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Abstract. We derive novel, fast, and parameter-robust preconditioned iterative methods for
steady and time-dependent Navier–Stokes control problems. Our approach may be applied to time-
dependent problems which are discretized using backward Euler or Crank–Nicolson, and is also a
valuable candidate for Stokes control problems discretized using Crank–Nicolson. The key ingredients
of the solver are a saddle-point type approximation for the linear systems, an inner iteration for the
(1, 1)-block accelerated by a preconditioner for convection–diffusion control, and an approximation
to the Schur complement based on a potent commutator argument applied to an appropriate block
matrix. A range of numerical experiments validate the effectiveness of our new approach.
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1. Introduction. Optimal control problems with PDE constraints have received
increasing research interest of late, due to their applicability to scientific and indus-
trial problems, and also due to the difficulties arising in their numerical solution (see
[17, 40] for excellent overviews of the field). An example of a highly challenging
problem attracting significant attention is the (distributed) control of incompressible
viscous fluid flow problems. Here, the constraints may be the (non-linear) incom-
pressible Navier–Stokes equations or, in the limiting case of viscous flow, the (linear)
incompressible Stokes equations. The control of the Navier–Stokes equations is of
particular interest: due to the non-linearity involved, to find a solution linearizations
of the constrained problem need to be repeatedly solved until a sufficient reduction
on the non-linear residual is achieved [15, 16, 34]. This has motivated researchers to
devise solvers for this type of problem which exhibit robustness with the respect to
all the parameters involved; see [16] for a robust multigrid method applied to Newton
iteration for instationary Navier–Stokes control, for instance. Despite the recent de-
velopment of parameter-robust preconditioners for the control of the (stationary and
instationary time-periodic) Stokes equations [1, 21, 36, 42], to our knowledge no such
preconditioner has proved to be completely robust when applied to the Navier–Stokes
control problem considered here. We also point out [14] for a preconditioned itera-
tive solver for Stokes and Navier–Stokes boundary control problems, and [35] for an
efficient and robust preconditioning technique for in-domain Navier–Stokes control.

A popular preconditioner for the Oseen linearization of the forward stationary
Navier–Stokes equations combines saddle-point theory with a commutator argument
for approximating the Schur complement [20]. This type of preconditioner shows only
a mild dependence on the viscosity parameter, and is robust with respect to the dis-
cretization parameter. In [31] the combination of saddle-point theory with a commu-
tator argument has also been adapted to the control of the stationary Navier–Stokes
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equations; we note that a commutator argument of this type was first introduced
in [30] for the control of the stationary Stokes equations. In this work, we utilize
a commutator argument for a block matrix in conjunction with saddle-point theory
in order to derive robust preconditioners for the optimal control of the incompress-
ible Navier–Stokes equations, in both the stationary and instationary settings. For
instationary problems our approach leads to potent preconditioners when either the
backward Euler or Crank–Nicolson scheme is used in the time variable, and also leads
to a preconditioner for the instationary Stokes control problem using Crank–Nicolson.

This article is structured as follows. In Section 2, we define the problems that
we examine, that is the stationary and instationary Navier–Stokes control problems
along with instationary Stokes control; we then present the linearization adopted in
this work, and outline the linear systems arising upon discretization of the forward
problem. In Section 3, we introduce the saddle-point theory used to devise optimal
preconditioners, giving as an example a preconditioner for the forward stationary
Navier–Stokes equation in combination with the commutator argument presented in
[20]; the latter will then be generalized when multiple differential operators are in-
volved in the system of equations. In Section 4, we derive the first-order optimality
conditions of the control problems and their discretization. In Section 5, we present
our suggested preconditioners, and in particular the commutator argument applied
to the Schur complements arising from the control problems. Then, in Section 6 we
provide numerical results that show the robustness and efficiency of our approach.

2. Problem Formulation. In this work we derive fast and robust precondi-
tioned iterative methods for the distributed control of incompressible viscous fluid
flow; in this case, the physics is described by the (stationary or instationary) incom-
pressible Navier–Stokes equations. The corresponding distributed control problem is
defined as a minimization of a least-squares cost functional subject to the PDEs.

Specifically, given a spatial domain Ω ⊂ Rd, d ∈ {2, 3}, the stationary Navier–
Stokes control problem we consider is

min
~v,~u

JS(~v, ~u) =
1

2

∫
Ω

|~v(x)− ~vd(x)|2 dx+
β

2

∫
Ω

|~u(x)|2 dx (2.1)

subject to 
−ν∇2~v + ~v · ∇~v +∇p = ~u+ ~f(x) in Ω,

−∇ · ~v(x) = 0 in Ω,

~v(x) = ~g(x) on ∂Ω,

(2.2)

where the state variables ~v and p denote velocity and pressure respectively, ~vd is the
desired state (velocity), and ~u is the control variable. Further, β > 0 is a regularization

parameter, and ν > 0 is the viscosity of the fluid. The functions ~f and ~g are known.
Similarly, the control of the instationary Navier–Stokes equations is defined as

min
~v,~u

JI(~v, ~u) =
1

2

∫ tf

0

∫
Ω

|~v(x, t)− ~vd(x, t)|2 dx dt+
β

2

∫ tf

0

∫
Ω

|~u(x, t)|2 dx dt, (2.3)

given also a final time tf > 0, subject to
∂~v
∂t − ν∇

2~v + ~v · ∇~v +∇p = ~u+ ~f(x, t) in Ω× (0, tf ),

−∇ · ~v(x, t) = 0 in Ω× (0, tf ),

~v(x, t) = ~g(x, t) on ∂Ω× (0, tf ),

~v(x, 0) = ~v0(x) in Ω,

(2.4)
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using the same notation as above. As for the stationary case, the functions ~f and ~g
are known; the initial condition ~v0 is also given. In the following, we assume that ~v0

is solenoidal, i.e. ∇ · ~v0 = 0, adapting our strategy to the general case when possible.
The constraints (2.2) and (2.4) are a system of non-linear (stationary or insta-

tionary) PDEs. In order to obtain a solution of the corresponding control problem,
we make use of the Oseen linearization of the non-linear term ~v · ∇~v, as in [34].

If the non-linear term ~v ·∇~v is dropped in (2.2) or (2.4), with ν = 1, we obtain the
corresponding distributed Stokes control problem. Many parameter-robust precondi-
tioners for the stationary Stokes control problem have been derived in the literature
[36, 42]; however, less progress has been made towards the parameter-robust solution
of instationary Stokes control problems, except in the time-periodic setting [1, 21].
Below, we derive a preconditioner that will also result in a robust solver for the gen-
eral formulation of the instationary distributed Stokes control problem, defined as the
minimization of the functional (2.3) subject to the instationary Stokes equations.

2.1. Non-linear iteration and discretization matrices. To introduce the
linearization adopted for the control case as well as the discretization matrices, we
consider the stationary Navier–Stokes equations:{

−ν∇2~v + ~v · ∇~v +∇p = ~u+ ~f(x) in Ω,
−∇ · ~v(x) = 0 in Ω,

(2.5)

with ~v = ~g on ∂Ω. First, we introduce the weak formulation of (2.5) as follows.
Let V := {~v ∈ H1(Ω)d | ~v = ~g on ∂Ω}, V0 := {~v ∈ H1(Ω)d | ~v = ~0 on ∂Ω}, and
Q := L2(Ω), with H1(Ω)d the Sobolev space of square-integrable functions in Rd with
square-integrable weak derivatives; then, the weak formulation reads as:

Find ~v ∈ V and p ∈ Q such that{
ν(∇~v,∇~w) + (~v · ∇~v, ~w)− (p,∇ · ~w) = (~u, ~w) + (~f, ~w) for all ~w ∈ V0,

−(q,∇ · ~v ) = 0 for all q ∈ Q, (2.6)

where (·, ·) is the L2-inner product on Ω. The main issue in (2.6) is how to deal with
the non-linear term (~v · ∇~v, ~w). A common strategy employs the Picard iteration,
which is described as follows. Given the approximations ~v (k) ∈ V and p(k) ∈ Q to ~v
and p respectively, we consider the non-linear residuals:{

~R (k) = (~u, ~w) + (~f, ~w)− ν(∇~v (k),∇~w)− (~v (k) · ∇~v (k), ~w) + (p(k),∇ · ~w),
r(k) = (q,∇ · ~v (k)),

(2.7)
for any ~w ∈ V0 and q ∈ Q. Then, the Picard iteration is defined as [9, p. 345–346]:

~v (k+1) = ~v (k) + ~δv
(k)
, p(k+1) = p(k) + δp(k), (2.8)

where ~δv
(k)

and δp(k) are the solutions of{
ν(∇ ~δv

(k)
,∇~w) + (~v (k) · ∇ ~δv

(k)
, ~w)− (δp(k),∇ · ~w) = ~R (k),

−(q,∇ · ~δv
(k)

) = r(k),
(2.9)

for any ~w ∈ V0 and q ∈ Q. Equations (2.9) are the Oseen equations for the forward
stationary Navier–Stokes equations. These are posed on the continous level, so in
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order to find a solution to (2.5) we now discretize them. Before doing so, we note that
(2.9) represents an incompressible convection–diffusion equation, with wind vector
defined by ~v (k), and it is clear that, for ν � 1, the problem is convection-dominated.
This requires us to make use of a stabilization procedure.

Letting {~φi}nv
i=1 and {ψi}

np

i=1 be an inf–sup stable finite element basis functions

for the Navier–Stokes equations, we seek approximations ~v(x) ≈
∑nv

i=1 v
(k)
i
~φi, ~u(x) ≈∑nv

i=1 ui~φi, p(x) ≈
∑np

i=1 p
(k)
i ψi. Denoting the vectors v(k) = {v(k)

i }
nv
i=1, u = {ui}nv

i=1,

p(k) = {p(k)
i }

np

i=1, a discretized version of (2.7) is:{
R(k) = Mu + f − L(k) v (k) −B>p(k),
r(k) = −B v (k),

where we set L(k) = νK + N(k) + W(k), with

K = {kij}nv
i,j=1, kij=

∫
Ω

∇~φi : ∇~φj , N(k) = {n(k)
ij }

nv
i,j=1, n

(k)
ij =

∫
Ω

(~v (k) · ∇~φj) · ~φi,

M = {mij}nv
i,j=1, mij=

∫
Ω

~φi · ~φj , B = {bij}j=1,...,nv

i=1,...,np
, bij=−

∫
Ω

ψi∇ · ~φj ,

f = {fi}nv
i=1, fi=

∫
Ω

~f · ~φi,

and the matrix W(k) denotes a possible stabilization matrix for the convection oper-
ator. Then, the Picard iterate (2.8) may be written in discrete form as

v (k+1) = v (k) + δv(k), p(k+1) = p(k) + δp(k),

with δv(k) and δp(k) solutions of{
L(k) δv(k) +B> δp(k) = R(k),

B δv(k) = r(k).
(2.10)

The matrix K is generally referred to as a (vector-)stiffness matrix, and the matrix
M is referred to as a (vector-)mass matrix ; both the matrices are symmetric positive
definite (s.p.d.). The matrix N(k) is referred to as a (vector-)convection matrix, and is
skew-symmetric (i.e. N(k)+(N(k))> = 0) if the incompressibility constraints∇·~v (k) =
0 are solved exactly; finally, the matrix B is the (negative) divergence matrix.

