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Abstract

We propose a new construction of the supergravity inflation as an UV completion of
the Higgs-R2 inflation. In the dual description of R2-supergravity, we show that there
appear dual chiral superfields containing the scalaron or sigma field in the Starobinsky
inflation, which unitarizes the supersymmetric Higgs inflation with a large non-minimal
coupling up to the Planck scale. We find that a successful slow-roll inflation is achiev-
able in the Higgs-sigma field space, but under the condition that higher curvature terms
are introduced to cure the tachyonic mass problems for spectator singlet scalar fields.
We also discuss supersymmetry breaking and its transmission to the visible sector as
a result of the couplings of the dual chiral superfields and the non-minimal gravity
coupling of the Higgs fields.
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1 Introduction

The observed Cosmic Microwave Background (CMB) not only strongly supports the ex-
istence of inflation in the early universe, but also constrains many inflation models via
curvature and tensor perturbations [1]. The Higgs inflation [2] and the Starobinsky (R2-)
inflation models [3–5] have attracted a lot of attention as successful minimal extensions of
the Standard Model (SM) for inflation. In the Higgs inflation, the SM Higgs boson plays
the role of inflaton with a non-minimal coupling to the Ricci scalar. In the Starobinsky
inflation, the general relativity is modified with an R2 term, which gives rise to a dual scalar
field (scalaron) as the inflaton. Both of these inflation models predict similar types of scalar
potential, in perfect agreement with the observed data.

The unitarity problem occurs due to the large non-minimal coupling in the original
Higgs inflation [6–9], so there is a need of introducing an extra degree of freedom below the
unitarity scale [10–15]. In this regard, the possibility of combining the Higgs and Starobinsky
models has been revisited due to the presence of the dual scalar field, scalaron, in the
Starobinsky model [16–19]. Indeed, it has been shown that the scalaron or sigma field in the
linearized action, in the Starobinsky model, unitarizes the Higgs inflation up to the Planck

1



scale [20–24]. There are more general sigma models unitarizing the Higgs inflation [24]
beyond the Starobinsky model.

In this article, we construct a Next-to-Minimal Supersymmetric Standard Model (NMSSM)
extension of the Higgs inflation in R2-supergravity and its dual-scalar supergravity frame-
work. There are a variety of motivations for low-energy supersymmetry (SUSY) such as
solutions to the hierarchy problem, gauge coupling unification, vacuum instability problem,
natural candidates for dark matter, etc. However, there has been no convincing evidence
for supersymmetric particles at the Large Hadron Collider (LHC) or precision measure-
ments, so there might be a little hierarchy between the weak scale and the superparticle
masses. Nonetheless, for the consistency of non-supersymmetric models at high energies
and the quantum theory of gravity, it is necessary to develop supergravity extensions of the
inflation.

As it comes to a supersymmetric extension of inflation models, there is a question on
the influences of extra scalar fields on the inflatonary trajectory. For instance, the Mini-
mal Supersymmetric Standard Model (MSSM) for the Higgs inflation has been studied in
the framework of Jordan frame supergravity. In this case, the Higgs potential stems from
D-terms, so it vanishes along the D-flat direction for which the second Higgs field is stabi-
lized [25]. As a result, the model has been extended to the NMSSM where a singlet chiral
multiplet S provides an additional Higgs potential. Even in this case, however, the singlet
scalar S becomes tachyonic during inflation, destablizing the Higgs inflation [26]. Therefore,
it is necessary to extend the minimal frame function by a quartic term for the singlet scalar
S [27,28] (See also Refs. [29–31]). The lesson here is that it is important to check the consis-
tency in every extension of the minimal inflation models. A similar discussion is also applied
for the supergravity extension of the Starobinaky inflation [32–38]: additional scalar fields
required for supersymmetry lead to a tachyonic instability and would destabilize the infla-
tion [36]. Therefore, we also study these stability issues in the R2-supergravity extensions of
the Higgs-sigma field inflation.

We also discuss the importance of the equivalent frames describing the same physics,
because some symmetries and critical problems can be made more clear in one frame than
in the other. In the sigma-model frame for Higgs inflation where the conformal symmetry
is manifest, the Higgs kinetic term can be recast into a non-linear model type [22, 24], so
the unitarity problem can be seen clearly from the non-canonical form of the Higgs kinetic
terms [8,10]. Moreover, in the presence of the R2 term in the Higgs inflation, the dual-scalar
field for the R2 term, called the sigma field, appears to respect the conformal symmetry and
internal symmetries in the sigma-model frame, so unitarity becomes manifest [22, 24]. We
introduce the equivalent frames for the Higgs-sigma inflation in a manifestly supersymmetric
way in conformal supergravity [39–43], thanks to a large gauge symmetry.

In our setup, we pursue a comprehensive description of the early Universe in a supergrav-
ity inflation model, from the inflationary dynamics towards the low-energy phenomenology
after SUSY breaking in the vacuum. We show the important roles of dual chiral superfields
appearing in the dual description of R2-supergravity, such as the UV completion of the su-
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persymmetric Higgs inflation with a large non-minimal coupling as well as the stability of
the slow-roll inflation. We also address the effects of the extra chiral multiplets for SUSY
breaking and its mediation to the visible sector.

The paper is organized as follows. First, in Sec. 2, we introduce the supersymmetric gen-
eralization of the Higgs and Starobinsky models where both a non-minimal gravity coupling
for the NMSSM Higgs fields and an R2 term are explicitly introduced in R2-supergravity.
Next, we derive the dual-scalar Lagrangian at the supergravity level where the supersym-
metric R2 term is converted to extra singlet chiral multiplets. Then, in Sec. 3, we present the
bosonic Lagrangians for NMSSM in the dual-scalar supergravity, in equivalent frames, such
as Jordan, Einstein and sigma-model frames. In Sec 4, we continue to study the effective
action for inflation in our model and check the stability of heavy scalars for consistency. In
Sec 5, we consider the mechanisms for SUSY breaking in the presence of higher curvature
terms or an extra singlet chiral multiplet, and discuss the mediation of SUSY breaking to
the visible sector. Finally, conclusions are drawn.

2 R2-supergravity and dual description

We provide the model setup for the NMSSM Higgs inflation in R2-supergravity with super-
conformal symmetry and consider the dual-scalar description of R2-supergravity in terms of
two singlet chiral superfields, T and C.

2.1 R2-supergravity and NMSSM

In order to include the R2 term and the non-minimal coupling for Higgs fields in 4D super-
gravity, we consider the action in superconformal setup [39–43],1 as follows,

S = [|X0|2Ω̃(zα, z̄β̄)]D + [(X0)3W̃ (zα)]F + [fAB(zα)W̄AWB]F + [αR̄R]D, (2.1)

where [...]D,F denote the superconformal D- and F -term formulae, which are applicable for
real and chiral multiplets with (Weyl weight, chiral weight)= (2, 0) and (3, 3), respectively.
Here, X0 is a chiral compensator multiplet with (1, 1), and X̄ 0̄ is its conjugate with (1,−1).
zα and z̄β̄ are chiral and anti-chiral matter multiplets with (0, 0), which will be identified
as NMSSM chiral superfields later. Ω̃ is a real function of matter multiplets, called the

frame function, and it is related to the Kähler potential by K̃ = −3 log
(
− Ω̃

3

)
. W̃ and f are

the superpotential and the gauge kinetic function, respectively, which are the holomorphic
functions of zα. WA denotes a gauge field-strength multiplet with A being the gauge indices.

The last term of Eq. (2.1) contains a curvature multiplet R [43] with weights (1, 1), which
is defined as

R = (X0)−1Σ(X̄ 0̄), (2.2)

1We mostly follow the conventions of Ref. [44].
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where Σ is a chiral projection operator. The coefficient of the last term, α, is a real parameter
and is taken to be positive for stability reason. When α = 0, the action (2.1) is reduced to
the standard superconformal action up to second derivatives. In our case, we take a nonzero
α for which the R2 term and some new dynamical degree of freedoms are included [32].

