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Summary

Ensuring nominal asymptotic stability of the Nonlinear Model Predictive Control

controller is not trivial. Stabilizing ingredients such as terminal penalty term and

terminal region are crucial in establishing the asymptotic stability. Current work

presents alternate approaches namely arbitrary controller based approach and lin-

ear quadratic regulator based approach, which provide larger degrees of freedom

for enlarging the terminal region as against conservative approaches from the litera-

ture. Efficacy of the proposed approaches is demonstrated using benchmark two state

continuous stirrer tank reactor system around an unstable operating point. Terminal

regions obtained using the arbitrary controller based approach and linear quadratic

regulator based approach are approximately 45 and 412 times larger by area mea-

sure when compared to the largest terminal region obtained using the approach from

the literature. As a result, there is significant reduction in the prediction and control

horizon time.
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1 INTRODUCTION

Stability and performance are two crucial factors to be taken into consideration while designing any controller. One of the

most promising optimization based controller is the Model Predictive Control (MPC). MPC finds applications in every field of

science, engineering and technology1,2,3. Various researchers have presented overview of MPC schemes4,5. Primary concept

for ensuring nominal stability involves inclusion of stabilizing constraints6,7. Commonly used stabilizing constraints include

a) Terminal equality constraint, b) Terminal penalty term, and c) Terminal inequality constraint4,8,9. A significant process has

taken place in the area of nominal stability of linear MPC10 and Nonlinear MPC (NMPC)11,12,13,14. Grimm et al. have presented

examples when a significantly small change in any of the model parameters can alter the stability characteristics of NMPC15.

Hence formally establishing the asymptotic stability becomes important, necessary and challenging.

Executing terminal equality constraint is convenient16, however main limitation is that it is highly conservative and often leads

to infeasibility specifically when using constrained formulations. Michalska and Mayne conceptualized dual mode MPC scheme

where in the idea of terminal region was introduced7. NMPC controller is expected to drive the plant trajectory into a region,

termed as terminal region, around the set point in a finite time using the feasible inputs. Subsequently local linear controller

will take the system trajectory to the set point. This idea was extended by Chen and Allgöwer where in NMPC controller was

0Abbreviations: LQR, Linear Quadratic Regulator, NMPC, Nonlinear Model Predictive Control; TR, Terminal Region; ODEs, Ordinary Differential Equations

http://arxiv.org/abs/2108.00689v1


2 AUTHOR ONE ET AL

used inside the terminal region instead of using a linear controller, which has resulted in the concept of Quasi Infinite Horizon

- Nonlinear Model Predictive Control (QIH-NMPC) scheme17.

Region of attraction for NMPC is a set of initial conditions which result in all the constraints being satisfied with feasible

inputs within a specified finite time. It may be noted that the size of the terminal region is directly correlated to the size of the

feasible region i.e. the region of attraction. For a given finite horizon formulation with constant prediction horizon time, larger

the terminal region results in a larger region of attraction. Having larger region of attraction indicates ability of controller to

converge to the desired operating point from an initial condition which is far away from the set point5. Alternately, for identical

initial conditions, controller would require smaller prediction horizon time to satisfy the terminal inequality constraint. Mhaskar

et al. presented asymptotically stable NMPC design for continuous time switched systems18. Major drawbacks are explicit

characterization of the feasible initial conditions and applicability to only switched systems.

Limon et al. presented design of NMPC without terminal inequality constraint. Concept involved appropriate scaling the

terminal penalty term to compensate for the difference due to absence of the terminal inequality constraint19. It may be noted that

there is a limitation as to what extent designer can increase the terminal penalty term and results in smaller region of attraction.

Pannocchia et al. presented an algorithm to convert infinite horizon constrained linear quadratic regulator formulation into a

finite dimensions quadratic programming problem after assuming piece-wise linear inputs20. However the issue of convergence

of solution and sub-optimality need to be addressed. Esterhuizen et al. presented NMPC asymptotic stability results without

stabilizing terminal ingredients. However, two key assumptions of sufficiently longer prediction horizon and cost controllability

assumption limit the applicability of the algorithm to limited systems21. Jadbabaie et al. present unconstrained NMPC stability

results without terminal ingredients. The approach makes use of gradual reduction of Lyapunov function eventually resulting in

an asymptotic stability characteristics22. However, amount of time required to reach the desired operating points may be very

large and also the design is suitable for unconstrained systems. The proposed approach in this work is suitable for any kind of

nonlinear continuous time system with inputs constraints.

Chen and Allgöwer presented an approach for the computation of the terminal penalty term and also for the characterization of

the terminal region for the continuous time NMPC formulation17. Research involves local linearization at the set point followed

by solving a modified Lyapunov equation. Subsequently Chen and Allgöwer provide an approach to numerically characterize

the terminal region using an inequality based conditions. First major drawback of their approach is a tuning parameter which is

nearly independent of the NMPC formulation stage weighting matrices. Second limitation of Chen and Allgöwer’s approach is

that, it provides a single scalar tuning parameter which restricts the design to one degree of freedom for shaping of the terminal

region, hence, resulting in a very conservative terminal region. Chen and Allgöwer’s approach makes use of Linear Quadratic

Regulator (LQR) controller, which is designed using the stage cost weighting matrices and in turn do not provide any degrees

of freedom to the controller designer.

Several researchers have developed approaches for the terminal region characterization for NMPC formulations for the discrete

time cases23,24,25,26,27. It may be noted that discrete time formulations require a separate considerations due to the concept of

sampling time vastly affecting the terminal region shape and size28,29,27. Although the approaches developed for the discrete

time QIH-NMPC formulations provide large degrees of freedom for enlarging the terminal region, however, their application to

continuous time QIH-NMPC formulations is very limited. Hence, there is a need to develop approaches for the terminal region

characterization for the continuous time NMPC formulations which provide large degrees of freedom.

Chen and Allgöwer30 established that terminal inequality constraint can be avoided when the terminal penalty term and the

prediction horizon is chosen sufficiently large for continuous time NMPC formulation. However, the result is applicable only for

stable set points or stable continuous time nonlinear systems. In general, for any kind of system, without the terminal ingredients,

nominal stability of NMPC controller is not guaranteed. In addition, when the terminal inequality constraint is avoided, typically

designer is required to use a relatively larger prediction horizon time which increases the computational burden significantly.

