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Abstract—In beyond 5G and 6G network scenarios, the use
of satellites has been actively discussed for extending target
monitoring areas, even for extreme circumstances, where the
monitoring functionalities can be realized due to the usage of
millimeter-wave wireless links. This paper designs an efficient
scheduling algorithm which minimizes overlapping monitoring
areas among observation satellite constellation. In order to
achieve this objective, a quantum optimization based algorithm
is used because the overlapping can be mathematically modelled
via a max-weight independent set (MWIS) problem which is one
of well-known NP-hard problems.
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Scheduling, Maximum Weight Independent Set (MWIS)

I. INTRODUCTION

The use of satellite constellation is widely and actively used

in next generation wireless network system design and imple-

mentation [1]–[4]. Especially, low earth orbit (LEO) satellites

are getting a lot of attentions for various 6G applications

such as target area observations [5] and flexible/robust network

coverage extensions [2]. Both of them require high-capacity

satellite communications.

In order to realize the high-capacity satellite communi-

cations, (mmWave) frequencies are used in order to take

care of the huge traffic demands and the service continuity

requirements of next-generation 6G applications [1], [6]–[10].

Thus, large-scale surveillance and target area observation can

be realized [11]. In the observation satellite systems, having

server duplicated/overlapped monitoring areas among satellites

is not efficient even though millimeter-wave high-capacity

communications can be realized. Thus, scheduling algorithms

in order to minimize the overlapping monitoring areas have

been actively studied and proposed, e.g., [12].

The modeling of the overlapping area scheduling for obser-

vation satellite constellation can be realized with maximum

weight independent set (MWIS) formulation [11], [13], [14],

which is one of the well-known NP-hard problems [13]. In

order to approximately solve the NP-hard problems, many

algorithms have been investigated. Among them, the use of

message-passing algorithms is one of the well-known solu-

tions [13], [14], whereas this paper proposes a new novel al-

gorithm that utilizes quantum optimization and approximation

methodologies [15], [16].

Based on the advances in quantum optimization methodolo-

gies, many algorithms have been investigated for approximat-

ing combinatorial problems (e.g., MWIS [17], max-flow/min-

cut [18] and graph cut segmentation [19]) and deep learn-

ing training/inference problems (e.g., Quantum Convolutional

Neural Network (QCNN) [20], Quantum Random Access

Memory (QRAM) [21], and Quantum Graph Recurrent Neural

Network (QGRNN) [22]). In this paper, we design a quantum-

based approximation algorithm for MWIS-based overlapping

monitoring area scheduling in observation satellite constella-

tion.

The rest of this paper is organized as follows. Sec. II

presents the formulation of MWIS scheduling in satellite

observation modeling. Sec. III and Sec. IV describe the

preliminaries of QAOA and QAOA-based MWIS scheduling

for observation satellite constellation. Sec. V concludes this

paper and presents future research directions.

II. MAXIMUM WEIGHT INDEPENDENT SET (MWIS)

FORMULATION FOR SATELLITE OBSERVATION

SCHEDULING

We consider a network which consists of a set of obser-

vation areas [14]. According to the high data transmission

rate in millimeter-wave wireless links among satellites, the

transmission queue backlog in satellites can be filled in an

instant, with the observation image data via synthetic aperture

radar (SAR) [5]. For the scheduling of observation satellite

constellation, a conflict graph is constructed with the set

of nodes (physically, observation areas) and edges where

two nodes are connected by an edge if the corresponding

observation areas are overlapped more than threshold among

adjacent observation satellites. The edges between node si
(observation area in satellite i) and node sj (observation area

in satellite j) of the conflict graph, i.e., E(i,j), can be modelled

as,

E(i,j) =







1, if si is overlapped with sj where

si ∈ S, sj ∈ S, and i 6= j,

0, otherwise,

(1)

where S stands for the set of nodes (i.e., observation areas of

satellites).

