systems. The continuous and discrete-time versions of these systems have a
natural connection to the best response dynamics for potential games [15], domain decomposition for
PDE’s [8], optimal transport [7], coupled wave equations [34].
In the quest for a faster convergence, the following system

(AVD)α,ε ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0, (8)

has been studied by Attouch-Chbani-Riahi [12]. It is a Tikhonov regularization of the dynamic

(AVD)α ẍ(t) +
α

t
ẋ(t) +∇f(x(t)) = 0, (9)

which was introduced by Su, Boyd and Candès in [41]. When α = 3, (AVD)α can be viewed as a
continuous version of the accelerated gradient method of Nesterov. It has been the subject of many
recent studies which have given an in-depth understanding of the Nesterov acceleration method, see
[3], [9], [11], [41], [40], [45].

1.3 Model results

Let us illustrate our results in the case ε(t) = 1
tp . In section 3, we will prove the following result:

Theorem 3 Take ε(t) = 1/tp, 0 < p < 2. Let x : [t0,+∞[→ H be a solution trajectory of

ẍ(t) +
δ

t
p
2

ẋ(t) +∇f (x(t)) +
1

tp
x(t) = 0.

Then, we have the following rates of convergence for the values and the trajectory:

f(x(t))−min
H

f = O
(

1

tp

)
as t→ +∞ (10)

‖x(t)− xε(t)‖
2 = O

(
1

t
2−p
2

)
as t→ +∞. (11)

According to the strong convergence of xε(t) to the minimum norm solution, the above property implies that

x(t) strongly converges to the minimum norm solution.

With many respect, these results represent an important advance compared to previous works:

i) Let us underline that in our approach the rapid convergence of the values and the strong
convergence towards the solution of minimum norm are obtained for the same dynamic, whereas in the
previous works [12], [14], they are obtained for different dynamics corresponding to different settings
of the parameters. Moreover, we obtain the strong convergence of the trajectories to the minimum
norm solution, whereas in [19] and [12] it was only obtained that lim inft→+∞ ‖x(t)− x∗‖ = 0. It is
clear that the results extend naturally to obtaining strong convergence towards the solution closest
to a desired state xd. It suffices to replace in Tikhonov’s approximation ‖x‖2 by ‖x − xd‖2. This is
important for inverse problems. In addition, we obtain a convergence rate of the values which is better
than the one obtained in[19].

ii) These results show the trade-off between the property of rapid convergence of values, and the
property of strong convergence towards the minimum norm solution. The two rates of convergence
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move in opposite directions with p varies. The determination of a good compromise between these
two antagonistic criteria is an interesting subject that we will consider later.

iii) Note that at the limit, when p = 2, which is the most interesting case to obtain a fast conver-
gence of values comparable to the accelerated gradient method of Nesterov, then our analysis does
not allow us to conclude that the trajectories are converging towards the solution of minimum norm.
This question remains open, the interested reader can consult [19].

1.4 Contents

The paper is organized as follows. In section 2, for a general Tikhonov regularization parameter ε(t),
we study the asymptotic convergence properties of the solution trajectories of (TRIGS). Based on
Lyapunov analysis, we show their strong convergence to the element of minimum norm of S, and
we provide convergence rate of the values. In section 3, we apply these results to the particular case
ε(t) = 1

tp . Section 4 considers the extension of these results to the nonsmooth case. Section 5 contains
numerical illustrations. We conclude in section 6 with some perspective and open questions.

2 Convergence analysis for general ε(t)

We are going to analyze via Lyapunov analysis the convergence properties as t→ +∞ of the solution
trajectories of the inertial dynamic (TRIGS) that we recall below

ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0. (12)

Throughout the paper, we assume that t0 is the origin of time, δ is a positive parameter. For each
t ≥ t0, let us introduce the function ϕt : H → R defined by

ϕt(x) := f(x) +
ε(t)

2
‖x‖2, (13)

and set

xε(t) := argminH ϕt,

which is the unique minimizer of the strongly convex function ϕt. The first order optimality condition
gives

∇f(xε(t)) + ε(t)xε(t) = 0. (14)

The following properties are immediate consequences of the classical properties of the Tikhonov reg-
ularization

∀t ≥ t0 ‖xε(t)‖ ≤ ‖x
∗‖ (15)

lim
t→+∞

‖xε(t) − x
∗‖ = 0 where x∗ = projargmin f0. (16)



Inertial gradient dynamics with Tikhonov regularization 7

2.1 Preparatory results for Lyapunov analysis

Let us introduce the real-valued function function t ∈ [t0,+∞[7→ E(t) ∈ R+ that plays a key role in
our Lyapunov analysis. It is defined by

E(t) :=
(
ϕt(x(t))− ϕt(xε(t))

)
+

1

2
‖v(t)‖2, (17)

where ϕt has been defined in (13), and

v(t) = τ(t)
(
x(t)− xε(t)

)
+ ẋ(t). (18)

The time dependent parameter τ(·) will be adjusted during the proof. We will show that under
judicious choice of the parameters, then t 7→ E(t) is a decreasing function. Moreover, we will estimate
the rate of convergence of E(t) towards zero. This will provide the rates of convergence of values and
trajectories, as the following lemma shows.

Lemma 1 Let x(·) : [t0,+∞[→ H be a solution trajectory of the damped inertial dynamic (TRIGS), and

t ∈ [t0,+∞[7→ E(t) ∈ R+ be the energy function defined in (17). Then, the following inequalites are

satisfied: for any t ≥ t0,

f(x(t))−min
H

f ≤ E(t) +
ε(t)

2
‖x∗‖2; (19)

‖x(t)− xε(t)‖
2 ≤ 2E(t)

ε(t)
. (20)

Therefore, x(t) converges strongly to x∗ as soon as limt→+∞
E(t)

ε(t)
= 0.