In the superconformal construction, the compensator multipletX0 is an unphysical degree
of freedom which would be eliminated by the superconformal gauge fixing conditions. We
impose the dilatation gauge condition by X0 = 1 on the lowest scalar component of X0-
multiplet,2 in order to obtain the action with the field-dependent Einstein term from the
product of Ω̃ and R (i.e., Jordan frame action). Then, after integrating out some auxiliary
fields, we obtain the following bosonic part of the Lagrangian:

L/
√
−g =− Ω̃αβ̄∂µz

α∂µz̄β̄ + (−iΩ̃α∂µz
αAµ + c.c.) + Ω̃(−A2 +

∣∣F 0
∣∣2) + (3F 0W̃ + c.c.)

+

(
−Ω̃

6
+
α

6
|F 0|2 +

α

3
A2

)
R +

α

36
R2 + α

(
A2 +

∣∣F 0
∣∣2)2

+ α(∇µAµ)2

− α
∣∣∂µF 0 − 3iAµF 0

∣∣2 − Ω̃αβ̄(Ω̃αF̄
0̄ + W̃α)(Ω̃β̄F

0 + ¯̃Wβ̄)

− 1

2
(Ref)−1ABΩ̃αk

α
AΩ̃β̄k

β̄
B, (2.3)

where A2 = AµAµ and F 0 is the F-term component of X0. While F 0 is an auxiliary field
in the standard supergravity, it becomes a propagating degree of freedom, due to derivative
terms. Ω̃α and W̃α, etc, denote the derivatives with respect to zα or z̄ᾱ, and Ω̃αβ̄ ≡ (Ω̃αβ̄)−1.
The derivatives on zα should be understood as the covariant derivatives including gauge
connections if zα are charged under some gauge groups, but we omit them for simplicity in
the following discussion. kαA are the Killing vectors defined by the gauge transformations of
chiral superfields, δzα = θAkαA, with a transformation parameter θA. In the second line of
Eq. (2.3), we find that the Lagrangian contains the non-minimal couplings between matter
chiral multiplets and the Ricci scalar, Ω̃(zα, z̄ᾱ)R, and R2 as desired for the supersymmetric
extension of the Higgs-R2 inflation.

In NMSSM, the Higgs sector is composed of

zα = {S,Hu, Hd}, (2.4)

where S is the singlet chiral superfield, and Hu and Hd are SU(2)L doublet Higgs superfields,
given by

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
. (2.5)

2We sometimes use the same characters for superfields and their lowest scalar components.
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Then, we choose the frame function and the superpotential, respectively, as [25, 26,28],

Ω̃(zα, z̄β̄) = −3 + |S|2 + |Hu|2 + |Hd|2 +

(
3

2
χHu ·Hd + h.c.

)
, (2.6)

W̃ (zα) = λSHu ·Hd +
ρ

3
S3, (2.7)

where |Hu|2 = H†uHu, etc, Hu ·Hd ≡ −H0
uH

0
d +H+

u H
−
d , and the frame function is related to

the Kähler potential by Ω̃(zα, z̄β̄) = −3 exp
(
− K̃(zα, z̄β̄)/3

)
, and χ, λ and ρ are chosen to

be real parameters.
Therefore, in R2 supergravity, Eq. (2.3) for the NMSSM describes a supergravity embed-

ding for the system with the non-minimal coupling of the Higgs fields as well as R2 term.
The kinetic terms of the NMSSM Lagrangian in R2-supergravity are explicitly given by

L/
√
−g =

{
1

2
− 1

6
|S|2 − 1

6
|Hu|2 −

1

6
|Hd|2 +

(
−1

4
χHu ·Hd + h.c.

)}
R

− |∂µS|2 − |∂µHu|2 − |∂µHd|2 +
α

36
R2 + · · · , (2.8)

where the ellipsis denotes the terms containing Aµ, F 0 and the scalar potential. Compared
to the non-supersymmetric case, we have several additional scalar fields including S and
multi-Higgs fields. We are not going to pursue the above form of the R2-supergravity any
longer, but instead we rely on the dual-scalar description of the R2-supergravity in the next
subsection.

2.2 Dual-scalar Lagrangian

In this section, we derive a dual Lagrangian for Eq. (2.1) by transforming the higher derivative
terms such as R2 to dynamical scalar fields including the scalaron. We perform the analysis
in a supersymmetric way without imposing a gauge fixing condition on X0 for dilatation.
Fixing X0 at a special value corresponds to identifying a frame of the system. In the next
section, we define equivalent frames in a unified manner by fixing X0 appropriately.

Here we derive the master action without specifying X0, following the duality procedure
of Ref. [32] (See also Refs. [38, 45]). To do so, note that the last term of Eq. (2.1) can be
rewritten as

[αR̄R]D = [αC̄C]D + [T (C −R)]F , (2.9)

where T and C are chiral multiplets with weights (2, 2) and (1, 1), respectively. The EOM
of T leads to C = R, and then we can see the equality of Eq. (2.9). On the other hand, the
second term in the right-hand side of Eq. (2.9) can be transformed as

[T (C −R)]F = [TC − Σ(T (X0)−1X̄ 0̄)]F

= [TC]F − [T (X0)−1X̄ 0̄ + c.c.]D, (2.10)
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up to total derivative. Therefore, we obtain the following total action,

S = [|X0|2(Ω̃ + αC̄C − (T + T̄ ))]D + [(X0)3(W̃ + TC)]F + [fAB(zα)W̄AWB]F , (2.11)

where we redefined T → T (X0)2 and C → CX0 so that T and C are weightless.
Comparing Eq. (2.11) to the standard supergravity,

S = [|X0|2Ω(zI , z̄J̄)]D + [(X0)3W (zI)]F + [fAB(zI)W̄AWB]F , (2.12)

we can define new frame function Ω and superpotential W ,

Ω(zI , z̄J̄) ≡ Ω̃(zα, z̄β̄) + |C|2 − (T + T̄ )

= −3 + |S|2 + |Hu|2 + |Hd|2 +

(
3

2
χHu ·Hd + h.c.

)
+ |C|2 − (T + T̄ ), (2.13)

W (zI) ≡ W̃ (zα) +
1√
α
TC = λSHu ·Hd +

ρ

3
S3 +

1√
α
TC, (2.14)

fAB(zI) = fAB(zα), (2.15)

where we redefined C → C/
√
α, and the Kähler potential is defined by Ω(zI , z̄J̄) = −3 exp

(
−

K(zI , z̄J̄)/3
)
. In this expression, the higher derivative term αR̄R disappears, but instead

there appear two additional chiral superfields, T and C, in the standard supergravity action.
When α = 0, C appears only in the superpotential, which becomes a Lagrange multiplier
forcing T = 0. Then, we recover the original NMSSM inflation model [25,26,28].

We now derive the bosonic Lagrangian in the general scalar-dual supergravity in detail for
the later convenience. After imposing the superconformal gauge fixing except for dilatation,3

and integrating out some auxiliary fields, we obtain

L/
√
−g =− 1

6
(X0)2ΩR− Ω(∂µX

0)2 −X0∂µX0
(

ΩI∂µz
I + ΩĪ∂µz̄

Ī
)

+
(
X0
)2

ΩA2
µ

− (X0)2ΩIJ̄∂µz
I∂µz̄J̄ − V, (2.16)

where

Aµ = − i

2Ω

(
∂µz

IΩI − ∂µz̄ĪΩĪ

)
. (2.17)

The scalar potential V = V F + V D is given by

V F =
(
X0
)4
(

ΩIJ̄ −
ΩIΩJ̄

Ω

)−1(
WI −

3ΩI

Ω
W

)(
W̄J̄ −

3ΩJ̄

Ω
W̄

)
+

9

Ω

(
X0
)4 |W |2

=
(
X0
)4
eK/3

[
KIJ̄ (WI +KIW )

(
W̄J̄ +KJ̄W̄

)
− 3|W |2

]
, (2.18)

V D =
(X0)

4

2
(Ref)−1ABΩαk

α
AΩβ̄k

β̄
B, (2.19)

3In particular, X0 = X̄ 0̄ is imposed as A-gauge [44].
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where KIJ̄ is an inverse of Kähler metric. We note that the above results hold for the
general forms of Kähler potential (frame function) and the superpotential independently of
our choice Eqs. (2.13)-(2.15).