For scheduling problems, the main objective is to find the

set of nodes (i.e., observation areas in satellite constellation)

where two adjacent nodes those are connected via an edge

cannot be simultaneously selected because it is not allowed to

have huge overlapping monitoring areas among observation

satellites. This situation is obviously equivalent to the case
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which maximizes the summation of weights of all independent

sets in a given conflict graph. Note that the weight is defined as

the degree of overlapping or the number of observation data in

satellite constellation. Thus, it is obvious that this scheduling

problem can be modelled with the form of MWIS as [14],

max :
∑

∀sk∈S

wk · Ik, (2)

s.t. Ii + Ij + E(i,j) ≤ 2, ∀si ∈ S, ∀sj ∈ S, (3)

Ii ∈ {0, 1}, ∀si ∈ S, (4)

where wk stands for the weight of satellite k (a positive

integer), and

Ii =
{

1, if si is scheduled where si ∈ S,

0, otherwise,
(5)

where this formulation aims at the case where conflicting links

are not scheduled simultaneously. Ii+Ij ≤ 2 when E(i,j) = 0
(no edge between si and sj), i.e., both of Ii and Ij can be 1.

On the other hand, Ii + Ij ≤ 1 when E(i,j) = 1, i.e., both of

Ii and Ij can not be 1. Thus, one of them will be selected or

both of them will not be selected.

III. PRELIMINARIES OF QUANTUM OPTIMIZATION

This section presents the preliminaries of quantum optimiza-

tion, i.e.,bra-ket notation (refer to Sec. III-A), quantum gates

(refer to Sec. III-B), and quantum approximate optimization

algorithm (QAOA) (refer to Sec. III-C).

A. Bra–Ket Notation

In quantum computing research, a bra–ket notation is widely

and generally used for mathematically presenting quantum

states or qubit states [17]. The ket and bra in this bra-ket

notation can be represented as column vectors and row vectors.

As a result, single qubit states (i.e., |0〉 and |1〉), can be

mathematically presented as,

|0〉 =
[

1
0

]

, (6)

|1〉 =
[

0
1

]

, (7)

and therefore,

|0〉 = 〈0|† =
[

1 0
]†
, (8)

|1〉 = 〈1|†
[

0 1
]†
. (9)

where † stands for Hermitian transpose. Therefore, the super-

position state of a single qubit state can be presented as,

c1 |0〉+ c2 |1〉 =
[

c1
c2

]

, (10)

where c1 and c2 are probability amplitudes, and note that the

c1 and c2 are complex numbers [23].

B. Quantum Gates

This section presents quantum gates or operators which

mathematically represent single-qubit or 2-qubit opera-

tions [23]. First, Hadamard gate H , Pauli-X gate X , Pauli-Y

gate Y , and Pauli-Z gate Z can be formulated as,

H =
1√
2

[

1 1
1 −1

]

, (11)

X =

[

0 1
1 0

]

, (12)

Y =

[

0 −i

i 0

]

, and (13)

Z =

[

1 0
0 −1

]

. (14)

Based on this, the rotation-X gate RX(θ), the rotation-Y

gate RY (θ), and the rotation-Z gate RZ(θ) are as,

RX(θ) =

[

cos θ
2 −i sin θ

2

−i sin θ
2 cos θ

2

]

, (15)

RY (θ) =

[

cos θ
2 − sin θ

2

sin θ
2 cos θ

2

]

, and (16)

RZ(θ) =

[

e−i θ
2 0

0 ei
θ
2

]

, (17)

where θ is an angular value.

C. Quantum Approximate Optimization Algorithm (QAOA)

QAOA is one of the widely known noisy intermediate-scale

quantum (NISQ) optimization algorithms for approximating

combinatorial problems [16], [24], [25]. This QAOA is used

for formulating HP (i.e., problem Hamiltonian) and HM (i.e.,

mixing Hamiltonian) based on the objective function f(y).
Then, the QAOS generates the parameterized states |γ, β〉 by

alternately and iteratively applying the HP and HM on initial

state |s〉. Here, f(y), HP |y〉, HM , and |γ, β〉 are defined

as (18), (19), (20), and (21), where n ∈ Z
+, p ∈ Z

+, and

Xk is the Pauli-X operator applying on the k-th qubit; γ

and β are the hyper-parameters those can be computed via

approximation. Here, HP encodes f(y) in (19), operating

diagonally in n-qubit quantum basis states [26]. In the com-

putation procedure of QAOA, via the iterative measurement

of |γ, β〉, the expectation of HP should be obtained. Finally,

the samples of f(y) can be obtained as [16],

〈f(y)〉γ,β = 〈γ, β|HP |γ, β〉 . (22)