Proof i) According to the definition of ϕt, we have

f(x(t))−minH f = ϕt(x(t))− ϕt(x∗) +
ε(t)

2

(
‖x∗‖2 − ‖x(t)‖2

)
=
[
ϕt(x(t))− ϕt(xε(t))

]
+

ϕt(xε(t))− ϕt(x∗)︸ ︷︷ ︸
≤0

+
ε(t)

2

(
‖x∗‖2 − ‖x(t)‖2

)
≤ ϕt(x(t))− ϕt(xε(t)) +

ε(t)

2
‖x∗‖2.

By definition of E(t) we have
ϕt(x(t))− ϕt(xε(t)) ≤ E(t) (21)

which, combined with the above inequality, gives (19).

ii) By the strong convexity of ϕt, and xε(t) := argminH ϕt, we have

ϕt(x(t))− ϕt(xε(t) ≥
ε(t)

2
‖x(t)− xε(t)‖

2.

By combining the inequality above with (21), we get

E(t) ≥ ε(t)

2
‖x(t)− xε(t)‖

2,

which gives (20).
By the assumption H0), we have limt→∞ ε(t) = 0. According to (16), we deduce that xε(t) converges
strongly to x∗. The conclusion is a direct consequence of inequality (20).
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To estimate E(t), we will show that it satisfies a first order differential inequality of the form

Ė(t) + µ(t)E(t) ≤ ρ(t)‖x∗‖2 (22)

where ρ(t) and µ(t) are positive functions that will be made precise in the proof. So the first step of

the proof is to compute
d

dt
E(t). The computation of

d

dt
E(t) involves the two terms

d

dt

(
ϕt(xε(t))

)
and

d

dt

(
xε(t)

)
. They are evaluated in the lemma below.

Lemma 2 For each t ≥ t0, we have

i)
d

dt

(
ϕt(xε(t))

)
= 1

2 ε̇(t)‖xε(t)‖
2;

ii)

∥∥∥∥ ddt (xε(t))
∥∥∥∥2 ≤ − ε̇(t)ε(t)

〈
d

dt

(
xε(t)

)
, xε(t)

〉
.

Therefore,

∥∥∥∥ ddt (xε(t))
∥∥∥∥ ≤ − ε̇(t)ε(t)

‖xε(t)‖.

Proof i) We have ϕt(xε(t)) = infy∈H{f(y) + ε(t)
2 ‖y − 0‖2} = f 1

ε(t)
(0).

Since
d

dλ
fλ(x) = −1

2‖∇fλ(x)‖2, (see [4, Lemma 3.27], [5, Corollary 6.2]), we have:

d

dt
fλ(t)(x) = − λ̇(t)

2
‖∇fλ(t)(x)‖2.

Therefore,
d

dt
ϕt(xε(t)) =

d

dt

(
f 1

ε(t)
(0)
)

=
1

2

ε̇(t)

ε2(t)
‖∇f 1

ε(t)
(0)‖2. (23)

On the other hand, we have

∇ϕt((xε(t)) = 0⇐⇒ ∇f(xε(t)) + ε(t)xε(t) = 0⇐⇒ xε(t) = Jf1
ε(t)

(0).

Since ∇f 1
ε(t)

(0) = ε(t)

(
0− Jf1

ε(t)

(0)

)
, we get ∇f 1

ε(t)
(0) = −ε(t)xε(t). This combined with (23) gives

d

dt
ϕt(xε(t)) =

1

2
ε̇(t)‖xε(t)‖

2.

ii) We have
−ε(t)xε(t) = ∇f(xε(t)) and − ε(t+ h)xε(t+h) = ∇f(xε(t+h)).

According to the monotonicity of ∇f, we have

〈ε(t)xε(t) − ε(t+ h)xε(t+h), xε(t+h) − xε(t)〉 ≥ 0,

which implies

−ε(t)‖uε(t+h) − uε(t)‖
2 + (ε(t)− ε(t+ h)) 〈uε(t+h), uε(t+h) − uε(t)〉 ≥ 0.

After division by h2, we obtain

(ε(t)− ε(t+ h))

h

〈
xε(t+h),

xε(t+h) − xε(t)
h

〉
≥ ε(t)

∥∥∥∥xε(t+h) − xε(t)h

∥∥∥∥2 .
By letting h→ 0, we get

−ε̇(t)
〈
xε(t),

d

dt
xε(t)

〉
≥ ε(t)

∥∥∥∥ ddtxε(t)
∥∥∥∥2 ,

which completes the proof.
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2.2 Main result

Given a general parameter ε(·), let’s proceed with the Lyapunov analysis.

Theorem 4 Suppose that f : H → R is a convex function of class C1. Let x(·) : [t0,+∞[→ H be a solution

trajectory of the system (TRIGS) with δ > 0

ẍ(t) + δ
√
ε(t)ẋ(t) +∇f(x(t)) + ε(t)x(t) = 0.

Let us assume that there exists a, c > 1 and t1 ≥ t0 such that for all t ≥ t1,

(H1)
d

dt

(
1√
ε(t)

)
≤ min

(
2λ− δ , δ − a+ 1

a
λ

)
,

where λ is such that

δ

2
< λ <

a

a+ 1
δ for 0 < δ ≤ 2− 1

c
,

1

2

(
δ +

1

c
+

√
(δ +

1

c
)2 − 4

)
< λ <

a

a+ 1
δ for δ > 2− 1

c
.

Then, the following property holds:

E(t) ≤ ‖x
∗‖2

2

∫ t

t1

[(
(λc+ a)λ

ε̇2(s)

ε
3
2 (s)

− ε̇(s)

)
γ(s)

]
ds

γ(t)
+
γ(t1)E(t1)

γ(t)
(24)

where γ(t) = exp

(∫ t

t1

µ(s)ds

)
, and µ(t) = − ε̇(t)

2ε(t)
+ (δ − λ)

√
ε(t).

