
ar
X

iv
:2

10
8.

00
41

7v
2 

 [
he

p-
th

] 
 9

 O
ct

 2
02

1

Screened massive expansion of the quark propagator in the Landau gauge

Giorgio Comitini,1, 2, ∗ Daniele Rizzo,1, † Massimiliano Battello,1, ‡ and Fabio Siringo1, 2, §

1Dipartimento di Fisica e Astronomia “E. Majorana”,

Università di Catania, Via S. Sofia 64, I-95123 Catania, Italy
2INFN Sezione di Catania, Via S. Sofia 64, I-95123 Catania, Italy

(Dated: October 12, 2021)

The infrared behavior of the quark propagator is studied at one loop and in the Landau gauge
(ξ = 0) using the screened massive expansion of full QCD and three different resummation schemes
for the quark self-energy. The shift of the expansion point of perturbation theory, which defines the
screened expansion, together with a non-standard renormalization of the bare parameters, proves
sufficient to describe the dynamical generation of an infrared quark mass also in the chiral limit.
Analytically, the scale for such a mass is set by a mass parameter M , whose value is fixed by a
fit to the lattice data for quenched QCD. The quark mass function M(p2) is shown to be in very
good agreement with the lattice results. The quark Z-function, on the other hand, shows the
wrong qualitative behavior in all but one of the studied resummation schemes, where its behavior
is qualitatively correct, but only at sufficiently high energies.

I. INTRODUCTION

In the Standard Model of particle physics the light
quarks acquire their masses dynamically through two
separate and complementary mechanisms. The first one
is the spontaneous breaking of the electroweak gauge
symmetry U(1)Y × SU(2)L, induced by a non vanish-
ing vacuum expectation value (VEV) for the Higgs field.
Due to the former, a quark massMq is generated which is
proportional to the product of the quark-Higgs Yukawa
coupling and the Higgs field VEV. The second mechanism
is a remnant of the violation of global chiral symmetry.
In this context, the violation is caused by the strong in-
teractions and manifests itself in a non-zero VEV for the
quark mass operator ψψ – i.e. of the quark condensate –,
which would be constrained to vanish in the presence of
chiral symmetry. In turn, the quark condensate triggers
the non-vanishing of the quark mass function M(p2) in
the chiral limit, as can be proven by an operator product
expansion (OPE) of the quark propagator. Despite being
obeyed by the massless quarks only, limited to the light
quarks (Mq ≪ ΛQCD, where ΛQCD is the QCD scale) chi-
ral symmetry is still a good approximate symmetry of the
QCD Lagrangian; the mechanism that underlies its vio-
lation leads to the dressing of the light Higgs-generated
masses, greatly enhancing their effective values in the in-
frared (IR) regime.

Studying the origin of the quark effective masses in
the IR is of paramount importance for understanding
the experimentally observed hadron spectrum. This is
rooted in the fact that the measured values of the light
Higgs-generated masses –Mu ≈ 2.2 MeV,Md ≈ 4.7 MeV,
Ms ≈ 93 MeV for the up, down and strange quarks re-
spectively [1] – do not compare well with the observed
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values of the (unflavored) baryon masses, which are of
the order of 1 GeV. The infrared enhancement, induced
by the violation of chiral symmetry, is a good candidate
for filling the gap between those masses. Unfortunately,
mainly because of the non-perturbative nature of dynam-
ical mass generation, no purely analytical and fully pre-
dictive description of the latter in the framework of first
principles QCD is available to date.

In the context of the strong interactions, dynamical
mass generation has been an active field of research for
decades now. The development of chiral perturbation
theory in the 1960s and 1970s offered a framework in
which the large observed masses of the hadrons could
be understood to be a consequence of chiral symmetry
violation. In the gauge sector, the hypothesis that the
gluons might acquire an infrared mass as a result of their
self-interactions was advanced by Cornwall in 1982 [2]
and confirmed by lattice studies in the 2000s [3–15]. In
the continuum, considerable progresses have been made
by the numerical integration of integral equations [16–
28], by variational methods [29–39], and by physically
motivated phenomenological models [40–51]. For a recent
review on the subject see Ref. [52]. The generation of a
mass for the gluons is of special interest from a theoretical
point of view, since gauge invariance in the framework of
ordinary perturbation theory (PT) forbids the gluons to
acquire a mass.

While in principle the failure of ordinary PT to de-
scribe the gluon’s infrared mass could be attributed
to its break down at low energies, in recent years a
new approach to the perturbation theory of pure Yang-
Mills (YM) theory has shown that most of the non-
perturbative content of the gluon dynamic – at least as
far as the two-point functions are concerned – can be
absorbed into a shift of the expansion point of the Yang-
Mills perturbative series. This approach, termed the
screened massive expansion [53–64], is a simple extension
of ordinary PT, formulated in such a way as to treat the
transverse gluons as massive already at tree level while
leaving the total action of the theory unchanged. The
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screened expansion has proven to be self-consistent to one
loop – since it is renormalizable and leads to an infrared-
finite and moderately small running coupling constant
[63] – and predictive when optimized by principles of
gauge invariance [60]; it yields two-point functions which
are in excellent agreement with the lattice data in the
Landau gauge [60, 63].

The main objective of this paper is to extend the for-
malism of the screened massive expansion to full QCD
with one flavor of quark, with the aim of studying the
infrared behavior of the quark propagator. The method
was already applied in Refs. [58, 59] to describe some of
the low-energy features of the quark dynamics in the chi-
ral limit; here we refine its definition, implement some of
our latest findings on the gauge sector, extend the study
to non-chiral quarks, and use a new set of lattice data as
a benchmark for comparison and in order to fix some of
the free parameters in our expressions.

Our treatment of the quark sector will closely follow
what we did in pure Yang-Mills theory for the gluons;
namely, we will shift the expansion point of the pertur-
bative series by introducing a new mass parameter M for
the zero-order quark propagator. The motivation for the
shift lies in the phenomenon of dynamical mass genera-
tion for the light quarks: as previously discussed, due to
the strong interactions, at low energies the light quarks
propagate with a mass which is greatly enhanced with
respect to their tree-level (Lagrangian) value; since this
effect cannot be captured by ordinary perturbation the-
ory, some kind of non-ordinary and non-perturbative re-
summation of the quark self-energy is needed in order to
successfully describe the infrared quark dynamics. This is
precisely what the shift does: by replacing the mass con-
tained in the standard zero-order propagator with an en-
hanced mass parameter, it optimizes the expansion point
of perturbation theory so that the quarks propagate with
an effective infrared mass of the order of the QCD scale
ΛQCD, rather than with the mass contained in the La-
grangian – which would be more relevant to the high
energy regime. The same is done for the transverse glu-
ons, which at tree level are set up to propagate with a
finite non-zero mass.

The shift is performed in such a way as to leave the
total action of the theory unchanged. As a result, three
new two-point interaction vertices arise which are propor-
tional to the quark mass parameterM and bare massMB

and to the gluon mass parameter m2. Since the expan-
sion cannot be carried out exclusively in powers of the
coupling constant, the approach is non-perturbative in
nature; nonetheless, the calculations are done using stan-
dard Feynman diagram techniques, so that the method
is still perturbative in the widest sense of the word.

As we will see in the following sections, our analysis
still has major theoretical limitations. First and fore-
most, the value of the quark mass parameter M intro-
duced by the shift needs to be fixed from external inputs
in order to obtain definite quantitative results. At vari-
ance with pure Yang-Mills theory, where the method was

optimized based on principles of gauge invariance and
the redundancy in the number of free parameters was ef-
fectively eliminated (see Ref. [60] and the discussion in
Sec. II), at this moment no such procedure is available for
full QCD. Because of this, in order to test the strength
of the screened expansion of QCD, we will resort to fit-
ting the free parameters of the expansion using the lattice
data; for reasons which will be discussed in a later sec-
tion, the fit will be done using a set of data for quenched
QCD.

Our study of the quark propagator will make use
of three different resummation schemes for the quark
self-energy: the minimalistic, vertex-wise and complex-
conjugate schemes (to be defined in Sec. III). The first
and second ones are a variation on the same theme and
only differ by the number of gluon mass counterterms (i.e.
two-point mass vertices, see the next section) included
in the computation of the self-energy. The complex-
conjugate scheme, on the other hand, uses the fully
dressed gluon propagator (or, to be precise, an approxi-
mation thereof) in place of the zero-order gluon propaga-
tor as the internal gluon line of the self-energy. Each of
these schemes has strengths and weaknesses which will
be discussed. For the moment, we anticipate that the
three resulting mass functions M(p2) do not show sig-
nificant differences and are in very good agreement with
the lattice data (provided of course that the values of the
free parameters are chosen appropriately). The quark
Z-functions, conversely, show the wrong qualitative be-
havior in all but the complex-conjugate scheme; when
computed using the latter, Z(p2) is qualitatively correct
at sufficiently high energies, but fails nonetheless at low
energies.

Ultimately, we were not able to quantitatively repro-
duce the lattice Z-function using the method presented
in this study. However, it must be kept in mind that, in
the Landau gauge, the divergent part of the Z-function
is exactly zero at one loop, and above 1.0− 1.5 GeV the
finite contribution to Z(p2) − 1 is quite small, yielding
an almost constant Z(p2) ≈ 1. Thus, the Z-function
seems to be very sensitive to corrections coming from
higher loops [65], thermal effects [66], neglected non-
perturbative terms and – on the lattice side – even
artifacts which may affect the actual result found in the
numerical simulations.

This paper is organized as follows. In Sec. II we review
the setup and results of the screened expansion of pure
Yang-Mills theory; in Sec. III we formalize the screened
expansion of full QCD with one flavor of quark, discuss
its renormalization and define the resummation schemes
which we will use for the computation of the one-loop
quark self-energy; in Sec. IV we present our results for
the quark propagator, fitting the free parameters of the
expansion from the lattice data; in Sec. V we discuss our
results and present our conclusions.
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II. THE SCREENED MASSIVE EXPANSION OF
PURE YANG-MILLS THEORY

The screened massive expansion for the gauge-fixed,
renormalized Faddeev-Popov Lagrangian was developed
in Refs. [53, 54] and extended to finite temperature
in [55–57], to full QCD in [58, 59] and to a generic co-
variant gauge in [60, 61]. Its renormalization in the Lan-
dau gauge was discussed in Refs. [62, 63], where differ-
ent renormalization schemes were considered and analyt-
ical expressions were reported for its beta function. The
method has proven to be self-consistent and predictive
when optimized by principles of gauge invariance [60, 63].

In what follows we give a brief review of the setup and
main results of the screened expansion of pure Yang-Mills
theory in the Landau gauge. Both of these are functional
to our analysis of full QCD.

A. Setup of the method

The bare Faddeev-Popov (FP) Lagrangian for pure
SU(N) Yang-Mills theory in a general covariant gauge
is given by

L = LYM,B + Lfix,B + LFP,B, (1)

where

LYM,B = −1

2
Tr (FBµνF

µν
B ) ,

Lfix,B = − 1

ξB
Tr (∂µA

µ
B∂νA

ν
B) ,

LFP,B = ∂µc
a
BD

µ
Bc

a
B. (2)

Here we have defined the bare gauge field AµB as

AµB = AaµB Ta, (3)

where the Ta’s are SU(N) generators, chosen so that

Tr (TaTb) =
1

2
δab; (4)

ξB is the bare gauge parameter defining the covariant
gauge and FµνB is the bare field-strength tensor,

F aµνB = ∂µAaνB − ∂νAaµB + gBf
a
bcA

bµ
B A

cν
B , (5)

with

[Ta, Tb] = if cabTc. (6)

The bare covariant derivativeDµ
B acting on the ghost and

antighost fields caB, c
a
B reads

(Dµ
B)

a
c = δac ∂

µ + gBf
a
bcA

bµ
B . (7)

L can be renormalized by introducing suitable renormal-
ization factors ZA, Zc and ZAcc for the gauge and ghost

fields and for the coupling constant, respectively, and by
defining new, renormalized gauge and ghost fields Aaµ,
ca and ca, a renormalized coupling g and a renormalized
gauge parameter ξ, according to

AµB = Z
1/2
A Aµ, ξB = ZAξ,

caB = Z1/2
c ca, caB = Z1/2

c ca,

g2 = g2B
ZAZ

2
c

Z2
Acc

. (8)

In terms of the renormalized fields, the Faddeev-Popov
Lagrangian reads

L = LYM + Lfix + LFP + Lc.t., (9)

where

LYM = −1

2
Tr (FµνF

µν) ,

Lfix = −1

ξ
Tr (∂µAµ∂

νAν) ,

LFP = ∂µcaDµc
a, (10)

and Lc.t. contains the renormalization counterterms.
The renormalized field-strength tensor F aµν and covari-
ant derivative Dµ are defined as

F aµν = ∂µA
a
ν − ∂νA

a
µ + gfabcA

b
µA

c
ν ,

(Dµ)
a
c = δac ∂µ + gfabcA

b
µ. (11)

We note that Lc.t. does not contain a counterterm for the
gauge-fixing term Lfix; indeed, the Slavnov-Taylor iden-
tities ensure that the bare gauge parameter ξB can be
multiplicatively renormalized by the gauge field renor-
malization factor ZA alone.