Regarding the stabilization procedure applied, we note that the matrix W(k) rep-
resents a differential operator that is not physical, and is introduced only to enhance
coercivity (that is, increase the positivity of the real part of the eigenvalues) of the
discretization, thereby allowing it to be stable. For the reasons discussed in [22, 33], in
the following we employ the Local Projection Stabilization (LPS) approach described
in [2, 3, 6]. We point out [23], where the authors derive the order of convergence of
one- and two-level LPS applied to the Oseen problem. For other possible stabilizations
applied to the Oseen problem, see [7, 10, 11, 19, 39].

In the LPS formulation, the stabilization matrix W(k) is defined as

W(k) = {w(k)
ij }

nv
i,j=1, w

(k)
ij = δ(k)

∫
Ω

κh(~v (k) · ∇~φi) · κh(~v (k) · ∇~φj) . (2.11)

Here, δ(k) > 0 denotes a stabilization parameter, and κh = Id + πh is the fluctua-
tion operator, with Id the identity operator and πh an L2-orthogonal (discontinuous)
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projection operator defined on patches of Ω, where by a patch we mean a union of
elements of our finite element discretization. In our implementation, the domain is
divided into patches consisting of two elements in each dimension. Further, we define
the stabilization parameter δ(k) and the local projection πh as in [22, Sec. 2.1].

3. Saddle-Point Systems. In this section we introduce saddle-point theory and
the commutator argument derived in [20] for the forward stationary Navier–Stokes
equations. These will be the main ingredients for devising our preconditioners.

Given an invertible system of the form

A =

[
Φ Ψ1

Ψ2 −Θ

]
(3.1)

with Φ invertible, a good candidate for a preconditioner is the block triangular matrix:

P =

[
Φ 0
Ψ2 −S

]
, (3.2)

where S denote the (negative) Schur complement S = Θ + Ψ2Φ−1Ψ1. Indeed, if S
is also invertible and denoting the set of eigenvalues of a matrix by λ(·), we have
λ(P−1A) = {1}, see [18, 24]. Since the preconditioner is not symmetric, we need
to employ a Krylov subspace method for non-symmetric matrices, such as GMRES
[38]. Clearly, we do not want to apply the inverse of P as defined in (3.2), as the
computational cost would be comparable to that of applying the inverse of A. In
particular, applying S−1 would be problematic, as even when Φ and Θ are sparse S
is generally dense. For this reason, we consider a suitable approximation:

P̂ =

[
Φ̂ 0

Ψ2 −Ŝ

]
(3.3)

of P, or, more precisely, a cheap application of the effect of P̂−1 on a generic vector.
For instance, an efficient preconditioner for the matrix arising from (2.10) is given

by (3.3), with Φ̂ being the approximation of L(k) using a multigrid routine, and Ŝ
the so called pressure convection–diffusion preconditioner [9, p. 365–370] (first derived
in [20]) for S. The latter is derived by mean of a commutator argument as follows.
Consider the convection–diffusion operator D = −ν∇2+~v (k)·∇ defined on the velocity
space as in (2.9), and suppose the analogous operator Dp = (−ν∇2 + ~v (k) · ∇)p on
the pressure space is well defined. Suppose also that the commutator

E = D∇−∇Dp (3.4)

is small in some sense. Then, discretizing (3.4) with stable finite elements leads to

(M−1L(k))M−1B> −M−1B>(M−1
p L(k)

p ) ≈ 0,

where L
(k)
p = νKp+N

(k)
p +W

(k)
p is the discretization of Dp in the finite element basis

for the pressure, with Mp = [(ψi, ψj)], Kp = [(∇ψi,∇ψj)], N (k)
p =

[
(~v (k) · ∇ψj , ψi)

]
,

and W
(k)
p =

[
δ(k)(κh(~v (k) · ∇ψi), κh(~v (k) · ∇ψj))

]
the (scalar) mass, stiffness, con-

vection, and stabilization matrices, respectively, in the pressure finite element space.
As above, κh = Id + πh, and δ(k) as well as πh are defined as in (2.11). Pre- and

post-multiplying by B(L(k))−1M and (L
(k)
p )−1Mp, the previous expression then gives

BM−1B>(L(k)
p )−1Mp ≈ B(L(k))−1B>.
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We still have no practical preconditioner due to the matrix BM−1B>; however, it
can be proved that Kp ≈ BM−1B> for problems with enclosed flow [9, p. 176–177].
Finally, a good approximation of the Schur complement S = B(L(k))−1B> is

Ŝ = Kp(L
(k)
p )−1Mp ≈ S.

Note that in our derivation we have also included the stabilization matrices on the
velocity and the pressure space, which was not done in [20].

In the following we present a generalization of the pressure convection–diffusion
preconditioner, applying the commutator argument in (3.4) to the case where the
differential operators involved are to be considered vectorial differential operators, i.e.

En = D∇n −∇nDp, (3.5)

where

D =

 D
1,1 . . . D1,n

...
. . .

...
Dn,1 . . . Dn,n

 , Dp =

 D
1,1
p . . . D1,n

p
...

. . .
...

Dn,1p . . . Dn,np

 .
Here Di,j is a differential operator on the velocity space with Di,j

p the corresponding
differential operator on the pressure space, for i, j = 1, . . . , n, and ∇n = In⊗∇, with
In ∈ Rn×n the identity matrix for some n ∈ N. As above, we suppose that each
Di,j
p , i, j = 1, . . . , n, is well defined, and that the commutator En is small in some

sense. Again, after discretizing with stable finite elements we can rewrite(
M−1D

)
M−1 ~B > −M−1 ~B >

(
M−1

p Dp

)
≈ 0, (3.6)

where M = In ⊗M, Mp = In ⊗Mp, ~B = In ⊗B, and

D =

 D1,1 . . . D1,n

...
. . .

...
Dn,1 . . . Dn,n

 , Dp =

 D1,1
p . . . D1,n

p
...

. . .
...

Dn,1
p . . . Dn,n

p

 ,
with Di,j and Di,j

p the corresponding discretizations of Di,j and Di,jp , respectively.

Pre-multiplying (3.6) by ~BD−1M, and post-multiplying by D−1
p Mp, gives that

~BM−1 ~B >D−1
p Mp ≈ ~BD−1 ~B >.

Noting that ~BM−1 ~B > = In ⊗ (BM−1B>) and recalling that Kp ≈ BM−1B>, we
derive the following approximation:

KpD−1
p Mp ≈ ~BD−1 ~B >, (3.7)

where Kp = In ⊗Kp. In Section 5.2 we employ the approach outlined here to devise
preconditioners for discrete optimality conditions of Navier–Stokes control problems.

4. First-Order Optimality Conditions and Time-Stepping. We now de-
scribe the strategy used for obtaining an approximate solution of (2.1)–(2.2) and

of (2.3)–(2.4). We introduce adjoint variables (or Lagrange multipliers) ~ζ and µ
and make use of an optimize-then-discretize scheme, stating the first-order optimal-
ity conditions. We then discretize the conditions so obtained, for both the stationary
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and instationary Navier–Stokes control problems, and derive the corresponding Oseen
linearized problems. For the instationary problem (2.3)–(2.4), we consider employ-
ing both backward Euler and Crank–Nicolson schemes in time. Both time-stepping
schemes are A–stable, hence avoiding any constraints on the time step used. While
only first-order accurate, backward Euler is also L–stable, and the technique presented
below is easily generalized when the initial condition ~v0 is not solenoidal. On the other
hand, Crank–Nicolson is not L–stable, but is second-order accurate. However, if ~v0 is
not solenoidal, pre-processing is required in order to write the Oseen iteration.

4.1. Stationary Navier–Stokes control. Introducing the adjoint velocity ~ζ
and the adjoint pressure µ, we may consider the Lagrangian associated with (2.1)–
(2.2) as in [34], and write the Karush–Kuhn–Tucker (KKT) conditions as:

−ν∇2~v + ~v · ∇~v +∇p = 1
β
~ζ + ~f in Ω

−∇ · ~v(x) = 0 in Ω
~v(x) = ~g(x) on ∂Ω

 state

equations

−ν∇2~ζ − ~v · ∇~ζ + (∇~v )>~ζ +∇µ = ~vd − ~v in Ω

−∇ · ~ζ(x) = 0 in Ω
~ζ(x) = ~0 on ∂Ω

 adjoint

equations

(4.1)

where we have substituted the gradient equation β~u− ~ζ = 0 into the state equation.
Problem (4.1) is a coupled system of non-linear, stationary PDEs. In order to

find a numerical solution of (4.1), we need to solve a sequence of linearizations of the
system. As in [34], we solve at each step the Oseen approximation as follows. Letting

~v (k) ∈ V, p(k) ∈ Q, ~ζ (k) ∈ V0, µ
(k) ∈ Q be the current approximations to ~v, p, ~ζ, and

µ, respectively, with V, V0, Q defined as in Section 2.1, the Oseen iterate is defined as

~v (k+1) = ~v (k) + ~δv
(k)
, p(k+1) = p(k) + δp(k),

~ζ (k+1) = ~ζ (k) + ~δζ
(k)
, µ(k+1) = µ(k) + δµ(k),

(4.2)

with ~δv
(k)

, δp(k), ~δζ
(k)

, δµ(k) the solutions of the following Oseen problem:
ν(∇ ~δv

(k)
,∇~w) + (~v (k) · ∇ ~δv

(k)
, ~w)− (δp(k),∇ · ~w)− 1

β ( ~δζ
(k)
, ~w) = ~R

(k)
1 ,

−(q,∇ · ~δv
(k)

) = r
(k)
1 ,

( ~δv
(k)
, ~w) + ν(∇ ~δζ

(k)
,∇~w)− (~v (k) · ∇ ~δζ

(k)
, ~w)− (δµ(k),∇ · ~w) = ~R

(k)
2 ,

−(q,∇ · ~δζ
(k)

) = r
(k)
2 ,

(4.3)

for any ~w ∈ V0 and q ∈ Q. The residuals ~R
(k)
1 , r

(k)
1 , ~R

(k)
2 , r

(k)
2 are given by

~R
(k)
1 = (~f, ~w)−ν(∇~v (k),∇~w)−(~v (k) · ∇~v (k), ~w)+(p(k),∇ · ~w)+ 1

β (~ζ (k), ~w),

r
(k)
1 = (q,∇ · ~v (k)),

~R
(k)
2 = (~vd, ~w)− (~v (k), ~w)− ν(∇~ζ (k),∇~w) + (~v (k) · ∇~ζ (k), ~w)

−((∇~v (k) )>~ζ (k), ~w) + (µ(k),∇ · ~w),

r
(k)
2 = (q,∇ · ~ζ (k)).