Proof According to the classical derivation chain rule and Lemma 2 i), the differentiation of the
function E(·) gives

Ė(t) = 〈∇ϕt(x(t)), ẋ(t)〉+ 1
2 ε̇(t)‖x(t)‖2 − 1

2 ε̇(t)‖xε(t)‖
2 + 〈v̇(t), v(t)〉. (25)

Using the constitutive equation (12), we have

v̇(t) = τ̇(t)
(
x(t)− xε(t)

)
+ τ(t)ẋ(t)− τ(t)

d

dt
xε(t) + ẍ(t),

= τ̇(t)
(
x(t)− xε(t)

)
+ τ(t)ẋ(t)− τ(t)

d

dt
xε(t) − δ

√
ε(t)ẋ(t)−∇ϕt(x(t))

= τ̇(t)
(
x(t)− xε(t)

)
+
(
τ(t)− δ

√
ε(t)

)
ẋ(t)− τ(t)

d

dt
xε(t) −∇ϕt(x(t)).

Therefore,

〈v̇(t), v(t)〉 =
〈
τ̇(t)

(
x(t)− xε(t)

)
+
(
τ(t)− δ

√
ε(t)

)
ẋ(t), τ(t)(x(t)− xε(t)) + ẋ(t)

〉
+

〈
−τ(t)

d

dt
xε(t) −∇ϕt(x(t)), τ(t)(x(t)− xε(t)) + ẋ(t)

〉
= τ̇(t)τ(t)‖x(t)− xε(t)‖

2 +
(
τ̇(t) + τ2(t)− δτ(t)

√
ε(t)

)
〈x(t)− xε(t), ẋ(t)〉

+
(
τ(t)− δ

√
ε(t)

)
‖ẋ(t)‖2 − τ2(t)〈 d

dt
xε(t), x(t)− xε(t)〉 − τ(t)〈 d

dt
xε(t), ẋ(t)〉

−τ(t)〈∇ϕt(x(t)), x(t)− xε(t))〉︸ ︷︷ ︸
=A0

−〈∇ϕt(x(t)), ẋ(t)〉, (26)
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Since ϕt is strongly convex, we have

ϕt(xε(t))− ϕt(x(t)) ≥
〈
∇ϕt(x(t)), xε(t) − x(t)

〉
+
ε(t)

2
‖x(t)− xε(t)‖

2.

Using the above inequality, we get

A0 = −τ(t)〈∇ϕt(x(t)), x(t)− xε(t))〉 ≤ −τ(t)
(
ϕt(x(t))− ϕt(xε(t))

)
− τ(t)ε(t)

2
‖x(t)− xε(t)‖

2. (27)

Moreover, we have for any a > 1,

−τ(t)

〈
d

dt
xε(t), ẋ(t)

〉
≤ τ(t)

2a
‖ẋ(t)‖2 +

aτ(t)

2

∥∥∥∥ ddtxε(t)
∥∥∥∥2

and for any b > 0

−τ2(t)

〈
d

dt
xε(t), x(t)− xε(t)

〉
≤ bτ(t)

2

∥∥∥∥ ddtxε(t)
∥∥∥∥2 +

τ3(t)

2b
‖x(t)− xε(t)‖

2.

By combining the two above inequalities with (25), (26) and (27), and after reduction we obtain

Ė(t) ≤ −τ(t)
(
ϕt(x(t))− ϕt(xε(t))

)
+

1

2
ε̇(t)‖x(t)‖2 − 1

2
ε̇(t)‖xε(t)‖

2

+

[
τ̇(t)τ(t)− τ(t)ε(t)

2

]
‖x(t)− xε(t)‖

2

+
(
τ̇(t) + τ2(t)− δτ(t)

√
ε(t)

)
〈x(t)− xε(t), ẋ(t)〉+

(
τ(t)− δ

√
ε(t)

)
‖ẋ(t)‖2

−τ2(t)〈 d
dt
xε(t), x(t)− xε(t)〉 − τ(t)

〈
d

dt
xε(t), ẋ(t)

〉
≤ −τ(t)

(
ϕt(x(t))− ϕt(xε(t))

)
+

1

2
[(b+ a)τ(t)]

∥∥∥∥ ddtxε(t)
∥∥∥∥2

+
ε̇(t)

2
‖x(t)‖2 − ε̇(t)

2
‖xε(t)‖

2 +

(
(1 +

1

2a
)τ(t)− δ

√
ε(t)

)
‖ẋ(t)‖2

+

[
τ̇(t)τ(t)− τ(t)ε(t)

2
+
τ3(t)

2b

]
‖x(t)− xε(t)‖

2

+
(
τ̇(t) + τ2(t)− δτ(t)

√
ε(t)

)
〈x(t)− xε(t), ẋ(t)〉. (28)

On the other hand, for a positive function µ(t), we have

µ(t)E(t) = µ(t)
(
ϕt(x(t))− ϕt(xε(t))

)
+
µ(t)

2
‖v(t)‖2

= µ(t)
(
ϕt(x(t))− ϕt(xε(t))

)
+
µ(t)τ2(t)

2
‖x(t)− xε(t)‖2 +

µ(t)

2
‖ẋ(t)‖2

+µ(t)τ(t)〈x(t)− xε(t), ẋ(t)〉.

