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ABSTRACT It is still a challenging task to perform the semantic segmentation with high accuracy due to
the complexity of real picture scenes. Many semantic segmentation methods based on traditional deep
learning insufficiently captured the semantic and appearance information of images, which put limit on
their generality and robustness for various application scenes. Thus, in this paper, we proposed a novel
strategy that reformulated the popularly used convolution operation to multi-layer convolutional sparse
coding block in semantic segmentation method to ease the aforementioned deficiency. To prove the
effectiveness of our idea, we chose the widely used U-Net model for the demonstration purpose, and we
designed CSC-Unet model series based on U-Net. Through extensive analysis and experiments, we
provided credible evidence showing that the multi-layer convolutional sparse coding block enables
semantic segmentation model to converge faster, extract finer semantic and appearance information of
images, and improve the ability to recover spatial detail information. The best CSC-Unet model
significantly outperforms the results of the original U-Net on three public datasets with different scenarios,
i.e., 87.14% vs. 84.71% on DeepCrack dataset, 68.91% vs. 67.09% on Nuclei dataset, and 53.68% vs.
48.82% on CamVid dataset, respectively. In addition, the proposed strategy could be possibly used to
significantly improve segmentation performance of any semantic segmentation model that involves
convolution operations and the corresponding code is available at https://github.com/NZWANG/CSC-Unet.

INDEX TERMS U-Net, Semantic segmentation, Deep learning, Convolution operation, Convolutional
sparse coding (CSC).

I. INTRODUCTION
In reality, the increasing application scenarios require
inferring relevant knowledge or semantics from images, as
a result, the importance of semantic segmentation for scene
understanding is gradually increasing. Semantic
segmentation gives us more detailed understanding of
images than image classification [1]–[5] or object detection
[6]–[14]. This understanding is crucial in many different

domains such as autonomous driving [15]–[17], robotics
[18]–[20], image search engines [21]–[23], etc. Recently,
many semantic segmentation methods have emerged. For
example, fully convolutional networks (FCN) [24], at an
end to end form, has firstly implemented the pixel-wise
prediction task based on convolution operation, achieving
relatively better results in natural scene image segmentation.
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SegNet [25] makes the model more efficient than FCN by
introducing more skip architectures and max-pooling
indexes. PSPNet [26] used dilated convolution and pyramid
pooling to improve SegNet. U-Net [27] was proposed in the
2015 ISBI competition, which consists of contracting and
symmetrically expanding sub-networks to form a U-shaped
architecture. This model was originally designed to solve
biomedical image segmentation. Since it requires a small
number of training samples to achieve good segmentation
results. There are also many variants of the U-Net. For
example, Unet++ [28] concatenates U-Net models with
different layers that share weights in encoding blocks and
features from different layers are also fused through skip
connections to achieve better segmentation results. Based
on U-Net, FPN [29] and Resnet [5], the U2-Net [30] model
is proposed, which achieves surprising results on saliency
detection tasks with good real-time performance. Other
excellent semantic segmentation models include DeepLab
series. For example, Deeplabv1 [31] uses VGG16 [3] with
atrous convolutions as the backbone, and adds conditional
random fields (CRFs) in post-processing to further improve
segmentation performance. Deeplabv2 [32] replaces the
backbone in Deeplabv1 with ResNet and proposes atrous
spatial pyramid pooling (ASPP) for multi-scale
segmentation. Deeplabv3 [33] increases the depth of the
backbone without CRFs. It also replaced the convolution
with atrous rate of 24 in the ASPP with a 1×1 convolution
and added average pooling and batch normalization layers
[34]. Deeplabv3+ [35] designs Deeplabv3-based encode-
decode models and modifies Xception [36] as the backbone.

All the above semantic segmentation models are based on
convolution operations, which have strong feature
representation capabilities to extract semantic (global) and
appearance (local) information of images. In fact, for the
segmentation task of complex image, it is usually limited by
the semantic and appearance information extracted from the
shallow convolution layers. As a rule, they mostly choose to
deepen the network layers so that the semantic segmentation
network can better capture the semantic and appearance
information of the images to improve the segmentation
performance. However, if the network keeps deepening
indefinitely, there is a tremendous challenge for both the
computational power and the optimizer. Therefore, the main
motivation of this study is to address the problem of
insufficient feature extraction of convolution operation at the
root by optimizing instead of deepening them.