Ordinary perturbation theory is defined by a split of
the renormalized Lagrangian,

L = L0 + Lint + Lc.t., (12)

where L0 = limg→0 L is taken to be the non-interacting
limit of L,

L0 =
1

2
Aaµ

[

i∆µν
0ab(p)

−1
]

Abν + ca
[

iG0ab(p
2)−1

]

cb; (13)

here the ordinary zero-order gluon and ghost propagators
∆ab

0µν and Gab0 read

∆ab
0µν(p) =

−iδab
p2

(tµν(p) + ξℓµν(p)) ,

G
ab
0 (p2)−1 =

iδab

p2
, (14)

where tµν(p) and ℓµν(p) are the transverse and longitu-
dinal projectors defined as

tµν(p) = ηµν −
pµpµ
p2

, ℓµν(p) =
pµpν
p2

. (15)



4

The interaction term Lint contains a three-gluon, a four-
gluon and a ghost-gluon interaction,

Lint = L3g + L4g + Lccg, (16)

where

L3g = −gfabc∂µAaνAbµAcν ,

L4g = −1

4
gfabcf

a
deA

b
µA

c
νA

dµAeν ,

Lccg = gfabc∂
µcaAbµc

c. (17)

On the other hand, the term Lc.t. contains the field and
coupling renormalization counterterms,

Lc.t. = −1

2
δAδabp

2tµν(p)AaµA
b
ν+δcδabp

2cacb+ · · · , (18)

where δA = ZA − 1 and δc = Zc − 1. In particular,
the gluon field renormalization counterterm is completely
transverse.

At low energies, the ordinary perturbation theory of
pure YM theory is known to be inconsistent due to the
presence of an IR Landau pole in the running of the
strong coupling constant. Moreover, constraints due to
gauge invariance – when applied in the framework of
ordinary perturbation theory – prevent the generation
of an IR dynamical mass for the gluons, a phenomenon
which by now has been well established mainly thanks
to lattice calculations [4–15]. Addressing these issues is
the main objective of the screened massive expansion.

The screened massive expansion of pure YM theory is
defined by a shift of the expansion point of the Yang-
Mills perturbative series, performed in such a way as to
treat the transverse gluons as massive already at tree-
level [53, 54]. Explicitly, a shifting term δL is added to
the zero-order (kinetic) part of the gauge-fixed, renor-
malized Fadeev-Popov Lagrangian, and subtracted back
from its interaction part,

L′
0 = L0 + δL, L′

int = Lint − δL; (19)

δL is chosen so that the zero-order transverse gluon prop-
agator contained in L′

0 is replaced by a massive one: in
momentum space

δL =
1

2
Aaµ(p)i

[

i∆−1µν
mab (p)− i∆−1µν

0 ab (p)
]

Abν(−p), (20)

where

∆µν
mab(p) = δab

{−itµν(p)
p2 −m2

+ ξ
−iℓµν(p)

p2

}

(21)

is the new, massive zero-order gluon propagator. Since
δL is added to and subtracted from the FP Lagrangian,
the shift does not not modify the full action of Yang-Mills
theory. Instead, it introduces a new free mass parameter
m2 and changes the Feynman rules of YM theory in two

=Σ +

+

+= + +

++

+
(1a) (1b) (1c) (1d)

(2b) (2c)(2a)

Π

Figure 1. Two-point graphs with no more than three vertices
and no more than one loop. The cross is the transverse mass
counterterm of Eq. (24) and is regarded as a two-point vertex.
The renormalization counterterms are not shown in the figure.

respects. First of all, since the new zero-order Lagrangian
L′

0 reads

L
′
0 =

1

2
Aaµ

[

i∆−1µν
mab

]

Abν + ca
[

iG−1
0ab

]

cb, (22)

the transverse gluons propagate with a massive propaga-
tor rather than with a massless one – see Eq. (21). Sec-
ond of all, the interacting part of the Lagrangian, L′

int,
contains a new two-point interaction, namely

− δL = −1

2
Aaµ(p) iδΓ

µν
g ab(p)A

b
ν(−p), (23)

where the vertex δΓµνg ab(p) is given by

δΓµνg ab(p) = −im2tµν(p)δab. (24)

We refer to the latter as the gluon mass counterterm,
not to be confused with the renormalization counterterms
contained in Lc.t.. Neither the remaining interaction ver-
tices – spelled out in Eq. (17) – nor the renormalization
counterterms are affected by the shift.

The quantities of physical interest can be computed in
the framework of the screened expansion using the Feyn-
man rules described above. Since the vertex δΓg is not
proportional to the coupling constant, diagrams with an
arbitrary number of vertices – termed crossed diagrams if
they contain at least one gluon mass counterterm – coex-
ist at any given loop order. For this reason, the screened
expansion is intrinsically non-perturbative.

The crossed diagrams can be computed as derivatives
of non-crossed diagrams with respect to the gluon mass
parameter. This easily follows from the equality [64]

[∆m(p) · (δΓg(p) ·∆m(p))n]
µν

ab =

=
−i(−m2)n

(p2 −m2)n+1
tµν(p) δab =

=
(−m2)n

n!

∂n

∂(m2)n
∆µν
mab(p), (25)

which is valid for every n ≥ 1 and in any covariant gauge,
and carries over to the loop integrals.
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Due to the massiveness of the zero-order gluon prop-
agator in the screened expansion, new UV divergences
arise in the loop integrals which are proportional to the
gluon mass parameter m2. These divergences do not in-
validate the renormalizability of the n-point functions of
the theory, since they cancel as soon as crossed diagrams
with a higher number of crossed vertices are taken into
account [54, 64]. The removal of mass divergences can
(and indeed must) be adopted as a criterion for fixing
the minimum number of crossed loops to be included
when computing some quantity at a given loop order
[54, 64].

To one loop, the one-particle-irreducible (1PI) gluon
polarization Πabµν(p) and ghost self-energy Σab(p2) were
computed from the diagrams in Fig. 1. The crossed ver-
tices in the figure represent the gluon mass counterterm
δΓg. Diagrams (1c) and (2c) in the gluon polarization
are required in order to eliminate the mass divergences
that arise from diagrams (1b) and (2b), respectively; they
have a total of three vertices. To one loop, there are
two more diagrams with the same number of vertices –
namely, diagram (1d) and the crossed diagram in the
ghost self-energy (top right diagram in Fig. 1); these were
also included in the one-loop calculation for consistency.

Since the shift that defines the screened expansion does
not change the total action of pure YM theory, the full
1PI gluon polarization is known to be transverse by the
Slavnov-Taylor identities. Therefore we can write

Πabµν(p) = Π(p2) tµν(p)δ
ab, (26)

where Π(p2) is the gluon’s scalar polarization. After the
resummation of the 1PI diagrams, the transverse-gluon
and ghost dressed propagators ∆(p2) and G(p2) can then
be expressed as

∆(p2) = −i[p2 −m2 − Π(p2)]−1,

G(p2) = i[p2 − Σ(p2)]−1, (27)

where Σ(p2) is the ghost self-energy. Diagram (1a) in
Fig. 1 is easily shown to contribute to the gluon polar-
ization with a constant term ∆Π = −m2,

Π(p2) = −m2 +Π(loops)(p2), (28)

where Π(loops)(p2) is the loop contribution to the polar-
ization – diagrams (1b) to (2c) in Fig. 1. It is then easy
to see that the tree-level mass term inherited from the
shift cancels out with ∆Π, so that the dressed propaga-
tor itself can be expressed as

∆(p2) = −i[p2 −Π(loops)(p2)]−1. (29)

From the above equation it is clear that in the screened
expansion, rather than being a trivial effect of the shift of
the expansion point, the gluon mass must come from the
loops and is thus genuinely dynamical in nature; it does
not coincide with the gluon mass parameter m2, which
at this stage is just an undetermined dimensionful scale.

Quite interestingly, the existence of a finite mass-scale
in YM theory has been derived in the Gaussian approx-
imation from first principles [56, 64] but, of course, the
actual value of that scale can only arise from the phe-
nomenology, since there is no energy scale in pure YM
theory. The best variational Gaussian vacuum was shown
to be the vacuum of a massive gluon, and the present
screened expansion emerged has the perturbative loop
expansion around that best massive vacuum [56]. While
fermions have also been incorporated in the Gaussian for-
malism in the past [67], it is not clear if the screened
expansion of full QCD, as is discussed in the present pa-
per, can also be regarded as a loop expansion around
a variational Gaussian vacuum which breaks the chiral
symmetry.

B. Optimization and results in the Landau gauge

In a general renormalization scheme and in the Lan-
dau gauge, the dressed gluon propagator ∆(p2) can be
expressed as

∆(p2) =
−iZ∆

p2(F (s) + F0)
, (30)

where s = −p2/m2 and Z∆ and F0 are, respectively, a
multiplicative and an additive renormalization constant1.
The function F (s) was computed to one loop and third
order in the number of vertices from the diagrams in
Fig. 1; its analytical expression is reported in Ref. [54].
The zero-momentum limit of F (s) reads

F (s) → 5

8s
(s→ 0), (31)

so that

∆(p2) → i8Z∆

5m2
(p2 → 0), (32)

implying that the screened expansion’s gluon propagator
is indeed massive in the infrared. We reiterate that the
gluon mass – as defined, for instance and non-univocally,
by i∆(0)−1 – comes from the loops and is thus dynamical
in nature.

Together with the gluon mass parameter m2, Z∆ and
F0 are the only free parameters determining the gluon
propagator in the screened expansion. The multiplicative
constant Z∆ can of course be fixed by renormalizing the
propagator at some specified renormalization scale p2 =
−µ2, i.e. by requiring that

∆(−µ2) =
−i
−µ2

. (33)

1 The strong coupling constant αs was absorbed into the definition
of Z∆ and F0, and makes no explicit appearance in what follows.
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F0 z20 ϕ p0 (GeV)

−0.876 0.4575 ± 1.0130 i ± 1.262 ±0.5810 ± 0.3571 i

Table I. Results of the screened massive expansion of pure
YM theory, obtained by imposing the gauge-parameter in-
dependence of the poles and of the phases of the residues
of the gluon propagator in a general covariant gauge. From
left to right: the additive renormalization constant F0 in the
Landau gauge; the adimensional position z20 = p20/m

2 of the
poles of the gluon propagator in the Landau gauge; the gauge-
invariant phases ϕ of the residues of the gluon propagator;
the gauge-invariant dimensionful positions of the poles of the
propagator, assuming m = 0.6557 GeV in the Landau gauge
(the ± signs are independent from each other).

The value of the additive renormalization constant F0, on
the other hand, was optimized and fixed in Ref. [60] ac-
cording to principles of gauge invariance. In more detail,
it was shown that there exists a value of F0 in the Lan-
dau gauge, namely F0 = −0.876, which, when evolved to
a general covariant gauge (ξ 6= 0), yields gauge-invariant
poles p20 for the gluon propagator whose residues are also
gauge invariant in phase to less than 0.3% [68–70].

In the same context (and in previous papers also,
see e.g. [55, 58]), we found that the screened expan-
sion’s gluon propagator has two complex-conjugate poles,

whose adimensional positions z20 = p20/m
2 and z20 were

determined in [60] from first principles. The existence of
complex-conjugate poles has been related in the litera-
ture to the issue of the violation of positivity of the gluon
spectral function and, more generally, to that of confine-
ment [71, 72]. The poles and phases of the residues of
the gluon propagator, as computed in the (optimized)
screened expansion, are reported in Tab. I.

Of particular relevance to this paper is the fact that
the principal part of the gluon propagator – i.e. the
term which contains its poles – well-approximates the
full propagator itself [64], provided that the former is
multiplied by a factor of 0.945. This is shown in Fig. 2.

With Z∆ and F0 fixed, the gluon mass parameter m2

is left as the only free parameter of the theory (at least
as far as the gluon two-point function is concerned). m2

sets the energy units for the dimensionful quantities in
the theory; as such, it cannot be determined from first
principles and must be fixed from phenomenology. In this
respect, the gluon mass parameter plays the same role as
the QCD scale ΛQCD of ordinary perturbation theory2.
The propagator defined by Eq. (30), with F0 = −0.876
optimized by principles of gauge invariance, was found
to accurately reproduce the Euclidean lattice data of
Ref. [15], provided that the energy units of the screened

2 For a lengthy discussion on the conceptual similarities between
the gluon mass parameter m2 and the QCD scale ΛQCD see
Ref. [63], where the issue was addressed in the context of the
renormalization group improvement of the screened expansion.

 0
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 0.1  1

m
2  ∆

(p
)

p/m

Full propagator
Principal part (norm.)

Figure 2. Transverse gluon propagator in the Landau gauge
(ξ = 0) and in Euclidean space, computed in the screened
expansion of pure YM theory. Black line: full one-loop prop-
agator. Blue line: principal part of the one-loop propagator,
normalized by a factor of 0.945.
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Figure 3. Transverse dressed gluon propagator in the Lan-
dau gauge (ξ = 0) and in Euclidean space, computed in the
screened expansion of pure YM theory by optimizing the addi-
tive renormalization constant F0 based on principles of gauge
invariance. The lattice data are taken from Ref. [15].

expansion are set by choosing m = 0.6557 GeV (see
Fig. 3). Once the value of the gluon mass parameter
is determined, the dimensionful values of the poles of the
propagator can be computed; they are reported in the
last column of Tab. I.

III. THE SCREENED MASSIVE EXPANSION
OF FULL QCD

In this section we will extend the screened massive
expansion to full QCD with one flavor of quarks. As
we will see, our formalism is able to describe the non-
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perturbative generation of an infrared dynamical mass
both for the chiral and the light quarks.

Our starting point is the formalism laid out in Sec. IIA.
After introducing the quarks in the Faddeev-Popov La-
grangian of pure Yang-Mills theory, we will perform a
non-ordinary renormalization and split of the quark La-
grangian into a kinetic and an interaction term plus
renormalization counterterms. The procedure parallels
what we previously did for the gauge sector, but has
a new feature, namely, the non-renormalization of the
quark’s bare mass. The motivation and consistency of
such a choice will be discussed in Sec. IIIA. In Sec. IIIB
we will define three resummation schemes for the dressed
quark propagator, which differ by how the internal gluon
line is treated in the quark self-energy.