(29)
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By adding (28) and (29), we get

Ė(t) + µ(t)E(t) ≤ (µ(t)− τ(t))
(
ϕt(x(t))− ϕt(xε(t))

)
+

1

2
[(b+ a)τ(t)] ‖ d

dt
xε(t)‖

2

−1

2
ε̇(t)‖xε(t)‖

2 +
ε̇(t)

2
‖x(t)‖2 +

(
(1 +

1

2a
)τ(t)− δ

√
ε(t) +

µ(t)

2

)
‖ẋ(t)‖2

+

[
τ̇(t)τ(t)− τ(t)ε(t)

2
+
τ3(t)

2b
+
µ(t)τ2(t)

2

]
‖x(t)− xε(t)‖

2

+
(
τ̇(t) + τ2(t)− δτ(t)

√
ε(t) + µ(t)τ(t)

)
〈x(t)− xε(t), ẋ(t)〉. (30)

As we do not know a priori the sign of 〈x(t)− xε(t), ẋ(t)〉, we take the coefficient in front of this term
equal to zero, which gives

τ̇(t) + τ2(t)− δτ(t)
√
ε(t) + µ(t)τ(t) = 0. (31)

Let us make the following choice of the time dependent parameter τ(t) introduced in (18) (indeed, it
is a key ingredient of our Lyapunov analysis)

τ(t) = λ
√
ε(t),

where λ is a positive parameter to be fixed. Then, the relation (31) can be equivalently written

µ(t) = − ε̇(t)

2ε(t)
+ (δ − λ)

√
ε(t).

According to this choice for µ(t) and τ(t), and neglecting the term ε̇(t)
2 ‖x(t)‖2 which is less than or

equal to zero, the inequality (30) becomes

Ė(t) + µ(t)E(t) ≤ 1

2ε(t)

(
−ε̇(t) + 2(δ − 2λ)ε

3
2 (t)

) (
ϕt(x(t))− ϕt(xε(t))

)
+

1

2

[
(b+ a)λ

√
ε(t)

] ∥∥∥∥ ddtxε(t)
∥∥∥∥2 − 1

2 ε̇(t)‖xε(t)‖
2

+
1

4ε(t)

[
2
(
(1 + 1

a )λ− δ
)
ε

3
2 (t)− ε̇(t)

]
‖ẋ(t)‖2

+
λ

4

[
λε̇(t) + 2

(
δλ− λ2 − 1

)
ε

3
2 (t) + 2λ

2

b ε
3
2 (t)

]
‖x(t)− xε(t)‖2.

(32)

According to item ii) of Lemma 2, and inequality (15)∥∥∥∥ ddtxε(t)
∥∥∥∥2 ≤ ε̇2(t)

ε2(t)
‖xε(t)‖2 ≤

ε̇2(t)

ε2(t)
‖x∗‖2.

Using again inequality (15), and the fact that −ε̇(t) ≥ 0, we have

−1
2 ε̇(t)‖xε(t)‖

2 ≤ −1
2 ε̇(t)‖x

∗‖2.

By inserting the two inequalities above in (32), we obtain

Ė(t) + µ(t)E(t) ≤ 1

2ε(t)

(
−ε̇(t) + 2(δ − 2λ)ε

3
2 (t)

) (
ϕt(x(t))− ϕt(xε(t))

)
+

1

2

[
(b+ a)λ

ε̇2(t)

ε
3
2 (t)

− ε̇(t)

]
‖x∗‖2

+
1

4ε(t)

[
2
(
(1 + 1

a )λ− δ
)
ε

3
2 (t)− ε̇(t)

]
‖ẋ(t)‖2

+
λ

4

[
λε̇(t) + 2

(
δλ− λ2 − 1

)
ε

3
2 (t) + 2λ

2

b ε
3
2 (t)

]
‖x(t)− xε(t)‖2.

(33)
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By taking b = cλ, with c > 1, we get

Ė(t) + µ(t)E(t) ≤ 1

2ε(t)

(
−ε̇(t) + 2(δ − 2λ)ε

3
2 (t)

)
︸ ︷︷ ︸

=A

(
ϕt(x(t))− ϕt(xε(t))

)

+
1

2

[
(λc+ a)λ

ε̇2(t)

ε
3
2 (t)

− ε̇(t)

]
‖x∗‖2

+
1

4ε(t)

[
2

(
(1 +

1

a
)λ− δ

)
ε

3
2 (t)− ε̇(t)

]
︸ ︷︷ ︸

=B

‖ẋ(t)‖2

+
λ

4

[
λε̇(t) + 2

(
(δ +

1

c
)λ− λ2 − 1

)
ε

3
2 (t)

]
︸ ︷︷ ︸

=C

‖x(t)− xε(t)‖2.

(34)

We are looking for sufficient conditions on the parameters λ and ε(t) which make A, B, and C less
than or equal to zero. It is here that the hypothesis (H1) formulated in the statement of the Theorem
4 intervenes. It is recalled below for the convenience of the reader

(H1) There exists a, c > 1 and t1 ≥ t0 such that for all t ≥ t1,

d

dt

(
1√
ε(t)

)
≤ min

(
2λ− δ , δ − a+ 1

a
λ

)
,

where λ is such that δ
2 < λ < a

a+1δ for 0 < δ ≤ 2− 1
c and 1

2

(
δ + 1

c +
√

(δ + 1
c )2 − 4

)
< λ < a

a+1δ for

δ > 2− 1
c .

Clearly, condition (H1) is equivalent to

d

dt

(
1√
ε(t)

)
≤ 2λ− δ and

d

dt

(
1√
ε(t)

)
≤ δ − a+ 1

a
λ.

Under condition (H1) we immediately obtain that A and B are less than or equal to zero:

• A = −ε̇(t) + 2(δ − 2λ)ε
3
2 (t) = 2ε

3
2 (t)

[
d

dt

(
1√
ε(t)

)
+ δ − 2λ

]
≤ 0;

• B = 2
(
(1 + 1

a )λ− δ
)
ε

3
2 (t)− ε̇(t) = 2ε

3
2 (t)

[
d

dt

(
1√
ε(t)

)
+
a+ 1

a
λ− δ

]
≤ 0.