In this paper, we proposed a novel strategy in semantic
segmentation model which reformulated convolution
operation to multi-layer convolutional sparse coding (ML-
CSC) block. Taking the U-Net as an example, we
demonstrated the effectiveness and robustness of ML-CSC
block strategy in the designed CSC-Unet model series, and it
can also be potentially applied to other excellent convolution-
based semantic segmentation networks, such as SegNet, U2-
Net, etc. Actually, in the Appendix part, we have also

implemented the CSC-Unet++, CSC-Unet3+, and CSC-
DeepLabv3+ models corresponding to Unet++, Unet3+ [37],
and DeepLabv3+, respectively. Benefit from the advantages
of ML-CSC block in information representation compared to
convolutional operation, we hypothesize that the CSC-Unet
model series has the superiorities of better captured semantic
and appearance information of original images, better spatial
detail information, and better convergence efficiency without
increasing the trainable parameters.

As far as we are aware, it is the first work to explore
semantic segmentation based on convolutional sparse coding.
We hope that our strategy can provide new insights for
designing semantic segmentation models. The main
contributions of this paper are summarized as follows:

1) We proposed a novel strategy in semantic segmentation
networks that used the multi-layer convolutional sparse
coding blocks instead of the traditional convolution
operations;

2) We extended the ML-CSC block to U-Net as CSC-Unet
model series, and further demonstrated the advantages and
feasibility through extensive experiments;

3) We explored the impact of the number of unfoldings in
the ML-CSC block on the performance of the semantic
segmentation model.

The rest of this paper is organized as follows. Section II
will give a brief introduction of sparse coding, ML-CSC and
block of ML-CSC. In Section III, we will present the design
details of CSC-Unet model series. The procedure and results
of the experiments are presented in Section IV. Section V is
the conclusion and future work that we will carry out.

II. Review OF MULTI-LAYER CONVOLUTIONAL SPARSE
CODING.

In this section, we firstly reviewed the sparse coding, multi-
layer convolutional sparse coding and its solution algorithms,
then we presented the details of the designed ML-CSC block.

A. Sparse Coding
Sparse coding represents the signal with few non-zero
coefficients as possible and has been used in a wide variety
of applications [38]–[43]. In which, the image y is
considered as a linear combination of a set of basis vectors id ,
where most of the coefficients i are zero.

 

1

1 =  K

K





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However, when processing image signal, sparse coding
first decomposes the whole image into a set of overlapping
image blocks and then operates these blocks independently,
which leads to that the sparse representation of the image is
highly redundant and loss of detailed information during
image recovery [44].
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B. Multi-Layer Convolutional Sparse Coding
Assumes that the input image y satisfies ML-CSC model, it
can be denoted as:

1 1

1 2 2

1

 = ,
= ,

      
= .L L L

y D Γ
Γ D Γ

Γ D Γ


(2)

where   1

L
i iD are special dictionaries, each iD is a transpose

of a convolutional operator matrix iW .
 = T
i iD W (3)

Convolutional sparse coding (CSC) [45] applies
convolutional filters to reconstruct the whole image. Since
the image is processed as a whole, it bridges the above gap in
sparse coding. ML-CSC is an extension of convolutional
CSC which sets that the   1

L
i iΓ also satisfy CSC model to

form multi-layer representation method about original image.

C. The Solver of Multi-Layer Convolutional Sparse
Coding Model

The process of solving the   1

L
i iΓ in ML-CSC model can be

formulated as an optimization problem as Equation 4.
Where 0

ˆ Γ y , and 0 is sparsity regularization term [46].
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Finding   1

L
i iΓ at once is NP-hard and challenging in

computation and concept because of the inclusion of the 0-
norm [47]. Emmanuel et al. [48] have shown that the 0-norm
can be deflated to 1- norm, turning Equation 4 into a convex
optimization problem, as shown in Equation 5.