The Oseen problem (4.3) is posed on the continuous level, so we need to discretize

it in order to obtain a numerical solution of (2.1)–(2.2). Let v(k) = {v(k)
i }

nv
i=1, p(k) =
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{p(k)
i }

np

i=1, ζ
(k) = {ζ(k)

i }
nv
i=1, µ

(k) = {µ(k)
i }

np

i=1 be the vectors containing the numerical

solutions at the k-th iteration for ~v (k), p(k), ~ζ (k), and µ(k), respectively, that is,

~v (k) ≈
∑nv

i=1 v
(k)
i
~φi, p

(k) ≈
∑np

i=1 p
(k)
i ψi, ~ζ

(k) ≈
∑nv

i=1 ζ
(k)
i
~φi, µ

(k) ≈
∑np

i=1 µ
(k)
i ψi.

Then, the (discrete) Oseen iterate is defined as

v (k+1) = v (k) + δv (k), p(k+1) = p(k) + δp(k),
ζ (k+1) = ζ (k) + δζ (k), µ(k+1) = µ(k) + δµ(k),

where 
L(k) δv (k) +B> δp(k) −Mβ δζ

(k) = R
(k)
1 ,

Bδv (k) = r
(k)
1 ,

M δv (k) + L
(k)
adj δζ

(k) +B>δµ(k) = R
(k)
2 ,

Bδζ (k) = r
(k)
2 ,

(4.4)

with Mβ = 1
βM, L

(k)
adj = νK−N(k) + W(k), and the discrete residuals given by

R
(k)
1 = f − L(k) v (k) −B> p(k) + Mβ ζ

(k),

r
(k)
1 = −Bv (k),

R
(k)
2 = M vd −M v (k) − L

(k)
adj ζ

(k) −B>µ(k) − ω(k),

r
(k)
2 = −Bζ (k).

Here vd is the vector corresponding to the discretized desired state ~vd, and ω(k) =
{
(
(∇~v (k))>~ζ (k), ~φi

)
}nv
i=1. In our tests, the initial guesses v(1) and ζ(1) for the non-

linear process are the state and adjoint velocity solutions of the KKT conditions for
the corresponding stationary Stokes control problem, with discretization given by

(4.4) with L(k) = L
(k)
adj = K, and residuals R

(k)
1 = f , R

(k)
2 = M vd, r

(k)
1 = r

(k)
2 = 0.

Note that the right-hand side may also take into account boundary conditions (as
done in our implementation).

In matrix form, we rewrite system (4.4) as

[
Φ

(k)
S Ψ>S

ΨS −ΘS

]
︸ ︷︷ ︸

A(k)
S


δv(k)

δζ(k)

δµ(k)

δp(k)

 =


R

(k)
2

R
(k)
1

r
(k)
1

r
(k)
2

 , (4.5)

where

Φ
(k)
S =

[
M L

(k)
adj

L(k) −Mβ

]
, ΨS =

[
B 0
0 B

]
, ΘS =

[
0 0
0 0

]
. (4.6)

The matrix A(k)
S is of saddle-point type; however, since the incompressibility con-

straints ∇ · ~v = 0 are not solved exactly, Φ
(k)
S is not symmetric in general.

4.2. Instationary Navier–Stokes control. We now state the KKT conditions
for the instationary problem (2.3)–(2.4). As before, introducing the adjoint variables
~ζ and µ, we consider the Lagrangian associated to (2.3)–(2.4) as in [40, p. 318]. Then,
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by deriving the KKT conditions and substituting the gradient equation β~u − ~ζ = 0
into the state equation, the solution of (2.3)–(2.4) satisfies:

∂~v
∂t − ν∇

2~v + ~v · ∇~v +∇p = 1
β
~ζ + ~f in Ω× (0, tf ),

−∇ · ~v(x, t) = 0 in Ω× (0, tf ),

~v(x, t) = ~g(x, t) on ∂Ω× (0, tf ),

~v(x, 0) = ~v0(x) in Ω,

−∂~ζ∂t − ν∇
2~ζ − ~v · ∇~ζ + (∇~v )>~ζ +∇µ = ~vd − ~v in Ω× (0, tf ),

−∇ · ~ζ(x, t) = 0 in Ω× (0, tf ),
~ζ(x, t) = ~0 on ∂Ω× (0, tf ),
~ζ(x, tf ) = ~0 in Ω.

(4.7)

Problem (4.7) is a coupled system of non-linear, instationary PDEs. In order to
find a numerical solution of (4.7), as for the stationary case we take an Oseen lineariza-

tion. Let ~v (k) ∈ V̄ , p(k) ∈ Q̄, ~ζ (k) ∈ V̄0, µ
(k) ∈ Q̄ be the current approximation to

~v, p, ~ζ, µ, with V̄ := {~v ∈ L2(0, tf ;H1(Ω)d) | ∂~v∂t (·, t) ∈ L2(0, tf ;H−1(Ω)d) for a.e. t ∈
(0, tf ), ~v = ~g on ∂Ω, ~v(x, 0) = ~v0(x)}, Q̄ = L2(0, tf ;L2(Ω)), and V̄0 the corre-
sponding space for the adjoint velocity (see [40, p. 315–321] and [17, p. 88–95], for
instance, for the case d = 2). Then, the Oseen iterate is of the form (4.2), with

~δv
(k)
, δp(k), ~δζ

(k)
, δµ(k) the solution of:

∂
∂t (

~δv
(k)
, ~w)+ν(∇ ~δv

(k)
,∇~w)+(~v(k) ·∇ ~δv

(k)
, ~w)−(δp(k),∇· ~w)− 1

β ( ~δζ
(k)
, ~w)= ~R

(k)
1 ,

−∇ · ~δv
(k)

= r
(k)
1 ,

− ∂
∂t (

~δζ
(k)
, ~w)+ν(∇ ~δζ

(k)
, ~w)−(~v(k) ·∇ ~δζ

(k)
, ~w)−(δµ(k),∇· ~w)+( ~δv

(k)
, ~w)= ~R

(k)
2 ,

−∇ · ~δζ
(k)

= r
(k)
2 ,

(4.8)

for any ~w ∈ V0 and q ∈ Q. The residuals ~R
(k)
1 , r

(k)
1 , ~R

(k)
2 , r

(k)
2 are given by

~R
(k)
1 = (~f, ~w)− ∂

∂t (~v
(k), ~w)− ν(∇~v (k),∇~w)− (~v (k) · ∇~v (k), ~w)

+(p(k),∇ · ~w) + 1
β (~ζ (k), ~w),

r
(k)
1 = (q,∇ · ~v (k)),
~R

(k)
2 = (~vd, ~w)− (~v (k), ~w) + ∂

∂t (
~ζ (k), ~w) + ν(∇~ζ (k),∇~w)

+(~v (k) · ∇~ζ (k), ~w)− ((∇~v (k))>~ζ (k), ~w) + (µ(k),∇ · ~w),

r
(k)
2 = (q,∇ · ~ζ (k)).

(4.9)

Note that with this notation ~δv
(k)

(x, 0) = ~δζ
(k)

(x, tf ) = ~0 in Ω, and ~δv
(k)

(x, t) =

~δζ
(k)

(x, t) = ~0 on ∂Ω× (0, tf ).

Equations (4.8) are the Oseen equations for instationary Navier–Stokes con-
trol, involving a coupled system of instationary convection–diffusion equations and
divergence-free conditions. Due to this structure, we present two discretized version
of (4.8), one making use of backward Euler time-stepping, the other employing the
Crank–Nicolson scheme. Further, in order to solve (4.8) we need to choose an initial
guess v(1) and ζ(1) for the state and the adjoint velocities and then iteratively solve
a sequence of linearized problems. In our tests, v(1) and ζ(1) are again the (velocity)
solutions of the KKT conditions for the corresponding Stokes control problem, for
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which the optimality conditions are:{
∂~v
∂t −∇

2~v +∇p = 1
β
~ζ + ~f in Ω× (0, tf ),

−∂~ζ∂t −∇
2~ζ +∇µ = ~vd − ~v in Ω× (0, tf ),

along with the incompressibility constraints together with initial, final, and boundary
conditions on the state and adjoint velocities as in (4.7).

We now derive the linear systems resulting from the time-stepping schemes. For
the sake of exposition, we introduce the matrices In,1, In,2, In,3, In,4 ∈ Rn×n, with

In,1 = diag(1, . . . , 1, 0),

In,2 = diag(0, 1, . . . , 1),

In,4 = In + In,3,

In,3 =


0 1

. . .
. . .

0 1
0

 .
Here, diag denotes a diagonal matrix with the diagonal entries stated.