A. Setup and renormalization

The Lagrangian of full QCD with one flavor of quarks
is given by

LQCD = L+ Lq,B , (34)

where L is the Faddeev-Popov Lagrangian of pure Yang-
Mills theory – Eq. (1) – and Lq,B is the quark Lagrangian
expressed in terms of the bare fields, mass and coupling,

Lq,B = ψB(i /DB −MB)ψB . (35)

Here MB is the quark’s bare mass, while DB is the bare
covariant derivative acting on the bare quark field ψB ,

Dµ
B = ∂µ − igBA

aµ
B Ta. (36)

In order to renormalize the quark Lagrangian, we in-
troduce a quark field renormalization constant Zψ such
that

ψB = Z
1/2
ψ ψ, (37)

where ψ is the renormalized quark field. Then Lq,B can
be expressed as

Lq,B = ψ(i /D −MBZψ)ψ + Lq,c.t., (38)

where D is the renormalized covariant derivative acting
on the renormalized quark field,

Dµ = ∂µ − igAaµTa (39)

– g and Aaµ being the renormalized coupling and gluon
field defined as in Sec. IIA –, while Lq,c.t. contains the
quark’s field strength and quark-gluon vertex renormal-
ization counterterms.

At this point, if the quark is not massless (i.e. MB 6=
0), one usually introduces a renormalized quark mass
through a kinetic term of the form −MR ψψ, and in-
cludes the corresponding mass renormalization countert-
erm −δM ψψ into Lq,c.t.. In ordinary perturbation the-
ory, MR and MB are understood to be proportional and

related to each other by radiative corrections which can
be computed perturbatively at any given loop order. Due
to dynamical mass generation, however, in the IR the
light quarks acquire a mass which is much larger than
their renormalized mass MR and non-proportional to it;
indeed, the former would be non-zero (and of the order
of the QCD scale ΛQCD) also in the case of chiral quarks
(MB = 0). Clearly, choosing MR as the mass of the zero-
order propagator around which to expand the perturba-
tive series, is not optimal for the purpose of exploring the
low-energy dynamics of the quark sector.

On the other hand, the situation could improve if an ef-
fective mass scale, mimicking the dynamically generated
IR quark mass, was used in place of the renormalized
mass MR. Our setup, therefore, employs the following
scheme. As in ordinary perturbation theory, we add to
the quark Lagrangian a mass term of the form −M ψψ.
However, we do not interpret M as the renormalized
counterpart of MB. Instead, we regard the former as
being a non-perturbative mass scale arising from the low-
energy dynamics of the theory, and leave MB unrenor-
malized. Explicitly, we rewrite the quark Lagrangian as

Lq,B = ψ(i /D −M)ψ + ψ(M −MBZψ)ψ + Lq,c.t. (40)

and treat M and MB as independent mass parameters:
the difference MBZψ − M , which in ordinary pertur-
bation theory would correspond to the mass renormal-
ization counterterm δM , is not taken to be proportional
to the coupling constant (i.e. small in the perturbative
sense), nor is it regarded as fixed by the renormalization
of the quark propagator. We anticipate that an appro-
priate choice of the diagrams to include in the one-loop
quark propagator preserves the renormalizability of the
theory also when using this non-standard scheme.

The quark Lagrangian is now split into a kinetic (zero-
order) term Lq,0,

Lq,0 = ψ(i/∂ −M)ψ, (41)

in which M appears as the mass in the zero-order quark
propagator; an interaction term Lq,int,

Lq,int = ψ(g /A
a
Ta +M −MBZψ)ψ, (42)

which contains the quark-gluon vertex and two new
quadratic terms, proportional toM andMB; and a renor-
malization term Lq,c.t.,

Lq,c.t. = ψ(iδψ /∂ + g δg /A
a
Ta)ψ, (43)

which contains the quark field strength renormalization
counterterm δψ = Zψ − 1 and a renormalization coun-
terterm δg for the quark-gluon vertex.

The addition and subtraction of the mass term −M ψψ
from the quark Lagrangian parallels what we did in the
gluon sector of pure Yang-Mills theory. This is best seen
in the chiral limit (MB → 0), where the addition of a
mass term of the form −MR ψψ would be meaningless,
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since MR ∝ MB = 0. As a non-perturbative mass pa-
rameter not directly related to MB, M has the same
status of the gluon mass parameter m in the screened
expansion of YM theory, and is allowed to remain finite
also in the chiral limit. For this reason, we will refer to
M as the chiral mass of the quark.

As in the screened expansion of YM theory, the shift
of the quark Lagrangian changes the Feynman rules of
the theory. First of all, the chiral mass M now figures
as the tree-level mass in the zero-order quark propagator
SM (p),

SM (p) =
i

/p−M
. (44)

Second of all, two new two-point vertices δΓq,1 and δΓq,2
arise in the interaction:

δΓq,1(p) = iM, δΓq,2(p) = −iMBZψ. (45)

We reiterate that in our framework these are treated
as independent vertices. The quark-gluon interaction
and renormalization vertices, on the other hand, are left
unchanged, except for the quark mass renormalization
counterterm, which must not be included in the calcula-
tion.

These Feynman rules must of course be supplied with
those of the gluon sector, which were derived in Sec. IIA
in the context of pure YM theory. In particular, the
transverse gluons propagate with a massive zero-order
propagator – Eq. (21) –, and a third two-point vertex,
the gluon mass counterterm of Eq. (24), is included in
the interaction.

As a consequence of the new Feynman rules, the
screened expansion of full QCD is non-perturbative in
nature. Like in pure YM theory, this is due to the
two-point vertices δΓg, δΓq,1 and δΓq,2, which are pro-
portional to the gluon and the quark mass parameters
m2, M and MB, and are not taken to be proportional
to the strong coupling constant.

Let us now turn our attention to how to compute the
quark propagator in the new framework. The dressed
quark propagator S(p) can be expressed in terms of the
1PI quark self-energy Σ(p) 3 as

S(p) =
i

/p−M − Σ(p)
. (46)

Due to the shift of the expansion point, Σ(p) receives
tree-level contributions not only from the quark field
strength renormalization counterterm δψ = Zψ − 1, but
also from the new vertices δΓq,1 and δΓq,2 – diagrams
(1a) and (1b) in Fig. 4: we have

Σ(p) = −δψ/p−M +MBZψ +Σ(loops)(p), (47)

3 Not to be confused with the ghost self-energy of Sec. IIA.

where Σ(loops)(p) is the self-energy contribution coming
from the loops. It follows that

[−iS(p)]−1 = Zψ/p−MBZψ − Σ(loops)(p). (48)

As in pure YM theory, the mass M introduced by the
shift of the quark Lagrangian disappears from the prop-
agator and the bare mass is restored at tree level, up
to field-strength renormalization. In order to define the
quark mass function M(p2) and Z-function Z(p2), we
first subdivide Σ(loops)(p) into a vector and a scalar term,

Σ(loops)(p) = /pΣV (p
2) + ΣS(p

2), (49)

and then define two scalar functions A(p2) and B(p2),

A(p2) = Zψ − ΣV (p
2),

B(p2) =MBZψ +ΣS(p
2). (50)

In terms of A(p2) and B(p2), the functions M(p2) and
Z(p2) read

Z(p2) =
1

A(p2)
, M(p2) =

B(p2)

A(p2)
; (51)

moreover, Eq. (46) can be rewritten as

S(p) =
iZ(p2)

/p−M(p2)
. (52)

From Eqs. (50) and (51) we see that in the chiral limit
(MB → 0), despite the absence of a tree-level mass for
the quark propagator, the quark mass function M(p2)
does not vanish: thanks to the finiteness of the non-
perturbative scale M , one finds that ΣS(p

2) 6= 0, which
makes B(p2) 6= 0 and thus M(p2) 6= 0, also for vanish-
ing MB. Since ΣS(p

2) comes from the loops, the mass
of the quark is genuinely dynamical, a feature that was
already highlighted in Sec. II for the gluons in pure YM
theory. For non-chiral quarks the situation is similar, the
only difference being that B(p2) also contains one addi-
tional tree-level term which is proportional to the bare
mass MB of the quark. As we will see in a moment, the
fact that this term is not renormalized poses no issue of
consistency.

To one loop, an infinite number of diagrams con-
tributes to the 1PI quark self-energy. These have the
structure of the ordinary one-loop diagram of standard
perturbation theory – diagram (2a) in Fig. 4 –, with an
arbitrarily large number of insertions of the gluon mass
counterterm δΓg and of the quark mass counterterms
δΓq,1 and δΓq,2. In order to chose a truncation scheme
for this infinite series, let us have a look at the first few
such diagrams.

The simplest one-loop self-energy diagram is the ordi-
nary uncrossed loop – denoted by (2a) in Fig. 4. In a
general covariant gauge, diagram (2a) has divergences in
both its vector component and in its scalar component:

Σ(2a)(p) =
(

c2aV /p+ c2aSM
) 2

ǫ
+ · · · , (53)
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Figure 4. 1PI diagrams for the screened expansion one-loop
quark self-energy. The crosses denote insertions of the mass
counterterms. The subscripts 1 and 2 label the vertices δΓq,1

and δΓq,2 in Eq. (45). The renormalization counterterms are
not shown in the figure.

where c2aV and c2aS areO(g2) coefficients, ǫ = 4−d is the
regulator of dimensional regularization and the dots de-
note finite self-energy terms. While the vector divergence
can be straightforwardly absorbed into the renormaliza-
tion constant Zψ – see the first of Eq. (50) –, in order to
remove the mass divergence c2aS we would need to define
a renormalized mass MR in terms of which

MB = Z−1
ψ

(

MR − c2aSM
2

ǫ
+ scheme-dep. consts.

)

(54)
– see the second of Eq. (50). A relation like this mixes
infrared entities (namely, the chiral mass M) to UV fea-
tures (the divergence and the renormalization of the bare
mass) with no apparent logic, aside from the mathemat-
ical convenience of it. Moreover, this type of renormal-
ization cannot be employed in the chiral limit MB → 0,
when there is no bare mass in which to absorb the diver-
gence. For these reasons, it must be rejected.

We note that, having been introduced through a term
which is added and subtracted in the Lagrangian, the
mass parameter M cancels in the total action; as a con-
sequence, any divergence proportional to M must dis-
appear when diagrams with a different number of mass
counterterms are resummed at the same loop order.

In fact, diagram (2b) in Fig. 4 is easily shown to con-
tain the same mass divergence of diagram (2a) with an
opposite sign: since the crossed quark line in the dia-
gram can be expressed as a derivative with respect to
the quark’s chiral mass,

i

/p−M
(iM)

i

/p−M
= −M ∂

∂M

i

/p−M
, (55)

the self-energy contribution from diagram (2b), Σ(2b)(p),
can be obtained as a derivative of Σ(2a)(p):

Σ(2b)(p) = −M ∂

∂M
Σ(2a)(p). (56)

It follows that

Σ(2b)(p) = −c2aSM
2

ǫ
+ · · · , (57)

that is, Σ(2a)(p) and Σ(2b)(p) have opposite mass diver-
gences. As a consequence, the sum of diagrams (2a) and
(2b) only contains a divergence in the vector component,
coming entirely from Σ(2a)(p). This divergence can be
shown to be the same as the one found in ordinary per-
turbation theory, and is to be absorbed into the definition
of Zψ, as we saw earlier.

Now, in the Landau gauge (ξ = 0), the divergence
contained in Σ(2a)(p) is known from ordinary perturba-
tion theory to vanish. Therefore, not only does the sum
Σ(2a)(p) + Σ(2b)(p) not contain mass divergences, but in
the Landau gauge it is also fully finite. In particular, if
we truncate the perturbative series to diagrams (2a) and
(2b) in Fig. 4 and limit ourselves to the Landau gauge,
then the term MBZψ that appears in the B(p2) function
– see Eq. (50) – can be taken to be a finite constant. In
other words, no renormalization of divergent constants or
masses is required in the screened expansion of the Lan-
dau gauge quark propagator, provided that the latter is
truncated to diagrams (2a) and (2b).

On the other hand, if ξ 6= 0, the vector divergence in
Σ(2a)(p) + Σ(2b)(p) still needs to be absorbed into Zψ.
For non-chiral quarks (MB 6= 0), if MB were taken to
be finite, this would leave us with a divergent MBZψ
term inside B(p2). Therefore, for ξ 6= 0 and MB 6= 0,
a renormalized mass MR must still be introduced, even
when truncating the quark self-energy to diagrams (2a)
and (2b).

It is easy to see that a renormalized mass of the form
MR =MBZψ would not have the ordinary behavior of a
running mass under the renormalization group (RG). In-
deed, if the RG equations were employed in the scheme,
MR would run exclusively with the anomalous dimension
of the quark field, rather than with the full anomalous
dimension of the quark mass. This happens because we
have left out one further divergent diagram from the cal-
culation, namely, diagram (2c) in Fig. 4. The latter can
be obtained from diagram (2a) by using the equality

i

/p−M
(−iMBZψ)

i

/p−M
=MBZψ

∂

∂M

i

/p−M
, (58)

which can be exploited to write

Σ(2c)(p) =MBZψ
∂

∂M
Σ(2a)(p). (59)

In particular,

Σ(2c)(p) = c2aSMBZψ
2

ǫ
+ · · · . (60)

As we can see, diagram (2c) has a scalar divergence pro-
portional to MBZψ. When the latter is summed to the
tree-level term in B(p2), one finds

B(p2) =MBZψ

(

1 + c2aS
2

ǫ

)

+ · · · . (61)

By simple dimensional arguments, it is easy to show that
the remaining one-loop diagrams in the quark self-energy
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are finite. Therefore, the above expression spells out
the complete divergent term of the scalar component of
the one-loop self-energy, obtained by summing the diver-
gences of diagrams (2a) to (2c) in Fig. 4. Such a term can
indeed be equated, modulo finite constants, to a renor-
malized massMR which would run like an ordinary quark
mass if the RG equations were to be used, leaving us with

B(p2) =MR + finite terms. (62)

Beyond the Landau gauge, then, consistency with the
renormalization group requires us to include diagram (2c)
in the calculation. In the Landau gauge, on the other
hand, diagram (2c) is not needed in principle, since to one
loop the sum of diagrams (2a) and (2b) already results
in a finite quark 1PI self-energy.