FIGURE 1. The ML-CSC block.   1

L
i iW denote the convolution operation,  

1

LT
i i

W denote the deconvolution operation, L denotes the number of

layers, and k denotes unfolding number.
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1) LAYERED THRESHOLDING ALGORITHM
Papyan et al. [49] proposed the layered thresholding
algorithm, that use thresholding algorithm [46] to solve the
sparse vectors   1

L
i iΓ step by step in different layers. The

solver can be written as follow:
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The soft non-negative threshold operator  
1i

L

i
h 

can be

viewed as a translation of the activation function rectified

linear unit (ReLU) activation function [50] by   1

L
i i


units

[49]. Combined with Equation 3, the above equation can be
written as follow:
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where and   1

L
i i


are trainable parameters.

2) MULTI-LAYER ITERATIVE SOFT THRESHOLDING
ALGORITHM
An attractive approximate solver of Equation 5 is the multi-
layer iterative soft thresholding algorithm (ML-ISTA) [51],
which uses an iterative soft thresholding algorithm [52] at
each layer.

TABLE I
THE DETAILS OF MODELS

Model
Architecture U-Net CSC-Unet-Encode CSC-Unet-Decode CSC-Unet-All

Encoder [2×Conv2d] × 5 [ML-CSC block] × 5 [2×Conv2d] × 5 [ML-CSC block] × 5
Decoder [2×Conv2d] × 4 [2×Conv2d] × 4 [ML-CSC block] × 4 [ML-CSC block] × 4

FIGURE 2. Structures of (a) U-Net, (b) our CSC-Unet-Encode, (c) our CSC-Unet-Decode, and (d) our CSC-Unet-All, respectively.
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It is well known that the layered thresholding algorithm is the
simplest and dumbest pursuit algorithm for ML-CSC
[49][53]. This is because it only uses the thresholding
algorithm independently at each layer and does not take into
account the connection between layers. In contrast, ML-
ISTA solves the above problem by constructing
  k
i L i i+1 LΓ D D D Γ in each layer which takes full account

of the connections between the different layers..

D. Multi-Layer Convolutional Sparse Coding Block
In the ML-CSC model, we summarize the solving process as
shown in Figure 1, and name it as ML-CSC block.   1

L
i iW

denotes the convolution operation, and  1 1

LT
i i 

W denotes the

deconvolution operation, where   1

L
i i


and   1

L
i i


are

trainable parameters. Solving   1

L
i iΓ can be seen as the

process of extracting features from multi-layer convolution
operation as follow:

   2 1= ReLU   ReLU  ReLULLΓ W W W y (9)

When the number of unfoldings is set to 0, the layered
thresholding algorithm is performed in the ML-CSC block.
When the unfolding number is greater than 0, the ML-ISTA
algorithm is executed. From the sparse point of view, due to
ML-ISTA algorithm is superior to the layered thresholding
algorithm, the ML-CSC block will extract more accurate
feature compared with multi-layer convolution operation,
which is beneficial to the forward propagation of the neural
network, and also can better capture the semantic and
appearance information of the image to improve the
segmentation performance.

III. METHOD

A. U-NET MODEL
The architecture of U-Net model [27] is displayed in Figure
2(a). . For convenience, we use 3×3 convolution layer with
padding to keep the same size before and after convolution
operation, thus the input size of model is equal to the output
size. The up-sampling is performed by 3×3 transposed
convolution operation. Batch normalization [34] is after
convolution operation and before ReLU activation function.

B. CSC-UNET MODEL SERIES
In the encode and decode side of the U-Net model, both of
which can be seen as a composition of blocks containing two
layers of convolution operation, as shown in Table I. To
fairly demonstrate our strategy, we set the number of layers
in the ML-CSC block to 2 as well. According to the
characteristics of encoding and decoding structure in U-Net,
we designed the CSC-Unet-model series including CSC-
Unet-Encode, CSC-Unet-Decode, and CSC-Unet-All model.
The details of the CSC-Unet model series were also shown in
Table I.
1) CSC-UNET-ENCODE MODEL
The encoding side of U-Net is used to extract the semantic
and appearance information of the input image. In order to
explore this kind of ability of ML-CSC block, we replaced
the convolution operations of the encoding side of the U-Net
with the ML-CSC blocks to form CSC-Unet-Encode model,
and the corresponding architecture was shown in Figure 2(b).
2) CSC-UNET-DECODE MODEL
In the expanding sub-network of U-Net model, it firstly uses
skip connection to combine appearance information from the
shallow layers and semantic information from the deep layers.
Then, the decoding side of U-Net precisely locates the
segmentation boundary and gradually recovers the spatial
detail information of the image. To explore the ability of
ML-CSC block to recover the spatial detail information of
image, we introduced the ML-CSC block into the decoding
side of U-Net to form CSC-Unet-Encode model, and the
corresponding architecture was shown in Figure 2(c).
3) CSC-UNET-ALL MODEL
To explore the impact of ML-CSC block on the overall
segmentation performance of U-Net model, we added this