4.2.1. Backward Euler for instationary Navier–Stokes control. In this
section we introduce the backward Euler scheme for approximating (4.8)–(4.9), and
then derive the resulting linear system. We discretize the interval (0, tf ) into nt
subintervals of length τ =

tf
nt

, denoting the grid points as tn = nτ , for n = 0, . . . , nt.
We approximate all the functions on this time grid, excluding the initial and final time
points for the state and adjoint pressure, respectively. Specifically, our approximations

of the solutions at the k-th step of the non-linear solver are given by v
(k)
n ≈ ~v(x, tn),

ζ
(k)
n ≈ ~ζ(x, tn), for n = 0, . . . , nt, and p

(k)
n+1 ≈ p(x, tn+1), µ

(k)
n ≈ µ(x, tn), for n =

0, . . . , nt − 1, for all x ∈ Ω. We also introduce the following finite element matrices:

L
(k)
n = τ(νK + N

(k)
n + W

(k)
n ) + M, T

(k)
n = τ(νK−N

(k)
n + W

(k)
n ) + M,

M̄BE = τM, M̄BE
β = τ

βM, B̄ = τB,

where W
(k)
n is the stabilization matrix related to ~v

(k)
n , and N

(k)
n = [(~v

(k)
n · ∇~φj , ~φi)],

with ~v
(k)
n the approximation to ~v at time tn, at the k-th Oseen iteration. Note that

the superscripts of L
(k)
0 , T

(k)
0 are superfluous, as the initial condition on ~v is fixed;

however we keep them for consistency. We then write the discrete Oseen iterate as

v
(k+1)
n = v

(k)
n + δv

(k)
n , ζ

(k+1)
n = ζ

(k)
n + δζ

(k)
n , n = 0, . . . , nt,

p
(k+1)
n+1 = p

(k)
n+1 + δp

(k)
n+1, µ

(k+1)
n = µ

(k)
n + δµ

(k)
n , n = 0, . . . , nt − 1,

with δv
(k)
n , δζ

(k)
n , δp

(k)
n , δµ

(k)
n the solutions of the following discretization of (4.8):

M̄Eδv(k)
n + T(k)

n δζ(k)
n −M δζ

(k)
n+1 + B̄>δµ(k)

n = R
(k)
2,n,

−M δv(k)
n + L

(k)
n+1δv

(k)
n+1 + B̄>δp

(k)
n+1 − M̄E

βδζ
(k)
n+1 = R

(k)
1,n,

B δv
(k)
n+1 = r

(k)
1,n+1,

B δζ
(k)
n = r

(k)
2,n,

(4.10)

for n = 0, ..., nt− 1, with δv
(k)
0 = 0, δζ

(k)
nt = 0. The discretized residuals are given by

R
(k)
1,n = τfn+1 + Mv

(k)
n − L

(k)
n+1v

(k)
n+1 − B̄>p

(k)
n+1 + M̄E

βζ
(k)
n+1,

r
(k)
1,n+1 = −B v(k)

n+1,

R
(k)
2,n = M̄Evnd − M̄Ev

(k)
n −T

(k)
n ζ

(k)
n + Mζ

(k)
n+1 − B̄>µ

(k)
n − τω(k)

n ,

r
(k)
2,n = −B ζ(k)

n ,

(4.11)
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where fn+1 = {(~f(x, tn+1), ~φi)}nv
i=1, and ω

(k)
n = {

(
(∇~v (k)

n )>~ζ
(k)
n , ~φi

)
}nv
i=1, for n =

0, . . . , nt − 1. Note that the non-linear residuals R
(k)
1,0 , R

(k)
1,nt−1, R

(k)
2,0 , R

(k)
2,nt−1 in

(4.11) take into account the initial and the final conditions on ~v and ~ζ.

Even if the incompressibility constraints B δv
(k)
n+1 = 0 are solved exactly, for

n = 0, . . . , nt − 1, at each Oseen iteration the system described in (4.10) is not

symmetric, due the conditions δv
(k)
0 = 0 and δζ

(k)
nt = 0. However it can be made

symmetric in the Stokes control setting, using the following projections onto the space
of divergence-free functions (solenoidal projection), as done in [16], for instance. Given

a vector ~b, its solenoidal projection is defined as b, with{
L

(k)
0 b+ B̄>p̄ = L~b

~b,
B b = 0,

(4.12)

with L~b = τ(νK + N~b + W~b ) + M, N~b and W~b being the vector-convection and

stabilization matrices related to ~b. As the vector 0 is clearly divergence-free, the

condition δv
(k)
0 = 0 is equivalent to{

L
(k)
0 δv

(k)
0 + B̄>δp

(k)
0 = 0,

B δv
(k)
0 = 0.

(4.13)

Analogously, the condition δζ
(k)
nt = 0 is equivalent to{
T

(k)
nt δζ

(k)
nt + B̄>δµ

(k)
nt = 0,

B δζ
(k)
nt = 0.

By imposing the previous projections and multiplying the incompressibility con-
ditions by τ , the linear system of (4.10) can be rewritten as

[
Φ

(k)
BE (ΨBE)

>

ΨBE −ΘBE

]
︸ ︷︷ ︸

A(k)
BE


δv(k)

δζ(k)

δµ(k)

δp(k)

 =


b

(k)
1

b
(k)
2

b
(k)
3

b
(k)
4

 , (4.14)

where the right-hand side accounts for the non-linear residual. Further,

Φ
(k)
BE =

[
MBE LBE,(k)

1

LBE,(k)
2 −MBE

β

]
, ΨBE =

[
BBE 0

0 BBE

]
, ΘBE

[
0 0
0 0

]
, (4.15)

with MBE = Int+1,1 ⊗ M̄BE, M̄BE
β = Int+1,2 ⊗ M̄BE

β , BBE = Int+1 ⊗ B̄, and

LBE,(k)
1 =


T

(k)
0 −M

. . .
. . .

T
(k)
nt−1 −M

T
(k)
nt

 , LBE,(k)
2 =


L

(k)
0

−M L
(k)
1

. . .
. . .

−M L
(k)
nt

 .
Note that, in the case of the incompressibility conditions not being solved exactly,

LBE,(k)
1 6= (LBE,(k)

2 )>; however, the system is symmetric if they are solved exactly.
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We note that we can relax the incompressibility assumptions on ~v0 and modify
the discretization of the Oseen problem (4.8)–(4.9) as follows. Suppose that ~v0 is not
solenoidal. Then, for the first backward Euler step in (4.10) we can rewrite (4.13) as

{
L

(k)
0 δv

(k)
0 + B̄>δp

(k)
0 = R

(k)
1,−1,

B δv
(k)
0 = r

(k)
1,0 ,

where, given v̄0 as an appropriate discretization of ~v0,

{
R

(k)
1,−1 = L0 v̄0 − L

(k)
0 v

(k)
0 ,

r
(k)
1,0 = −B v(k)

0 .

Here, L0 = τ(νK + N0 + W0) + M, N0 and W0 are the vector-convection and
stabilization matrices related to v̄0, and the rest of the non-linear residuals are defined

as in (4.11). Note that in this case we cannot substitute Mv
(k)
0 = Mv̄0 into the non-

linear residuals as v̄0 is not incompressible; we note also that for k = 0 (meaning

v
(0)
0 = 0) and with ν = 1 the above step gives the solenoidal projection (4.12) for the

instationary Stokes control problem, with L0 = L
(0)
0 = τK + M.

4.2.2. Crank–Nicolson for instationary Navier–Stokes control. In this
section we present the linear system arising upon employing Crank–Nicolson in time
when solving (4.8)–(4.9). Again discretizing the interval (0, tf ) into nt subintervals

of length τ =
tf
nt

, we approximate ~v and ~ζ at the time points tn = nτ , n = 0, . . . , nt,
and use a staggered grid for p and µ, as in [4]. Specifically, our approximations of the

solutions at the k-th non-linear iteration are given by v
(k)
n ≈ ~v(x, tn), ζ

(k)
n ≈ ~ζ(x, tn),

for n = 0, . . . , nt, and p
(k)

n+ 1
2

≈ p(x, tn+ 1
2τ), µ

(k)

n+ 1
2

≈ µ(x, tn+ 1
2τ), for n = 0, . . . , nt−1,

for all x ∈ Ω. Let us introduce the following finite element matrices:

L
±,(k)
n = τ

2 (νK + N
(k)
n + W

(k)
n )±M, T

±,(k)
n = τ

2 (νK−N
(k)
n + W

(k)
n )±M,

M̄CN = τ
2 M, M̄CN

β = τ
2βM,

with W
(k)
n , N

(k)
n defined as for backward Euler. Then the discrete Oseen iterate is

v
(k+1)
n = v

(k)
n + δv

(k)
n , ζ

(k+1)
n = ζ

(k)
n + δζ

(k)
n , n = 0, . . . , nt,

p
(k+1)

n+ 1
2

= p
(k)

n+ 1
2

+ δp
(k)

n+ 1
2

, µ
(k+1)

n+ 1
2

= µ
(k)

n+ 1
2

+ δµ
(k)

n+ 1
2

, n = 0, . . . , nt − 1,

with δv
(k)
n , δζ

(k)
n , δp

(k)

n+ 1
2

, δµ
(k)

n+ 1
2

solutions of the following discretized version of (4.8):


M̄CN(δv(k)

n + δv
(k)
n+1) + T+,(k)

n δζ(k)
n + T

−,(k)
n+1 δζ

(k)
n+1 + B̄>δµ

(k)

n+ 1
2

= R
(k)
2,n,

L−,(k)
n δv(k)

n + L
+,(k)
n+1 δv

(k)
n+1 + B̄>δp

(k)

n+ 1
2

− M̄CN
β (δζ(k)

n + δζ
(k)
n+1) = R

(k)
1,n,

Bδv
(k)
n+1 = r

(k)
1,n+1,

Bδζ
(k)
n = r

(k)
2,n,
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for n = 0, ..., nt− 1, with δv
(k)
0 = 0, δζ

(k)
nt = 0. The discretized residuals are given by

R
(k)
1,n = τ

2 (fn + fn+1)− L
−,(k)
n v

(k)
n − L

+,(k)
n+1 v

(k)
n+1 − B̄>p

(k)

n+ 1
2

+M̄CN
β (ζ

(k)
n + ζ

(k)
n+1),

r
(k)
1,n+1 = −B v(k)

n+1,

R
(k)
2,n = M̄CN(vnd + vn+1

d )− M̄CN(v
(k)
n + v

(k)
n+1)−T

+,(k)
n ζ

(k)
n

−T
−,(k)
n+1 ζ

(k)
n+1 − B̄>µ

(k)

n+ 1
2

− τ
2 (ω

(k)
n + ω

(k)
n+1),

r
(k)
2,n = −B ζ(k)

n ,

(4.16)

for n = 0, ..., nt−1, with fn and ω
(k)
n defined as for backward Euler, for n = 0, . . . , nt.

Note also that here the non-linear residualsR
(k)
1,0 , R

(k)
1,nt−1, R

(k)
2,0 , andR

(k)
2,nt−1 in (4.16)

take into account the initial and final conditions on ~v and ~ζ.
In matrix form, after multipling the incompressibility constraints by τ , we write

M̄CN L̄CN,(k)
1 (B̄CN

2 )> 0

L̄CN,(k)
2 −M̄CN

β 0 (B̄CN
1 )>

B̄CN
1 0 0 0
0 B̄CN

2 0 0



δ̄v

(k)

δ̄ζ
(k)

δ̄µ
(k)

δ̄p
(k)

 =


b̄

(k)
1

b̄
(k)
2

b̄
(k)
3

b̄
(k)
4

 , (4.17)

where δ̄v
(k)

, δ̄ζ
(k)

, δ̄µ
(k)

, δ̄p
(k)

are the k-th Oseen iterates, and the right-hand side
accounts for the non-linear residual. The blocks in the previous matrix are given by

L̄CN,(k)
1 =


T

+,(k)
0 T

−,(k)
1

. . .
. . .

T
+,(k)
nt−1 T

−,(k)
nt

M

, L̄CN,(k)
2 =


M

L
−,(k)
0 L

+,(k)
1

. . .
. . .

L
−,(k)
nt−1 L

+,(k)
nt

,

B̄CN
1 =

 0 B̄
. . .

B̄

, B̄CN
2 =

 B̄
. . .