For NMSSM in the dual-scalar description of R2-supergravity, henceforth, we use the
following notations for the extended Higgs sector,

zI = {S,Hu, Hd, C, T} , (2.20)

zi = {S,Hu, Hd, C}, (2.21)

zα = {S,Hu, Hd}. (2.22)

Then, from Eqs. (2.13) and (2.14), the Kähler metric and its inverse are simplified due to
Ωij̄ = δij̄ and ΩT T̄ = 0, so they are explicitly given by

KIJ̄ = − 3

Ω

(
δij̄ −

ΩiΩj̄

Ω
Ωi

Ω
Ωj̄

Ω
− 1

Ω

)
, KIJ̄ = −Ω

3

(
δij̄ δik̄Ωk̄

δj̄`Ω` −Ω + δk
¯̀
ΩkΩ¯̀

)
. (2.23)

Then, we find that the F -term scalar potential can be rewritten as

V F =
(
X0
)4
[
δij̄WiW̄j̄ +

(
Wiδ

ij̄Ωj̄W̄T̄ − 3WT W̄ + c.c
)
−
(

Ω− δij̄ΩiΩj̄

)
|WT |2

]
. (2.24)

Therefore, in the absence of the chiral superfields T and C, the above F -term potential takes
the same form as in the NMSSM with global SUSY when we take X0 = 1 (Jordan frame).
Otherwise, the scalar potential deviates from the one in the NMSSM and there appears an
important contribution from T for inflation as will be shown in the later sections.

3 Dual-scalar supergravity for NMSSM

In this section, we introduce equivalent frames by choosing certain gauge conditions for
superconformal symmetry and discuss the universal properties of Higgs-R2 supergravity in
more detail. After the dual transformation of the R2 term in superspace, we introduce three
different kinds of frames (Jordan frame, Einstein frame, and linear sigma frame). We put
the equivalent frames in the unified fashion and distinguish our work from the previous ones
by theoretical constraints such as perturbative bounds on the parameters, unitarity, and
inflation dynamics, etc.

3.1 Jordan frames

We first take X0 = 1 in Eq. (2.16), for which the bosonic Lagrangian becomes

LJ/
√
−g =− 1

6
ΩR− ΩIJ̄∂µz

I∂µz̄J̄ − VJ , (3.1)
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Figure 1: Relation between different frames

where we omit the term with Aµ.4 Again, this expression holds for a general system with
frame function and superpotential independently of our setup. Then, if the frame function
takes a form,

Ω = −3e−
K
3 = −3 + δIJ̄z

I z̄J̄ + J(z) + J̄(z̄), (3.2)

where J is an arbitrary holomorphic function, the scalar fields have canonical kinetic terms [26,
28], and we call this frame as a canonical Jordan frame.5 However, we note that there is a
slight difference between Eq. (3.2) and the frame function in Eq. (2.13): the dual scalar field
T appears as T + T̄ in Ω, so it does not have a kinetic term in the Jordan frame. Although
the T -dependent frame function in Eq. (3.2) are specific to the R2 supergravity 6, we keep
the terminology, “Jordan frame”, in this paper, in order to refer to the matter part of the
frame function.

Taking Eqs. (2.13) and (2.14) in Jordan frame, we obtain the following bosonic part of
the Lagrangian:

LJ/
√
−g =

{
1

2
− 1

6
|S|2 − 1

6
|Hu|2 −

1

6
|Hd|2 −

1

6
|C|2 +

(
−1

4
χHu ·Hd + h.c.

)
+

1

3
ReT

}
R

− |∂µS|2 − |∂µHu|2 − |∂µHd|2 − |∂µC|2 + ΩA2
µ − VJ . (3.3)

4In the most of situations, this term vanishes at the inflation background.
5Moreover, when J = 0 and the superpotential contains only cubic terms, the scalar potential becomes the

same as that of the global supersymmetric theory. This kind of model is named as “canonical superconformal
supergravity” [28].

6We remind ourselves that T is introduced as a Lagrange multiplier in the dual process.
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Here, the scalar potential VJ = V F
J + V D

J is given by

V F
J =

∣∣λHu ·Hd + ρS2
∣∣2 + λ2 |S|2 (|Hu|2 + |Hd|2) +

1

α
|T |2

+
3

2

χλ√
α

(SC̄ + S̄C)(|Hu|2 + |Hd|2)

+
1

α
|C|2

{
3 +

3

2
χ(Hu ·Hd + c.c.) +

9

4
χ2(|Hu|2 + |Hd|2)− 2ReT

}
, (3.4)

V D
J =

g′2

8

(
|Hu|2 − |Hd|2

)2
+
g2

8

(
(Hu)

† ~τHu + (Hd)
† ~τHd

)2

. (3.5)

where τi(i = 1, 2, 3) are Pauli matrices. For the D-term scalar potential, we took fAB = δAB
and kept the part for U(1)Y and SU(2)L groups with the corresponding gauge couplings, g′

and g, respectively. Therefore, we have obtained the generalized NMSSM inflation model
in Jordan frame with additional two complex fields (C and T ). We note that there is a
non-minimal coupling for ReT with R, but not for ImT .

We now consider the limit of α → 0, for which the Starobinsky corrections disappear.
After redefining C →

√
αC and T →

√
αT , and taking the limit α → 0, C and T do not

appear in the frame function, so they become auxiliary fields. Then, after integrating out
them by using the equations of motion, we obtain

T = 0, C =
3
2
χλS (|Hu|2 + |Hd|2)

−3 +
(
−3

2
χHu ·Hd + c.c.

)
− 9

4
χ2 (|Hu|2 + |Hd|2)

. (3.6)

Then, plugging the above relations back to Eq. (3.5), we get

V F
J |α→0 =

∣∣λHu ·Hd + ρS2
∣∣2

+ λ2|S|2
(
|Hu|2 + |Hd|2

) −3 +
(
−3

2
χHu ·Hd + c.c.

)
−3 +

(
−3

2
χHu ·Hd + c.c.

)
− 9

4
χ2 (|Hu|2 + |Hd|2)

, (3.7)

which reproduces the result of Refs. [26,28]. On the other hand, if α is sizable, the additional
scalar fields C, T become dynamical, so we need to take them into account for inflationary
dynamics. For a conformal coupling for the Higgs fields, i.e. χ = 0, the NMSSM sector
is decoupled from the scalaron, so we recover the pure Starobinsky inflation in supergrav-
ity [32]. Otherwise, our model interpolates between Higgs and Starobinsky inflation models
in supergravity.

We remark that setting X0 =
√
−3/Ω = eK/6 in Eq. (2.16) leads to the dual-scalar

Lagrangian for NMSSM in Einstein frame, as follows,

LE/
√
−g =

1

2
R−KIJ̄∂µzI∂µz̄J̄ − VE, (3.8)
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where the scalar potential VE is related to VJ as

VE =
9

Ω2
VJ .

We note that the kinetic term for T is contained in Eq. (3.8), unlike the canonical Jordan
frame in Eq. (3.3).

3.2 Sigma-model frames

Next we introduce “linear sigma frame”, where it is easy to see the recovery of unitarity
problem. To do so, we redefine the matter multiplets as

ẑi ≡ X0zi, T̂ ≡ (X0)2T, (3.9)

with zi = {S,Hu, Hd, C}. Then, the frame function and the superpotential can be rewritten
as

|X0|2Ω(zI , z̄J̄) = −3|X0|2 + |Ŝ|2 + |Ĥu|2 + |Ĥd|2 + |Ĉ|2

+
3χ

2

(
Ĥu · ĤdX̄

0̄

X0
+ h.c.

)
−

(
T̂ X̄ 0̄

X0
+ h.c.

)
, (3.10)

(X0)3W (zI) = λŜĤu · Ĥd +
ρ

3
Ŝ3 +

1√
α
T̂ Ĉ. (3.11)

After imposing gauge fixing conditions except for the dilatation and integrating out auxiliary
fields, Equation (2.11) produces the following bosonic terms,

LLS/
√
−g =

{
(X0)2

2
− 1

6
|Ŝ|2 − 1

6
|Ĥu|2 −

1

6
|Ĥd|2 −

1

6
|Ĉ|2

+

(
−1

4
χĤu · Ĥd + h.c.