The near-optimal or optimal approximation values of the

hyper-parameters γ and β are obtained using conventional

optimization, e.g., stochastic gradient descent [27], [28]. Thus,

the solution can be computed from (22) via the obtained hyper-

parameters γ and β. Finally, it can be shown that the QAOA-

based approximation is one of widely known hybrid quantum-

classical optimization algorithms where the efficient Hamilto-

nian design (for quantum approach) and the approximation

of efficient hyper-parameters (for conventional optimization

approach) are correlated [29], [30].



f(y) , f(y1, y2, ..., yn), (18)

HP |y〉 , f(y) |y〉 , (19)

HM ,

n
∑

k=1

Xk, (20)

|γ, β〉 , e−iβpHM e−iγpHP · · · e−iβ2HM e−iγ2HP e−iβ1HM e−iγ1HP |s〉 , (21)

IV. QUANTUM SCHEDULING FOR MWIS-BASED

FORMATION IN SATELLITE CONSTELLATION

This section consists of the design of Hamiltonian, i.e.,

Problem Hamiltonian, i.e., HP (refer to Sec. IV-A) and Mixing

Hamiltonian, i.e., HM (refer to Sec. IV-B). Lastly, QAOA

iterative computation procedure is described in Sec. IV-C.

A. Problem Hamiltonian, HP

The problem Hamiltonian HP is designed via the lin-

ear combination of the objective Hamiltonian HO and the

constraint Hamiltonian HC . The objective function and con-

straints in the mathematical problem for solving the consid-

ering MWIS-based scheduling problem are in HO (refer to

Sec. IV-A1) and HC (refer to Sec. IV-A2).

1) Hamiltonian for MWIS Objective, HO: Suppose that a

basic Boolean function B1(x) = x exists where x ∈ {0, 1}.

According to the quantum Fourier expansion of this B1(x) =
x, it can be mapped to Boolean Hamiltonian HB1

where I

and Z are identity operator and Pauli-Z operator [31], i.e.,

HB1
=

1

2
(I − Z), (23)

therefore, the objective function (2) can be mapped into the

following Hamiltonian,

HO′ =
∑

∀sk∈S

1

2
wk(I − Zk), (24)

where Zk is the Pauli-Z operator applied to Ik. Because

the objective function (2) is mapped to HO′ , it should be

maximized via the main objective of MWIS. Thus, it is

obvious that this HO′ should be maximized as well. Therefore,

the objective Hamiltonian HO should be minimized is as,

HO =
∑

∀sk∈S

1

2
wkZk . (25)

2) Hamiltonian for MWIS Constraints: In the MWIS-based

scheduling problem, we should avoid the case where both

adjacent nodes of the conflict graph are selected. The sched-

uled and unscheduled nodes have states are denoted as |1〉
and |0〉. Here, Ni and Nj are defined as the arbitrary nodes,

and EA(Ni, Nj), EB(Ni, Nj), and EC(Ni, Nj) stands for the

edge notations for three cases where,

• EA(Ni, Nj) for Case A: si and sj are not scheduled,

• EB(Ni, Nj) for Case B: One of si and sj is scheduled,

• EC(Ni, Nj) for Case C: Both of si and sj are scheduled

(impossible situation).

Suppose that the weights of Ni and Nj in Case C are

defined as WNi
and WNj

. Under this definition, the constraint

function C′(i, j), which counts the impossible situations, can

be represented as,

C′(i, j) =
n
∑

i=1

n
∑

j=1

(WNi
+WNj

)|EC(Ni, Nj)| (26)

where i > j; and n and |EC(Ni, Nj)| are the number of nodes

and the number of EC(Ni, Nj) where i > j. This is a primary

condition for avoiding impossible situations.