B̄ 0

,
and M̄CN = (Int+1,1 + Int+1,3)⊗ M̄CN, M̄CN

β = (Int+1,2 + I>nt+1,3)⊗ M̄CN
β .

The system (4.17) is clearly not symmetric; however, we work as in [22] in order
to transform the linear system above and make it as close to symmetric as possible.
In fact, eliminating the initial and final-time conditions on ~v and ~ζ, we can rewrite

M̃CN L̃ CN,(k)
1 (B̃ CN)> 0

L̃ CN,(k)
2 −M̃CN

β 0 (B̃ CN)>

B̃ CN 0 0 0

0 B̃ CN 0 0



δv(k)

δζ(k)

δµ(k)

δp(k)

 =


b

(k)
1

b
(k)
2

b
(k)
3

b
(k)
4

 ,
with δv(k), δζ(k), δµ(k), δp(k) as well as the right-hand side modified accordingly.
The matrices M̃CN = I>nt,4 ⊗ M̄CN, M̃CN

β = Int,4 ⊗ M̄CN
β , B̃ CN = Int

⊗ B̄, and

L̃ CN,(k)
1 =


T

+,(k)
0 T

−,(k)
1

. . .
. . .

T
+,(k)
nt−2 T

−,(k)
nt−1

T
+,(k)
nt−1

, L̃ CN,(k)
2 =


L

+,(k)
1

L
−,(k)
1 L

+,(k)
2

. . .
. . .

L
−,(k)
nt−1 L

+,(k)
nt

 .
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Using blkdiag to define a block diagonal matrix, we apply the linear transformation

T = blkdiag(T1, T2, T3, T4),

where T1 = Int,4⊗Inv
, T2 = T>1 = I>nt,4⊗Inv

, T3 = I>nt,4⊗Inp
, T4 = T>3 = Int,4⊗Inp

,
we may equivalently consider the following linear system:

[
Φ

(k)
CN (ΨCN)

>

ΨCN −ΘCN

]
︸ ︷︷ ︸

A(k)
CN


δv(k)

δζ(k)

δµ(k)

δp(k)

 = T


b

(k)
1

b
(k)
2

b
(k)
3

b
(k)
4

 . (4.18)

Here the matrix blocks are given by

Φ
(k)
CN =

[
MCN LCN,(k)

1

LCN,(k)
2 −MCN

β

]
, ΨCN =

[
BCN

1 0
0 BCN

2

]
, ΘCN =

[
0 0
0 0

]
, (4.19)

with

MCN = T1M̃CN =
(
Int,4 I

>
nt,4

)
⊗ M̄, BCN

1 = T3B̃ CN = I>nt,4 ⊗ B̄,

MCN
β = T2M̃CN

β =
(
I>nt,4 Int,4

)
⊗ M̄β , BCN

2 = T4B̃ CN = Int,4 ⊗ B̄,

LCN,(k)
1 = T1L̃ CN,(k)

1 , LCN,(k)
2 = T2L̃ CN,(k)

2 . (4.20)

System (4.18) is still not symmetric in general, as LCN,(k)
1 6= (LCN,(k)

2 )> due to the
mismatch of the indices for the convection terms, however it is now symmetric when
the above strategy is applied to the instationary Stokes control problem, due to the
absence of the convection terms. We observe that the transformations Ti, i = 1, . . . , 4,
as well as their inverse operations are easy and cheap to apply, as they require only a
sequence of block updates. Therefore, in particular, we may rewrite

MCN = T1MCN
D T>1 , MCN

β = T2MCN
D,βT

>
2 , (4.21)

where

MCN
D = Int

⊗ M̄, MCN
D,β = Int

⊗ M̄β . (4.22)

We may therefore work efficiently with MCN and MCN
β , using T1, T2, MCN

D , MCN
D,β .

Further, since both MCN
D and MCN

D,β are s.p.d., the same holds for MCN and MCN
β .

We point out that it is not straightforward to generalize the Crank–Nicolson
discretization to the case where ~v0 is not incompressible. In fact, in this case we must
also solve an appropriate solenoidal projection; however, the projection cannot be
solved along with the other equations, as our approach requires the elimination of the
initial and final conditions on ~v and ~ζ. Therefore, before applying our solver we must
solve the projection to a stricter tolerance than that required for the control problem.

5. Preconditioning Approach. As the discretizations (4.5), (4.14), and (4.18)
of the optimality conditions for the problems under examination lead to matrices of
the structure (3.1), we now devise preconditioners for each system by making use of
saddle-point theory. We employ a preconditioner of the form (3.2): this requires us
to (approximately) apply the inverse of the corresponding (1, 1)-block of each matrix
analysed; we accelerate this process by again employing an approximation of the form
(3.2). In the following, subscripts refer to the corresponding matrix we are considering;
to simplify the notation, we drop the superscript referring to the non-linear iterate k.
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5.1. Approximation of the (1, 1)-block. We now describe suitable approxi-
mations of the inverses of the (1, 1)-blocks for the systems (4.5), (4.14), and (4.18).
As noted after the discretization of the optimality conditions, each of these matrices
is not symmetric if we solve the incompressibility constraints inexactly (for a Crank–
Nicolson discretization the block is not symmetric even if those constraints are solved
exactly). We thus use a fixed number of GMRES iterations to approximate the (1, 1)-
block, accelerated with the preconditioners described below, as opposed to Uzawa
iteration for example (see [8]) which may be symmetrized. However, we note that, for
Stokes control problems, the (1, 1)-block of each system is symmetric, allowing the
use of a fixed number of Uzawa iterations coupled with the preconditioners below.

5.1.1. Stationary Navier–Stokes control. Consider the (1, 1)-block Φ
(k)
S de-

fined in (4.6). This matrix can be considered as the discretization of the optimality
conditions for a stationary convection–diffusion control problem. Using saddle-point
theory, a suitable preconditioner is given by

PΦ,S =

[
M 0

L(k) −SΦ,S

]
,

with SΦ,S = Mβ + L(k)M−1L
(k)
adj the corresponding Schur complement. As described

in [33], a potent preconditioner for PΦ,S (optimal in the symmetric case) is given by

P̂Φ,S =

[
Mc 0

L(k) −ŜΦ,S

]
.

Here, Mc represents a fixed number of steps of the Chebyshev semi-iterative method

[12, 13, 41], and ŜΦ,S =
(
L(k) +M√

β

)
M−1

(
L

(k)
adj +M√

β

)
with M√

β = 1√
β
M and the

blocks L(k)+M√
β and L

(k)
adj+M√

β approximated by the action of a multigrid routine,
for example. It is worth noting that, if the incompressibility constraints are solved

exactly, Φ
(k)
S is symmetric and the approximation ŜΦ,S of the Schur complement SΦ,S

is optimal; in fact, it can be proved that λ(Ŝ−1
Φ,S SΦ,S) ∈

[
1
2 , 1
]

[33].

5.1.2. Instationary Navier–Stokes control with backward Euler. We now

derive a preconditioner for the matrix Φ
(k)
BE defined in (4.15). As in the stationary

case, the matrix can be considered as the discretization of the optimality conditions
for an instationary convection–diffusion control problem with backward Euler in time.
As the matrix MBE is not invertible, we seek a preconditioner of the form:

P̃Φ,BE =

[
M̃BE 0

LBE,(k)
2 −S̃Φ,BE

]
,

with M̃BE an invertible approximation of MBE, and the perturbed Schur comple-

ment S̃Φ,BE = MBE
β + LBE,(k)

2

(
M̃BE

)−1LBE,(k)
1 . In [32], the authors found for the

heat control problem that a suitable approximation of MBE is given by M̃BE =
blkdiag(M̄BE, . . . , M̄BE, εM̄BE), with ε � 1. Following [32], we can derive that a

good approximation for S̃Φ,BE is ŜΦ,BE =
(
LBE,(k)

2 +MBE√
β

)(
M̃BE

)−1(LBE,(k)
1 +MBE√

β

)
,

with MBE√
β

= τ√
β
blkdiag(0,M . . . ,

√
εM). As above, we do not apply the inverse of

the blocks LBE,(k)
2 +MBE√

β
and LBE,(k)

1 +MBE√
β

exactly, but rather we apply a block-

forward and block-backward substitution respectively, with each block on the diagonal
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approximated by the action of multigrid process, for instance. Thus, a suitable ap-
proximation of the matrix P̃Φ,BE is given by

P̂Φ,BE =

[
M̂ BE

c 0

LBE,(k)
2 −ŜΦ,BE

]
, M̂ BE

c = τ blkdiag(Mc, . . . ,Mc, εMc).

5.1.3. Instationary Navier–Stokes control with Crank–Nicolson. We fo-

cus now on devising a preconditioner for the linear system Φ
(k)
CN defined in (4.19),

arising from a Crank–Nicolson discretization. Similarly to the backward Euler case,
this matrix can be considered as the discretization of the optimality conditions for
the control of the instationary convection–diffusion equation discretized using Crank–
Nicolson in time. Again, we seek to use the block triangular matrix

PΦ,CN =

[
MCN 0

LCN,(k)
2 −SΦ,CN

]
as a preconditioner, where SΦ,CN =MCN

β +LCN,(k)
2 (MCN)−1LCN,(k)

1 . In order to find
an approximation of PΦ,CN, we adapt the strategy used in [22] as follows.

From (4.21)–(4.22), MCN can be written as MCN = T1MCN
D T>1 , with MCN

D a
block diagonal matrix with each diagonal block a multiple of M. Therefore, a good
approximation of MCN is given by M̂CN = T1M̂CN

D T>1 , with M̂CN
D = τ

2 Int
⊗Mc.

To derive an approximation of SΦ,CN, we use (4.21) together with (4.20) to rewrite

SΦ,CN = T2

[
MCN

D,β +
(
L̃CN,(k)

2

)(
MCN

)−1(
T1L̃CN,(k)

1 T−1
1

)]︸ ︷︷ ︸
Sint

Φ,CN

T1, (5.1)

recalling that T1 = T>2 . We first seek an approximation Ŝ int
Φ,CN for Sint

Φ,CN of the form

Ŝ int
Φ,CN =

(
L̃CN,(k)

2 + M̂2

)(
MCN

)−1(
T1L̃CN,(k)

1 T−1
1 + M̂1

)
,

such that

M̂2

(
MCN

)−1M̂1 =
(
M̂2T

−1
2

)(
MCN

D

)−1(
T−1

1 M̂1

)
=MCN

D,β .