• Let us now examine C.

C = λε̇(t) + 2
(
(δ + 1

c )λ− λ2 − 1
)
ε

3
2 (t)

= 2ε
3
2 (t)

−λ d

dt

(
1√
ε(t)

)
︸ ︷︷ ︸

≥0

+
(
(δ + 1

c )λ− λ2 − 1
)
 .
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When δ ≤ 2− 1
c we have (δ + 1

c )λ− λ2 − 1 ≤ 2λ− λ2 − 1 ≤ 0.

When δ > 2− 1
c , we have (δ + 1

c )λ− λ2 − 1 ≤ 0, because λ ≥ 1
2

(
δ + 1

c +
√

(δ + 1
c )2 − 4

)
.

This implies that C ≤ 0.

According to (34), under condition (H1) we conclude that

Ė(t) + µ(t)E(t) ≤ 1

2

[
(λc+ a)λ

ε̇2(t)

ε
3
2 (t)

− ε̇(t)

]
‖x∗‖2 (35)

By multiplying the inequality above with γ(t) = exp

(∫ t

t1

µ(s)ds

)
, we obtain

d

dt
(γ(t)E(t)) ≤ ‖x

∗‖2

2

[
(λc+ a)λ

ε̇2(t)

ε
3
2 (t)

− ε̇(t)

]
γ(t) (36)

By integrating (36) on [t1, t], we get

E(t) ≤ ‖x
∗‖2

2

∫ t

t1

[(
(λc+ a)λ

ε̇2(s)

ε
3
2 (s)

− ε̇(s)

)
γ(s)

]
ds

γ(t)
+
γ(t1)E(t1)

γ(t)
.

This completes the proof of the Lyapunov analysis.

Remark 1 Given δ > 0, the condition (H1) gives the admissible values of the parameters a > 1, c > 1
and λ > 0 which enter into the convergence rates obtained in Theorem 4. Let us verify that the
inequalities that define the values of these parameters are consistent. We consider successively the two
cases δ < 2, then δ ≥ 2.

a) When δ < 2, we have δ < 2 − 1
c for c sufficiently large. Because a > 1, we have 1

2 <
a
a+1 , and

hence the interval [12δ,
a
a+1δ] is nonempty. Therefore, in this case the conditions are consistent.

b) Suppose now that δ ≥ 2. Then δ > 2− 1
c for all c > 0, and we can argue with c arbitrarily large.

Let us verify that we can find a and c such that

δ + 1
c +

√
(δ + 1

c )2 − 4

2
<

a

a+ 1
δ, (37)

and hence a value of δ belonging to the corresponding interval. By letting c → +∞ and a → +∞ in
the above inequality we obtain

δ +
√
δ2 − 4 < 2δ,

which is equivalent to
√
δ2 − 4 < δ, and hence is satisfied. By a continuity argument, we obtain that

the inequality (37) is satisfied by taking a and c sufficiently large.
Note that, since we are interested in asymptotic results the important point is to get the existence of
parameters for which the Lyapunov analysis is valid. If we are interested in complexity results then
the precise value of these parameters is important.

Remark 2 The above argument shows that the controlled decay property (CD)λ used in [19] corre-
sponds to the limiting case c→ +∞ and a→ +∞ in our condition (H1).

Remark 3 As in [19], our Lyapunov analysis is valid for an arbitrary choice of the parameter δ. It
would be interesting to know what is the best choice for δ.
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3 Particular cases

Let’s study the case ε(t) =
1

tp
, and discuss, according to the value of the parameter 0 < p < 2, the

convergence rate of values, and the convergence rate to zero of ‖x(t)−xε(t)‖. The following results were
stated in Theorem 3, in the introduction, as model results. We reproduce them here for the convenience
of the reader. The point is simply to apply the general Theorem 4 to this particular situation, and to
show that the different quantities involved in the convergence results can be computed explicitly.

Theorem 5 Take ε(t) =
1

tp
, 0 < p < 2. Let x : [t0,+∞[→ H be a solution trajectory of

ẍ(t) +
δ

t
p
2

ẋ(t) +∇f (x(t)) +
1

tp
x(t) = 0.

Then, we have convergence of the values, and strong convergence to the minimum norm solution with the

following rates:

f(x(t))−min
H

f = O
(

1

tp

)
as t→ +∞; (38)

‖x(t)− xε(t)‖
2 = O

(
1

t
2−p
2

)
as t→ +∞. (39)

Proof a) Convergence rate of the values: With the notations of Theorem 4, we have

µ(t) = − ε̇(t)

2ε(t)
+ (δ − λ)

√
ε(t) =

p

2t
+
δ − λ
t
p
2

.

So

γ(t) = exp

(∫ t

t1

µ(s)ds

)
=

(
t

t1

) p
2

exp

[
2(δ − λ)

2− p

(
t
2−p
2 − t

2−p
2

1

)]
= C1t

p
2 exp

[
2(δ − λ)

2− p t
2−p
2

]
(40)

where C1 =

(
t
p
2
1 exp

[
2(δ−λ)
2−p t

2−p
2

1

])−1

. Let us choose the parameters a, c > 1, λ > 0 such that

δ
2 < λ < a

a+1δ for 0 < δ ≤ 2− 1
c and δ

2 <
1
2

(
δ + 1

c +
√

(δ + 1
c )2 − 4

)
< λ < a

a+1δ for δ > 2− 1
c .