)
+

1

3
ReT̂

}
R

+
((
∂ logX0

)2
+� logX0

)(
−3(X0)2 +

(
3

2
χĤu · Ĥd + h.c.

)
− 2ReT̂

)
− |∂µŜ|2 − |∂µĤu|2 − |∂µĤd|2 − |∂µĈ|2 + ΩA2

µ − VLS, (3.12)

where

V F
LS =|λĤu · Ĥd + ρŜ2|2 + λ2|Ŝ|2(|Ĥu|2 + |Ĥd|2) +

1

α
|T̂ |2

+
3

2

χλ√
α

(Ŝ
¯̂
C +

¯̂
SĈ)(|Ĥu|2 + |Ĥd|2)

− 1

α
|Ĉ|2

{
−3(X0)2 − 3

2
χ(Ĥu · Ĥd + c.c.)− 9

4
χ2(|Ĥu|2 + |Ĥd|2) + 2ReT̂

}
, (3.13)

V D
LS =

g′2

8

(
|Ĥu|2 − |Ĥd|2

)2

+
g2

8

(
(Ĥu)

†~τĤu + (Ĥd)
†~τĤd

)2

. (3.14)
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Here, we note that Aµ in the sigma-model frame is shown explicitly in the new basis, as
follows,

Aµ = − i

2Ω
(X0)2

(
Ωî∂µ((X0)−1ẑ î) +X0ΩT̂∂µ((X0)−2T̂ )− c.c.

)
. (3.15)

Now, we fix the dilatation gauge by X0 = 1 + 1√
6
σ, where σ is a function of ẑI and ¯̂zJ̄ . In

particular, we choose σ so that it satisfies the following constraint [24],

(X0)2

2
− 1

6
|Ŝ|2 − 1

6
|Ĥu|2 −

1

6
|Ĥd|2 −

1

6
|Ĉ|2 +

(
−1

4
χĤu · Ĥd + h.c.

)
+

1

3
ReT̂

=
1

2
− 1

6
|Ŝ|2 − 1

6
|Ĥu|2 −

1

6
|Ĥd|2 −

1

6
|Ĉ|2 − 1

12
σ2, (3.16)

or equivalently (
1 +

1√
6
σ

)2

+

(
−1

2
χĤu · Ĥd + h.c.

)
+

2

3
ReT̂ = 1− 1

6
σ2. (3.17)

By this equation, X0 (or σ) can be expressed in terms of only physical fields ẑI . Instead of
doing so, we use the equation to eliminate ReT̂ regarding σ as a new dynamical field. Then,
we obtain

LLS/
√
−g =

1

2

(
1− 1

3
|Ŝ|2 − 1

3
|Ĥu|2 −

1

3
|Ĥd|2 −

1

3
|Ĉ|2 − 1

6
σ2

)
R

− |∂µŜ|2 − |∂µĤu|2 − |∂µĤd|2 − |∂µĈ|2 −
1

2
(∂µσ)2 + ΩA2

µ − VLS, (3.18)

where the scalar potential (3.13) becomes

V F
LS =|λĤu · Ĥd + ρŜ2|2 + λ2|Ŝ|2(|Ĥu|2 + |Ĥd|2)

+
1

4α

(
σ2 +

√
6σ −

(
3

2
χĤu · Ĥd + h.c.

))2

+
1

α
(ImT̂ )2 +

3

2

χλ√
α

(Ŝ
¯̂
C +

¯̂
SĈ)(|Ĥu|2 + |Ĥd|2)

+
1

α
|Ĉ|2

{
3 + 2

√
6σ +

3

2
σ2 +

9

4
χ2(|Ĥu|2 + |Ĥd|2)

}
. (3.19)

Taking into account the extra kinetic terms coming from A2
µ with Eq. (3.15) in Eq. (3.18),

we find that all the scalar fields including Im T̂ turn out to be dynamical and there is no
unitarity violation up to the Planck scale after the field redefinitions, as will be discussed
shortly below. Indeed, as shown in Ref. [24], it is obvious that the scalaron σ plays a role of
a sigma field in the linear sigma model, which pushes up the unitarity bound to the Planck

11



scale. Moreover, the local conformal invariance is respected in Eq. (3.18), except for the
Planck mass and the scalar potential.

Before closing the section, we remark on the angular part of the complex scalar fields and
the unitarity problem in more detail. As commented above, in the sigma-model frame, the
kinetic terms for the angular part of the complex scalar fields come from ΩA2

µ in Eq. (3.18)
with Eq. (3.15). We enumerate them in the following,

ΩA2
µ = − 1

4Ω
(X0)4

[
(X0)−1(Ωî∂µẑ

î + ΩT̂∂µT̂ ) + (∂µ(X0)−1)(Ωîẑ
î + 2ΩT̂ T̂ )− c.c.

]2

= − 1

4Ω

[
(X0)−1

(
(

¯̂
C∂µĈ +

¯̂
S∂µŜ +

¯̂
Hu∂µĤu +

¯̂
Hd∂µĤd − c.c)− 2i∂µb

)
−4ib ∂µ(X0)−1

]2

. (3.20)

Here, we have redefined T̂ − ¯̂
T in terms of a real scalar field b as

T̂ − ¯̂
T − 3

2
χ(Ĥu · Ĥd − ¯̂

Hu · ¯̂
Hd) = 2ib, (3.21)

and we note that the frame function can be written with the constraint in Eq. (3.16) as

Ω = −6(X0)−2

(
1

2
− 1

6
|Ŝ|2 − 1

6
|Ĥu|2 −

1

6
|Ĥd|2 −

1

6
|Ĉ|2 − 1

12
σ2

)
. (3.22)

Therefore, the mass term for ImT̂ in the scalar potential (3.19) becomes

V F
LS ⊃

1

α
(ImT̂ )2 =

1

α

(
b− 3

4
iχ(Ĥu · Ĥd − ¯̂

Hu · ¯̂
Hd)

)2

. (3.23)

As a result, in the resulting Lagrangian in the sigma-model frame, the non-minimal coupling
χ for the Higgs fields appearing in ΩA2

µ has been moved to the scalar potential so there
is no large coupling in the kinetic terms. This is similar to the previous observation that

the constraint for T̂ +
¯̂
T in Eq. (3.16) is imposed in the sigma-model frame for eliminating

the non-minimal coupling appearing in the frame function Ω. In this case, we only have to
impose the perturbativity bounds on the couplings between b and the Higgs fields from the
redefined mass term, as follows,

χ

α
. 1,

χ2

α
. 1. (3.24)

Moreover, as will be shown in the next section, the angular parts of the complex scalar
fields are decoupled during inflation, so they are not relevant for our inflation discussion.
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4 Higgs-Sigma inflation

We now apply our results on dual-scalar description of Higgs-R2 supergravity and apply
them for Higgs-sigma inflation. We first derive the effective action for a slow-roll inflation
in the Higgs-sigma system and then show the necessary conditions for the stability of the
inflationary trajectory.

4.1 Effective action for inflation

First we consider the effective action for inflation in Jordan frame supergravity, written in
terms of the original variables used in Sec. 3.1. To that, keeping only the scalaron ReT and
the neutral Higgs field h from H0

u → 1
2
h and H0

d → 1
2
h, and setting all the other fields to

zero, we obtain the following Lagrangian in the Einstein frame:

L/
√
−g =

1

2
R− 1

2

(
1 + ξ(1 + 6ξ)h2 + 2

3
ReT

)
(1 + ξh2 + 2

3
ReT )2

(∂µh)2 − 1

3

1

(1 + ξh2 + 2
3
ReT )2

(∂µReT )2

− 2ξh

(1 + ξh2 + 2
3
ReT )2

∂µh∂
µReT − V (h,ReT ), (4.1)

where the effective non-minimal coupling for the Higgs field is given by

ξ ≡ −1

6
+
χ

4
, (4.2)

and the Einstein frame scalar potential is

V (h,ReT ) =
1

(1 + ξh2 + 2
3
ReT )2

(
1

16
λ2h4 +

1

α
(ReT )2

)
. (4.3)

The obtained Lagrangian is equivalent to the one in the non-supersymmetric Higgs-R2 in-
flation in Ref. [17,22,24].