Such limitation can be overcome by using terminal inequality constraint which assists in reducing the prediction horizon time17.

The approach by Chen and Allgöwer17 is based on linear controller designed at the origin and is applicable to any continuous

time nonlinear system governed by Ordinary Differential Equations (ODEs). Lucia et al.31 have extended this work by making

use of nonlinear controller for design of the terminal ingredients. Their approaches is based on Taylor series expansions of the

system dynamics with considering higher order terms of the stage weighting matrices. However, this approach is applicable to

only a special class of continuous time systems where in time derivatives of the system dynamics are polynomial functions.

In this work, two approaches are presented which are applicable to any type of nonlinear continuous time system governed by

ODEs.
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Rajhans et al. presented alternate arbitrary controller based approach for the computation of the terminal penalty and for

the characterization of the terminal region for the continuous time NMPC formulations32. Arbitrary controller based approach

makes use of a single additive matrix as the tuning parameter for shaping of the terminal region. Current work converts norm

based method to inequality based method, which assists in enlarging the terminal region. In the proposed approached in the

current work, two tuning matrices are provided which further increase the degrees of freedom available with the controller

designer. Proposed approach provides three degrees of freedom namely a) linear stabilizing controller, b) additive state weighting

matrix, and c) additive input weighting matrix. Current work proposed one novel LQR based approach for the terminal region

characterization, which provides two additive weighting matrices for enlarging the terminal region.

Efficacy of the proposed approaches with three tuning parameters is demonstrated using simulations on a benchmark Chemical

engineering system called Continuous Stirrer Tank Reactor (CSTR)33. Various researchers have used two state CSTR system

for demonstrating their controller performance34,35,36,37,38. However, application of the continuous time quasi infinite horizon

NMPC with guaranteed stability is very limited and one additional novelty of the current work. In the demonstration example,

it can be observed that the proposed approaches result in significantly larger terminal regions when compared to the approaches

available in the literature. Work also presents closed loop simulations of the system under continuous time NMPC controller to

validate the applicability of the controller in practical scenarios. Results pertaining to the reduction of the prediction horizon

time are presented in detail.

Second section presents the continuous time NMPC formulation in detail. In addition, approach by Chen and Allgöwer17 is

stated formally along with its limitation. Third section presents the proposed arbitrary controller based approach using inequality

method for the computation of the terminal penalty and for the characterization of the terminal region. In addition, third section

also presented novel LQR based approach for the terminal region characterization. Subsequently, asymptotic stability result is

presented. Forth section presents numerical characterization of the terminal region using the approaches presented in the third

section. Fifth section presents the terminal region characterization using demonstration case study. Sixth section details the

CSTR continuous time simulation and results obtained using the CSTR case study. Seventh section gives the conclusions from

the theory and cases study.

2 CONTINUOUS TIME NMPC FORMULATION

Consider a continuous time nonlinear system is given by

dX(t)

dt
= fc(X(t),U(t)) (1)

where X(t) ∈ ℝ
nx denotes the state vector in absolute terms and u(t) ∈ ℝ

nu denotes the input vector in absolute terms. Let

(Xs,Us) be the constant steady state of the system (1) i.e. 0 = fc(Xs,Us). Defining shift of origin as follows:

x(t) = X(t) − Xs (2)

u(t) = U(t) − Us (3)

After shift of origin, consider the continuous time nonlinear system given as

d(X(t) − Xs)

dt
= fc(X(t) −Xs,U(t) − Us) (4)

Rewiring using a simpler notation gives

dx(t)

dt
= f(x(t), u(t)) (5)

x(0) = x0 (6)

where x(t) ∈  ⊂ ℝ
nx denotes the state vector and u(t) ∈  ⊂ ℝ

nu denotes the input vector.

Assumptions are stated as follows:

C1 System dynamics function f ∶ ℝ
nx ×ℝ

nu → ℝ
nx is twice continuously differentiable.

C2 The origin 0 ∈ ℝ
nx is an equilibrium point of the system (5) i.e. f (0, 0) = 0.

C3 The inputs u(t) are constrained inside a closed and convex set  ⊂ ℝ
nu .
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C4 The system (5) has a unique solution for any initial condition x0 ∈  and any piece wise right continuous input u(⋅) ∶

[0,∞) →  .

C5 The state x(t) is perfectly known at any time t i.e. all the states are measured.

C6 External disturbances do not affect the system dynamics.

2.1 NMPC Formulation

For the continuous time system given by (5), NMPC formulation is stated as follows:

min

u[t,t+Tp]

J
(
x(t), u[t,t+Tp]

)
(7)

with

J
(
x(t), u[t,t+Tp]

)
=

t+Tp

∫
t

{
z(�)TWxz(�) + u(�)TWuu(�)

}
d� + z(t + Tp)

TPz(t + Tp) (8)

u[t,t+Tp] =
{
u(�) ∈  ∶ � ∈

[
t, t + Tp

]}
(9)

subject to

dz(�)

d�
= f

(
z(�), u(�)

)
for � ∈

[
t, t + Tp

]
(10)

z(t) = x(t) (11)

z
(
t + Tp

)
∈ 
 (12)

where Wx and Wu are state and input weighting matrices of dimension
(
nx × nx

)
,
(
nu × nu

)
respectively. P is the terminal

penalty matrix of dimension
(
nx × nx

)
. Wx,Wu,P are symmetric positive definite matrices. Tp is a finite prediction horizon

time and is identical to the control horizon time. z(�) denotes the predicted state in the NMPC formulation and u(�) denotes the

future control input moves. The set 
 is termed as the terminal region in the neighborhood of the origin. The set Tp
⊂  ⊂ ℝ

nx

is termed as the region of attraction is the set of all feasible initial conditions i.e. it is a set of all initial conditions x0 such that

terminal inequality constraint (12) is satisfied with inputs constrained given by equation (9) satisfied.