Notice that, in these two cases, we have 1
2δ < λ < a+1

a δ. Therefore, min
(
2λ− δ , δ − a+1

a λ
)
> 0. On

the other hand, since p < 2, we have limt→+∞ t
p−2
2 = 0. So we have, for t ≥ t1 large enough,

d

dt

(
1√
ε(t)

)
=
p

2
t
p−2
2 ≤ min

(
2λ− δ , δ − a+ 1

a
λ

)
.

As a consequence, the condition (H1) is satisfied.

According to (24), we have E(t) ≤ E1(t)‖x∗‖2 + E2(t) where

E1(t) =
1

2γ(t)

∫ t

t1

[(
(λc+ a)λ

ε̇2(s)

ε
3
2 (s)

− ε̇(s)

)
γ(s)

]
ds (41)
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and

E2(t) =
γ(t1)E(t1)

γ(t)
. (42)

According to (40) we have

E2(t) ≤ Ct−
p
2 exp

[
−2(δ − λ)

2− p t
2−p
2

]
.

Since 0 < p < 2 and δ > λ, we have that E2(t) tends to zero at an exponential rate, as t→ +∞.
Thus, we only have to focus on the asymptotic behavior of E1(t). Let us simplify the formula by

setting λ0 := (λc+ a)λ, δ0 :=
2(δ − λ)

2− p in (24). Replacing ε(t) and γ(t) by their values in (41) gives

E1(t) =
p

2t
p
2 exp

(
δ0t

2−p
2

) ∫ t

t1

(
λ0p

s2
+

1

s
p+2
2

)
exp

(
δ0s

2−p
2

)
ds.

To compute the above integral, we notice that

d

ds

(
1

ρs
exp

(
δ0s

2−p
2

))
=

(
− 1

ρs2
+
δ0(2− p)
2ρs

p+2
2

)
exp

(
δ0s

2−p
2

)
.

Then, note that, when we set ρ > 0 such that ρ < min
(
1 , 1

a+1δ
)
, we obtain

λ0p

s2
+

1

s
p+2
2

≤ − 1

ρs2
+
δ0(2− p)
2ρs

p+2
2

⇐⇒
λ0p+ 1

ρ

s2
≤
(
δ0(2− p)

2ρ
− 1

)
1

s
p+2
2

=
δ−λ
ρ − 1

s
p+2
2

⇐⇒
λ0p+ 1

ρ

s
2−p
2

≤ δ − λ
ρ
− 1.

Let us verify that the last above inequality is satisfied for s large enough. First, since 0 < p < 2, we

have 2−p
2 > 0, and hence lims→+∞

1

s
2−p
2

= 0. On the other hand, according to (H1) we have λ < a
a+1δ.

This property combined with the choice of ρ implies

δ − ρ > δ − 1

a+ 1
δ =

a

a+ 1
δ > λ.

Therefore
δ − λ
ρ
− 1 > 0. So, for t1 large enough

E1(t) ≤ p

2t
p
2 exp

(
δ0t

2−p
2

) ∫ t

t1

(
− 1

ρs2
+
δ0(2− p)
2ρs

p+2
2

)
exp

(
δ0s

2−p
2

)
ds

=
1

2t
p
2 exp

(
δ0t

2−p
2

) ∫ t

t1

d

ds

(
1

ρs
exp

(
δ0s

2−p
2

))
ds

=
p

2ρt
p+2
2

− p

t
p
2 exp

(
δ0t

2−p
2

) 1

2ρt1
exp

(
δ0t

2−p
2

1

)
≤ p

2ρt
p+2
2

.

Since E2(t) has an exponential decay to zero, we deduce that there exists a positive constant C such
that for t large enough

E(t) ≤ C

t
p+2
2

.
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According to Lemma 1, we get

f(x(t))−min
H

f ≤ C
(

1

t
p+2
2

+
1

tp

)
.

Since 0 < p < 2, we have p < p+2
2 . We conclude that

f(x(t))−min
H

f = O
(

1

tp

)
as t→ +∞.

b) Convergence rate to zero of ‖x(t)− x∗‖. According to Lemma 1, we have

‖x(t)− xε(t)‖
2 ≤ 2E(t)

ε(t)
, (43)

and since, for t large enough, E(t) ≤ C

t
p+2
2

, we obtain

‖x(t)− xε(t)‖
2 = O

(
1

t
2−p
2

)
,

which completes the proof.

Remark 4 The convergence rate of the values O
(

1

tp

)
obtained in Theorem 5 notably improves the

result obtained in [19], where the convergence rate was of order O
(

1

t
3p−2

2

)
. Indeed, for p < 2 we have

p > 3p−2
2 . In addition, we have obtained that for any 0 < p < 2, for any trajectory of (TRIGS), we

have strong convergence of the trajectory to the minimum norm solution, as time t tends toward +∞.
In [19] it was only obtained lim inft→+∞ ‖x(t)− x∗‖ = 0.

Remark 5 A close look at the proof of Theorem 5 shows that the convergence rate of the values is
still valid in the case p = 2. Precisely, by taking ε(t) = c

t2 with c sufficiently small, we have that the
condition (H1) is satisfied, and hence

f(x(t))−min
H

f = O
(

1

t2

)
as t→ +∞.

Remark 6 As a key ingredient of our proof of the strong convergence of the trajectories of (TRIGS)
to the element of minimum norm of S, we use the function h(t) := 1

2‖x(t) − xε(t)‖2, and show that
limt→+∞ h(t) = 0. This strategy which consists in showing that the trajectory is not too far from the
viscosity curve ε 7→ xε was already present in the approach developed by Attouch and Cominetti in
[13] for the study of similar questions in the case of the steepest descent method.