TABLE II
THE DETAILS OF DATASETS USED IN THE EXPERIMENT

Dataset Classes Samples
(training)

Samples
(validation)

Samples
(test)

Samples
(total)

CamVid 11 367 101 233 701
DeepCrack 2 322 107 108 537

Nuclei 3 402 134 134 670

TABLE III
RESULT ON DEEPCRACK, NUCLEI AND CAMVID TEST SET OF U-NET AND CSC-UNET-ENCODE MODELS WITH DIFFERENT UNFOLDING NUMBER

Method DeepCrack Mean IoU (%) Nuclei Mean IoU (%) CamVid Mean IoU (%)
U-Net (CSC-Unet-Encode-0) 84.71 67.09 48.82

CSC-Unet-Encode-1 86.41 67.26 52.31
CSC-Unet-Encode-2 86.90 68.44 53.29
CSC-Unet-Encode-3 86.20 67.71 52.43
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block to both the encoding and decoding side of the U-Net to
form CSC-Unet-All model, and the corresponding
architecture was shown in Figure 2(d).

IV. EXPERIMENT AND ANALYSIS
In this study, the computing platform are Ubuntu 18.04.5
LTS 64-bit OS, 32G RAM, and Nvidia GeForce GTX 1080
Ti GPU with 11 GB memory. The deep learning framework
is based on PyTorch [54] and the program language is
Python.

A. DATASETS
For perform a fair evaluation, we select different scenarios
datasets for testing to obtain evaluation metrics of
comparison models. CamVid dataset [55] is one of the first
datasets used for autonomous driving. It is assembled from 5
video sequences taken by the on-board camera from the
driver's perspective. DeepCrack dataset [56] is a public
benchmark dataset containing cracks at multiple scales and
scenarios to evaluate crack detection systems. Nuclei dataset1
is the dataset in the 2018 Kaggle Data Science Bowl which is
acquired under a variety of conditions and variations in the
cell type, magnification, and imaging modality. The details
of the datasets were shown in Table II.

B. THE SETTING OF TRAINING PARAMETERS
The number of all epochs were empirically set to 200 in this
experiment. To improve the generalization ability of the

1 https://www.kaggle.com/c/data-science-bowl-2018/overview

model, before each epoch, we randomly disrupted the
training data to make it more consistent with the sample
distribution under natural conditions. The batch size was set
to 4. The loss function was negative log-likelihood, and the
input parameters were activated by the log-SoftMax function.
The model used Adam [57] algorithm as the optimizer, each
50 epochs, and the learning rate dropped by half. In the
CamVid dataset. The initial learning rate was set to 10-4, for
the DeepCrack and Nuclei, the initial learning rate was set to
10-5, respectively.

TABLE V
RESULT ON DEEPCRACK AND NUCLEI TEST SET OF U-NET AND CSC-UNET-ALL MODELS WITH DIFFERENT UNFOLDING NUMBER

Method DeepCrack Nuclei
Pixel Acc (%) Mean IoU (%) Pixel Acc (%) Mean IoU (%)

U-Net (CSC-Unet-All-0-0) 98.53 84.71 96.64 67.09
CSC-Unet-All-2-1 (best) 98.74 87.14 96.81 68.91

CSC-Unet-All-1-1 98.62 86.61 96.67 67.30
CSC-Unet-All-2-2 98.72 87.04 96.73 68.31

FIGURE 3. Training and validation on DeepCrack. Fine curves indicate
the loss of training, and thick curves indicate the loss of validation.
Unfolding number is uniformly set to 2 and the trainable parameters are
same for all models.