Despite being necessary for theoretical consistency, if
the renormalized quark mass MR is much smaller than
the chiral mass M , the inclusion of diagram (2c) in the
quark self-energy turns out not to be essential from a
quantitative point of view. This is easily seen as follows.

Let Σ
(2a,2b,2c)
f (p) be the finite parts of the self-energy

diagrams (2a), (2b) and (2c). Using Eqs. (56) and (59),

Σ
(2b)
f (p)+Σ

(2c)
f (p) = −(M−MBZψ)

∂

∂M
Σ

(2a)
f (p). (63)

Modulo higher-order corrections, we can set MB = MR,
Zψ = 1 in the above equation, so that

Σ
(2b)
f (p) + Σ

(2c)
f (p) = −(M −MR)

∂

∂M
Σ

(2a)
f (p). (64)

It is then clear that, as long as MR ≪ M , the contribu-
tion of diagram (2c) is completely negligible with respect
to that of diagram (2b). In other words, for the light
quarks, diagram (2c) can be taken to contribute only to
the divergent part of the self-energy, i.e. to the renor-
malization of the bare mass4.

To summarize, in every linear covariant gauge, dia-
gram (2b) in Fig. 4 is needed in order to remove the
mass divergence in diagram (2a). This mass divergence
has no counterpart in ordinary perturbation theory,
since it is proportional to the quark chiral mass M .
Diagram (2c) is essential to renormalize the bare mass
MB in compliance with the standard RG equations.
Nonetheless, its finite part is completely negligible in
the case of light quarks. Finally, in the Landau gauge
the sum of diagrams (2a) and (2b) results in a finite

4 For the sake of completeness, we note that there is one catch
in this argument: at high energies, the scalar part of the sum
of diagrams (2a) and (2b) can be shown to vanish – see e.g.
Sec. IVA –, so that, instead of being negligible, diagram (2c)
actually makes up for the whole scalar self-energy. As long as we
limit ourselves to low and moderate energies, this issue does not
arise. At large energies, however, diagram (2c) and appropriate
RG techniques are needed to account for the correct asymptotic
behavior of the quark mass function.

self-energy. Since for the light quarks diagram (2c) is
quantitatively negligible, in the Landau gauge one can
simply exclude it from the self-energy and interpret the
free parameters MB and Zψ as bare but finite quantities.

In the next section we will carry on with our analysis of
the resummation of the one-loop quark propagator. Our
main focus will be on exploring different ways to treat
the finite diagrams in Fig. 4.

B. Resummation schemes for the quark propagator

Up to this point we have discussed the self-energy dia-
grams which contribute to the divergent part of the one-
loop quark propagator, namely, diagrams (2a) to (2c) in
Fig. 4. Using simple dimensional arguments, it is easy to
show that, to one loop, other insertions of the gluon and
quark two-point mass counterterms indeed yield conver-
gent diagrams. As an example, consider diagram (2d) in
Fig. 4. This diagram has a superficial degree of diver-
gence D

D = d− 1− 2− 2 → −1 < 0 (65)

– where the −1 and the −2’s come from the internal
quark and gluon lines, respectively –, making diagram
(2d) UV-finite in the limit d → 4. Equivalently, observe
that diagram (2d) can be expressed as a derivative of
diagram (2a) with respect to the gluon mass parameter
m2: using Eq. (25) with n = 1 we find that

Σ(2d)(p) = −m2 ∂

∂m2
Σ(2a)(p). (66)

Since the divergent part of Σ(2a)(p) does not depend on
m2, Σ(2d)(p) is again shown to be finite.

While divergent diagrams are included in the one-loop
calculation based on principles of renormalizability, as-
sessing which finite diagrams should be included as well
is far more tricky. One option could be to adopt a min-
imalistic point of view and limit oneself to the one-loop
diagrams needed for consistency, i.e. diagrams (2a) to
(2b) or (2c) in Fig. 4. Yet another option could be to re-
tain all the one-loop diagrams with a maximum of three
vertices, as we did for the gluon propagator in Sec. II;
in practice, this amounts to also including diagram (2d)
in the self-energy. These two resummation schemes dif-
fer by how the internal gluon line is treated – explic-
itly, by whether the internal zero-order gluon propagator
is corrected with its own mass counterterm or not. We
will refer to them as the minimalistic and the vertex-wise
schemes, respectively. Schemes with a larger number of
crossed diagrams (not shown in Fig. 4) are not considered
in this paper.

In the next section we will fit and compare the results
obtained in the minimalistic and vertex-wise schemes
with the quenched lattice data of Ref. [73]. The reason
for using quenched rather than unquenched lattice data
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is to exploit our previous results for pure YM theory and
fix ab initio the value of the gluon mass parameter m2

that appears in the quark propagator – thus reducing
the number of free parameters to be fitted. Indeed, ob-
serve that, to one loop, the quark self-energy diagrams for
the quenched and unquenched theories coincide. Hence,
in principle, our results could be used for comparisons
with both quenched and unquenched data. However, in
the framework of the screened massive expansion, the
value of the gluon mass parameter m2 running in dia-
grams (2a)-(2d) (Fig. 4) can receive corrections from the
quark loop in the gluon polarization (Fig. 5), which is
only present in the unquenched theory. Thus we expect
the value of m2 to be different depending on which the-
ory (quenched or unquenched) we are trying to fit. In
order to reduce the freedom in the choice of free param-
eters, we decide not to make a new determination of the
gluon mass parameter, but rather to use the quenched
lattice data for our fits. The value m = 0.6557 GeV was
obtained in [60] by a fit of the lattice data of Ref. [15]
for pure YM theory. With m fixed, the remaining free
parameters of the quark propagator are the chiral mass
M , the quark bare mass MB or renormalized mass MR,
and the renormalization constants.

As we will see, the minimalistic and vertex-wise
schemes are practically equivalent from the point of
view of the fit, the only difference being in the values of
the parameters needed to achieve the match with the
lattice data. Both of them succeed in quantitatively
reproducing the lattice mass function M(p2) with very
good precision. On the other hand, in none of the two
the Z-function has the behavior displayed by the lattice
data: Z(p2) is found to be a decreasing function of
momentum, at variance with the lattice. To one loop,
such a mismatch is not unseen, having been reported for
another massive model, namely the Curci-Ferrari model
of Ref. [45].

One interesting question to ask is whether higher-order
or non-perturbative corrections to the internal gluon line
in the quark self-energy can sensibly change the behavior
of the Z-function. Indeed, as we noted in the Introduc-
tion, in the Landau gauge, to one loop and at sufficiently
high energies, Z(p2) ≈ 1, making the Z-function sensi-
tive to all kinds of contributions beyond the leading per-
turbative order. The near vanishing of the perturbative

Figure 5. Quark loop in the unquenched gluon polarization.
To one loop, its inclusion affects the value of the gluon mass
parameter m2 and the position and residue of the poles of the
gluon propagator.

contribution makes the Z-function a valid benchmark for
investigating the role of condensates by the OPE. Indeed,
the slightly increasing behavior which is observed on the
lattice has been modeled by OPE [74–76] and shown to
be consistent with the existence of a dimension-2 gluon
condensate of the form

〈

A2
〉

. In order to explore these
issues, we introduce a third resummation scheme, which
we term the complex-conjugate (CC) scheme for reasons
that will become apparent in a moment.

In the CC scheme, instead of only summing the
zero-order gluon propagator (minimalistic scheme) or its
counterterm-corrected counterpart (vertex-wise scheme),
we use the fully dressed gluon propagator as the internal
gluon line of the one-loop quark self-energy (see Fig. 6).
Switching to the dressed gluon propagator allows us to
account for the full non-perturbative dynamics of the
gluon, when computing the quark propagator.

While in principle using the dressed propagator would
require us to resum and integrate an infinite number of
higher-order diagrams, in practice we know that – in pure
Yang-Mills theory – the principal part of the screened
expansion’s one-loop gluon propagator provides a very
good approximation to the dressed propagator, modulo
a multiplicative factor (see Sec. IIB, in particular Figs. 2
and 3). Therefore, in the CC scheme, we use a zero-order
gluon propagator which – in Euclidean space and in the
Landau gauge – reads

∆(c.c.)
µν (p) =

{

R

p2 + p20
+

R

p2 + p20

}

tµν(p). (67)

Here p20 and p20 are the complex-conjugate poles of the
dressed gluon propagator (hence the name CC scheme)
in the complexified Minkowski space, and R and R are
their normalized residues. The value of the modulus |R| –
which depends both on the renormalization conventions
for the dressed gluon propagator and on a multiplicative
factor that converts between the full propagator and its
principal part – does not actually affect the results for
the quark propagator, provided that the free parameters
are suitably redefined. Indeed, to one loop, the inter-
nal gluon line in the quark self-energy is multiplied by
a factor of the strong coupling constant αs, so that |R|
can be absorbed into the definition of the latter. Our
convention for the definition of |R| (and thus also αs in
the CC scheme) will be discussed in Sec. IVC. As for p20
and the phase of R, we use the values reported in Tab. I
(Sec. IIB). These were obtained in pure Yang-Mills the-
ory and are thus suitable for calculations in the quenched
theory, in line with our discussion on the gluon mass pa-
rameter m2 in the minimalistic and vertex-wise schemes.

As we show in Appendix B, despite the poles p20 and

p20 being complex, as long as the external momentum
p2 ∈ R, the loop integrals in the CC scheme can be
computed by employing the usual machinery of Feynman
parameter integrals and Gamma functions. In particu-

lar, if we denote with Σ
(loops)
m. (p) the loop contribution to

quark self-energy computed in the minimalistic scheme
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Figure 6. 1PI diagrams for the quark self-energy in the
complex-conjugate (CC) scheme. The double lines represent
the fully dressed gluon propagator, which in the CC scheme
is approximated by the principal part of the one-loop gluon
propagator (Sec. II).

– diagrams (2a) to (2c) in Fig. 4 –, then we can express

the corresponding self-energy term Σ
(loops)
c.c. (p) in the CC

scheme as

Σ(loops)
c.c. (p) =

= RΣ(loops)
m. (p)

∣

∣

∣

m2=p2
0

+RΣ(loops)
m. (p)

∣

∣

∣

m2=p2
0

(68)

or equivalently

Σ(loops)
c.c. (p) = 2Re

{

RΣ(loops)
m. (p)

∣

∣

∣

m2=p2
0

}

. (69)

As we will see, the Z-function computed in the CC
scheme indeed turns out to have a qualitatively differ-
ent behavior than those computed in the minimalistic or
vertex-wise scheme, closer to the one displayed by the
quenched lattice data at moderately large momenta.

IV. THE QUARK PROPAGATOR IN THE
LANDAU GAUGE

In this section we report our results for the quark
propagator in the Landau gauge using the screened
massive expansion of full QCD in the minimalis-
tic, vertex-wise and complex-conjugate resummation
schemes introduced in Sec. IIIB. As previously discussed,
we will use the lattice data of Ref. [73] for quenched
QCD in order to test the validity of the expansion and
fit the free parameters that appear in the propagator.
These parameters are defined in what follows.

In general – see Eqs. (50) and (51) –, the quark mass
and Z-function can be expressed as

M(p2) =
MBZψ +ΣS(p

2)

Zψ − ΣV (p2)
,

Z(p2) = [Zψ − ΣV (p
2)]−1. (70)

Here ΣV (p
2) and ΣS(p

2) are the vector and scalar compo-
nents of the loop contribution to the quark self-energy,
MB is the quark bare mass and Zψ is the quark field

renormalization constant. In the Landau gauge and to
one loop, as we saw in Sec. III, ΣV (p

2) is UV-convergent.
As a consequence, we can write

ΣV (p
2) =

αs
3π

σV (p
2), (71)

where σV (p
2) is a finite function. Nonetheless, the value

of Zψ still needs to be fixed. We decide to do so by renor-
malizing the Z-function in the momentum-subtraction
(MOM) scheme at a specified renormalization scale µ2.
Namely, we set

Z(µ2) = 1 ⇐⇒ Zψ − ΣV (µ
2) = 1, (72)

or, equivalently,

Zψ = 1 +
αs
3π

σV (µ
2), (73)

where we take µ to be equal to 4 GeV. As we will see in
a moment, as far as the fits are concerned, this choice is
inessential to our results.

At variance with ΣV (p
2), the scalar component ΣS(p

2)
can be either UV-divergent or UV-convergent depending
on whether diagram (2c) in Figs. 4 and 6 is included
or not in the self-energy, respectively. In the absence of
diagram (2c), ΣS(p

2) can be expressed as

ΣS(p
2) =

αs
π
σS(p

2), (74)

where σS(p
2) is a finite function. In particular, it follows

from the first of Eq. (70) that MB must be taken to be
finite. If we now define two finite constants h0 and k0,

h0 =
3π

αs
Zψ,

k0 =
π

αs
MBZψ, (75)

then the mass function M(p2) reads

M(p2) =
3[k0 + σS(p

2)]

h0 − σV (p2)
; (76)

here αs and MB have been absorbed into the definition
of h0 and k0.