3.1 Trade-off between the convergence rate of values and trajectories

The following elementary diagram shows the respective evolution as p varies of the convergence rate
of the values, and the convergence rate of ‖x(t)− xε(t)‖2.
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p0 22
3

2

2
3

f(x(t))−minH f = O
(

1

tp

)
(red color), ‖x(t)− xε(t)‖2 = O

(
1

t
2−p
2

)
(blue color)

We observe that p = 2
3 is a good compromise between these two antagonist properties. Let us state

the corresponding result below.

Corollary 1 Take ε(t) =
1

t
2
3

, δ > 0. Let x : [t0,+∞[→ H be a solution trajectory of

ẍ(t) +
δ

t
1
3

ẋ(t) +∇f (x(t)) +
1

t
2
3

x(t) = 0.

Then, we have convergence of the values, and strong convergence to the minimum norm solution with the

following rates:

f(x(t))−min
H

f = O
(

1

t
2
3

)
and ‖x(t)− xε(t)‖

2 = O
(

1

t
2
3

)
as t→ +∞.

b) Another interesting case is to take p < 2, with p close to 2. In this case, we have a convergence
rate of the values which is arbitrarily close to the convergence rate of the accelerated gradient method
of Nesterov, with a guarantee of strong convergence towards the minimum norm solution. The case
p = 2 has been studied extensively in [19]. The strong convergence of the trajectories to the minimum
norm solution is an open question in the case p = 2.

c) Estimating the convergence rate of x(t) to x∗ relies on getting informations about the viscosity
trajectory ε 7→ xε, and how fast xε converges to x∗ as ε → 0. This is a difficult problem because
the viscosity trajectory can have an infinite length, as Torralba showed in [44]. His counterexample
involves the construction of a convex function from its sub-level sets, and relates to a convex function
whose sub-level sets vary greatly. Our analysis focuses on general f , i.e. the worst case. This suggests
that, under good geometric properties of f , such as the Kurdyka-Lojasiewicz property, one should be
able to obtain better results; see also [13] where it is shown the importance of this kind of question
for the coupling of the steepest descent with Tikhonov approximation.
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4 Non-smooth case

Let us extend the previous results to the case of a proper lower semicontinuous and convex function
f : H → R∪{+∞}. We rely on the basic properties of the Moreau envelope. Recall that, for any θ > 0,
fθ : H → R is defined by

fθ(x) = min
ξ∈H

{
f(ξ) +

1

2θ
‖x− ξ‖2

}
, for any x ∈ H. (44)

Then fθ is a convex differentiable function, whose gradient is θ−1-Lipschitz continuous, and such that
minH f = minH fθ, argminH fθ = argminH f . Denoting by proxθf (x) the unique point where the
minimum value is achieved in (44), let us recall the following classical formulae:

1. fθ(x) = f(proxθf (x)) + 1
2θ ‖x− proxθf (x)‖2.

2. ∇fθ(x) = 1
θ

(
x− proxθf (x)

)
.

The interested reader may refer to [23,26] for a comprehensive treatment of the Moreau envelope
in a Hilbert setting. Since the set of minimizers is preserved by taking the Moreau envelope, the idea
is to replace f by fθ in the inertial dynamic (TRIGS). Then, (TRIGS) applied to fθ now reads

(TRIGS)θ ẍ(t) + δ
√
ε(t)ẋ(t) +∇fθ(x(t)) + ε(t)x(t) = 0.

Clearly, since fθ is continuously differentiable, the hypothesis (H0) are satisfied by the above dynamic.
By applying Theorem 5 to (TRIGS)θ, we get the following result, which provides convergence rate of
the values and strong convergence to the minimum norm solution.

Theorem 6 Let f : H → R∪{+∞} be a convex, lower semicontinuous, proper function. Take ε(t) = 1/tp,

0 < p < 2, and θ > 0. Let x : [t0,+∞[→ H be a solution trajectory of (TRIGS)θ, i.e.

ẍ(t) +
δ

t
p
2

ẋ(t) +∇fθ (x(t)) +
1

tp
x(t) = 0.

Then, we have the following convergence rates: as t→ +∞

f(proxθf (x(t)))−min
H

f = O
(

1

tp

)
; (45)

‖x(t)− proxθf (x(t)))‖2 = O
(

1

tp

)
; (46)

‖x(t)− xε(t)‖
2 = O

(
1

t
2−p
2

)
. (47)

Proof By applying Theorem 5 to the function fθ, and since inf fθ = inf f , we get

fθ(x(t))−min
H

f = O
(

1

tp

)
as t→ +∞ (48)

‖x(t)− xε(t)‖
2 = O

(
1

t
2−p
2

)
as t→ +∞. (49)

According to fθ(x)−minH f =
(
f(proxθf (x))−minH f

)
+ 1

2θ ‖x− proxθf (x)‖2, we get

f(proxθf (x(t)))−min
H

f ≤ fθ(x(t))−min
H

f = O
(

1

tp

)
,

which gives the claims.
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Remark 7 The above result suggests that, in the case of a nonsmooth convex function f : H → R ∪
{+∞}, the corresponding proximal algorithms will inherit the convergence properties of the continuous
dynamic (TRIALS). When considering convex minimization problems with additive structure min{f+
g} with f smooth and g nonsmooth, it is in general difficult to compute the proximal mapping of f+g.
A common device then consists of using a splitting method, and writing the minimization problem as
the fixed point problem Tx = x where, given θ > 0

Tx = proxθg (x− θ∇f(x)) .

Under appropriate conditions, T is an averaged nonexpansive operator [23], so the associated iterative
method (proximal gradient method) converges to a fixed point of T , and therefore of the initial
minimization problem. In our context, this naturally leads to studying the inertial system

ẍ(t) + δ
√
ε(t)ẋ(t) + (I − T )(x(t)) + ε(t)x(t) = 0.

Many properties of the Tikhonov approximation are still valid for maximally monotone operators,
which allows to expect good convergence properties for the above system. This is a subject for further
research.