2.2 Design and Implementation of NMPC Formulation

The terminal region 
 is chosen as an invariant set for the nonlinear system (5) controlled by local linear controller with gain

matrix K. The terminal penalty term is chosen such that for all trajectories starting from any point inside the terminal region


, with approximation that a single cost term having larger value that the sum of all the predicted stage cost terms from end of

horizon to infinity and is given as follows:

z(t + Tp)
TPz(t + Tp) ≥

∞

∫
t+Tp

{
z(�)TWxz(�) + u(�)Wuu(�)

}
d� (13)

with u(�) = −Kz(�) ∈  for all � ≥ (t + Tp) and for all z(t + Tp) ∈ 
.

It is assumed that the solution to the optimal problem (7) with stage cost defined by (8) with input set given by (9) subject to

the predicted state dynamics (10) with initial condition (11) and terminal constraint (12) i.e. u
∗

[t,t+Tp]
exists and can be computed

numerically. Controller is implemented as a moving horizon framework. Accordingly, only the first control move

u(t) = u
∗
(t) (14)

is implemented in the plant. Entire process is repeated at next time point t+� with � being an sufficiently small sampling period.

The term Quasi Infinite is because of the fact that the NMPC formulation deplicts the stability properties of the infinite horizon

formulation, however, the actual implementation is finite horizon. Such implementation is achieved with the help of the equation

(13). However, only ensuring the terminal penalty term satisfying the condition (13) is not sufficient to guarantee the nominal

asymptotic stability of the NMPC controller, hence terminal constraint as given by (12) becomes inevitable. It may be noted that
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local linear controller with gain matrix K is not used for implementation of the NMPC controller and is only a mathematical

construct to characterize the terminal region 
.

2.3 Chen and Allgöwer’s Approach

Before proceeding to the proposed arbitrary controller based approach, a look at Chen and Allgöwer’s approach is required.

Consider, Jacobian linearization of the nonlinear system (5) in the neighborhood the origin as,

dx(t)

dt
= Ax(t) + Bu(t) (15)

where

A =
[
)f

)x

]

(0,0)
and B =

[
)f

)u

]

(0,0)

One additional assumption is required at this stage.

C7 The linearized system (15) is stabilizable.

Chen and Allgöwer characterize the terminal region as,


 ≡ {
x ∈ ℝ

n|xTPx ≤ �,−Kx ∈ }
(16)

where linear gain K and the terminal penalty matrix P are the steady state solutions of the modified Lyapunov equation given

as follows: (
AK + �I

)T
P + P

(
AK + �I

)
= −Q∗ (17)

Q∗ = Wx +KTWuK (18)

where AK = A − BK and parameter � > 0 is chosen such that � < −Re
[
�max (A − BK)

]
. Note Re

[
�max (A − BK)

]
is the

real part of the right most eigenvalue of AK i.e. eigen value having largest real part and it is negative due to the fact that linear

matrix AK is stable by design. It can be noted that once stage cost weighting matrices Wx,Wu are chosen, there is barely any

degree of freedom left to the designer for shaping of the terminal region. This results in a very conservative terminal regions.

The limitation is overcome by using the arbitrary controller based approach wherein additive tuning matrices are introduced

which provide large degrees of freedom for enlarging of the terminal region and is presented in the subsequent section.

3 ALTERNATE APPROACHES FOR THE TERMINAL REGION CHARACTERIZATION

In the arbitrary controller based approach, an arbitrary stabilizing linear controller is designed using any of the methods available

in the literature such as pole placement39,40, linear quadratic Gaussian control41 and so on. We prove the following lemma for

the arbitrary controller based approach:

Lemma 1. Suppose that assumptions C1 to C7 are satisfied and a stabilizing feedback control law is designed i.e. AK =

(A − BK) is stable indicating all the eigenvalues have negative real part. Let �Q is any positive definite matrix. Let matrix P

denote the solution of the following modified Lyapunov equation:

AT
K
P + PAK = −(Q∗ + �Q) (19)

where Q∗ is defined by equation (18). Then there exists a constant � > 0 which defines an ellipsoid of the form


 ≡ {
x ∈ ℝ

nx |xTPx ≤ �,−Kx ∈  }
(20)

such that 
 is an invariant set for the nonlinear system given by (5) with linear controller u(t) = −Kx(t). Additionally, for any

x(t+ Tp) ∈ 
 the inequality given by (43) holds true.

z(t + Tp)
TPz(t + Tp) ≥

∞

∫
t+Tp

{
z(�)TWxz(�) + u(�)Wuu(�)

}
d� (21)
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Proof. Since AK = (A − BK) is stable, hence, the eigenvalues of AK are having negative real part. Using the solvability

condition of the modified Lyapunov equation, a unique P > 0 can be computed which solves the equation (19). According to

Assumption C2, the origin 0 ∈ ℝ
nu is in the interior of the input constraints set  . Accordingly, we can compute a constant 


which defined a set 

 such that



 ≡ {
x ∈ ℝ

nx |xTPx ≤ 
,−Kx ∈  }
(22)

Now, let 0 < � ≤ 
 specify a region of the form given by equation (23).


 ≡ {
x ∈ ℝ

nx |xTPx ≤ �
}

(23)

As the input constraints are satisfied in 

 and 
 ⊆ 

 (by virtue of 0 < � ≤ 
), the system dynamics can be equivalently

viewed as an input unconstrained system in the set 
. Consider a vector �K (x) representing the nonlinearity in the system

dynamics defined as

�K (x) = f(x,−Kx) − AKx (24)

Note for a linear system �K (x) = 0. Consider a Lyapunov candidate defined as

V (x) = xTPx (25)

The time derivative of V (x) can be expressed as follows:

dV (x)

dt
=

dxT

dt
Px + xTP

dx

dt
(26)

Substituting from (24) into (26),

dV (x)

dt
= xT

(
AT

K
P + PAK

)
x + 2xTP�K (x) (27)

Using equation (19) into (27),

dV (x)

dt
= −xT (Q∗ + �Q) x + 2xTP�K (x) (28)

Rearranging results in the following equation:

dV (x)

dt
= −xTQ∗x +

(
−xT�Qx + 2xTP�K (x)

)
(29)

There are two possibility to characterize the terminal region. First is a norm based method and second is the inequality based

method.