While the exact propagator should not depend on the
scale µ, apart from a renormalization factor, the approx-
imate one-loop function M(p2) still has an implicit spu-
rious dependence on µ through the parameters h0, k0,
according to Eqs. (75) and (73). Thus, the one-loop re-
sult can be optimized by a wise choice of the parameters:
fixing h0 and k0 amounts to choosing an optimal renor-
malization – together with the corresponding coupling
and bare mass – for the quark mass function.

As discussed in Sec. IIB, for the gluon propagator such
an optimization can be achieved from first principles in
pure YM theory. Here, we just assume the existence of
an optimal value of the parameters and determine them
by a comparison with the lattice data. Thus, h0 and k0
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are regarded as free parameters which depend on the
scale ambiguity of the loop expansion.

For our fits, we will use h0, k0 and the chiral massM as
the primary free parameters. It follows that our choice of
the MOM scheme with µ = 4 GeV as the renormalization
scale has no impact on the results of the fit. What the
renormalization scheme actually determines is the value
of αs, which can be computed at fixed h0 and M by using
Eq. (73) and the first of Eq. (75):

αs = 3π
[

h0 − σV (µ
2)
]−1

. (77)

From the above equation, αs could be interpreted as the
strong coupling constant defined at the renormalization
scale µ = 4 GeV. However, it must be kept in mind
that the renormalization prescription we chose is fully
arbitrary. Actually, if the Z-function computed in the
screened expansion is not well-behaved – which is the case
here, as we have anticipated –, then taking Z(µ2) = 1 as
the starting point for measuring αs could lead to mean-
ingless values for the coupling constant. For the same rea-
son, while in principle the lattice data for the Z-function
could be used to fit at least some of the parameters of the
expansion, we will instead fully rely on the lattice data
for the quark mass function to perform the fit.

For completeness, we will also report our results in
terms of the renormalized mass MR. As we saw in
Sec. IIIA, the latter must be introduced as soon as dia-
gram (2c) is included in the quark self-energy. This is due
to the fact that, in the presence of said diagram, ΣS(p

2)
contains a divergence proportional to MBZψ. Namely,
for N = 3, in the minimalistic and vertex-wise schemes5,

ΣS(p
2) =

αs
π

[

σS(p
2) +MBZψ

2

ǫ

]

. (78)

Since, when MR ≪ M , the finite part of diagram (2c) is
negligible – see the discussion in Sec. III –, the function
σS(p

2) in Eq. (78) can be taken to be very same as the
one in Eq. (74)6. A renormalized mass MR can then be
defined by absorbing the mass divergence of diagram (2c)
into MB,

MR =MBZψ

(

1 +
αs
π

2

ǫ

)

. (79)

With MR as above, Eq. (76) still holds in the presence of
diagram (2c), with the constant k0 defined as

k0 =
π

αs
MR (80)

5 For the complex-conjugate scheme see ahead, Sec. IVC.
6 The same goes for Eq. (71): ΣV (p2) is the same function both

in the presence and in the absence of diagram (2c), with σV (p2)
unchanged.

Mlat M h0 k0

18 368.6 2.132 −10.3

18⋆ 318.1 1.791 6.0

36 330.8 1.967 14.1

54 320.0 2.073 38.1

72 330.7 2.341 62.4

90 336.9 2.504 88.6

Table II. Fit parameters for the quark mass function M(p2)
in the minimalistic scheme. Mlat, M and k0 are expressed in
MeV. The lattice data are taken from Ref. [73]. The asterisked
row was obtained at fixed MB , see Tab. III.

Mlat M αs MB MR

18 368.6 3.139 −14.4 −10.2

18⋆ 318.1 3.542 10 6.7

36 330.8 3.322 21.5 14.9

54 320.0 3.202 55.2 38.9

72 330.7 2.935 79.9 58.3

90 336.9 2.793 106.1 78.8

Table III. Fit parameters for the quark mass function M(p2)
in the minimalistic scheme, in terms of αs and MB or MR

(renormalization scale: µ = 4 GeV). Mlat, M , MB and MR are
expressed in MeV. The lattice data are taken from Ref. [73].
The asterisked row was obtained at fixed MB .

and h0 defined in the first of Eq. (75). Of course,
whether we express our results in terms of MB or of MR

has no quantitative impact on our fits, since these are
performed using h0 and k0, which as free parameters are
more general than the masses and coupling themselves.

In the next sections, our focus will be on quarks whose
lattice masses Mlat = 18, 36, 54, 72, 90 MeV are small
with respect to the QCD scale. Nonetheless, we will also
present some results for heavier quarks.

A. Minimalistic scheme

In the minimalistic resummation scheme, the loop dia-
grams included in the quark self-energy are those denoted
by (2a), (2b) and, for the purpose of defining a renormal-
ized mass MR, (2c) in Fig. 4. The quark mass function
M(p2) can be expressed as

M(p2) =
3[k0 + σ

(m.)
S (p2)]

h0 − σ
(m.)
V (p2)

, (81)

where the analytic expressions for the scalar functions

σ
(m.)
S (p2) and σ

(m.)
V (p2) are reported in Appendix A. By
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Figure 7. Quark mass function M(p2) in the Euclidean space
and in the Landau gauge for different values of the lattice mass
Mlat. Points: quenched lattice data from Ref. [73]. Curves:
one-loop mass functions computed in the minimalistic resum-
mation scheme using the parameters in Tab. II (equivalently,
Tab. III).

fixing m = 655.7 MeV as discussed in Sec. IIIB and fit-
ting the quenched lattice mass functions of Ref. [73] for
the lattice masses Mlat = 18, 36, 54, 72, 90 MeV, we ob-
tained the values of h0 and k0 reported in Tab. II. In
Tab. III we list the corresponding values of αs, MB and
MR, computed by employing the definitions in Eqs. (73),
(75) and (80).

As we can see from Fig. 7, the mass functions computed
in the minimalistic scheme show a very good agreement
with the lattice data. For all but one of the considered
lattice masses – namely, Mlat = 18 MeV, which we will
discuss separately in a moment –, the fitted values of the
chiral massM are found to be in the range 320−337MeV,
while the bare masses MB are found to increase with
Mlat, always keeping close to the latter.

The fact that MB ≈ Mlat can be easily explained
by looking at the high-momentum limit of the functions

σ
(m.)
V (p2) and σ

(m.)
S (p2). For p2 ≫ m2,M2 we have

σ
(m.)
V (p2) → −1− 3m2

4p2
+

3m2

2p2
ln
p2

m2
→ −1,

σ
(m.)
S (p2) → 2M2

p2
ln

p2

M2
→ 0. (82)

Therefore, in terms of MB and αs,

M(p2) → MBZψ
Zψ + αs

3π

≈MB (p2 ≫ m2,M2), (83)

where the approximation holds provided that the cou-
pling is sufficiently small. The above equation shows that
the scale of the high-momentum limit of the mass func-
tion is set by the bare mass MB; since on the lattice the
same role is played by the lattice mass Mlat, we expect
MB ≈ Mlat as long as our function fits well the lattice
data.

In the limit of vanishing momenta, regardless of the
lattice mass, the data saturate to a finite value of about

Mlat MB M αs MR

18 0 338.1 3.373 0.0

18 10 318.1 3.542 6.7

18 18 302.7 3.679 11.9

Table IV. Fit parameters for the quark mass function M(p2)
in the minimalistic scheme, in terms of αs and MB or MR

(renormalization scale: µ = 4 GeV), given Mlat = 18 MeV
and MB fixed to three different values. Mlat, MB , M and
MR are expressed in MeV. The lattice data are taken from
Ref. [73].
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Figure 8. Mlat = 18 MeV quark mass function in the Eu-
clidean space and in the Landau gauge. Points: quenched
lattice data from Ref. [73]. Curves: one-loop mass functions
computed in the minimalistic resummation scheme. The pa-
rameters for the curves with MB = 0, 10, 18 MeV are reported
in Tab. IV; those for the curve labeled as “full fit” are reported
in Tab. III.

350 − 450 MeV7. The approximate independence of the
saturation value from Mlat is expected on the basis that,
in the infrared, the light quarks acquire most of their
mass through the strong interactions, whose scale is much
larger than the quark mass contained in the Lagrangian,
and thus dominates over the latter. The mass function
computed in the minimalistic scheme does reproduce this
feature, provided that the chiral mass M is comparable
in value for the lattice masses under consideration (as is
the case in our fits).

In Tab. III the value of the bare mass MB fitted for
Mlat = 18 MeV stands out for being negative (this is a
direct consequence of k0 < 0 in Tab. II). Presumably,
this physically meaningless result is an artifact of the fit
caused by the highly oscillatory tail of the MB = 18 MeV
lattice mass function; the oscillations themselves are
most likely due to discretization errors, as suggested by
the large error bars in the original data (see Ref. [73]). A

7 Note that this value is larger for the heavy quarks, as we will
show later on in Fig. 10.
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Mlat p0

18 ±404.9± 187.5i

18⋆ ±373.7± 202.3i

36 ±388.0± 194.2i

54 ±390.7± 185.6i

72 ±407.7± 174.9i

90 ±424.4± 177.3i

Table V. Poles p0 of the quark propagator derived in the min-
imalistic scheme, using the parameters in Tabs. II-III. Both
Mlat and p0 are in MeV; the ± signs in p0 are independent
from one another. The asterisked row was obtained at fixed
MB .

constrained fit forcingMB ≥ 0 is not able to fix this issue,
since, in the presence of the constraint, the fitting routine
still tries to push MB to negative values, which implies
that the lower boundary of the fitting interval – namely
MB = 0 – is inevitably hit. Thus no meaningful result
for MB is obtained by constraining the latter to be non-
negative. Cutting the data at large momenta in order
to avoid the oscillations (which begin at approximately
2.5 − 3 GeV), as well, would not improve the situation:
since at low momenta the quark mass function is not very
sensitive to the value of MB (provided, of course, that we
assume MB ≪M), employing a cut dataset would make
it impossible to meaningfully establish the value of the
bare mass by a fit. As an alternative, to test our results,
we checked that fixing the value of MB by hand, instead
of fitting it from the lattice data, still yields a mass func-
tion which – modulo oscillations – is in good agreement
with the lattice. Some examples are shown in Fig. 8,
where we plot the data for Mlat = 18 MeV together with
our minimalistic scheme mass function. Here MB is set
to 0, 10, 18 MeV, while the rest of the free parameters (re-
ported in Tab. IV) are still obtained by fitting the data.
Remarkably, as soon as the bare mass is fixed to small
but positive values, the values of the parameters M and
αs obtained from the constrained fit get closer to those
found for Mlat = 36−90 MeV (Tab. III), further evidence
that MB > 0 is a more consistent choice when compared
to the raw result of the fit.

Being in possession of analytic expressions which give
a good description of the quark mass function in the Eu-
clidean space, we are in a position to extend the quark
propagator to the complexified Minkowski space and look
for its poles p20. These are defined as the solutions to the
equation

p20 −M
2(p20) = 0, (84)

where the argument p2 of the function M(p2) is a com-
plexified Minkowski momentum squared, at variance
with the convention used in this section, where we used
the Euclidean momentum. For all the considered lat-
tice masses, using the parameters in Tabs. II-III, we

 0.6

 0.8

 1

 1.2

 1.4

 0.5  1  1.5  2  2.5  3  3.5  4  4.5  5

Z
(p

)

p (GeV)

Mlat = 54 MeV

Figure 9. Quark Z-function Z(p2) in the Euclidean space
and in the Landau gauge for Mlat = 54 MeV, renormalized
at µ = 4 GeV. Points: quenched lattice data from Ref. [73].
Curve: one-loop Z-function computed in the minimalistic re-
summation scheme using the parameters in Tab. III.

found that the quark propagator has a pair of complex-
conjugate poles in the variable p2 (equivalently, two pairs

in the variable p =
√

p2); their positions p0 are reported
in Tab. V. In the literature, the existence of complex-
conjugate poles has been interpreted as proof of confine-
ment, since the imaginary part of the poles has the ef-
fect of removing the particles from the asymptotic states
of the theory [55, 60, 71]. In the minimalistic scheme,
the real part of the poles was found to be between 388
and 424 MeV, while their imaginary part is roughly half
these values, having been found in the range from 174 to
194 MeV. Fixing MB = 10 MeV by hand for the lattice
mass Mlat = 18 MeV yields p0 = ±373.7± 202.3i MeV, a
result which is more consistent with those of the other lat-
tice masses, when compared with the one obtained from
the raw fit. Indeed, we note that |Re(p0)| increases with
Mlat, while |Im(p0)| decreases with it. We checked that
using small but positive values of MB for Mlat = 18 MeV
yields similar poles to those reported above.

In Fig. 9 we show an example of the Z-function com-
puted in the minimalistic scheme using the parameters
in Tab. III, compared with the lattice data for a quark
with mass Mlat = 54 MeV. As we can see, the behav-
ior of Z(p2) is the complete opposite of that found on
the lattice: while on the lattice the Z-function increases
with momentum, in the minimalistic scheme it decreases.
This behavior is independent of the considered lattice
mass, and we checked that it does not change if the pa-
rameters are fixed by fitting the Z-function itself rather
than the mass function. We believe that the mismatch
with the lattice data may be due to the fact that – at
least at sufficiently high energies – Z(p2) ≈ 1, making
the Z-function very sensitive to higher-order and even
non-perturbative corrections. This is supported by the
results we obtained in the complex-conjugate resumma-
tion scheme, which show an improved agreement at large
momenta (see Sec. IVC ahead), and by recent findings
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Figure 10. Quark mass function M(p2) in the Euclidean
space and in the Landau gauge for larger lattice masses
Mlat. Points: quenched lattice data from Ref. [73]. Curves:
one-loop mass functions computed in the minimalistic re-
summation scheme. The chiral masses M are in the range
366 − 518 MeV, while the bare masses MB are in the range
147− 301 MeV.

reported in Ref. [65], where the Z-function is computed
in the context of the Curci-Ferrari model and shown to
change its behavior at two loops.