5 Numerical illustration

Let us illustrate our results in the following elementary situation. Take H = R20 equipped with the
classical Euclidean structure, and f : R20 → R+ is given by

f(x1, · · · , x20) :=
1

2

10∑
i=1

(x2i−1 + x2i − 1)2 .

The function f is convex, but not strongly convex. In this case, the solution set S is the entire affine
subspace {x ∈ R20 : x2i−1+x2i−1 = 0, for all i = 1, · · · , 10}, and the projection of the origin onto S is
given by x∗ = (1

2 , · · · ,
1
2 ). The numerical experiments described in Figure 1 are in agreement with our

theoretical findings. They show the trade-off between the convergence rate of values f(x(t)) − f(x∗)
and trajectories ‖x(t) − xε(t))‖2, and that taken around p = 2

3 is a good compromise. We limit our
illustration to the case 0 < p < 1. It is the most interesting case for obtaining good convergence
rate of the trajectories towards the minimum norm solution. We also notice that the regularization
Tikhonov’s term 1

tp x(t) in the system (TRIGS) reduces the oscillations. This suggests introducing the
Hessian driven damping into these dynamics to further dampen oscillations, see [10], [21], [25] and
references therein. This is related to the notion of strong damping for PDE’s.

6 Conclusion, perspective

In the general framework of convex optimization in Hilbert spaces, we have introduced a damped iner-
tial dynamic which generates trajectories rapidly converging towards the minimum norm solution. We
obtained these results by removing restrictive assumptions concerning the convergence of trajectories,
made in previous works. This seems to be the first time that these two properties have been obtained
for the same inertial dynamic. We have developed an in-depth mathematical Lyapunov analysis of the
dynamic which is a valuable tool for the development of corresponding results for algorithms obtained
by temporal discretization. Precisely, the corresponding algorithmic study must be the subject of a
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Fig. 1 (TRIGS) with f(x) := 1
2

∑10
i=1 (x2i−1 + x2i − 1)2. Convergence rates of values f(x(t)) − f(x∗) (top), of

‖x(t)− x∗‖2 (middle), of ‖x(t)− xε(t)‖2 (below)

subsequent study. Many interesting questions such as the introduction of Hessian-driven damping to
attenuate oscillations, and the study of the impact of error disturbances, merit further study. These
results also adapt well to inverse problems for which strong convergence of trajectories, and obtaining
a solution close to a desired state are key properties. It is likely that a parallel approach can be
developed for constrained optimization, in multiobjective optimization for the dynamical approach to
Pareto optima, and within the framework of potential games. The Lyapunov analysis developed in
this paper could also be very useful to study the asymptotic stabilization of several classes of PDE’s,
for example nonlinear damped wave equations.
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A Auxiliary results

A.1 Existence and uniqueness for the Cauchy problem, energy estimates

Let us first show that the Cauchy problem for (TRIGS) is well posed. The proof relies on classical arguments
combining the Cauchy-Lipschitz theorem with energy estimates. The following proof has been given in [19]. We
reproduce it for the convenience of the reader, and give supplementary energy estimates.

Theorem 7 Let us make the assumptions (H0) on f and ε. Then, given (x0, v0) ∈ H × H, there exists a unique
global classical solution x : [t0,+∞[→H of the Cauchy problem{

ẍ(t) + δ
√
ε(t)ẋ(t) +∇f (x(t)) + ε(t)x(t) = 0

x(t0) = x0, ẋ(t0) = v0.
(50)

In addition, the global energy function t 7→W (t) is decreasing where

W (t) :=
1

2
‖ẋ(t)‖2 + f(x(t)) +

1

2
ε(t)‖x(t)‖2,

and we have the energy estimate ∫ +∞

t0

√
ε(t)‖ẋ(t)‖2dt < +∞. (51)

Proof Consider the Hamiltonian formulation of (50), which gives the first order system
ẋ(t)− y(t) = 0

ẏ(t) + δ
√
ε(t)y(t) +∇f (x(t)) + ε(t)x(t) = 0

x(t0) = x0, y(t0) = v0.

(52)

According to the hypothesis (H0), and by applying the Cauchy-Lipschitz theorem in the locally Lipschitz case, we
obtain the existence and uniqueness of a local solution of the Cauchy problem (52). Then, in order to pass from a
local solution to a global solution, we use energy estimates. By taking the scalar product of (TRIGS) with ẋ(t), we
obtain

d

dt

(1

2
‖ẋ(t)‖2 + f(x(t)) +

1

2
ε(t)‖x(t)‖2)

)
+ δ
√
ε(t)‖ẋ(t)‖2 −

1

2
ε̇(t)‖x(t)‖2 = 0. (53)

According to (H3), the function ε(·) is non-increasing. Therefore, the energy function t 7→ W (t) is decreasing where
W (t) := 1

2
‖ẋ(t)‖2 + f(x(t)) + 1

2
ε(t)‖x(t)‖2. The end of the proof follows a standard argument. Take a maximal

solution defined on an interval [t0, T [. If T is infinite, the proof is over. Otherwise, if T is finite, according to the
above energy estimate, we have that ‖ẋ(t)‖ remains bounded, just like ‖x(t)‖ and ‖ẍ(t)‖ (use (TRIGS)). Therefore,
the limit of x(t) and ẋ(t) exists when t→ T . Applying the local existence result at T with the initial conditions thus
obtained gives a contradiction to the maximality of the solution.
Let us complete the proof with the energy estimates. Returning to (53), we get

d

dt

(1

2
‖ẋ(t)‖2 + f(x(t)) +

1

2
ε(t)‖x(t)‖2)

)
+ δ
√
ε(t)‖ẋ(t)‖2 ≤ 0. (54)

After integration of (54), we get (51).
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