Method A - Norm based method: Taking norm of second term of the equation (28),

xTP�K(x) ≤ |P |L�|x|2 (30)

Since xT�Qx ≥ �min(�Q) and combining (30) into (28),

dV (x)

dt
≤ −xTQ∗x −

[
�min(�Q) − 2|P|L�

]
|x|2 (31)

If 
 is chosen such that
[
�min(�Q) − 2|P|L�

] ≤ 0 (32)

then

dV (x)

dt
≤ −xTQ∗x (33)

Method B - Inequality based method: Rearranging terms from the equation (28),

dV (x)

dt
= −xTQ∗x +

(
−xT�Qx + 2xTP�K (x)

)
(34)

Consider second term of the expression (34),

	(x) ∶=
(
xT�Qx − 2xTP�K (x)

)
(35)

Using (35) in (34),

dV (x)

dt
= −xTQ∗x −	(x) (36)
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If 
 is chosen such that

	(x) =
(
xT�Qx − 2xTP�K(x)

) ≥ 0 (37)

then

dV (x)

dt
≤ −xTQ∗x (38)

Equation (38) for inequality based method is identical to equation (33) for norm based method.

Integrating inequality (33) or (38) over the interval, [t + Tp,∞), it follows that

V (x(t + Tp)) ≥
∞

∫
t+Tp

x(�)TQ∗x(�)d� (39)

i.e. inequality (43) holds true for any x(t + Tp) ∈ 
.

Lemma 2. Suppose that assumptions C1 to C7 are satisfied. Let W̃x > Wx and W̃u > Wu be any positive definite matrices.

Let matrix PLQ denote the solution of the following modified Lyapunov equations:

AT
KLQ

PLQ + PLQAKLQ
= −

(
W̃x +KT

LQ
W̃uKLQ

)
(40)

KLQ=
(
W̃u

)−1

BTPLQ (41)

where AKLQ
= A − BKLQ. Then there exists a constant � > 0 which defines an ellipsoid of the form


 ≡ {
x ∈ ℝ

nx |xTPx ≤ �,−KLQx ∈ }
(42)

such that 
 is an invariant set for the nonlinear system given by (5) with linear controller u(t) = −KLQx(t). Additionally, for

any x(t+ Tp) ∈ 
 the inequality given by (43) holds true.

z(t + Tp)
TPz(t + Tp) ≥

∞

∫
t+Tp

{
z(�)TWxz(�) + u(�)Wuu(�)

}
d� (43)

Proof. Proof is similar to the proof of Lemma 1 except for minor changes such as K is replaced by KLQ, P is replaced by PLQ

and remaining changes are shown below: Consider a candidate Lyapunov function defined as

V (x) = xTPLQx

Using equation (40), the time derivative of V (x) can be expressed as follows

dV (x)

dt
= xT

(
AT

K
PLQ+PLQAK

)
x + 2xTPLQ�(x) (44)

Defining matrices,

�Wx ≡ W̃x −Wx > 0 and �Wu ≡ W̃u −Wu > 0 (45)

one can write

W̃x +KT
LQ

W̃uKLQ= Q∗ + �Q (46)

Q∗ = Wx +KT
LQ

WuKLQ (47)

�Q = �Wx +KT
LQ

�WuKLQ (48)

and the equation (40) can be re-written as follows

AK
TPLQ + PLQAK = − (Q∗ + �Q) (49)

Equation (44) and equation (49) are combined as follows:

dV (x)

dt
= −xT (Q∗ + �Q)x + 2xTPLQ�(x) (50)

Rearranging results in the following equation:

dV (x)

dt
= −xTQ∗x +

(
−xT�Qx + 2xTPLQ�(x)

)
(51)
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Equation (51) is identical to the equation (29). Rest of the proof is similar to the proof of Lemma 1. Both the methods i.e. norm

based method and inequality based method are applicable for the LQR based approach as well.

Consider the feasibility lemma as follows:

Lemma 3. Let the assumptions C1-C7 hold true. For the nominal continuous time system, feasibility of continuous time QIH-

NMPC formulation problem (7) at time t = 0 implies its feasibility for all t > 0.

Proof. Proof is identical to the proof of the lemma 2 from17.

Consider the asymptotic stability result as follows:

Theorem 1. Let a) Assumptions C1-C7 hold true and b) the continuous time NMPC problem is feasible at t = 0. The nominal

nonlinear system (5) controlled with NMPC controller is asymptotically stable at the origin.

Proof. From equation (25) from the lemma 1 or 2, consider the Lyapunov candidate function

V (x) = xTPx (52)

Consider the following three properties42:

• V (0) = (0T )P(0) = 0.

• Since P is a positive definite matrix, V (x) = xTPx > 0 for all x ≠ 0.

• Using (33) or (38) and Q∗ > 0 implies

dV (x)

dt
≤ −xTQ∗x < 0 (53)

Thus, the candidate function V (x) is a Lyapunov function for the nonlinear system for x ∈ 
 under NMPC controller. Hence,

the closed loop system is asymptotically stable at the origin.

Note K is to be read as KLQ for linear gain matrix and P is to be read as PLQ for terminal penalty matrix for the subsequent

sections for the application of LQR based approach. Notation is simplified for readability.

4 TERMINAL REGION CHARACTERIZATION

Lemma 1 or Lemma 2 gave conditions for explicit characterization of the terminal region. It is possible to numerically compute

the terminal region and subsequently implement the QIH-NMPC controller.

4.1 Steps for the Characterization of the Terminal Region

Steps for characterization of the terminal region using arbitrary controller based approach are given below:

S1 Computation of Upper Bound Set:

Compute the largest value of 
 such that inputs constraints are satisfied in the set 

 .



 ≡ {
x ∈ ℝ

nx |xTPx ≤ 
,−Kx ∈ }
(54)

This can be formulated as a simple Quadratic Programming (QP) problem if the constraints are defined by upper bound

and lower bound on each of the input signal. Typically the set 

 would be tangential to at least one of the input constraint.

S2a Computation of the Terminal Region using norm based method:

Compute the largest � ∈ (0, 
] such that

L� ≤ L∗
�
=

�min(�Q)

2|P|
(55)
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where

L� =
max

x ∈ 


|�K(x)|
|x|

(56)

This is identical to the method given by Rajhans et al. in32 for the arbitrary controller based approach.