While up to this point our main focus has been on
the light quarks, it may be interesting to see what hap-
pens if we try to apply the screened expansion to heav-
ier quarks. Therefore, to end this section, we compare
the minimalistic scheme mass function with the lattice
data for quarks of mass Mlat = 126, 181, 271 MeV. The
outcome is shown in Fig. 10; as in Fig. 7, the free pa-
rameters are fitted from the data themselves. It should
be noted that when MB becomes of the same order as
M , as is the case in these fits, the approximation that
we employed throughout this paper – namely, to neglect
the finite part of diagram (2c) in Fig. 4 – becomes less
justifiable, and the diagram should be fully included in
the quark self-energy. Nevertheless, it appears that the
mass functions in the minimalistic scheme still manage
to fit well the lattice data. As for the light quarks, the
Z-functions computed in the minimalistic scheme for the
heavier quark do not match the lattice data, and are thus
not reported.

B. Vertex-wise scheme

In the vertex-wise resummation scheme, the loop dia-
grams included in the quark self-energy are those denoted
by (2a), (2b), (2d) and, for defining a renormalized mass
MR, (2c) in Fig. 4. The quark mass function M(p2) can
be expressed as

M(p2) =
3[k0 + σ

(v.)
S (p2)]

h0 − σ
(v.)
V (p2)

, (85)

Mlat M h0 k0

18 268.0 2.656 −16.9

18⋆ 197.6 2.051 6.8

36 228.7 2.418 11.5

54 221.4 2.577 40.0

72 238.4 2.977 70.1

90 249.0 3.207 102.5

Table VI. Fit parameters for the quark mass function M(p2)
in the vertex-wise scheme. Mlat, M and k0 are expressed in
MeV. The lattice data are taken from Ref. [73]. The asterisked
row was obtained at fixed MB , see Tab. VII.

Mlat M αs MB MR

18 268.0 2.605 −19.1 −14.0

18⋆ 197.6 3.128 10 6.8

36 228.7 2.788 14.3 10.2

54 221.4 2.663 46.6 33.9

72 238.4 2.393 70.7 53.4

90 249.0 2.261 95.9 73.8

Table VII. Fit parameters for the quark mass function M(p2)
in the vertex-wise scheme, in terms of αs and MB or MR

(renormalization scale: µ = 4 GeV). Mlat, M , MB and MR are
expressed in MeV. The lattice data are taken from Ref. [73].
The asterisked row was obtained at fixed MB .

where the analytic expressions for the scalar functions

σ
(v.)
S (p2) and σ

(v.)
V (p2) are reported in Appendix A. As in

Sec. IVA, we fixed m = 655.7 MeV and performed a fit
to the quenched lattice mass functions of Ref. [73] for the
lattice masses Mlat = 18, 36, 54, 72, 90 MeV. The results
of the fit are reported in Tab. VI, while in Tab. VII we
list the corresponding values of αs, MB and MR.

No significant change was found in the behavior of
the mass and Z-functions computed in the vertex-wise
scheme when compared to the minimalistic scheme, the
main difference between the two being the fitted values
of the free parameters. For this reason, in what follows
we will keep the discussion to a minimum and limit our-
selves to reporting our results. We refer to Sec. IVA for
details.

In Fig. 11 we show the mass function M(p2) computed
in the vertex-wise scheme together with the lattice data.
As we can see, the mass functions have the same behavior
as in the minimalistic scheme, and fit very well the data.
Like in the former scheme, the fitted values of the bare
massesMB are close toMlat, as expected upon inspection
of the high-momentum limit p2 ≫ m2,M2, which in the
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Figure 11. Quark mass function M(p2) in the Euclidean space
and in the Landau gauge for different values of the lattice mass
Mlat. Points: quenched lattice data from Ref. [73]. Curves:
one-loop mass functions computed in the vertex-wise resum-
mation scheme using the parameters in Tab. VI (equivalently,
Tab. VII).

case of the vertex-wise scheme reads

σ
(v.)
V (p2) → −1 +

3m2

2p2
→ −1,

σ
(v.)
S (p2) → m2

p2
ln
p2

m2
+

2M2

p2
ln

p2

M2
→ 0, (86)

again yielding

M(p2) → MBZψ
Zψ + αs

3π

≈MB (p2 ≫ m2,M2). (87)

In the vertex-wise scheme, the fitted values of the chiral
mass M turn out to be smaller than those reported in
Sec. IVA, being found in the range 221 − 249 MeV. To-
gether with the values of the coupling constant αs, which
are larger in the minimalistic scheme, this is by far the
biggest difference between the two schemes.

Like in the minimalistic scheme, the bare mass MB

fitted from the lattice dataset Mlat = 18 MeV is negative.
Again, as shown in Fig. 12, small but positive values of
MB yield a mass function which fits well the lattice data
and whose parameters M , αs and MR are closer to those
extracted from the other fits (Tab. VII).

In Tab. IX we report the position of the poles of the
vertex-wise scheme quark propagator, obtained by us-
ing the parameters in Tab. VII. These have real parts
in the range from 371 to 410 MeV and imaginary parts
between 167 and 185 MeV, slightly less than their min-
imalistic scheme analogues. At variance with the min-
imalistic scheme, we found that |Im(p0)| is smaller for
Mlat = 72 MeV than for Mlat = 90 MeV, the differ-
ence being of few MeVs. Given the generally decreasing
behavior of |Im(p0)| with Mlat, we believe that this re-
sult maybe a glitch of the fit. Indeed, we checked that
slightly changing the values of the free parameters for
either of the two quark masses yields both a decreasing

Mlat MB M αs MR

18 0 220.9 2.931 0.0

18 10 197.6 3.128 6.8

18 18 179.7 3.300 11.9

Table VIII. Fit parameters for the quark mass function M(p2)
in the vertex-wise scheme, in terms of αs and MB or MR

(renormalization scale: µ = 4 GeV), given Mlat = 18 MeV
and MB fixed to three different values. Mlat, MB , M and
MR are expressed in MeV. The lattice data are taken from
Ref. [73].
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Figure 12. Mlat = 18 MeV quark mass function in the Eu-
clidean space and in the Landau gauge. Points: quenched
lattice data from Ref. [73]. Curves: one-loop mass functions
computed in the vertex-wise resummation scheme. The pa-
rameters for the curves with MB = 0, 10, 18 MeV are reported
in Tab. VIII; those for the curve labeled as “full fit” are re-
ported in Tab. VII.

|Im(p0)| and mass functions which still fit well the lattice
data. As for the Mlat = 18 MeV quark, if we fix MB to
10 MeV like we did in Sec. IVA, the poles are found at
p0 = ±349.2 ± 193.1i MeV. Again, this result is consis-
tent with the increasing (resp. decreasing) behavior of
|Re(p0)| (resp. |Im(p0)|) with Mlat, and choosing other
small but positive values for MB does not change the
picture.

The Z-function computed in the vertex-wise scheme,
displayed in Fig. 13 for the lattice mass Mlat = 54 MeV,
shows the same behavior as its minimalistic scheme coun-
terpart, being a decreasing function of momentum. In
particular, the change of scheme does not manage to solve
the mismatch with the lattice data.

Finally, as in Sec. IVA, the mass functions
obtained from a fit of the heavier quarks –
Mlat = 126, 181, 271 MeV, see Fig. 14 – are in
good agreement with the lattice data, despite having
neglected the finite part of diagram (2c) in Fig. 4.

We conclude that, when used to compute the quark
propagator in the Landau gauge, the minimalistic and



18

Mlat p0

18 ±387.4± 180.9i

18⋆ ±349.2± 193.1i

36 ±371.7± 185.4i

54 ±375.2± 177.2i

72 ±392.9± 167.6i

90 ±410.8± 170.2i

Table IX. Poles p0 of the quark propagator derived in the
vertex-wise scheme, using the parameters in Tabs. VI-VII.
Both Mlat and p0 are in MeV; the ± signs in p0 are indepen-
dent from one another. The asterisked row was obtained at
fixed MB.
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Figure 13. Quark Z-function Z(p2) in the Euclidean space
and in the Landau gauge for Mlat = 54 MeV, renormalized
at µ = 4 GeV. Points: quenched lattice data from Ref. [73].
Curve: one-loop Z-function computed in the vertex-wise re-
summation scheme using the parameters in Tab. VII.

vertex-wise resummation schemes are practically equiv-
alent: albeit with different values of the free parame-
ters, they both yield mass functions which are found to
be in good agreement with the lattice, while not being
able to reproduce the correct behavior of the lattice Z-
function. As we will see in the following section, the
complex-conjugate scheme offers a partial solution to the
latter issue.

C. CC scheme

Before reporting the results of the fits in the complex-
conjugate resummation scheme, let us address one final
aspect of its definition. Recall that in the CC scheme

the free gluon propagator (internal gluon line) ∆
(c.c.)
µν (p)

is defined modulo the absolute value of the residue R of
the corresponding dressed propagator at its poles. As
discussed in Sec. IIIB, since to one loop |R| is multiplied
to the coupling constant αs, a change in the former can
be always compensated by a change in the latter. There-
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Figure 14. Quark mass function M(p2) in the Euclidean
space and in the Landau gauge for larger lattice masses Mlat.
Points: quenched lattice data from Ref. [73]. Curves: one-
loop mass functions computed in the vertex-wise resummation
scheme. The chiral masses M are in the range 288−472 MeV,
while the bare masses MB are in the range 136− 290 MeV.

fore, fixing the value of |R| actually amounts to choosing
a definition for the coupling. In order to choose our con-
ventions for R and αs, let us inspect the divergences of
the CC scheme. From Eq. (68) we know that, to one loop
and in the Landau gauge, the only divergence that arises
in the CC scheme comes from the scalar part of the quark
self-energy, and in particular from diagram (2c) in Fig. 6.
Using Eq. (78), it is easy to show that in the presence of
diagram (2c)

Σ
(c.c.)
S (p2) =

αs
π

[

σ
(c.c.)
S (p2) +MBZψ (R+R)

2

ǫ

]

, (88)

where Σ
(c.c.)
S (p2) is the scalar part of the loop self-energy

in the CC scheme and

σ
(c.c.)
S (p2) = Rσ

(m.)
S (p2)

∣

∣

∣

m2=p2
0

+Rσ
(m.)
S (p2)

∣

∣

∣

m2=p2
0

,

(89)

σ
(m.)
S (p2) being the minimalistic scheme scalar function

defined in Sec. IVA. As we can see, for general val-

ues of R = |R|eiθ, the divergence in Σ
(c.c.)
S (p2) is not

the standard one-loop divergence of QCD: a factor of
(R+ R) = 2|R| cos θ appears in front of the ordinary re-
sult. This is not an inconsistency by itself. As explained
in Sec. IIIB, the CC scheme is to be interpreted as a re-
summation of higher-order gluon polarization diagrams,
so that the structure of its divergent part does not need
to coincide with what we would expect from one-loop
standard perturbation theory. Nonetheless, we can ex-
ploit the freedom in the choice of |R| to make the scalar
divergence look like a standard one-loop divergence. This
can be achieved by setting

R+R = 2|R| cos θ = 1. (90)

With R normalized as such, we have that

∆(c.c.)
µν (p) → −itµν(p)

p2
(91)
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Mlat M h0 k0

18 449.9 6.294 −4.6

18⋆ 405.9 5.467 18.2

36 406.6 5.701 49.0

54 405.2 6.166 108.0

72 431.9 7.216 176.3

90 449.8 7.801 248.3

Table X. Fit parameters for the quark mass function M(p2)
in the complex-conjugate scheme. Mlat, M and k0 are ex-
pressed in MeV. The lattice data are taken from Ref. [73].
The asterisked row was obtained at fixed MB , see Tab. XI.

in the UV (p2 ≫ m2), as in standard perturbation
theory. We remark that this choice is not dictated by
any profound principle that needs to be satisfied in order
for the scheme to be consistent. It must be interpreted
as a convention by which we fix the value of the strong
coupling constant αs.

Having fully defined the CC scheme, let us now turn to
the results of the fit. As in Secs. IVA and IVB, the quark
mass function M(p2) computed in the complex-conjugate
scheme can be expressed as

M(p2) =
3[k0 + σ

(c.c.)
S (p2)]

h0 − σ
(c.c.)
V (p2)

, (92)

where σ
(c.c.)
S (p2) is given by Eq. (89) and

σ
(c.c.)
V (p2) = Rσ

(m.)
V (p2)

∣

∣

∣

m2=p2
0

+Rσ
(m.)
V (p2)

∣

∣

∣

m2=p2
0

,

(93)

σ
(m.)
V (p2) having been defined in Sec. IVA. In order

to fix the value of the free parameters k0 and h0, we
fitted the quenched lattice mass functions of Ref. [73]
for the quark masses Mlat = 18, 36, 54, 72, 90 MeV, using
m = 655.7 MeV as the gluon mass parameter. The
results of the fit are reported in Tabs. X and XI.

In Fig. 15 we show the complex-conjugate scheme mass
functions M(p2) together with the lattice data. As in the
minimalistic and vertex-wise schemes, our analytic func-
tions are in very good agreement with the data. The chi-
ral mass M is found in the range from 405 to 450 MeV,
and the values of MB increase with Mlat: having set
2|R| cos θ = 1 makes Eqs. (82) and (83) hold also in the
CC scheme. For the Mlat = 18 MeV quark, which by a
raw fit, as in the previous schemes, is found to have neg-
ative bare mass, fixing MB to small but positive values
still results in a mass function which fits well the lattice
data – see Tab. XII and Fig. 16.