We can take the alternative basis for fields in sigma model frame, written in terms
of the rescaled fields, ẑi = X0zi and T̂ = (X0)2T , introduced in Sec. 3.2. Then, using

ĥ = X0h =
(

1 + 1√
6
σ
)
h and redefining ReT̂ in terms of the σ field satisfying Eq. (3.17), we

can rewrite the Lagrangian in Einstein frame as

L/
√
−g =

1

2
R− 1

2

1(
1− 1

6
ĥ2 − 1

6
σ2
)2

[(
1− σ2

6

)
(∂µĥ)2 +

(
1− ĥ2

6

)
(∂µσ)2

+
1

3
ĥσ∂µĥ∂

µσ

]
− V (ĥ, σ), (4.4)
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where

V (ĥ, σ) =
1(

1− 1
6
ĥ2 − 1

6
σ2
)2

[
λ2

16
ĥ4 +

1

4α

(
3

(
ξ +

1

6

)
ĥ2 +

√
6σ + σ2

)2]
. (4.5)

The inflationary dynamics in this picture is studied in Ref. [24], and we adopt the above
basis for inflation in the following discussion.

As a result, we find that a non-minimal coupling for the Higgs fields contributes to the
extra quartic coupling for the Higgs fields and the mixing quartic coupling between the Higgs
and sigma fields, so we only have to impose the perturbativity bounds on them 7, as follows,

λ2

4
+

9

α

(
ξ +

1

6

)2

≤ 1, 0 <
1

α
≤ 1,

6

α

(
ξ +

1

6

)
≤ 1. (4.6)

Therefore, even for a large non-minimal coupling for the Higgs fields in the Jordan frame
supergravity, the unitarity can be ensured up to the Planck scale due to the sigma field
couplings [22,24].

In order to obtain the effective inflaton potential for σ, we integrate out ĥ. Thus, ignoring
the kinetic terms for the Higgs fields and using the equation of motion, we obtain a solution
for ĥ [24] as

ĥ2 =
1
α
σ(σ +

√
6)
(
σ − 3

(
ξ + 1

6

)
(σ −

√
6)
)

λ2

4
(σ −

√
6)− 3

α

(
ξ + 1

6

) (
σ − 3

(
ξ + 1

6

)
(σ −

√
6)
) . (4.7)

Then, plugging the above solution back to the potential in Eq. (4.5), we obtain the effective
scalar potential for inflaton σ,

Veff(σ) =
9λ2

4α
σ2

[
λ2

4
(σ −

√
6)2 +

1

α

(
σ − 3

(
ξ +

1

6

)
(σ −

√
6)

)2
]−1

. (4.8)

In terms of the approximate canonical field for inflaton, φ, related to the sigma field by

σ ' −
√

6 tanh

(
φ√
6

)
, (4.9)

we finally reach the effective potential for inflaton,

Veff(φ) =
9

4α

(
1− e−

2√
6
φ
)2
[
1 +

1

λ2α

(
6ξ + e

− 2√
6
φ
)2
]−1

. (4.10)

7We can compare with the parameters in Ref. [24] by α→ 1/κ1 and λ→ 2
√
λ. We note that in NMSSM,

the Higgs quartic coupling in the vacuum not only contains λ, but the electroweak gauge couplings, g and
g′.
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As a consequence, we can recover the pure R2 inflation for ξ2

α
� λ2 or the Higgs inflation

for ξ2

α
� λ2, in the following way,

Veff(φ) ≈


9

4α

(
1− e−2φ/

√
6
)2

, ξ2

α
� λ2

λ2

16ξ2

(
1− e−2φ/

√
6
)2

. ξ2

α
� λ2

(4.11)

We note that we used the approximations for the fields during inflation, for which Eqs. (4.9)
and (4.7) become

σ ' −
√

6
(

1− 2e
− 2√

6
φ
)
, (4.12)

h2 '
144 ξ

α

λ2 + 6 ξ
α

(6ξ + 1)
e
− 2√

6
φ
, (4.13)

These approximations are taken for φ� 1. Thus, it is justified that the contribution of the
Higgs field to the kinetic term for σ is negliglble for both R2-like inflation and Higgs-like
inflation.

During inflation (for φ � 1), the inflaton potential in Eq. (4.10) becomes very flat, so
the slow-roll inflation with a single field is realized. Then, the inflationary observables, ns
and r, are given in terms of the number of efoldings N and the parameters in the inflaton
potential [24], as follows,

ns = 1− 2

N
− 9

2N2
+

3

αN2

(−λ2 + 12λ2ξ + 72ξ2(1 + 6ξ)/α)

(λ2 + 6ξ(1 + 6ξ)/α)2
(4.14)

and

r = 16ε∗ =
12

N2
. (4.15)

The results agree with the Planck data within 1σ [1]. Moreover, from the inflation scale,

V0 '
9λ2

4α

λ2 + 36 ξ
2

α

= 3H2, (4.16)

we also impose the CMB normalization of the power spectrum to get the following constraint
on the model parameters,

λ2 + 36ξ2

α

λ2/α
= 2.25× 1010. (4.17)

In Fig. 2, eliminating one of the parameters among λ, α, and ξ, with Eq. (4.17) and taking
into account the perturbativity conditions (4.6), we show the allowed parameter space for the
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Figure 2: The region allowed by perturbativity on λ, ξ, and α. We used the CMB normal-
ization to express α(λ) in terms of the other parameters on the left (right) figure.

remaining parameters. From the results, we find the representative values for the parameters,
(λ, ξ, α) ∼ (0.5, 104, 1010) and (λ, ξ, α) ∼ (4× 10−5, 1, 102), which correspond to the R2-like
and Higgs-like inflations, respectively.

Comments on reheating in our scenario is in order. It is important to understand the
reheating dynamics for determining the reheating temperature and for the production of
dark matter, etc. There have been recent discussions on the reheating in the context of
pure Starobinsky inflation with supergravity [46] or without supergravity [21] or in the
non-supersymmetric Higgs-R2 inflation [20, 47]. So, it would be interesting to compare our
model with those in the literature and discuss the effects of extra scalars and supersymmetric
particles during reheating.

4.2 Decoupling of heavy scalars

In the previous subsection, we assumed that all the fields other than the radial components of
neutral Higgs fields and the scalaron are stabilized at the origin with sufficiently large masses.
In this subsection, in order to ensure the stability of the inflaton, we check the decoupling
of non-inflaton fields explicitly by analyzing the full scalar potential in the Einstein frame.
We use ẑi and σ as fundamental variables, and omit the hat in this subsection.

We first parametrize the MSSM Higgs fields in the following,

H0
u =

1√
2
h cosβ eiδ1 , H0

d =
1√
2
h sinβ eiδ2 (4.18)
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where h, β, δ1,2 are all real. Then, the scalar potential in Einstein frame can be rewritten as

VE =
VLS(

1− 1
3
|S|2 − 1

6
h2 − 1

3
|H+

u |2 − 1
3
|H−d |2 − 1

3
|C|2 − 1

6
σ2
)2 (4.19)

where the scalar potential in the sigma model frame is

VLS =

∣∣∣∣−1

4
λh2 sin 2βeiγ + λH+

u H
−
d + ρS2

∣∣∣∣2 + λ2|S|2
(

1

2
h2 +

∣∣H+
u

∣∣2 +
∣∣H−d ∣∣2)

+
1

4α

(
σ2 +

√
6σ +

3

4
χh2 sin 2β cos γ − 3

2
χ(H+

u H
−
d + c.c.)

)2

+
1

α
(ImT )2

+
3

2

χλ√
α

(SC̄ + c.c.)

(
1

2
h2 +

∣∣H+
u

∣∣2 + |H−d |
2

)
+

1

α
|C|2

{
3 + 2

√
6σ +

3

2
σ2 +

9

4
χ2

(
1

2
h2 +

∣∣H+
u

∣∣2 + |H−d |
2

)}
+
g2 + g′2

8

(
1

2
h2 cos 2β +

∣∣H+
u

∣∣2 − |H−d |2)2

+
g2

4
h2

{∣∣H+
u

∣∣2 sin2 β +
∣∣H−d ∣∣2 cos2 β +

(
1

2
H+
u H

−
d sin 2βe−iγ + c.c.