Based on the mathematical program of MWIS problem

formulation (i.e., (1)–(5)), C′(i, j) can be re-formed as C(i, j)
as,

C(i, j) =
∑

∀si∈S

∑

∀sj∈S

(wi + wj)E(i,j)

=
∑

∀si∈S

∑

∀sj∈S

(wi + wj)(Ii ∧ Ij), (27)

where i > j; and ∧ stands for an AND gate. In (27), C(i, j)
should be 0 because it stands for the number of impossible

situations. If making this C(i, j) be not possible, this C(i, j)
should be minimized as much as possible. According to the

quantum Fourier expansion of AND gate B2(x1, x2), it can be

mapped to the following Boolean Hamiltonian HB2
where the

Z1 and Z2 in this equation are the Pauli-Z operators applying

on x1 and x2, respectively [31],

B2(x1, x2) = x1 ∧ x2 where

x1 ∈ {0, 1} and x2 ∈ {0, 1}, (28)

HB2
=

1

4
(I − Z1 − Z2 + Z1Z2). (29)

Based on this result, the constraints (27) can be mapped

into following Hamiltonian,

HC′ =
∑

∀si∈S

∑

∀sj∈S

1

4
(wi + wj)(I − Zi − Zj + ZiZj), (30)

where i > j; and Zi and Zj are the Pauli-Z operators applied

to Ii and Ij , respectively. Because C(i, j) should be zero (or

it should be minimized, as explained before), the HC′ which

is mapped from C(i, j) should be minimized, as well. Thus,

the constraint Hamiltonian HC is as,

HC =
∑

∀si∈S

∑

∀sj∈S

−1

4
(wi + wj)(Zi + Zj − ZiZj) , (31)

where i > j.



Based on the obtained HO and HC in (25) and (31), the

problem Hamiltonian HP is defined as,

HP = HO + ρHC , (32)

where ρ is a hyper-parameter that represents the penalty rate

which means the ratio at which HC (constraints) affects HP

compared to HO (objective) (ρ ≥ 1).

B. Mixing Hamiltonian, HM

The mixing Hamiltonian HM produces various cases which

can appear in the given MWIS-formulated combinatorial prob-

lem. Our considering MWIS-based observation scheduling

problem can be formulated by a binary bit string which

presents a set of nodes. Therefore, various cases can be created

by flipping the state of each node, mathematically modelled as

|0〉 or |1〉. The bit-flip can be handled by the Pauli-X operator.

Therefore, HM can be formed as,

HM =
∑

∀sk∈S

Xk . (33)

C. QAOA Iterative Computation

The application of the designed Hamiltonian to the QAOA

iterative optimization computation sequence starts when the

design of Hamiltonian functions, i.e., HP and HM in (32)

and (33), are completed. Then the iterative optimization com-

putation procedure is as follows.

• First of all, the parameterized state |γ, β〉 can be gen-

erated by applying HP and HM to (21), as defined

in (25), (31), (32), and (33). Note that the initial state

|s〉 is set to the equivalent superposition state using the

Hadamard gates in (11).

• The expectation of HP can be measured on the generated

parameterized state |γ, β〉. Here, The parameters γ and

β are iteratively updated with traditional optimization

computation procedure.

• When the QAOA iterative computation sequence termi-

nates, the optimal (or approximated) parameters γOPT and

βOPT are finally obtained.

Therefore, the MWIS-based monitoring area scheduling

solution in observation satellite constellation can be obtained

by the measurement of the expectation of HP on the optimal

state |γOPT, βOPT〉 as,

〈F 〉 = 〈γOPT, βOPT|HP |γOPT, βOPT〉 , (34)

where 〈F 〉 is the expectation of the MWIS objective func-

tion (2) for the obtained solution samples.

V. CONCLUDING REMARKS AND FUTURE WORK

In beyond 5G and 6G communication networks, satellites

has been actively used in many applications such as seam-

less monitoring target areas, even for extreme circumstances,

thanks to the use of high-capacity millimeter-wave wireless

links in satellites. This paper proposes a scheduling algorithm

which aims at the minimization of overlapping monitoring

areas among observation satellite constellation. To achieve

this goal, a quantum optimization based algorithm is used

because the our considering overlapping formulation can be

mathematically modelled via a max-weight independent set

(MWIS) problem.

As a future research direction, the proposed algorithm can

be evaluated with various realistic satellite scenarios and

TensorFlow-Quantum based software implementation [32].
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