The CC quark propagator has a pair of complex-
conjugate poles, whose positions are reported in
Tab. XIII. With MB fixed to example value of 10 MeV,

Mlat M αs MB MR

18 449.9 1.252 −2.2 −1.8

18⋆ 405.9 1.407 10 8.2

36 406.6 1.359 25.8 21.2

54 405.2 1.273 52.6 43.8

72 431.9 1.115 73.3 62.6

90 449.8 1.043 95.5 82.4

Table XI. Fit parameters for the quark mass function M(p2)
in the complex-conjugate scheme, in terms of αs and MB or
MR (renormalization scale: µ = 4 GeV). Mlat, M , MB and
MR are expressed in MeV. The lattice data are taken from
Ref. [73]. The asterisked row was obtained at fixed MB .
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Figure 15. Quark mass function M(p2) in the Euclidean space
and in the Landau gauge for different values of the lattice mass
Mlat. Points: quenched lattice data from Ref. [73]. Curves:
one-loop mass functions computed in the complex-conjugate
resummation scheme using the parameters in Tab. X (equiv-
alently, Tab. XI).

|Re(p0)| is found in the range from 423 to 478 MeV, in-
creasing with Mlat, while |Im(p0)| lies between 186 and
157 MeV, decreasing with it. The former are quite larger
than those of the minimalistic and vertex-wise schemes,
while the latter are somewhat smaller. In other words,
the ratio |Im(p0)/Re(p0)| tends to be smaller in the CC
scheme in comparison to the other schemes.

Along with some differences in the fitted values of the
free parameters and in the position of the quark poles,
the mass functions computed in the CC scheme also show
a small change in shape, when compared to their ana-
logues in the minimalistic and vertex-wise schemes. This
is displayed in Fig. 17, where we plot the mass functions
obtained in the three schemes for the example value of
Mlat = 54 MeV. As a result of the change, the CC scheme
mass function is somewhat more suppressed in the p→ 0
limit. The effect, however, is very small and might not
be meaningful.

The radical departure of the complex-conjugate
scheme from the minimalistic and vertex-wise schemes
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Mlat MB M αs MR

18 0 441.6 1.279 0.0

18 10 405.9 1.407 8.2

18 18 379.5 1.519 14.4

Table XII. Fit parameters for the quark mass function M(p2)
in the complex-conjugate scheme, in terms of αs and MB or
MR (renormalization scale: µ = 4 GeV), given Mlat = 18 MeV
and MB fixed to three different values. Mlat, MB , M and
MR are expressed in MeV. The lattice data are taken from
Ref. [73].
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Figure 16. Mlat = 18 MeV quark mass function in the Eu-
clidean space and in the Landau gauge. Points: quenched
lattice data from Ref. [73]. Curves: one-loop mass functions
computed in the complex-conjugate resummation scheme.
The parameters for the curves with MB = 0, 10, 18 MeV are
reported in Tab. XII; those for the curve labeled as “full fit”
are reported in Tab. XI.

concerns the Z-function. In Fig. 18 we plot Z(p2) for the
example value of Mlat = 54 MeV together with the lattice
data. As we can see, at variance with the previous two
schemes and consistent with the lattice, the CC scheme
Z-function increases with momentum for p ' 1 GeV.
Moreover, above this cutoff value, our analytical expres-
sion is also in fair quantitative agreement with the lattice
data8. At low momenta, on the other hand, the agree-
ment is lost, since Z(p2) changes behavior and starts to
increase with decreasing p. This picture holds for any of
the lattice masses considered in this section.

It appears that, at sufficiently large momenta, com-
puting the quark Z-function with the fully dressed gluon
propagator (or, to be more precise, its CC scheme ap-
proximation) as the internal gluon line of the quark self-
energy solves the mismatch between the screened expan-
sion and the lattice data. As discussed in Sec. IIIB, this

8 Observe that in Fig. 18 the Z-function is plotted on an enlarged
scale: for p > 1.0− 1.5 GeV the difference between the function
computed in the CC scheme and The lattice data are at most
around 10− 20%.

Mlat p0

18 ±448.8± 167.9i

18⋆ ±423.8± 186.0i

36 ±428.5± 182.4i

54 ±434.2± 172.5i

72 ±457.1± 155.7i

90 ±477.7± 157.6i

Table XIII. Poles p0 of the quark propagator derived in the
complex-conjugate scheme, using the parameters in Tabs. X-
XI. Both Mlat and p0 are in MeV; the ± signs in p0 are inde-
pendent from one another. The asterisked row was obtained
at fixed MB .
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Figure 17. Quark mass function M(p2) in the Euclidean
space and in the Landau gauge for Mlat = 54 MeV. Points:
quenched lattice data from Ref. [73]. Curves: one-loop
mass functions computed in the minimalistic, vertex-wise and
complex-conjugate resummation schemes.

may be due to the dressed gluon propagator containing
non-perturbative contributions (e.g. from the conden-
sates, consistent with the OPE studies [74–76]) which a
bare massive propagator does not.

To end this section, as we did in Sec. IVA and IVB,
in Fig. 19 we compare the mass function with the lattice
data for heavier quarks, Mlat = 126, 181, 271 MeV. We
see that also in the CC scheme our analytic expressions
fit well the data.

V. DISCUSSION

The present work was motivated by the ambitious
aim of developing a reliable analytical approach to non-
perturbative QCD from first principles. In this paper,
important progresses have been made by the inclusion of
quarks in the successful framework of the screened ex-
pansion, which was first introduced for pure YM theory
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Figure 18. Quark Z-function Z(p2) in the Euclidean space
and in the Landau gauge for Mlat = 54 MeV, renormal-
ized at µ = 4 GeV. Points: quenched lattice data from
Ref. [73]. Curve: one-loop Z-function computed in the
complex-conjugate resummation scheme using the parameters
in Tab. XI.
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Figure 19. Quark mass function M(p2) in the Euclidean
space and in the Landau gauge for larger lattice masses Mlat.
Points: quenched lattice data from Ref. [73]. Curves: one-
loop mass functions computed in the complex-conjugate re-
summation scheme. The chiral masses M are in the range
503 − 738 MeV, while the bare masses MB are in the range
132− 282 MeV.

in [53, 54]. Here we have shown that, without any change
to the gauge-fixed Faddeev-Popov Lagrangian, by a wise
choice of the expansion point and by a reasonable set-
ting of the scheme and parameters, perturbation theory
gives a quantitative agreement with the available lattice
data for the quark mass function – albeit in the quenched
case until now. This constitutes an improvement over the
results of a previous analysis, which led to an only qual-
itative description of the quark sector [58].

Because of the agreement which is reached with the
lattice in the Euclidean space, we believe that the an-
alytic properties of the mass function might be reliable
in the whole complex plane up to moderately high ener-
gies. Thus, the explicit one-loop analytical expressions
are not just good interpolation formulas, but they also

unveil important analytic features of the propagators,
like the existence of complex-conjugate poles, pointing
to a confinement scenario which is rooted in those pecu-
liar features which make quarks and gluons unobservable,
yielding a dynamical mechanism for their exclusion from
the asymptotic states.

While the existence of complex-conjugated poles might
not be a direct proof of confinement [72], their existence
would be ruled out if quarks were present in the asymp-
totic states. Actually, the usual Källen-Lehmann rela-
tions do not hold if there are complex poles and the rela-
tive spectral densities do not satisfy the usual positivity
conditions.

We must note that in Ref. [58] – which used the same
formalism of the present paper, albeit in a different
scheme, to study the chiral limit of QCD – the quark
propagator was found to have a unique pole on the
real axis. In that work, as we said, the agreement
with the lattice data was only qualitative: the data
themselves showed large error bars and fluctuations, so
that any comparison with the analytic result could not
be conclusive. Having attained a much better match
with the lattice now leads us to revisit our previous
results.

Unfortunately, our main aim is far from being fully
achieved yet, and, despite the good quantitative descrip-
tion of the quark mass function, many aspects must still
be addressed. First of all, we must still find a way to fix
from first principles the two spurious parameters which
arise from the approximation, namely an arbitrary ad-
ditive constant which emerges from the renormalization
of the one-loop quark self-energy and the ratio M/m be-
tween the quark and the gluon mass scales, which are
arbitrary up to an overall choice for the energy units.

In pure YM theory, by enforcing some constraints of
BRST symmetry, like the Nielsen identities [68–70], the
expansion can be optimized yielding a fully predictive
method which does not require any external input and
does not contain any spurious parameter [60]. In the
quark sector, we still have to fix the spurious parameters
by a fit of the available lattice data. While it is encourag-
ing to see that an optimal choice of the parameters does
exist which describes the quark mass function data very
well for any given lattice mass, we still expect that the
spurious parameters might be fixed by enforcing some
constraints from first principles, like we did for pure YM
theory.

Of course, if carried out by employing the Nielsen iden-
tities or similar exact methods, this program would re-
quire a fully consistent calculation for the interacting
quark-gluon theory. In the present approach, we instead
used the optimized parameters of pure YM theory and
investigated the quark sector in a quenched approxima-
tion. Even at one loop, the existence of quarks modifies
the gluon polarization by a quark loop which was not in-
cluded in the gluon optimization. Thus, we expect that
the removal of all spurious parameters by first principles
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like in [60] will require a fully consistent, unquenched
calculation.

Another important issue is the truncation of the expan-
sion, which, in the absence of a unique smallness param-
eter, like the coupling in ordinary perturbation theory,
might appear quite arbitrary. In principle, the method
allows us to carry out the calculations perturbatively, by
adding higher-order corrections; however, in order to do
so, a general criterion for the order-by-order truncation
of the expansion is required. In this work, we have shown
that the ambiguity can only arise for finite graphs, since
the cancellation of spurious divergences requires a well
defined set of graphs to be retained at each order. More-
over, at one loop, the residual ambiguity seems to be
compensated by a change in the values of the spurious
free parameters, with basically no residual effect on the
quark propagator. Even in the complex plane, the pole
position is quite robust, with only a few percent change
when going from a truncation scheme to the other. In
this respect, the weak dependence of the pole position
on the resummation scheme can be regarded as an esti-
mate of the accuracy of the method.

Despite the difficulties, the available data for light
quarks remain the most important benchmark for our
predictions, since the non-perturbative effects, like dy-
namical mass generation and chiral symmetry breaking,
become less evident for heavier quarks. Nonetheless, we
checked that the agreement with the data is very good
even for lattice masses in the range 100− 300 MeV.

A non-perturbative feature which is not captured by
either the minimalistic or the vertex-wise scheme is the
slightly increasing tail of the Z-function shown by the lat-
tice data. This behavior can be understood by the OPE,
which predicts a powerlike behavior for Z(p2), with a co-
efficient proportional to the dimension-2 gluon conden-
sate

〈

A2
〉

[77]. It is a pure non-perturbative effect which
the present one-loop expansion fails to predict, unless
some kind of resummation is performed; the same mis-
match has been observed in other massive models, like
the Curci-Ferrari model [45]. We note that, in the tail,
the effects of the interactions on the lattice Z-function
are very small, so that Z(p2) ≈ 1. Thus, the observed
deviations are not very relevant for the overall description
of the quark propagator, which at moderately high ener-
gies is basically determined by the mass function alone.
Actually, the one-loop contribution to Z(p2), too, is fi-
nite and very small, explaining why the Z-function is so
sensitive to higher-order corrections [65] and thermal ef-
fects [66]. In the context of the Curci-Ferrari model [65],
it has been shown that the two-loop self-energy is enough
to correct the behavior of the Z-function over the whole
momentum range.

On the other hand, the almost vanishing perturbative
contributions make Z(p2) a very interesting benchmark
for investigating non-perturbative effects and the role of
the gluon condensate through the OPE at large ener-
gies. It is remarkable that, if the gluon line is resummed

inside the one-loop quark self energy, replacing the free-
gluon propagator with the dressed one-loop gluon line,
an increasing Z-function is found at large momenta, just
where the OPE result should hold. Since the main feature
of the non-perturbative resummation is the existence of
complex-conjugated poles in the dressed gluon propaga-
tor, instead of the real pole of the undressed propagator,
we argue that the complex gluon poles might be related
with the existence of a non-vanishing gluon condensate
[78].

Overall, we can say that, when optimized, the screened
massive expansion provides a quantitative and analytical
tool for investigating the infrared limit of the full QCD,
at least in the quenched approximation. The results are
very encouraging and suggest that in a fully consistent
unquenched calculation, even the residual free parame-
ters might be fixed by the general constraints of BRST
symmetry, yielding a more complete analytical descrip-
tion of non-perturbative QCD from first principles.
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Appendix A: QUARK SELF-ENERGY

In this appendix we report the relevant functions for
the screened expansion’s quark propagator in the mini-
malistic and vertex-wise resummation schemes. As dis-
cussed in Sec. IIIB, the corresponding complex-conjugate
scheme functions are easily derived from the minimalistic
scheme; this is proven in Appendix B.