)}
, (4.20)

where γ ≡ δ1 + δ2. Note that the scalar potential depend on the phases in the particular
combination, γ = δ1 + δ2, while the other combination identified as the would-be neutral
Goldstone boson does not appear in the potential.

Then, we consider a minimization of the potential with respect to all fields other than σ
and h, which are treated as the background.8 From the expression (4.19) with Eq. (4.20),
one can find that a point,

H+
u = H−d = S = C = ImT = γ = 0, and β = π/4, (4.21)

satisfies a stationary condition. To see the stability of this extrema, we expand the fields
around the extrema as

β =
π

4
+ β̃, X = 0 + X̃, with X = {H+

u , H
−
d , S, C, ImT, γ} (4.22)

up to quadratic order. The tilde on the fields denote the fluctuations. In the following, we
discuss the stability of the fields individually.

Stabilization of β

At the quadratic order, β̃ decouples from the other sectors, with the corresponding La-
grangian of the following form,

− h2

2∆
(∂µβ̃)2 − 1

2
Vβββ̃

2, (4.23)

8We assume that σ and h are slowly varying so that their time dependence are negligible.
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where

Vββ =

[
−λ

2

4
h4 − 3χh2

4α

(
σ2 +

√
6σ +

3χh2

4

)
+
g′2 + g2

8
h4

]
2

∆2
, (4.24)

∆ ≡ 1− h2

6
− σ2

6
. (4.25)

Here, Vββ is a second derivative of the potential with respect to β.
Substituting the explicit form of the background (4.12) and (4.13), a canonically normal-

ized mass of β is given by

m2
β =

3λ
2

α
+ 9(g′2 + g2) ξ

α

λ2 + 36 ξ
2

α

= 4H2

(
1 +

3ξ

λ2
(g′2 + g2)

)
, (4.26)

where we used Eq. (4.16). Thus, since the β direction gets a mass larger than the Hubble
scale for ξ(g′2 + g2)/λ2 � 1, it is stabilized and decoupled during inflation.

Stabilization of charged Higgs

The quadratic Lagrangian for the charged Higgs sector is summarized as

− 1

∆
|∂µH̃+

u |2 −
1

∆
|∂µH̃−d |

2 −
(
H̃+∗
u , H̃−d

)( V++ V+−
V+− V−−

)(
H̃+
u

H̃−∗d

)
, (4.27)

where

V++ = V−− =

[
2V

3
∆ +

g2

8
h2

]
1

∆2
, (4.28)

V+− =

[
−λ

2

4
h2 − 3χ

4α

(
σ2 +

√
6σ +

3χh2

4

)
+
g2

8
h2

]
1

∆2
, (4.29)

and V is the effective scalar potential during inflation, which is given by9

V =

[
λ2

16
h4 +

1

4α

(
σ2 +

√
6σ +

3χh2

4

)2
]

1

∆2
. (4.30)

Taking into account a canonical normalization and diagonalizing the mass matrix, we find
that the mass eigenvalues are given by{

0,
3λ

2

α
+ 9g2 ξ

α

λ2 + 36 ξ
2

α

= 4H2

(
1 +

3g2ξ

λ2

)}
. (4.31)

The massless field is the would-be Goldstone boson eaten by the charged gauge boson. We
also find that the massive charged Higgs gets a mass of order the Hubble scale or beyond for
g2ξλ2 � 1, so it is stabilized and decoupled safely during inflation.

9This is exactly same as Eq. (4.5).
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Stabilization of γ and ImT

Next, we investigate the decoupling of γ and ImT (≡ τ), which also have a kinetic mixing in
the following quadratic Lagrangian,

−1

2
(∂µγ̃, ∂µτ̃)

(
a c
c b

)(
∂µγ̃
∂µτ̃

)
− 1

2
Vγγ γ̃

2 − 1

2
Vττ τ̃

2, (4.32)

where

a =
h2

4∆

[
1 +

h2

6∆

(
1− 3χ

2

)2
]
, b =

2

3∆2
, c = − h2

6∆2

(
1− 3χ

2

)
, (4.33)

Vγγ = −3χh2

8α

(
σ2 +

√
6σ +

3χh2

4

)
1

∆2
, Vττ =

2

α∆2
. (4.34)

Since ab − c2 = h2

6∆3 > 0 and a + b > 0, there is no ghost mode at the background. The
kinetic matrix of Eq. (4.32) can be canonically normalized by

(
γ̃
τ̃

)
=

1√
2


( √

b
a√

ab+c

)1/2

−
( √

b
a√

ab−c

)1/2

( √
a
b√

ab+c

)1/2 ( √
a
b√

ab−c

)1/2


(
γ̃′

τ̃ ′

)
≡M

(
γ̃′

τ̃ ′

)
. (4.35)

Note
√
ab− c > 0. Then, we obtain

−1

2
(∂µγ̃

′)
2 − 1

2
(∂µτ̃

′)
2 − 1

2
(γ̃′, τ̃ ′)MT

(
Vγγ 0
0 Vττ

)
M
(
γ̃′

τ̃ ′

)
. (4.36)

Then, after the diagonalization of the mass terms again, we obtain the mass eigenvalues as
follows:

m2
± =

1

2

Vγγb+ Vττa

ab− c2
± 1

2

[(
c

ab− c2

)2(
Vγγ

√
b

a
+ Vττ

√
a

b

)2

+
1

ab− c2

(
− Vγγ

√
b

a
+ Vττ

√
a

b

)2]1/2

. (4.37)

Substituting the background values (4.12) and (4.13) into the above expressions, we make a
further simplification of the results as

m2
+ =

3 + 18ξ

α
= 4(6ξ + 1)

(
1 +

36ξ2

αλ2

)
H2, (4.38)

m2
− =

3λ2

αλ2 + 36ξ2
= 4H2. (4.39)

We find that both of mass eigenvalues in the γ and ImT sector are larger than the Hubble
scale.
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Stabilization of S and C

Finally, we discuss the decoupling of the S-C sector containing a mass mixing. The corre-
sponding quadratic Lagrangian is given by

− 1

∆
|∂µS̃|2 −

1

∆
|∂µC̃|2 − VSS̄|S̃|2 −

1

2
VSS(S̃2 + c.c.)− VSC̄(S̃C̃∗ + c.c.)− VCC̄ |C̃|2, (4.40)

where

VSS̄ =

[
λ2

2
h2 +

2V

3
∆

]
1

∆2
, VSS = − λρ

2∆2
h2, VSC̄ =

3χλ

4
√
α∆2

h2, (4.41)

VCC̄ =

[
1

α

(
3 + 2

√
6σ +

3

2
σ2 +

9χ2h2

8

)
+

2V

3
∆

]
1

∆2
. (4.42)

Similarly to the previous cases, we introduce canonically normalized fields, S̃ ′ and C̃ ′,
and divide them into real and imaginary components, as follows,

1√
∆
S̃ = S̃ ′ =

1√
2

(ReS̃ ′ + iImS̃ ′),
1√
∆
C̃ = C̃ ′ =

1√
2

(ReC̃ ′ + iImC̃ ′). (4.43)

Then, in the above basis, we obtain the following mass matrices,

−1

2

(
ReS̃ ′,ReC̃ ′

)( VSS̄ + VSS VSC̄
VSC̄ VCC̄

)
∆

(
ReS̃ ′

ReC̃ ′

)
, (4.44)

and

−1

2

(
ImS̃ ′, ImC̃ ′

)( VSS̄ − VSS VSC̄
VSC̄ VCC̄

)
∆

(
ImS̃ ′

ImC̃ ′

)
. (4.45)

Therefore, after diagonalizing the mass matrices in Eqs. (4.44) and (4.45), we obtain the
mass eigenvalues, respectively, as

m2
1,2 =

∆

2

[
VSS̄ + VSS + VCC̄ ±

√
(VSS̄ + VSS − VCC̄)2 + 4V 2

SC̄

]
, (4.46)

and

m2
3,4 =

∆

2

[
VSS̄ − VSS + VCC̄ ±

√
(VSS̄ − VSS − VCC̄)2 + 4V 2

SC̄

]
. (4.47)

The above expressions are explicitly written down in the following,

m2
1,2 =

18ξ (6ξ(6ξ + 1) + αλ(λ− ρ))± 3f(λ, α, ξ, ρ)

2α (αλ2 + 36ξ2)
, (4.48)

m2
3,4 = m2

1,2 with ρ→ −ρ, (4.49)
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Figure 3: The squared mass eigenvalues for the lighter states of singlet scalars, S and C, as a
function of the singlet self-coupling ρ: m2

2 (yellow) and m2
4 (orange). We took the parameters

as (λ, ξ, α) = (0.5, 104, 1010) for R2-like inflation on left and (λ, ξ, α) = (4× 10−5, 1, 102) for
Higgs-like inflation on right.