S2b Computation of the Terminal Region using inequality based method:

Compute the largest � ∈ (0, 
] such that
[

min

x(k) ∈ 

	(x)

]
= 0 (57)

The condition given by (57) ensures that 	(x) > 0 for all x ∈ 
, which is the necessary condition to further establish the

nominal asymptotic stability.

It may be noted that the steps S1 and S2a results in a conservative terminal region and steps S1 and S2b result in larger terminal

region. The step S2b is implemented as follows:

Initially � = 
 and condition (37) i.e. (	(x) ≥ 0) is checked. If (37) is true, then � = 
 . If (37) is false i.e. (	(x) < 0) for at

least one x ∈ 
, then the value of � is further reduced by a multiplicative factor � < 1 and � ≈ 1. The process continues until

condition (37) is satisfied.

Terminal region shape changes according to the computed P matrix and its size changes according to the value of �. In order

to compare the size of the terminal regions, area is computed for state dimension of 2 as

A2 =
��

√
det(P)

(58)

5 CSTR CASE STUDY

Effectiveness of the proposed approaches for the terminal region characterization and its applicability to NMPC continue time

simulations is demonstrated using the benchmark CSTR case study.

5.1 Choice of Tuning Matrices

According to the design of the arbitrary controller based approach, the gain matrix K can be any arbitrary stabilizing linear

controller. However, in order to simply the computations, simulation results are presented with the following choice. Controller

gain K is the steady state solution of the simultaneous equations (59) and (60).

ATP + PA = −Wx + PB
(
Wu

)−1
BTP (59)

K =
(
Wu

)−1
BTP (60)

The tuning matrix �Q is any positive definite matrix. However, in order to simply and structure the computations of the

terminal region, following parameterization is carried out:

�Q = W̃x +KT W̃uK (61)

In order to further simplify the numerical computation of the terminal region, additional parameterization is carried out as

follows:

W̃x = �xWx and W̃u = �uWu (62)

Note that it is sufficient to have W̃x > Wx or W̃u > Wu to satisfy �Q > 0, however, usually both W̃x > Wx and W̃u > Wu is

preferred in practice. Using the matrices (62) into (61),

�Q = �xWx + �uK
TWuK (63)

where �x > 0 and �u > 0 are the tuning scalars. Rajhans et al. presented terminal region characterization with only single tuning

parameter �x > 032. However, in the current work, two parameters �x > 0 and �u > 0 are varied for obtaining the terminal

region.
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Chen and Allgöwer presents both the norm based method and inequality based method17. It is reported that inequality based

method results in larger terminal region when compared to the norm based method. Approach by Rajhans et al. in32 makes use

of norm based method, however, the proposed approach in this work makes use of inequality based method which is inherently

less conservative.

Efficacy of having two tuning parameters is efficiently demonstrated using the case study in the next sub-sections. In the case

study, table 1 steps in which parameters are varied in order to obtain a significantly larger terminal regions. For approach by

Chen and Allgöwer’s17, there is a single constant scalar tuning parameter �. In the case of arbitrary controller based approach.

there are two iterations. In the first iterations, tuning parameter �x is varied keeping �u constant. In the second iteration, value of

�x = �∗
x

where �∗
x

is the value of �x resulting in maximum terminal region area in the first iteration. Arbitrary controller based

approach with single tuning parameter �x is given by Rajhans et al. in32.

TABLE 1 Terminal Region Computation Iteration Steps

Approach Iteration
Tuning

parameters

Constant

parameters

Initial

value

Increasing

parameter

Chen and Allgöwer’s17 1 � � −0.95 ∗
[
�max (A − BK)

]
-

Arbitrary controller based32 1 �x �u = 0 �x = 0.1 �x
Arbitrary controller based 2 �x, �u �∗

x
�u = 0.1 �u

LQR based 1 �x �u = 1 �x = 1.1 �x
LQR based 2 �x, �u �∗

x
�u = 1.1 �u

5.2 CSTR System Details

Consider Continuous Stirred Tank Reactor (CSTR) initially given by Hicks and Ray33 and later used by Huang et al.43. The

system dynamics equations are:

dzc

dt
=

(1 − zc)

m2

− k0zce
(−Ea∕zT ) (64)

dzT

dt
=
(z

f

T
− zT )

m2

+ k0zce
(−Ea∕zT ) − �0m1(zT − zCW

T
) (65)

where zc and zT represent dimensionless concentration and dimensionless temperature, respectively. Control inputs are cooling

water flow rate m1 and inverse of the dilution rate m2.

5.3 Nominal Parameters and Linearization

Nominal values of the parameters are given in the Table 2. To improve numerical stability of the optimization routine, the inputs

TABLE 2 CSTR System: Nominal Parameters

Variable Nominal Value

zCW
T

0.38

z
f

T
0.395

Ea 5

�0 1.95 × 10−4

k0 300
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(m1, m2) appearing in the system dynamics are scaled as u1 = m1∕600 and u2 = m2∕40. Operating point is given as,

XXXs =

[
0.6416

0.5387

]
(66)

UUU s =

[
0.5833

0.5000

]
(67)

The input constraints are given as follows:

 =
{
u1, u2 ∈ ℝ| − 0.4167 ≤ u1 ≤ 0.4167,−0.4750 ≤ u2 ≤ 0.5

}
(68)

Jacobian linearization of the continuous time nonlinear system at (Xs,Us) yields:

A =

[
−0.0779 −0.3088

0.0279 0.1905

]
and B =

[
0 −0.0358

−0.0184 0.0144

]
(69)

Eigenvalues of the open loop continuous time dynamics are (−0.0406, 0.1532), which is unstable (i.e. negative real part).

5.4 NMPC Controller Design

Stage cost matrices for the MPC formulation are given as follows:

WWW x =

[
10 0

0 2

]
(70)

WWW u =

[
1 0

0 0.5

]
(71)

Since concentration of the mixture is more crucial compared to the temperature of the reactor, hence, the weight for the first

state (concentration) is chosen 5 times larger when compared to weight of the second state (temperature). Sampling interval of

T = 1 unit is used.