The previous expression is clearly satisfied with the choice M̂2T
−1
2 = T−1

1 M̂1 =
τ

2
√
β
Int
⊗M. Then, our approximation of S int

Φ,CN is given by

Ŝ int
Φ,CN =

(
L̃CN,(k)

2 + M̂
)(
MCN

)−1(
T1L̃CN,(k)

1 T−1
1 + M̂>)

=
(
L̃CN,(k)

2 + M̂
)
T−1

2

(
MCN

D

)−1(L̃CN,(k)
1 T−1

1 + T−1
1 M̂>),

with M̂ = τ
2
√
β
I>nt,4 ⊗M. Finally, substituting Ŝ int

Φ,CN into (5.1) and observing that

M̂ and T1 commute, we obtain that our approximation of SΦ,CN is given by

ŜΦ,CN = T2

(
L̃CN,(k)

2 + M̂
)
T−1

2

(
MCN

D

)−1(L̃CN,(k)
1 + M̂>).

As for backward Euler, we approximate the blocks L̃CN,(k)
2 + M̂ and L̃CN,(k)

1 + M̂>

using a block-forward and block-backward substitution, with the action of a multigrid
process used to apply the inverse of each block diagonal entry inexactly.

It is not possible in general to prove bounds on eigenvalues for this preconditioner,
derived for instationary Navier–Stokes control with Crank–Nicolson in time. However,
for instationary Stokes control, the preconditioner derived here reduces to that derived
in [22] for the heat control problem, which was proved to be optimal, and such that
the spectrum of the preconditioned Schur complement is contained in [ 1

2 , 1].
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5.2. Approximation of Schur complement. We now derive efficient approx-
imations for each Schur complement of the systems (4.5), (4.14), and (4.18). Since the
(1, 2)- and the (2, 1)-block of these systems can be considered as a vector-divergence
matrix, we make use of the commutator argument presented in Section 3.

5.2.1. Stationary Navier–Stokes control. Let us consider the Schur comple-

ment SA,S = ΨS(Φ
(k)
S )−1Ψ>S of the system (4.5), with Φ

(k)
S and ΨS defined as in (4.6).

We apply the commutator argument to En as defined in (3.5) with n = 2, with the
differential operator on the velocity space defined as

D =

[
Id −ν∇2 − ~v (k) · ∇

−ν∇2 + ~v (k) · ∇ − 1
β Id

]
,

and Dp the corresponding differential operator on the pressure space; we recall from
Section 2.1 that Id represents the identity operator. Employing stable finite elements
and working as in Section 3, we obtain the following expression for (3.7):

ŜA,S =

[
Kp 0
0 Kp

] [
Mp L

(k)
adj,p

L
(k)
p −Mβ,p

]−1 [
Mp 0
0 Mp

]
≈ SA,S,

where we set L
(k)
p = νKp+N

(k)
p +W

(k)
p , L

(k)
adj,p = νKp−N (k)

p +W
(k)
p , and Mβ,p = 1

βMp.

5.2.2. Instationary Navier–Stokes control with backward Euler. We now

derive an approximation to the Schur complement SA,BE = ΨBE(Φ
(k)
BE)−1Ψ>BE of

(4.14). As above, we apply the commutator argument (3.5); however, we do not
consider the instationary Navier–Stokes equation as part of the differential operator

D, but rather employ an operator that “mimics” the blocks of Φ
(k)
BE defined in (4.15).

With this aim, we consider (3.5) with n = 2(nt + 1) and the differential operator:

D =

[
D1,1

BE D1,2
BE

D2,1
BE D2,2

BE

]
,

where D1,1
BE = τInt+1,1 ⊗ Id, D2,2

BE = − τ
β Int+1,2 ⊗ Id, and

D1,2
BE =


D0, adj −Id

. . .
. . .

Dnt−1, adj −Id
Dnt, adj

, D2,1
BE =


D0

−Id D1

. . .
. . .

−Id Dnt

,

with Di = τ(−ν∇2 +~v
(k)
i ·∇)+Id and Di, adj = τ(−ν∇2−~v (k)

i ·∇)+Id. As above, we
defineDp as the corresponding differential operator on the pressure space. Discretizing

(3.5) and observing that SA,BE = τ2 ~B D−1 ~B >, with D the discretization of the

differential operator D and ~B = I2(nt+1)⊗B, we obtain the following approximation:

ŜA,BE = τ2KBE
p

[
D1,1
p, BE D1,2

p, BE

D2,1
p, BE D2,2

p, BE

]−1

MBE
p ≈ SA,BE.
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Here, we set KBE
p = I2(nt+1) ⊗Kp, MBE

p = I2(nt+1) ⊗Mp, D1,1
p, BE = τInt+1,1 ⊗Mp,

D2,2
p, BE = − τ

β Int+1,2 ⊗Mp, and

D1,2
p, BE =


T

(k)
0,p −Mp

. . .
. . .

T
(k)
nt−1,p −Mp

T
(k)
nt,p

, D2,1
p, BE =


L

(k)
0,p

−Mp L
(k)
1,p

. . .
. . .

−Mp L
(k)
nt,p

 ,

with L
(k)
i,p = τ(νKp +N

(k)
i,p +W

(k)
i,p ) +Mp and T

(k)
i,p = τ(νKp −N (k)

i,p +W
(k)
i,p ) +Mp.

5.2.3. Instationary Navier–Stokes control with Crank–Nicolson. As for
the Schur complement arising from the backward Euler discretization, we apply the
commutator argument (3.5), employing a differential operator D that mimics the
blocks of a suitable matrix. Before presenting D, we note that the Schur complement

SA,CN = ΨCN(Φ
(k)
CN)−1Ψ>CN can be rewritten as

SA,CN =

[
T3 0
0 T4

][
B̃ CN 0

0 B̃ CN

][
M̃CN L̃ CN,(k)

1

L̃ CN,(k)
2 −M̃CN

β

]−1 [
B̃ CN 0

0 B̃ CN

]>
.

We now consider (3.5) with n = 2nt and the differential operator

D =

[
D1,1

CN D1,2
CN

D2,1
CN D2,2

CN

]
,

where D1,1
CN = τ

2 I
>
nt,4 ⊗ Id, D2,2

CN = − τ
2β Int,4 ⊗ Id, and

D1,2
CN =


D+

0, adj D
−
1, adj

. . .
. . .

D+
nt−2, adj D

−
nt−1, adj

D+
nt−1, adj

, D2,1
CN =


D+

1

D−1 D
+
2

. . .
. . .

D−nt−1 D+
nt

,

with D±i = τ
2 (−ν∇2 +~v

(k)
i ·∇)± Id and D±i, adj = τ

2 (−ν∇2−~v (k)
i ·∇)± Id. Again, we

define Dp as the corresponding differential operator on the pressure space. Proceeding
as above, we then derive the following approximation:

ŜA,CN = τ2

[
T3 0
0 T4

]
KCN
p

[
D1,1
p, CN D1,2

p, CN

D2,1
p, CN D2,2

p, CN

]−1

MCN
p ≈ SA,CN.

Here, we set KCN
p = I2nt

⊗Kp, MCN
p = I2nt

⊗Mp, D1,1
p, CN = τ

2 I
>
nt,4 ⊗Mp, D2,2

p, CN =
− τ

2β Int,4 ⊗Mp, and

D1,2
p, CN =


T

+,(k)
0,p T

−,(k)
1,p

. . .
. . .

T
+,(k)
nt−2,p T

−,(k)
nt−1,p

T
+,(k)
nt−1,p

, D2,1
p, CN =


L

+,(k)
1,p

L
−,(k)
1,p L

+,(k)
2,p

. . .
. . .

L
−,(k)
nt−1,p L

+,(k)
nt,p

,
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with

L
±,(k)
i,p = τ

2 (νKp +N
(k)
i,p +W

(k)
i,p )±Mp, T

±,(k)
i,p = τ

2 (νKp −N (k)
i,p +W

(k)
i,p )±Mp.

Remark 1. To summarize, aside from matrix–vector products, the main com-
putational work for our Crank–Nicolson preconditioner involves nt applications of
Chebyshev semi-iteration to M and 2nt multigrid processes per Uzawa iteration, in
addition to 2nt applications of Chebyshev semi-iteration to Mp and 2nt multigrid
processes for Kp to approximate the Schur complement. This is a similar computa-
tional workload as for the backward Euler preconditioner, as the latter requires nt + 1
application of Chebyshev semi-iteration and 2(nt + 1) applications of a multigrid pro-
cess per Uzawa iteration, and 2(nt + 1) approximations of Mp and Kp for the Schur
complement approximation.

6. Numerical Results. We now demonstrate the effectiveness of our precondi-
tioners by presenting numerical results. In all our tests, d = 2 (that is, x = (x1, x2)),
and Ω = (−1, 1)2. All tests are run on MATLAB R2018b, using a 1.70GHz Intel
quad-core i5 processor and 8 GB RAM on an Ubuntu 18.04.1 LTS operating system.

As our preconditioners are non-symmetric and require an inner solve for the (1, 1)-
block, for the outer solver we apply flexible GMRES [37] restarted every 10 iterations,
up to a tolerance 10−6 on the relative residual (unless otherwise stated). Our imple-
mentation is based on the flexible GMRES routine in the TT-Toolbox [29]. To apply
the approximate inverse of the (1, 1)-block, we take 5 iterations of the GMRES routine
implemented in MATLAB. We apply 20 steps of Chebyshev semi-iteration to mass
matrices (on the velocity or pressure space); we apply 4 V-cycles of the AGMG routine
[25, 26, 27, 28] for other matrices constructed on the velocity space, while employ-
ing 2 V-cycles (with 2 symmetric Gauss–Seidel iterations for pre-/post-smoothing) of
the HSL MI20 solver [5] for stiffness matrices on the pressure space within our Schur
complement approximation.

Regarding the non-linear iteration for solving the Navier–Stokes control problem,
we allow 20 Oseen iterations, specifying as a stopping criteria a reduction of 10−5

on the (non-linear) relative residual; the initial residual is the right-hand side of
the corresponding Stokes control problem, with ν = 1 (for the instationary case
with Crank–Nicolson, we evaluate the residual before applying T ). For each problem
below, the first Oseen iterate is employed for the Stokes control solve, whose solutions
v(1), ζ(1), p(1), µ(1) are then used as the initial guess. We use inf–sup stable Taylor–
Hood Q2–Q1 finite elements in the spatial dimensions, with level of refinement l
representing a (spatial) uniform grid of mesh-size h = 21−l for Q1 basis functions,
and h = 2−l for Q2 elements, in each dimension. All CPU times below are reported
in seconds.

6.1. Stationary Navier–Stokes control. We first test our solver on the sta-
tionary Navier–Stokes control problem (2.1)–(2.2). We set ~f = ~0, ~vd = ~0, and

~gD =

{
[1, 0]

>
on ∂Ω1 := (−1, 1)× {1} ,

[0, 0]
>

on ∂Ω \ ∂Ω1.