Figure 4: The same as Fig. 3 but the quartic couplings in the frame function included. For
both the R2-like inflation on left and the Higgs-like inflation on right, we took (ζs, ζc) =
(3, 0.4), and the canonical inflaton field value as φ = 10.

where

f(λ, α, ξ, ρ) =
[
α2λ2(6λξ + λ− 6ξρ)2 + 72αλ(6ξ + 1)ξ2(6λξ + λ+ 6ξρ)

+ 1296(6ξ + 1)2ξ4
]1/2

. (4.50)

In Fig. 3, we depict the behavior of the mass eigenvalues (normalized by H2) in the S-C
sector. First, in two benchmark examples, one for R2-like inflation and the other for Higgs-
like inflation, we find that the heavier mass eigenvalues (m2

1 and m2
3) are always positive

definite. However, we find that one of the lighter mass eigenvalues, namely, m2
2 (yellow)

and m2
4 (orange), take negative values, independent of the parameter ρ, so there appears a

tachyonic instability destabilizing the inflationary trajectory.
The aforementioned tachyonic mass problem is well known in the Higgs and Starobinsky

inflation models in supergravity [26, 28, 36]. One of the natural solutions for the tachyonic
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mass problem is to add quartic couplings for S and C to the frame function, thus strongly
stabilizing the tachyonic direction above the Hubble scale [27,28,36]. Therefore, the required
higher order terms in the frame function are

∆Ω = −ζs|S|4 − ζc|C|4 − ζsc|S|2|C|2 (4.51)

with ζs, ζc and ζsc being real parameters. In particular, −ζc|C|4 corresponds to adding

−[ζcα
2|X0|−2(R̄R)2]D, (4.52)

to Eq. (2.1) in the dual picture. It was shown that the extra quartic couplings can be
originated from the renormalizable couplings of S or C to vector-like heavy multiplets [27].

The net effects of the extra quartic couplings in Eq. (4.51) are encoded in the modifi-
cations of VSS̄ and VCC̄ in Eqs. (4.41) and (4.42), respectively, and VSC̄ and its complex
conjugate, after the quadratic expansion of the potential with the extra couplings. As a
result, the corrections to the mass terms for S and C are explicitly given in the following,10

∆VSS̄ =
ζsλ

2

4

h4

∆2

(
1 +

σ√
6

)−2

, (4.53)

∆VCC̄ =
ζc
α

1

∆2

(
1 +

σ√
6

)−2(
σ2 +

√
6σ +

3χh2

4

)2

, (4.54)

∆VSC̄ =
ζscλ

2
√
α

1

∆2

(
1 +

σ√
6

)−2

h2

(
σ2 +

√
6σ +

3χh2

4

)
. (4.55)

As a result, we show in Fig. 4 that the effective squared masses for the lighter states
of S and C (m2

2 and m2
4) in the presence of the quartic terms with (ζs, ζc) = (3, 0.4) and

ζsc = 0. Thus, the otherwise tachyonic states of S and C can now take positive squared
masses during inflation. Furthermore, in Fig. 5, we also show the parameter space for ζs
and ζc satisfying m2 > H for ρ = 0.1 and ζsc = 0, and the canonical inflaton field value with
φ = 10. We note that a large value of ζsc is undesirable because it tends to lower two of the
eigenvalues (m2

2 in Eq. (4.46) and m2
4 in Eq. (4.47)). Therefore, we can conclude that it is

sufficient to introduce a nonzero ξs in the frame function for the stability of the S-C sector.
However, as will be discussed in the next section, a nonzero ζc is desirable for the SUSY
breakdown in the local vacuum with a vanishing small cosmological constant.

5 SUSY breaking from dual superfields

We consider some phenomenological implications of the model in the low energy after the
inflation. In the minimal setup for inflation in our model, the VEVs for sigma and Higgs
fields vanish in the vacuum, so SUSY would be unbroken in our model. Thus, we introduce
several extensions of the model for supersymmetry breaking and its transmission to the
NMSSM, and discuss the effects of the hidden sector fields on them.

10More general discussion on the mass corrections can be found in Refs. [48–50].
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Figure 5: Parameter space for ζs and ζc satisfying m2 > H. We took (λ, ξ, α) =
(0.5, 104, 1010) for R2-like inflation on left and (λ, ξ, α) = (4 × 10−5, 1, 102) on right for
Higgs-like inflation. In both figures, we fixed ρ = 0.1 and φ = 10.

5.1 Higher curvature terms for SUSY breaking

As a possible extension of our model without introducing an extra hidden sector for SUSY
breaking, we introduce extra curvature terms [51], as follows,

S = [|X0|2f(R/X0, R̄/X̄ 0̄)]D, (5.1)

where

f = −3 + α|R/X0|2 − γcα
(
R/X0 + c.c.

)
− ζcα2|R/X0|4. (5.2)

We note that the effects of ζc for the stability of inflation were discussed already introduced
in Eq. (4.51), although it is not necessary. But, for SUSY breaking, we need not only ζc
but also a linear term γc in R. In general, a function of the curvature multiplet R does
not produce higher order terms of the Ricci scalar Rk with k ≥ 3 in components, so the
Starobinsky structure with ∼ R2 is preserved.

In the dual description for higher curvature terms, we have the modified frame function
and the unmodified superpotential in the C and T sector as follows,

Ω = −3 + (T + T̄ ) + |C|2 − γc(C + C̄)− ζc|C|4, (5.3)

W =
1√
α
TC. (5.4)

Here, we performed the same duality transformation as discussed in Sec. 2.2.
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From the scalar potential for T and C superfields, we can identify the local Minkowski
minimum with SUSY breakdown [51] at

〈C〉 =
1

54ζc

(
1 +

√
1 + 324ζc

)
≡ c0, (5.5)

〈T 〉 = γcc0 + c2
0(1− 6ζcc

2
0) ≡ t0, (5.6)

subject to the conditions,

γc = −c0 +
2

c0

(
1 +

1

3
c2

0

)
(5.7)

and 9− 36ζcc
2
0 > 0. We note that the latter condition is satisfied for ζc < 0.48 while we need

ζc > 0.15 for c0 < 1. In this case, the linear coupling in the frame function is constrained to
1.7 < γc < 2.5.

As a result, we obtain nonzero F -terms for C and T superfields by

FC = −eK/2KCC̄(DCW )† − eK/2KCT̄ (DTW )†, (5.8)

F T = −eK/2KT T̄ (DTW )† − eK/2KTC̄(DCW )†, (5.9)

with

DCW =
1

9
√
α

(3 + c2
0)

(
246− 192c0 + 55c2

0 + 27c3
0

66− 5c2
0

)
, (5.10)

DTW =
1

9
√
α
c0

(
39− 14c2

0

66− 5c2
0

)
, (5.11)

and the gravitino mass is given by

m3/2 =
243

8

√
6

α
· c0(3 + c2

0)1/2

(66− 5c2
0)3/2

. (5.12)

Here, c0 is constrained by c0 <
√

66/5. Therefore, we find that the F-terms are of order
FC ∼ F T ∼ MPm3/2 and the gravitino mass is m3/2 ∼ MP/

√
α. Since perturbativity

constrains α . 1010, the gravitino mass is given by m3/2 & 1013 GeV, so a high-scale SUSY
breaking is favored.