5.5 Comparison of the Terminal Regions for CSTR System

Linear gain matrix and terminal penalty matrix obtained using Chen and Allgöwer’s17 approach (� = 0.1059) is given as follows:

KCA =

[
−1.6118 −10.7187

−2.1094 10.5029

]
, PCA = 103 ×

[
8.4569 5.8384

5.8384 4.8968

]
(72)

Linear gain matrix and terminal penalty matrix obtained using Arbitrary Controller based approach (�x = 50, �u = 20) is given

as follows:

K =

[
−1.6118 −10.7187

−2.1094 10.5029

]
, P = 104 ×

[
0.3492 0.3406

0.3406 1.2265

]
(73)

Linear gain matrix and terminal penalty matrix obtained using LQR based approach (�x = 50, �u = 1500) are given as follows:

LLQ =

[
−1.2963 −10.4475

1.1335 11.3084

]
, PLQ = 105 ×

[
0.1877 1.0578

1.0578 8.5254

]
(74)

Table 3 compares areas of the largest terminal regions obtained using Chen and Allgöwer’s17 (as CA), Arbitrary Controller

(as AC) based approach and LQR based approach (as LQ). It can be observed that the terminal region obtained using arbitrary

controller based approach is approximately 45 times larger than the area of the terminal region obtained using the approach by

Chen and Allgöwer’s17. Additionally, the terminal region obtained using LQR based approach is approximately 412 times and 9

times larger than the area of the terminal region obtained using the approach by Chen and Allgöwer’s17 and arbitrary controller

based approach respectively. It can be observed that arbitrary controller based approach using two tuning parameters �x, �u result

approximately 4.1 times increase in area of the terminal region when compared to the arbitrary controller based approach using

a single tuning parameter �x as given in32.
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TABLE 3 CSTR system: comparison of maximum terminal regions

Approach Degrees of freedom 
 � Area of 


Chen and Allgöwer’s17 � = 0.1059 1.3620 0.1282 1.4880 × 10−4

Arbitrary controller based32 �x = 50, �u = 0 1.3563 0.6467 0.0016

Arbitrary controller based �∗
x
= 50, �u = 20 11.9270 11.9270 0.0067

LQR based �x = 50, �u = 1 0.0940 0.0435 2.225 × 10−4

LQR based �∗
x
= 50, �u = 1500 1.3560 × 103 1.3560 × 103 0.0614

6 NMPC DEMONSTRATION RESULTS

In order to formally demonstrate the efficacy of the larger terminal regions on the MPC, continuous time simulations are carried

out using the largest terminal region which is obtained using the novel LQR based approach with two tuning parameters �x, �u.

Three initial conditions given in the deviation variables and computed in different directions to affirm that the result is certain

and not by chance, are given as follows:

xP1
(0) =

[
−0.001

−0.050

]
, xP2

(0) =

[
−0.625

0.380

]
, xP3

(0) =

[
0.400

0.230

]
(75)

Note, in the actual variable terms, the initial conditions for the system become

XP i(0) = Xs + xP i(0) for i = 1, 2, 3 (76)

Figure 1 displays plot of states in actual variables for the MPC simulation. It can be observed that all the states converge to

the steady state operating point.
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FIGURE 1 CSTR System: Plot of states in actual variables

Figure 2 shows trajectories of the states in the deviation variables for the MPC simulation. It can be observed that all the states

converge to the origin.

Figure 3 shows the plot of the control inputs (as voltage in V). It can be seen that both the control inputs remained inside the

limits indicating the feasibility. Both the control inputs converge to the steady state value after sufficient time has elapsed.
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FIGURE 2 CSTR System: Plot of states in deviation variables
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FIGURE 3 CSTR System: Plot of control inputs

Figure 4 depicts initial condition value i.e. log10
[
x(t)TPx(t)

]
value along with a limit log10�, which represents the terminal

set boundary. Initially, values are larger than log10 �, which indicates that the initial condition is outside the terminal region.

Subsequently, value (in log scale) keeps becoming quiet small indicating that the states converge to the origin i.e. x(t) → 0 as

t → ∞. Logarithmic scale is used because the range of values is higher.
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FIGURE 4 CSTR System: Plot of states in actual variables

Figure 5 shows the terminal constraint value i.e. value of z(t+ Tp)
TPz(t + Tp) along with its limit �. Value of � corresponds

to the terminal region boundary. Value always remains below � indicating that the predicted state at the end of the horizon time

i.e. z(t + Tp) is always inside the terminal region i.e. terminal inequality constraint is satisfied every time.
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FIGURE 5 CSTR System: Plot of states in actual variables
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Figure 6 depicts value i.e. log10
[
x(t)T x(t)

]
= log10|x(t)|2 value. For trajectories starting from the initial conditions P3, value

increases slightly at t = 4, which clearly motivates the need for developing Lyapunov stability theory. However, it can be noted

that during the entire trajectory value of the Lyapunov function
[
x(t)TPx(t)

]
as shown in the figure 4 is continuous decreasing

every time. This effectively illustrates the requirement of the presence of the matrix P in the Lyapunov function.
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FIGURE 6 CSTR System: Plot of states in actual variables

Table 4 presents approximate minimum prediction horizon time for MPC formulation to be feasible for the chosen initial

conditions. It can be noticed that there is significant reduction in the minimum prediction horizon time, which is primarily due

to the fact that the size of the terminal regions are larger in the arbitrary controller based approach and LQR based approach

when compared to the literature approach. It is well established that the computation time required for MPC optimization con-

vergence reduce exponentially when the prediction horizon time is reduced14. Hence, the efficacy of the proposed approaches

to significantly reduce the prediction horizon time is effectively demonstrated using the CSTR system case study.

Since states and inputs in the CSTR case study are converted to dimensionless entities by scaling, the time variable is also

scaled. Hence, it would not be legitimate to directly compare the MPC optimization convergence loop time with the sampling

time for this case. However, it is observed that the time taken for MPC optimization convergence using literature approaches

is significantly larger than the time taken in the case of proposed approaches, which is primarily due to the significantly lesser

prediction and control horizon time(s) requirements.