1. Diagrams (2a), (2b) and (2d)

In Euclidean space, the self-energy contribution
Σ(2a)(p) due to the uncrossed quark loop, i.e. diagram
(2a) in Fig. 4, can be divided into a vector and a scalar

component, Σ
(2a)
V (p2) and Σ

(2a)
S (p2), as

Σ(2a)(p) = i/pΣ
(2a)
V (p2) + Σ

(2a)
S (p2). (A1)

The two components can be expressed in terms of two

scalar functions σ
(2a)
V (p2) and σ

(2a)
S (p2) as

Σ
(2a)
V (p2) =

αs
3π

σ
(2a)
V (p2),

Σ
(2a)
S (p2) =

αs
π
M

{

2

ǫ
− ln

M2

µ2 + σ
(2a)
S (p2)

}

, (A2)

where ǫ = 4−d and µ is an arbitrary scale introduced by
dimensional regularization. If we define two adimensional
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variables s and x, representing the Euclidean momentum
p2 and the quark chiral mass M ,

s = p2/m2, x =M2/m2, (A3)

then the functions σ
(2a)
V and σ

(2a)
S can be put in the form

σ
(2a)
V = CR lnR+ Cx lnx+ Cxs ln

x

x+ s
+ C0,

σ
(2a)
S =

t

s
lnR− t− s− x+ 1

2s
lnx, (A4)

where the coefficient functions CR, Cx, Cxs and C0 read

CR =
t

2s2
[(x+ s)2 + (x − s)− 2],

Cx = −1

2
CR +

1

4s2
[(x + s)3 − 3(x− s) + 2],

Cxs = − (x+ s)3

2s2
,

C0 =
x− 2

2s
− 1

2
, (A5)

while R is defined as

R =
t− s+ x− 1

t+ s+ x− 1
. (A6)

In Eqs. (A4) to (A6), t is itself a function of s and x,
defined as

t =
√

(x + s)2 + 2(s− x) + 1. (A7)

The expressions reported above agree with those com-
puted in the one-loop Curci-Ferrari model [45].

As discussed in Sec. III, diagrams (2b) and (2d) in
Fig. 4 can be computed as derivatives of diagram (2a):

Σ(2b)(p) = −M ∂

∂M
Σ(2a)(p),

Σ(2d)(p) = −m2 ∂

∂m2
Σ(2a)(p). (A8)

Once split into a vector and a scalar component,

Σ(2b)(p) = i/pΣ
(2b)
V (p2) + Σ

(2b)
S (p2),

Σ(2d)(p) = i/pΣ
(2d)
V (p2) + Σ

(2d)
S (p2), (A9)

Σ(2b)(p) and Σ(2d)(p) can be expressed in terms of four

scalar functions, σ
(2b)
V,S (p

2) and σ
(2d)
V,S (p2):

Σ
(2b)
V (p) =

αs
3π

σ
(2b)
V (p2),

Σ
(2b)
S (p) =

αs
π
M

{

−2

ǫ
+ ln

M2

µ2 + σ
(2b)
S (p2)

}

,

Σ
(2d)
V (p) =

αs
3π

σ
(2d)
V (p2),

Σ
(2d)
S (p) =

αs
π
M σ

(2d)
S (p2). (A10)

Using Eqs. (A8) and (A2), it is easy to compute these

functions as derivatives of σ
(2a)
V and σ

(2a)
S : for diagram

(2b) we have

σ
(2b)
V = −M ∂

∂M
σ
(2a)
V ,

σ
(2b)
S = − ∂

∂M
[Mσ

(2a)
S ] + 2 =

= −σ(2a)
S −M

∂

∂M
σ
(2a)
S + 2, (A11)

whereas for diagram (2d)

σ
(2d)
V = −m2 ∂

∂m2
σ
(2a)
V ,

σ
(2d)
S = −m2 ∂

∂m2
σ
(2a)
S . (A12)

Note that the 2 on the right-hand side of σ
(2b)
S comes from

the derivative of lnM2 inside the brackets in Eq. (A2).
In what follows, we will report the explicit self-energy

functions computed in the minimalistic and vertex-wise
resummation schemes.

2. Self-energy in the minimalistic and vertex-wise
resummation schemes

Recall that in the minimalistic scheme we only keep
the self-energy diagrams (2a) and (2b), whereas in the
vertex-wise scheme we also include diagram (2d). Let us
start from the first one.

In the minimalistic scheme, the loop contribution
Σ(m.)(p) to the quark self-energy is given by

Σ(m.)(p) = Σ(2a)(p) + Σ(2b)(p). (A13)

If we split Σ(m.)(p) into a vector and a scalar component,

Σ(m.)(p) = i/pΣ
(m.)
V (p2) + Σ

(m.)
S (p2), (A14)

then Σ
(m.)
V (p2) and Σ

(m.)
S (p2) can be expressed in terms

of two scalar functions σ
(m.)
V (p2) and σ

(m.)
S (p2), as

Σ
(m.)
V (p2) =

αs
3π

σ
(m.)
V (p2),

Σ
(m.)
S (p2) =

αs
π
M σ

(m.)
S (p2). (A15)

Here,

σ
(m.)
V = σ

(2a)
V + σ

(2b)
V ,

σ
(m.)
S = σ

(2a)
S + σ

(2b)
S . (A16)

Going back to Eq. (A11), the derivatives with respect to
M can be traded with derivatives with respect to x =
M2/m2,

M
∂

∂M
= 2x

∂

∂x
; (A17)
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then, σ
(2b)
V,S can be expressed as the following derivatives

of σ
(2a)
V,S :

σ
(m.)
V =

(

1− 2x
∂

∂x

)

σ
(2a)
V ,

σ
(m.)
S = −2x

∂

∂x
σ
(2a)
S + 2. (A18)

A straightforward albeit tedious calculation leads to the
result

σ
(m.)
V = C

(m.)
R lnR+ C(m.)

x lnx+ C(m.)
xs ln

x

x+ s
+ C

(m.)
0 ,

σ
(m.)
S = −2x(x+ s− 1)

st
lnR− x(t − x− s+ 1)

st
lnx, (A19)

where the coefficient functions C
(m.)
R , C

(m.)
x , C

(m.)
xs and C

(m.)
0 read

C
(m.)
R =

1

2s2t
{(s− 5x)[(s+ x)3 + (s2 − x2)]− 3(s2 − x2)− 4sx− 5s− x− 2},

C(m.)
x = −1

2
C

(m.)
R +

1

4s2
[(s− 5x)(x + s)2 + 3(x+ s) + 2],

C(m.)
xs = − (x+ s)2

2s2
(s− 5x),

C
(m.)
0 = −5x+ 2

2s
− 1

2
. (A20)

Similarly, in the vertex-wise scheme, by including dia-
gram (2d) to obtain the loop contribution Σ(v.)(p) to the
self-energy,

Σ(v.)(p) = Σ(2a)(p) + Σ(2b)(p) + Σ(2d)(p), (A21)

we can write

Σ(v.)(p) = i/pΣ
(v.)
V (p2) + Σ

(v.)
S (p2), (A22)

and express Σ
(v.)
V (p2) and Σ

(v.)
S (p2) in terms of two scalar

functions σ
(v.)
V (p2) and σ

(v.)
S (p2),

Σ
(v.)
V (p2) =

αs
3π

σ
(v.)
V (p2),

Σ
(v.)
S (p2) =

αs
π
M σ

(v.)
S (p2). (A23)

Clearly,

σ
(v.)
V = σ

(2a)
V + σ

(2b)
V + σ

(2d)
V ,

σ
(v.)
S = σ

(2a)
S + σ

(2b)
S + σ

(2d)
S . (A24)

Using the previous results for σ
(2b)
V,S , together with

Eq. (A12) and

m2 ∂

∂m2
= −s ∂

∂s
− x

∂

∂x
, (A25)

it is easy to show that the scalar functions σ
(v.)
V,S can be

computed as the following derivatives of σ
(2a)
V,S :

σ
(v.)
V =

(

1− x
∂

∂x
+ s

∂

∂s

)

σ
(2a)
V ,

σ
(v.)
S =

(

−x ∂
∂x

+ s
∂

∂s

)

σ
(2a)
S + 2. (A26)

A lengthy calculation yields [58]

σ
(v.)
V = C

(v.)
R lnR+ C(v.)

x lnx+ C(v.)
xs ln

x

x+ s
+ C

(v.)
0 ,

σ
(v.)
S = −s(2x+ 1) + (2x− 1)(x− 1)

st
ln

R√
x
+

1− 2x

2s
lnx, (A27)
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where the coefficient functions C
(v.)
R , C

(v.)
x , C

(v.)
xs and C

(v.)
0 read

C
(v.)
R =

1

s2t
{(s− 2x)[(x+ s)3 + (s2 − x2)] + (s− x+ 1)(1− 3x) + 2sx},

C(v.)
x = −1

2
C

(v.)
R +

1

2s2
[(x+ s)2(s− 2x) + 3x− 1],

C(v.)
xs = − (s− 2x)(x+ s)2

s2
,

C
(v.)
0 =

1− 2x

s
. (A28)

Appendix B: LOOP INTEGRALS IN THE CC
SCHEME

The complex-conjugate (CC) scheme for the quenched
one-loop quark propagator is defined by the internal
gluon lines in Fig. 6 being set equal to the principal part
of the fully dressed gluon propagator: in Euclidean space

∆(c.c.)
µν (p) =

{

R

p2 + p20
+

R

p2 + p20

}

tµν(p), (B1)

where the values of p20, R and of their complex conjugates

p20 and R are derived in the framework of the screened
expansion of pure Yang-Mills theory9 (see Sec. IIIB and
Tab. I in Sec. IIB).

The loop diagrams (2a) to (2c) in Fig. 6 can be com-
puted by employing the usual machinery of Feynman pa-
rameter integrals and Gamma functions. In order to see
this, first note that the Feynman parameter formula

1

AB
=

∫ 1

0

dx
1

[xA+ (1 − x)B]2
(B2)

remains valid for complex A and B. As a consequence, in
Euclidean space, all the loop integrals can be expressed
in terms of double integrals I of the form

I =

∫ 1

0

dx

∫

ddq

(2π)d
(q2)n

(q2 +∆)2
, (B3)

where n is equal to either 0 or 1. In the above equation,
at variance with the standard case,

∆ = xp20 + (1− x)M2 + x(1 − x)p2 (B4)

is a complex, nonreal quantity due to p20 itself being com-
plex with Im(p20) 6= 0 (here we are assuming that the ex-
ternal momentum p2 ∈ R). The angular integration in
Eq. (B3) can be readily performed, yielding

I =
Ωd−1

(2π)d

∫ 1

0

dx

∫ +∞

0

dq qd−1 (q2)n

(q2 +∆)2
=

=
Ωd−1

2(2π)d

∫ 1

0

dx

∫ +∞

0

dy
yd/2−1+n

(y +∆)2
, (B5)

9 The value of |R| is actually inessential in our calculation – see
Sec. IIIB.

where Ωd−1 is the volume of the (d−1)-dimensional unit
sphere and on the last line we have changed variable of
integration to y = q2. The integrand in Eq. (B5) has a
complex pole outside of the domain of integration – i.e.
the positive real axis –, at y = −∆. The integral over
the y variable can be expressed as the limit

∫ +∞

0

dy
yd/2−1+n

(y +∆)2
= lim

Λ→+∞

∫ Λ

0

dy
yd/2−1+n

(y +∆)2
. (B6)

We can now change the contour of integration of the def-
inite integral on the right-hand side by setting

∫ Λ

0

dy
yd/2−1+n

(y +∆)2
=

∮

γ

dy
yd/2−1+n

(y +∆)2
+

−
∫

γ2

dy
yd/2−1+n

(y +∆)2
−
∫

γΛ

dy
yd/2−1+n

(y +∆)2
, (B7)

where γ = γ1 + γΛ + γ2 and the contours γ1, γΛ and γ2
are displayed in Fig. 20. In particular, γ2 is chosen so
that y ∈ γ2 is opposite to −∆ with respect to the origin
of the complex plane. Since the integral over the closed
contour γ in Eq. (B7) is zero by analyticity, we have

∫ +∞

0

dy
yd/2−1+n

(y +∆)2
= lim

Λ→+∞

∫

−γ2

dy
yd/2−1+n

(y +∆)2
, (B8)

where the integral over γΛ drops out in the limit Λ → +∞
10. Moreover, by construction, the argument of y ∈ −γ2
satisfies arg(y) = arg(∆). Therefore we can write

∫ +∞

0

dy
yd/2−1+n

(y +∆)2
=

= (eiarg(∆))d/2−2+n

∫ +∞

0

dy
yd/2−1+n

(y + |∆|)2 . (B9)

One last change of integration variables from y to y/|∆|

10 Keep in mind that, in dimensional regularization, all the integrals
are assumed to converge before the limit d → 4 is taken. As
a consequence, integrals at infinity such as the one over γΛ in
Eq. (B7) can be safely set to zero.
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Figure 20. Contour for the loop integrals in the CC scheme.
γ2 is chosen so that y ∈ γ2 is opposite to the pole −∆ with
respect to the origin of the complex plane, hence arg(y) =
arg(∆).

leaves us with

∫ +∞

0

dy
yd/2−1+n

(y +∆)2
=

= (|∆|eiarg(∆))d/2−2+n

∫ +∞

0

dy
yd/2−1+n

(y + 1)2
=

= ∆d/2−2+n Γ(d/2 + n)Γ(2− d/2− n). (B10)

The latter is the very same result found for ∆ ∈ R. Hence
the integral I can be computed as if ∆ were a real number
or, equivalently, as if p20 were real.

Finally, since the diagrams for the CC scheme (Fig. 6)
are identical to those of the minimalistic scheme (Fig. 4,
diagrams (2a) to (2c)) except for the fact that the in-
ternal gluon propagator is made up of two terms, each
multiplied by a factor of R or R, by considering each of
these two terms separately we find that

Σ(loops)
c.c. (p) =

= RΣ(loops)
m. (p)

∣

∣

∣

m2=p2
0

+RΣ(loops)
m. (p)

∣

∣

∣

m2=p2
0

, (B11)

where Σ
(loops)
c.c. (p) and Σ

(loops)
m. (p) are the loop contribu-

tions to the 1PI quark self-energies computed, respec-
tively, in the CC scheme and in the minimalistic scheme,
and m2 is the gluon mass parameter introduced by the
screened expansion.
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