We report the average number of GMRES iterations together with the average CPU
time per GMRES solve in Tables 6.1–6.3, and in Table 6.4 we state the total degrees
of freedom (DoF) together with the total number of Oseen iterations required. We
provide results for different levels of refinement l, values of β, and viscosities ν.
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Table 6.1: Average GMRES iterations and CPU times for stationary Navier–Stokes
control problem, for ν = 1

20 and a range of l, β. In brackets are the results for the
corresponding Stokes control problem.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3
21 0.40 19 0.37 15 0.24 12 0.12 11 0.17 10 0.13 9 0.13
(15) (0.34) (18) (0.41) (17) (0.32) (16) (0.31) (15) (0.27) (13) (0.09) (10) (0.12)

4
22 1.14 20 1.19 18 0.92 15 0.74 12 0.44 11 0.57 10 0.52
(15) (0.89) (19) (1.10) (18) (0.98) (16) (0.78) (16) (0.97) (15) (0.80) (14) (0.66)

5
24 4.81 21 4.06 20 3.62 17 2.73 15 2.37 12 1.55 12 1.59
(20) (4.07) (20) (4.06) (23) (4.69) (16) (3.18) (16) (2.90) (16) (2.88) (15) (2.15)

6
26 24.2 25 22.8 20 18.0 18 16.1 17 14.1 16 12.4 13 8.43
(26) (24.0) (33) (30.2) (23) (20.9) (19) (17.2) (16) (14.2) (16) (13.5) (15) (12.2)

7
31 112 25 89.6 23 83.3 20 68.6 17 57.9 16 52.0 16 50.8
(27) (97.2) (27) (96.2) (29) (103) (22) (77.1) (17) (59.1) (14) (47.9) (17) (57.1)

8
40 665 32 526 28 457 22 360 19 304 18 281 16 257
(36) (594) (37) (612) (36) (594) (26) (428) (20) (330) (18) (296) (15) (246)

Table 6.2: Average GMRES iterations and CPU times for stationary Navier–Stokes
control problem, for ν = 1

100 and a range of l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 38 0.79 24 0.30 13 0.20 11 0.19 11 0.18 9 0.13 9 0.14

4 31 1.84 24 1.28 18 0.96 12 0.43 11 0.61 11 0.59 10 0.50

5 29 5.47 23 4.23 20 3.23 16 2.32 12 1.60 11 1.58 11 1.64

6 31 28.0 27 23.6 22 18.5 18 14.6 15 11.1 12 8.05 11 8.14

7 32 116 27 93.6 24 83.9 20 69.6 17 58.7 15 46.7 13 35.9

8 38 627 32 528 27 437 22 351 19 298 17 276 15 236

Table 6.3: Average GMRES iterations and CPU times for stationary Navier–Stokes
control problem, for ν = 1

500 and a range of l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

3 77†1 1.46† 23 0.44 13 0.25 11 0.24 10 0.19 9 0.14 9 0.14

4 86† 4.18† 48† 2.02† 18 1.01 12 0.68 11 0.67 10 0.57 10 0.55

5 74 15.4 49 8.02 28 4.13 14 2.08 12 1.87 11 1.73 10 1.50

6 57 55.1 39 34.2 27 22.0 20 14.6 13 8.93 11 8.86 11 8.63

7 54 192 32 111 27 90.6 21 67.3 17 49.4 12 32.5 12 37.2

8 53 878 34 561 29 472 23 369 19 292 16 232 13 172

Tables 6.1–6.3 demonstrate the robustness of our proposed preconditioner. The
numbers of iterations show only a mild dependence on the viscosity ν, and a slight
increase only for large values of β. The CPU time scales approximately linearly with
respect to the dimension of the systems, with a marginal increase for very fine grids; in
this case we observe that the AGMG multigrid routine does not scale exactly linearly.
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Table 6.4: Degrees of freedom (DoF) and number of Oseen iterations required for
stationary Navier–Stokes control problem. In each cell are the Oseen iterations for
the given l, ν, and β = 10−j , j = 0, 1, ..., 6.

l DoF ν = 1
20

ν = 1
100

ν = 1
500

3 1062 5 5 5 5 4 4 3 13 9 7 5 4 4 3 † 20 7 5 4 4 3

4 4422 5 5 4 4 4 4 4 8 6 6 5 4 4 4 † † 9 5 4 4 4

5 18,054 4 4 4 4 4 4 3 7 5 5 4 4 4 3 16 10 8 6 4 4 3

6 72,966 4 4 4 3 3 3 3 6 4 4 4 4 4 3 11 6 5 5 4 4 3

7 293,382 4 3 3 3 3 3 3 5 4 3 3 3 3 3 8 4 4 4 4 4 3

8 1,176,582 3 3 3 3 3 3 3 4 3 3 3 3 3 3 5 3 3 3 3 3 3

Table 6.4 shows that the number of Oseen iterations strongly depends on the viscosity
ν, as expected as the non-linear term becoming more dominant for smaller ν; however,
as the grid is refined the number of outer iterations decreases. We also note that the
number of non-linear iterations increases for larger values of β and coarser grids.

6.2. Crank–Nicolson for instationary Stokes control. We now test our
solver on an instationary Stokes control problem, which allows us to verify the pre-
dicted order of convergence of the Crank–Nicolson method. We take tf = 2 and

~vd(x1, x2, t) = 4β
[
x2
(
2(3x21 −1)(x22 − 1)+3(x21 − 1)2

)
,−x1

(
3(x22 −1)2+2(x21 −1)(3x22−1)

)]>
+ etf−t[20x1x32 + 2βx2

(
(x21 − 1)2(x22 − 7)− 4(3x21 − 1)(x22 − 1) + 2

)
,

5(x41 − x42)− 2βx1
(
(x22 − 1)2(x21 − 7)− 4(x21 − 1)(3x22 − 1)− 2

)]>
,

~f(x1, x2, t) = etf−t[− 20x1x
3
2 − 2x2(x

2
1 − 1)2(x22 − 1), 5(x42 − x41)+ 2x1(x

2
1 − 1)(x22 − 1)2

]>
+

[
2x2(x

2
1 − 1)2(x22 − 1),−2x1(x21 − 1)(x22 − 1)2

]>
.

The analytic solutions for this problem are:

~v(x1, x2, t) = etf−t[20x1x
3
2, 5x

4
1 − 5x4

2]>,

p(x1, x2, t) = etf−t
(
60x2

1x2 − 20x3
2

)
+ constant,

~ζ(x1, x2, t) = β (etf−t − 1) [2x2(x2
1 − 1)2(x2

2 − 1),−2x1(x2
1 − 1)(x2

2 − 1)2]>,

µ(x1, x2, t) = βetf−t(4x1x2) + constant,

with initial and boundary condition obtained from this ~v. In Table 6.5 we report
the level of refinement l, the number of GMRES iterations2, the CPU time, and
the resulting errors for different values of β. For level of refinement l we divide the
time interval into subintervals of length 21−l and consider a spatial uniform grid of
refinement level l. The error is evaluated in the L∞(L2) norm, approximated for ~v as

~verr = max
n

[
(vn − vsol,n)>M (vn − vsol,n)

]1/2
,

where vsol,n is the discretized exact solution for ~v at time tn. In the same way we

define the error for the adjoint velocity ~ζerr. Further, for the total size of the systems
solved we refer to Section 6.3.2.

1† means that the outer (Oseen) iteration did not converge in 20 iterations. The average number
of GMRES iterations and CPU time is evaluated over the first 10 Oseen iterations.

2For this problem we run GMRES until a relative reduction on the residual of 10−9 is achieved.
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Table 6.5: Average GMRES iterations, average CPU times, and errors for instationary
Stokes control problem, solved using Crank–Nicolson, for a range of l, β.

β = 100 β = 10−2 β = 10−4

l it CPU ~verr ~ζerr it CPU ~verr ~ζerr it CPU ~verr ~ζerr

2 22 0.85 4.76e-1 2.49e-1 22 0.79 5.66e-1 1.16e-1 16 0.73 8.63e0 5.45e-2

3 22 4.28 3.34e-2 5.68e-2 22 4.24 7.07e-2 3.42e-2 19 3.39 2.47e0 2.67e-2

4 23 23.9 2.25e-3 1.15e-2 24 24.1 7.35e-3 7.79e-3 20 23.2 3.73e-1 7.30e-3

5 23 200 1.74e-4 2.15e-3 27 232 6.70e-4 1.59e-3 20 162 3.84e-2 1.55e-3

6 26 2082 2.16e-5 4.00e-4 37 2960 5.97e-5 3.02e-4 23 1830 3.38e-3 3.00e-4

From the discretization errors reported in Table 6.5, we first note that the method
is converging at second-order, and we experience similar convergence behaviour for
the pressure variables. Secondly, we note that the preconditioner behaves robustly
with respect to the level of refinement l and the regularization parameter β, with the
number of iterations slightly increasing for very fine grids. The elapsed CPU time
scales almost exactly linearly, aside from the multigrid routine for very fine grids.

6.3. Instationary Navier–Stokes control. We now test our solver on the
instationary Navier–Stokes control problem (2.3)–(2.4), where we set tf = 2, ~f(x, t) =
~0, the initial condition ~v0(x) = ~0, and boundary conditions

~gD(x, t) =


[t, 0]

>
on ∂Ω1 × (0, 1),

[1, 0]
>

on ∂Ω1 × [1, tf ),

[0, 0]
>

on (∂Ω \ ∂Ω1)× (0, tf ).

We present results obtained by employing backward Euler and Crank–Nicolson dis-

cretizations in time. Setting c1 = 1 −
√

( 100
49 (x1 − 1

2 ))2 + ( 100
99 x2)2 and c2 = 1 −√

( 100
49 (x1 + 1

2 ))2 + ( 100
99 x2)2, we seek the (divergence-free) desired state:

~vd(x, t) =


c1 cos(πt2 ) [( 100

99 )2x2,−( 100
49 )2(x1 − 1

2 )]> if c1 ≥ 0,

c2 cos(πt2 ) [−( 100
99 )2x2, (

100
49 )2(x1 + 1

2 )]> if c2 ≥ 0,

[0, 0]
>

otherwise.

6.3.1. Backward Euler for instationary Navier–Stokes control. We first
report the results obtained when employing the backward Euler scheme in time. We
provide the average number of GMRES iterations together with the average elapsed
CPU time in Tables 6.6–6.7, and in Table 6.8 the total dimensions of the systems
solved and the Oseen iterations required, for different levels of refinements l, values of
β, and viscosities ν. Here, we choose the time-step τ = 0.05 (that is, nt = 40), while
the level of refinement l refers to a spatial uniform grid constructed as above.