5.2 O’Raifeartaigh model for SUSY breaking

Instead of higher curvature terms, we consider an alternative possibility for SUSY breaking
where another singlet chiral superfield Φ is introduced, with the following frame function
and the renormalizable superpotential of O’Raifeartaigh type, as follows,

Ω = −3− (T + T̄ ) + |C|2 + |Φ|2 − γ |Φ|4, (5.13)

W =
1√
α
TC + κΦ + gΦC2 + λΦ3 + κ′C + g′Φ2C + λ′C3 (5.14)
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where κ, g, λ, κ′, g′, λ′ are the extra parameters in the superpotential and γ is the quartic
coupling of Φ in the frame function. Here, we remark that the Z4R R-symmetry can ensure
the above form of the superpotential, with R-charge assignments, R[Φ] = R[C] = +2 and
R[T ] = 0. We note that the dual scalar superfield T is neutral under the Z4R R-symmetry,
because the corresponding frame function takes the form of T + T̄ .

First, for simplicity, as in the standard O’Raifeartaigh model, we set λ = κ′ = λ′ = g′ = 0.
Then, there is a minimum with C = T = 0, for which we obtain a nonzero F-term, FΦ = κ,
and FC = FT = 0. We note that Φ would be a pseudo-flat direction for γ = 0 in the
frame function in eq. (5.13), but it can be stabilized by loop corrections [52] or higher order
terms [30] in the Kähler potential. That is, for γ 6= 0, we obtain the squared mass for Φ as
m2

Φ = 4γκ2/M2
P . In this model, the coupling between Φ and C gives rise to a mass splitting

in the T and C sector, with mass eigenvalues for scalars and the fermion mass, respectively,
given by

m2
s,± =

M2
P

α
± 2gκ, (5.15)

mf =
MP√
α
. (5.16)

As a result, the SUSY breaking effects are controlled by κ, so it is possible to get a low-scale
SUSY breaking for an appropriate choice of κ in this case. We also note that the condition
for a vanishing cosmological constant in supergravity gives rise to the gravitino mass as
m3/2 = |FΦ|/(

√
3MP ) = κ/(

√
3MP ).

We also comment on the effects of the general couplings in the superpotential in eq. (5.14).
In this case, the local minimum is shifted to C = 0, T = −

√
ακ′, due to a nonzero κ′, and

the would-be pseudo-flat direction can be still stabilized at Φ = 0 due to the extra quartic
term for Φ in the frame function. Then, we obtain FC = FT = 0 and FΦ = κ, as in the case
with λ = κ′ = λ′ = g′ = 0. Taking the couplings in the superpotential in eq. (5.14) to be
real and including a nonzero quartic correction for Φ in the frame function, we find that the
squared mass matrices for (ReC,Re Φ) and (ImC, Im Φ) are given, respectively, by

M2
R =

(
M2

P

α
+ 2gκ 2g′κ

2g′κ 6λκ+m2
Φ

)
, M2

I =

(
M2

P

α
− 2gκ −2g′κ
−2g′κ −6λκ+m2

Φ

)
(5.17)

with

m2
Φ ≡

4γκ2

M2
P

. (5.18)

Here, we note that for g′ = λ = 0 and γ = 0, the former result in eq. (5.15) is recovered,
namely, the C field is stabilized at C = 0, and the Φ field becomes a flat direction. But, for
general extra couplings, we obtain the mass eigenvalues for (ReC,Re Φ) and (ImC, Im Φ),
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respectively, as

m2
s1,s2 =

1

2

[
M2

P

α
+ 2(g + 3λ)κ+m2

Φ ±
√(M2

P

α
+ 2(g − 3λ)κ−m2

Φ

)2

+ 16g′2κ2

]
,(5.19)

m2
s3,s4 =

1

2

[
M2

P

α
− 2(g + 3λ)κ+m2

Φ ±
√(M2

P

α
− 2(g − 3λ)κ−m2

Φ

)2

+ 16g′2κ2

]
.(5.20)

Therefore, as far as the following conditions are satisfied,

M2
P

α
> 2gκ, m2

Φ > 6λκ, (5.21)

and (
M2

P

α
− 2gκ

)(
m2

Φ − 6λκ
)
> 4g′2κ2, (5.22)

m2
s3,s4 are positive definite, and m2

s1,s2 are also necessarily positive. In particular, the second
condition in eq. (5.21) corresponds to

γ

λ
>

3M2
P

2κ
. (5.23)

In this case, there appear a stable local minimum for SUSY breaking, which is still controlled
by κ, as far as the above stability condition for κ and the dimensionless parameters, γ and
λ, is satisfied.

5.3 Comments on soft masses in the visible sector

In the presence of a non-minimal coupling to the Higgs fields in NMSSM and the dual
superfields from R2-supergravity, there are extra contributions to the µ term proportional
to the gravitino mass [27], in addition to the tree level contribution in NMSSM, as follows,

µ = λ〈S̃〉+
3

2
χm3/2 −

1

2
χKĪF̄

Ī . (5.24)

Here, we have rescaled the superfields in the NMSSM Higgs sector in Einstein frame by
H̃u,d = eK/6Hu,d and S̃ = eK/6S, etc. The second term is due to the non-minimal coupling
χ as found in Jordan frame supergravity in Ref. [27] and the third term is a new Giudice-
Masiero contribution [53], coming from the contact interactions between the dual superfields
and the Higgs superfields in the Kähler potential, K ⊃ 3

2
χZHuHd with Z = eK0/3 where K0

is the part of the Kähler potential containing the SUSY breaking fields, such as C, T or Φ.
Thus, not only the VEV of the NMSSM singlet S but also the gravitino mass and the SUSY
breaking scale determine the µ term at a naturally small value. For a large χ, the µ term is
typically much larger than the gravitino mass [27].
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Next we remark on the transmission of SUSY breaking to the visible sector that is appli-
cable to both mechanisms for SUSY breaking via higher curvature terms or an O’Raifeartaigh
model. In our construction for Jordan frame supergravity, the visible sector and the hidden
sector composed of T,C and Φ are sequestered in the frame function [54], so soft masses
in NMSSM vanish at tree level. However, anomaly mediation is always present [54, 55], so
the soft masses in the visible sector are at least loop-suppressed as compared to gravitino
mass. In order to cure the problem with tachyonic slepton masses, we can introduce gravity
mediation by adding the contact terms between the visible sector and the hidden sector in
the frame function,

Ωcontact = CᾱβX
†Xz†ᾱzβ + c.c (5.25)

where X = C,Φ, and zα are NMSSM superfields, and Cᾱβ are the coupling parameters.
However, for Cᾱβ 6= δᾱβ, gravity mediation would cause dangerous flavor problems [56].
Instead, we can consider alternative mediation mechanisms such as gauge mediation, U(1)′

mediation, etc.

6 Conclusions

We proposed a new supergravity construction for the Higgs-R2 inflation as a UV completion
of the Higgs inflation. A nontrivial Higgs potential during inflation requires the NMSSM
extension in the visible sector, whereas the supersymmetric R2 term gives rise to dual chi-
ral superfields, T and C, in the dual-scalar supergravity. We introduced equivalent frames
(namely, Jordan frame, Einstein frame and sigma model frame) for the supergravity La-
grangian in the superconformal framework, among which the sigma model frame makes the
conformal symmetry and the validity of unitarity up to the Planck scale more manifest.

We have shown that the slow-roll inflation can be realized from the mixture of the SM
Higgs and the real part of T (scalaron or sigma field), and ensured the stability of the slow-
roll inflation from the decoupling conditions for extra scalar fields in the model. Then, we
found that not only all the MSSM scalars but also the directions of the NMSSM singlet
scalar S and the spectator dual scalar C are decoupled during inflation, at the expense of
introducing the extra quartic coupling for S in the frame function.

As low-energy remnants of the Higgs-R2 supergravity, we have suggested the possibilities
for SUSY breaking in the vacuum, in the presence of either modified higher curvature terms
or an extra singlet chiral superfield of O’Raifeartaigh type. We found that the non-minimal
coupling to the Higgs fields and the couplings between the dual superfields and the Higgs
fields in the frame function give rise to naturally small contributions to the µ term after SUSY
is broken. We also pointed out that soft SUSY breaking terms in the visible sector vanish at
tree level due to the sequestered form of the frame function in Jordan frame supergravity, but
they can be generated by anomaly mediation, subject to generically flavor-violating gravity
mediation as well as other mediation mechanisms.
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