TABLE 4 Minimum prediction horizon time required for feasibility

Approach ↓ / Point → P1 P2 P3

Chen and Allgöwer’s approach (�)17 15 5 28

Arbitrary controller based approach (�x, �u) 6 3 11

LQR based approach (�x, �u) 4 3 3
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7 CONCLUSIONS

Approaches available in the literature for the terminal region characterization for the continuous time NMPC formulations

provide a limited degrees of freedom and often result in a conservative terminal region, thereby resulting in a conservative region

of attraction. Larger the terminal region larger is the region of attraction. An arbitrary stabilizing controller based approach and

novel LQR based approach is presented in this work which provides a large degrees of freedom for shaping of the terminal region

for the continuous time systems. Terminal penalty term is computed using the modified Lyapunov equation and subsequently the

nominal asymptotic stability of continuous time NMPC with updated terminal ingredients is established. Proposed approaches

provides linear controller gain and two additive matrices as the tuning parameters for enlargement of the terminal region and

also makes use of inequality based method.

Efficacy of the both the terminal region characterization approaches is demonstrated using benchmark CSTR system. It is

observed that terminal region area obtained using the the arbitrary controller based approach and the novel LQR based approach

is approximately 45 and 412 times larger by area as compared to the largest terminal region obtained using Chen and Allgöwer’s

inequality based approach from17 respectively. Continuous time NMPC simulations validate the asymptotic stability property

of the designed controller. It is observed that the minimum prediction horizon required for feasibility of the NMPC formulation

using the proposed approaches is significantly smaller than the one required using the literature approach.

During the simulations for simplicity, tuning parameter matrices are chosen to be multiple of the stage weighting matrices.

Future research would involve choosing a completely arbitrary tuning matrices for shaping of the terminal regions. In addition,

choosing smaller control horizon time when compared to the prediction horizon time and establishing asymptotic stability is

another research direction to explore.

References

1. Mayne D, Michalska H. Receding horizon control of nonlinear systems. IEEE Transactions on Automatic Control 1990;

35(7): 814–824. doi: 10.1109/9.57020

2. Qin SJ, Badgwell TA. A survey of industrial model predictive control technology. Control Engineering Practice 2003;

11(7): 733–764.

3. Camacho EF, Bordons CC. Model predictive control. Springer . 2007.

4. Allgöwer F, Badgwell TA, Qin JS, Rawlings JB, Wright SJ. Nonlinear Predictive Control and Moving Horizon Estimation

— An Introductory Overview. In: Springer London. 1999 (pp. 391–449)

5. Mayne DQ, Rawlings JB, Rao CV, Scokaert POM. Constrained model predictive control: Stability and optimality.

Automatica 2000; 36(6): 789–814.

6. Rawlings J, Muske K. The stability of constrained receding horizon control. IEEE Transactions on Automatic Control 1993;

38(10): 1512–1516.

7. Michalska H, Mayne D. Robust receding horizon control of constrained nonlinear systems. IEEE Transactions on Automatic

Control 1993; 38(11): 1623–1633.

8. Fontes FACC. A general framework to design stabilizing nonlinear model predictive controllers. Systems & Control Letters

2001; 42(2): 127–143. doi: https://doi.org/10.1016/S0167-6911(00)00084-0

9. Rawlings J, Mayne D. Model Predictive Control: Theory, Computation, and Design. Nob Hill Pub . 2009.

10. Muske KR, Rawlings JB. Model predictive control with linear models. AIChE Journal 1993; 39(2): 262–287.

doi: 10.1002/AIC.690390208

11. Oliveira dNMC, Biegler LT. Constraint handing and stability properties of model-predictive control. AIChE Journal 1994;

40(7): 1138–1155. doi: 10.1002/AIC.690400706

http://dx.doi.org/10.1109/9.57020
http://dx.doi.org/https://doi.org/10.1016/S0167-6911(00)00084-0
http://dx.doi.org/10.1002/AIC.690390208
http://dx.doi.org/10.1002/AIC.690400706


AUTHOR ONE ET AL 17

12. Sistu PB, Bequette BW. Nonlinear model-predictive control: Closed-loop stability analysis. AIChE Journal 1996; 42(12):

3388–3402. doi: 10.1002/AIC.690421210

13. Mayne DQ. Model predictive control: Recent developments and future promise. Automatica 2014; 50(12): 2967–2986.

14. Rawlings JB, Mayne DQ, Diehl M. Model predictive control: theory, computation, and design. Nob Hill Publishing, LLC.

2nd ed. 2017.

15. Grimm G, Messina MJ, Tuna SE, Teel AR. Examples when nonlinear model predictive control is nonrobust. Automatica

2004; 40(10): 1729–1738. doi: 10.1016/j.automatica.2004.04.014

16. Keerthi SS, Gilbert EG. Optimal infinite-horizon feedback laws for a general class of constrained discrete-time systems:

Stability and moving-horizon approximations. Journal of Optimization Theory and Applications 1988; 57(2): 265–293.

17. Chen H, Allgöwer F. A quasi-infinite horizon nonlinear model predictive control scheme with guaranteed stability.

Automatica 1998; 34(10): 1205–1217.

18. Mhaskar P, El-Farra NH, Christofides PD. Predictive control of switched nonlinear systems with scheduled mode transitions.

IEEE Transactions on Automatic Control 2005; 50(11): 1670–1680. doi: 10.1109/TAC.2005.858692

19. Limon D, Alamo T, Salas F, Camacho EF. On the stability of constrained MPC without terminal constraint. IEEE

Transactions on Automatic Control 2006; 51(5): 832–836. doi: 10.1109/TAC.2006.875014

20. Pannocchia G, Rawlings JB, Mayne DQ, Marquardt W. On computing solutions to the continuous time constrained linear

quadratic regulator. IEEE Transactions on Automatic Control 2010; 55(9): 2192–2198. doi: 10.1109/TAC.2010.2053478

21. Esterhuizen W, Worthmann K, Streif S. Recursive Feasibility of Continuous-Time Model Predictive Control without

Stabilising Constraints. IEEE Control Systems Letters 2021; 5(1): 265–270. doi: 10.1109/LCSYS.2020.3001514

22. Jadbabaie A, Yu J, Hauser J. Unconstrained receding-horizon control of nonlinear systems. IEEE Transactions on Automatic

Control 2001; 46(5): 776–783. doi: 10.1109/9.920800

23. Limón Marruedo D. Control predictivo de sistemas no lineales con restricciones: estabilidad y robustez. PhD thesis.

University of Seville, Seville, Spain; 2002.