As for the stationary case, Tables 6.6–6.7 show robustness of the proposed pre-
conditioner with respect to all the parameters involved. We note that the number of
iterations increases slightly for small viscosities and large values of β. The elapsed
CPU time scales almost linearly with the dimension of the system, except for very
fine grids. We see from Table 6.8 that the number of Oseen iterations increases for
small values of ν and large values of β when employing a coarse grid; however, as the
grid is refined, the number of non-linear iterations decreases.
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Table 6.6: Average GMRES iterations and CPU times for instationary Navier–Stokes
control problem, with backward Euler in time (τ = 0.05), for ν = 1

100 and a range of
l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 17 6.96 14 5.70 11 4.47 11 4.21 10 4.08 12 4.93 21 8.54

3 22 18.8 19 17.7 14 13.2 11 10.9 11 10.6 13 11.8 21 19.7

4 23 45.3 22 45.4 18 39.0 14 37.5 13 35.0 15 41.2 23 61.4

5 22 190 22 196 19 169 17 148 15 126 16 136 25 220

6 25 1153 24 1099 21 979 18 809 17 729 17 685 25 1080

Table 6.7: Average GMRES iterations and CPU times for instationary Navier–Stokes
control problem, with backward Euler in time (τ = 0.05), for ν = 1

500 and a range of
l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16† 6.66† 14† 5.55† 11† 4.43† 10† 3.92† 10 3.84 12 4.91 22 8.87

3 26† 28.9† 20† 25.4† 14 17.2 11 13.6 11 13.3 13 15.1 22 27.9

4 43† 130† 34 120 17 64.5 13 50.6 12 47.8 14 53.6 24 82.7

5 54 467 43 417 28 294 16 160 15 164 16 187 24 263

6 39 1723 35 1552 27 1209 20 842 17 742 18 830 26 1165

Table 6.8: Degrees of freedom (DoF) and number of Oseen iterations required for
instationary Navier–Stokes control problem, with backward Euler in time (τ=0.05).
In each cell are the Oseen iterations for the given l, ν, and β=10−j , j=0, 1, ..., 6.

l DoF ν = 1
100

ν = 1
500

2 10,086 15 8 6 5 5 5 5 † † † † 10 8 8

3 43,542 9 8 6 5 5 5 5 † † 7 6 6 6 6

4 181,302 6 6 6 5 5 5 5 † 14 8 6 6 6 6

5 740,214 5 5 5 4 4 4 4 8 8 7 5 5 5 5

6 2,991,606 4 4 4 4 4 3 3 6 5 5 5 4 4 4

6.3.2. Crank–Nicolson for instationary Navier–Stokes control. We now
report the results obtained when applying Crank–Nicolson in time. We report the
average number of GMRES iterations together with the average elapsed time in Tables
6.9–6.11, and in Table 6.12 the total dimensions of the systems solved and the numbers
of Oseen iterations, for different levels of refinements l, values of β, and viscosities ν.
As in Section 6.2, for level of refinement l we divide the time interval into subintervals
of length 21−l and consider a spatial uniform grid of refinement level l. In Figure 6.1
we show the numerical solutions of the state and adjoint velocities ~v and ~ζ, at time
t = 1, and of the pressure p, at time t = 1.0625, for ν = 1

100 , β = 10−1, and l = 4.

From Tables 6.9–6.11 we observe that the number of iterations required for reach-
ing a prescribed accuracy is, again, roughly constant, increasing only for small ν and
large β. As experienced above, the CPU time scales approximately linearly with the
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Table 6.9: Average GMRES iterations and CPU times for instationary Navier–Stokes
control problem, with Crank–Nicolson in time (τ = h), for ν = 1

20 and a range of l, β.
In brackets are the results for the corresponding Stokes control problem.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2
16 0.73 15 0.68 12 0.53 10 0.44 9 0.39 9 0.37 8 0.36
(14) (0.54) (15) (0.68) (16) (0.67) (15) (0.62) (12) (0.50) (10) (0.42) (9) (0.37)

3
18 3.40 17 3.23 15 2.14 12 1.68 10 1.93 10 1.56 9 1.55
(15) (2.89) (16) (3.11) (17) (3.28) (16) (2.88) (15) (2.69) (13) (1.23) (10) (1.36)

4
18 22.7 19 22.9 18 21.2 15 17.4 12 11.9 11 12.6 10 11.8
(16) (16.5) (18) (18.3) (19) (18.7) (16) (18.3) (16) (18.4) (15) (16.0) (13) (12.6)

5
19 170 19 173 18 162 17 151 15 122 13 98.4 11 85.0
(16) (139) (19) (163) (20) (171) (19) (158) (16) (128) (15) (119) (15) (103)

6
21 1948 21 1898 21 1848 18 1587 17 1448 15 1295 13 1022
(22) (1758) (24) (1915) (26) (2087) (18) (1437) (17) (1344) (15) (1149) (15) (1155)

Table 6.10: Average GMRES iterations and CPU times for instationary Navier–Stokes
control problem, with Crank–Nicolson in time (τ=h), for ν= 1

100 and a range of l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16 0.74 13 0.64 11 0.51 10 0.45 9 0.40 9 0.38 8 0.38

3 21 3.80 19 3.72 13 2.80 10 2.20 10 2.20 9 1.77 9 1.87

4 23 22.6 22 22.2 18 18.5 12 15.4 11 13.6 10 13.3 10 12.2

5 22 187 21 184 19 166 16 135 12 103 11 87.7 11 89.7

6 24 2141 24 2087 22 1922 18 1507 15 1272 12 973 11 913

Table 6.11: Average GMRES iterations and CPU times for instationary Navier–Stokes
control problem, with Crank–Nicolson in time (τ=h), for ν= 1

500 and a range of l, β.

β = 100 β = 10−1 β = 10−2 β = 10−3 β = 10−4 β = 10−5 β = 10−6

l it CPU it CPU it CPU it CPU it CPU it CPU it CPU

2 16† 0.75† 14† 0.64† 10† 0.46† 10 0.43 9 0.40 8 0.38 8 0.37

3 26† 6.49† 20† 5.70† 13 3.78 10 2.90 9 2.60 9 2.19 9 2.19

4 47 64.6 33 53.5 17 28.2 11 20.3 10 17.7 10 15.8 9 14.6

5 54 476 44 417 28 291 15 148 11 119 11 109 10 98.2

6 44 3728 37 3140 29 2472 20 1701 14 1157 11 983 11 968

size of the system, except for very fine grids. Regarding the non-linear iteration, as
above we note in Table 6.12 that the number of Oseen iterations is decreasing as the
grid is refined, while it is increasing for small values of ν and large values of β.

7. Concluding Remarks. We presented mesh- and parameter-robust precon-
ditioners for distributed (Stokes and) Navier–Stokes control problems, of both station-
ary and instationary type, coupled with an Oseen linearization. The preconditioners
were applied within the flexible GMRES algorithm, and in the instationary setting
to backward Euler and Crank–Nicolson discretizations in time. Numerical results
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Table 6.12: Degrees of freedom (DoF) and number of Oseen iterations required for
instationary Navier–Stokes control problem, with Crank–Nicolson in time (τ = h). In
each cell are the Oseen iterations for the given l, ν, and β = 10−j , j = 0, 1, ..., 6.

l DoF ν = 1
20

ν = 1
100

ν = 1
500

2 984 6 6 6 6 5 4 3 12 7 7 7 5 4 4 † † † 10 7 5 4

3 8496 5 5 5 6 5 4 4 8 8 6 7 6 4 4 † † 7 7 7 5 4

4 70,752 4 4 4 4 4 4 3 6 6 5 5 4 4 3 18 14 6 5 6 5 4

5 577,728 4 4 4 3 3 3 3 5 4 4 4 4 4 3 9 8 6 5 4 4 3

6 4,669,824 3 3 3 3 3 3 3 4 4 4 3 3 3 3 5 5 5 4 4 3 3

Fig. 6.1: Solution plots for the instationary Navier–Stokes control problem, for ν =
1

100 , β = 10−1, and l = 4. Top left: velocity ~v at t = 1. Top right: pressure p at

t = 1.0625. Bottom: adjoint velocity ~ζ at t = 1.
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demonstrated the versatility and effectiveness of this approach when solving a range
of huge-scale linear systems. Future work involves adapting this solver to problems in-
volving more complicated PDEs from fluid dynamics, boundary control problems, and
problems with additional algebraic constraints on the state and/or control variables.
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[5] Boyle J., Mihajlović M., Scott J.: HSL MI20: an efficient AMG preconditioner for finite element
problems in 3D, Int. J. Numer. Meth. Eng. 82, 64–98 (2010)



26 S. LEVEQUE AND J. W. PEARSON

[6] Braack M., Burman E.: Local projection stabilization for the Oseen problem and its interpre-
tation as a variational multiscale method, SIAM J. Numer. Anal. 43, 2544–2566 (2006)

[7] Brooks A. N., Hughes T. J. R.: Streamline upwind/Petrov–Galerkin formulations for con-
vection dominated flows with particular emphasis on the incompressible Navier–Stokes
equations, Comput. Methods Appl. Mech. Eng. 32, 199–259 (1982)

[8] Elman H. C., Golub G. H.: Inexact and preconditioned Uzawa algorithms for saddle point
problems, SIAM J. Numer. Anal. 31, 1645–1661 (1994)

[9] Elman H. C., Silvester D. J., Wathen A. J.: Finite Elements and Fast Iterative Solvers: with
Applications in Incompressible Fluid Dynamics, Oxford University Press, 2nd Edition
(2014)

[10] Franca L. P., Frey S. L.: Stabilized finite element methods: II. The incompressible Navier–
Stokes equations, Comput. Methods Appl. Mech. Eng. 99, 209–233 (1992)

[11] Gelhard T., Lube G., Olshanskii M. A., Starcke J. H.: Stabilized finite element schemes with
LBB-stable elements for incompressible flows, J. Comput. Appl. Math. 177, 243–267
(2005)

[12] Golub G. H., Varga R. S.: Chebyshev semi-iterative methods, successive over-relaxation iter-
ative methods, and second order Richardson iterative methods, Part I, Numer. Math. 3,
147–156 (1961)

[13] Golub G. H., Varga R. S.: Chebyshev semi-iterative methods, successive over-relaxation iter-
ative methods, and second order Richardson iterative methods, Part II, Numer. Math. 3,
157–168 (1961)

[14] Heidel G., Wathen A. J.: Preconditioning for boundary control problems in incompressible
fluid dynamics, Numer. Linear Algebra Appl. 26, e2218 (2019)

[15] Hintermüller M., Hinze M.: A SQP-semismooth Newton-type algorithm applied to control of
the instationary Navier–Stokes system subject to control constraints, SIAM J. Opt. 16,
1177–1200 (2006)
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