TABLE VI
RESULTS ON CAMVID TEST SET OF CSC-UNET-ALL MODELS (1) U-NET(CSC-UNET-ALL-0-0), (2) CSC-UNET-ALL-2-1, (3) CSC-UNET-ALL-1-1 AND

(4) CSC-UNET-ALL-2-2
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(1) 96.6 75.9 27.7 96.4 75.1 81.2 50.1 16.3 87.0 43.6 10.9 60.1 48.82
(2) 96.1 84.6 33.4 97.6 85.2 81.2 45.6 18.4 86.0 54.8 12.5 63.2 53.56
(3) 95.9 80.5 33.6 97.8 85.8 82.8 41.8 15.2 85.5 60.6 14.5 63.1 52.76
(4) 95.5 87.5 36.6 97.6 83.3 82.9 38.4 16.5 86.0 59.6 12.2 63.3 53.68

TABLE IV
RESULT ON DEEPCRACK, NUCLEI AND CAMVID TEST SET OF U-NET AND CSC-UNET-DECODE MODELS WITH DIFFERENT UNFOLDING NUMBER

Method DeepCrack Mean IoU (%) Nuclei Mean IoU (%) CamVid Mean IoU (%)
U-Net (CSC-Unet-Decode-0) 84.71 67.09 48.42

CSC-Unet-Decode-1 86.29 68.20 51.49
CSC-Unet-Decode-2 85.52 67.24 52.33
CSC-Unet-Decode-3 85.21 67.25 53.18
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FIGURE 4. Examples of semantic segmentation results on CamVid, DeepCrack, and Nuclei test set. (a) Input images, (b) Ground truths, (c) Results
of U-Net, and (d) Results of CSC-Unet-All (best).
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C. EXPERIMENT AND ANALYSIS
1) THE SPEED OF MODEL CONVERGENCE
We investigated the effect of ML-CSC blocks on the
convergence speed of segmentation models. On the
DeepCrack dataset, we compared the training and validation
loss of CSC-Unet model series in the training phase, and the
results were shown in Figure 3. We found that ML-CSC
blocks can accelerate the convergence of the semantic
segmentation model and reduce the loss value. Adding ML-
CSC blocks at the decoding side of the U-Net model
converged faster than adding them at the encoding side, and
the model converged fastest when ML-CSC blocks were
added at both sides of U-Net.
2) THE EXTRACTION OF SEMANTIC AND APPEARANCE
INFORMATION
We have assessed the influence of ML-CSC block on CSC-
Unet model series compared with U-Net to extract semantic
and appearance information, and the results were shown in
Table III, where the number after the model indicated the
unfolding number of ML-CSC block. When the number of
unfoldings was zero, the CSC-Unet-Encode was equivalent
to the U-Net model. The results showed that CSC-Unet-
Encode models outperformed U-Net model on all three
datasets when the number of unfoldings was greater than 0.
This indicated that the ML-CSC block can indeed improve
the ability of the semantic segmentation model to capture the
semantic and appearance information of the image.
Furthermore, we found that it was not always true that the
larger number of unfoldings of the ML-CSC block implied
better performance.
Semantic segmentation model first extracts feature
information at the encoding side, and then based on feature
information, the model gradually recovers the spatial detail
information of the image at the decoding side. As the number
of unfoldings increases, the feature information conveys in
the model becomes sparser, which is not beneficial for the
recovery process at the decoding side. Therefore, we should
find a balance point between the extraction of feature
information and the recovery process. According to Table III,
we inferred that the balance point was reached when the
unfolding number was two among most datasets. For the
convenience of performance demonstration, in our all
experiments, the maximum number of unfoldings was set to
three.
3) THE ABILITY TO RECOVER SPATIAL DETAIL
INFORMATION
Next, we explored the ability of ML-CSC block to recover
spatial detail information of image at the decoding side and
the results were shown in Table IV. CSC-Unet-Decode
models with unfolding number greater than 0 on different
datasets were better than U-Net, which implied that ML-CSC
block improved the recovery of spatial detail information
compared to the convolution operation. The best unfolding
was 1 in DeepCrack and Nuclei, and in CamVid was 3,
respectively. We speculated that phenomenon was probably

related to the complexity of the image, where the categories
of DeepCrack and Nuclei were relatively few and the case of
one unfolding was enough, but CamVid was relatively more
complex and required a higher number of unfoldings.
4) THE OVERALL IMPROVEMENT OF MODEL
PERFORMANCE
We first introduced the nomenclature of CSC-Unet-All-a-b,
where a denoted the unfolding number at the encoding side
and b denoted the number of unfoldings at the decoding side.
For example, CSC-Unet-All-0-0 was equivalent to U-Net
model, CSC-Unet-All-a-0 was represented as CSC-Unet-
Encode-a, and CSC-Uner-All-0-b can be represented as
CSC-Unet-Decode-b. Through Table III and IV, we found
that on the DeepCrack dataset the CSC-Unet-Encode-2
captured more semantic and appearance information, and
CSC-Unet-Decode-1 maximized the ability of the model to
recover spatially detailed information. Thus, we argued that
CSC-Unet-All-2-1 could maximize the segmentation
performance of the U-Net model. Similarly, on Nuclei and
CamVid, CSC-Unet-All-2-1 and CSC- Unet-All-2-3 should
achieve the best segmentation performance. However, due to
the GPU memory size limitation (11 GB), if we use the CSC-
Unet-All-2-3 model on the CamVid dataset, the batch size
needs to be halved, or we can use GPU parallelism to
maintain the batch size. This is something that we do not
expect to see. We want to compare the performance of the
models under the same conditions; thus, we used CSC-Unet-
All-2-2 instead of CSC-Unet-All-2-3. We also set CSC-Unet-
All-0-0 (U-Net) and CSC-Unet-All-1-1 for performance
comparison. The results on the three datasets were shown in
Table V and VI. Compared to U-Net we have improved by
2.43% (from 84.71% to 87.14% in DeepCrack), 1.82% (from
67.09% to 68.91% in Nuclei), and 4.86% (from 48.82% to
53.68% in CamVid) on three datasets in terms of Mean
Intersection over Union (MIoU), respectively. To better
illustrate the results, the visualizations on the three datasets
were shown in Figure 4.

V. CONCLUSION AND DISCUSSION
In this paper, we proposed a novel strategy, which used ML-
CSC block instead of convolutional operation to improve the
performance of semantic segmentation model. This strategy
could possibly apply to any semantic segmentation model
that involved convolutional operation. We used the U-Net
model as an example to validate this strategy and designed
CSC-Unet model series. We found that using ML-CSC
blocks instead of convolution operations could accelerate the
convergence of the semantic segmentation model, improve
the ability of the model to capture the semantic and
appearance information of the image, and improve the ability
to recover spatial detail information. We concluded that ML-
CSC block was a better operation compared to convolutional
operation in semantic segmentation.

The current CSC-Unet models have achieved significant
improvement in segmentation performance compared with
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the original U-Net model. However, they still face great
challenges. Therefore, in the follow-up study, we will
consider the following aspects.

1) To fairly demonstrate our strategy, the added ML-CSC
block to the U-Net model was a two-layer convolutional
sparse coding model. We speculate that more layers will be
beneficial to improve the performance of semantic
segmentation. Thus, in the next study, we will design a new
type of semantic segmentation model based on multi-layer
global convolutional sparse coding block.

2) We found that there is a balance between the extraction
of feature information and the recovery process. Thus, how
to find the best balance between all the unfolding number in
separate encoder and decoder part will be one focus of our
future research. In addition, the presence of the unfolding
number in the solution algorithm slightly increases the
model's computation cost, as shown in Table VII. So, the
solution algorithm without unfolding number will be
designed in our subsequent study.

3 ) The ML-CSC block can be extended to not only the
field of semantic segmentation, but also possibly to other
fields such as object detection [12]–[14], generative
adversarial networks (GAN) [58], natural language
processing (NLP) [59], etc.

APPENDIX
The results of improving Unet++, Unet3+, and deeplabv3+
are shown in TABLE VIII, with the same training strategy
and input model sizes as CSC-Unet, and the code of CSC-
Unet++, CSC-Unet+++, and CSC-DeepLabv3+ is also
available at https://github.com/NZWANG/ CSC-Unet.
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