24. Johansen TA. Approximate explicit receding horizon control of constrained nonlinear systems. Automatica 2004; 40(2):

293–300.

25. Rajhans C, Patwardhan SC, Pillai H. Discrete Time Formulation of Quasi Infinite Horizon Nonlinear Model Predictive

Control Scheme with Guaranteed Stability. IFAC-PapersOnLine 2017; 50(1): 7181–7186.

26. Yu S, Qu T, Xu F, Chen H, Hu Y. Stability of finite horizon model predictive control with incremental input constraints.

Automatica 2017; 79: 265–272. doi: 10.1016/J.AUTOMATICA.2017.01.040

27. Rajhans C, Griffith DW, Patwardhan SC, Biegler LT, Pillai HK. Terminal region characterization and stability analysis

of discrete time quasi-infinite horizon nonlinear model predictive control. Journal of Process Control 2019; 83: 30–52.

doi: 10.1016/j.jprocont.2019.08.002

28. Astrom KJ, Wittenmark B. Computer-controlled systems: theory and design. Prentice Hall . 1997.

29. Grüne L, Pannek J. Nonlinear Model Predictive Control: Theory and Algorithms. Springer-Verlag London . 2011.

30. Chen, H. and Allgöwer, F. . A computationally attractive nonlinear predictive control scheme with guaranteed stability for

stable systems. Journal of Process Control 1998; 8(5-6): 475–485.

31. Lucia S, Rumschinski P, Krener AJ, Findeisen R. Improved Design of Nonlinear Model Predictive Controllers. 2015; 48:

254–259. doi: 10.1016/j.ifacol.2015.11.292

32. Rajhans C, Patwardhan SC, Pillai H. Two alternate approaches for characterization of the terminal region for continuous

time quasi-infinite horizon NMPC. 2016: 98–103.

http://dx.doi.org/10.1002/AIC.690421210
http://dx.doi.org/10.1016/j.automatica.2004.04.014
http://dx.doi.org/10.1109/TAC.2005.858692
http://dx.doi.org/10.1109/TAC.2006.875014
http://dx.doi.org/10.1109/TAC.2010.2053478
http://dx.doi.org/10.1109/LCSYS.2020.3001514
http://dx.doi.org/10.1109/9.920800
http://dx.doi.org/10.1016/J.AUTOMATICA.2017.01.040
http://dx.doi.org/10.1016/j.jprocont.2019.08.002
http://dx.doi.org/10.1016/j.ifacol.2015.11.292


18 AUTHOR ONE ET AL

33. Hicks GA, Ray WH. Approximation methods for optimal control synthesis. The Canadian Journal of Chemical Engineering

1971; 49(4): 522–528.

34. Tenny MJ, Rawlings JB, Wright SJ. Closed-loop behavior of nonlinear model predictive control. AIChE Journal 2004;

50(9): 2142–2154. doi: 10.1002/AIC.10177

35. Ghaffari V, Naghavi SV, Safavi AA. Robust model predictive control of a class of uncertain nonlinear systems with applica-

tion to typical CSTR problems. Journal of Process Control 2013; 23(4): 493–499. doi: 10.1016/J.JPROCONT.2013.01.009

36. Ellis M, Durand H. A tutorial review of economic model predictive control methods. Journal of Process Control 2014;

24(8): 1156–1178. doi: 10.1016/J.JPROCONT.2014.03.010

37. Narasingam A, Kwon JSI. Koopman Lyapunov-based model predictive control of nonlinear chemical process systems.

AIChE Journal 2019; 65(11): e16743. doi: 10.1002/AIC.16743

38. Ramesh PS, Swartz CLE, Mhaskar P. Closed-loop dynamic real-time optimization with stabilizing model predictive control.

AIChE Journal 2021: e17308. doi: 10.1002/AIC.17308

39. Kailath T, Hall P. Linear Systems. Information and System Sciences SeriesPrentice-Hall . 1980.

40. Albertos P, Antonio S. Multivariable Control Systems: An Engineering Approach. Advanced Textbooks in Control and

Signal ProcessingSpringer London . 2006.

41. Kirk DE. Optimal Control Theory An Introduction Englewood Cliffs New Jersey. New Jersey: Prentice-Hall Inc. . 1970.

42. Khalil HK. Nonlinear systems. Prentice Hall . 2002.

43. Huang R, Patwardhan SC, Biegler LT. Robust stability of nonlinear model predictive control based on extended Kalman

filter. Journal of Process Control 2012; 22(1): 82–89.

http://dx.doi.org/10.1002/AIC.10177
http://dx.doi.org/10.1016/J.JPROCONT.2013.01.009
http://dx.doi.org/10.1016/J.JPROCONT.2014.03.010
http://dx.doi.org/10.1002/AIC.16743
http://dx.doi.org/10.1002/AIC.17308


AUTHOR ONE ET AL 19

How to cite this article: Williams K., B. Hoskins, R. Lee, G. Masato, and T. Woollings (2016), A regime analysis of Atlantic

winter jet variability applied to evaluate HadGEM3-GC2, Q.J.R. Meteorol. Soc., 2017;00:1–6.


	Nonlinear Controller Design with Prediction Horizon Time Reduction Applied to Unstable CSTR System
	Abstract
	1 Introduction
	2 Continuous Time NMPC Formulation
	2.1 NMPC Formulation
	2.2 Design and Implementation of NMPC Formulation
	2.3 Chen and Allgöwer's Approach

	3 Alternate Approaches for the Terminal Region Characterization
	4 Terminal Region Characterization
	4.1 Steps for the Characterization of the Terminal Region

	5 CSTR Case Study
	5.1 Choice of Tuning Matrices
	5.2 CSTR System Details
	5.3 Nominal Parameters and Linearization
	5.4 NMPC Controller Design
	5.5 Comparison of the Terminal Regions for CSTR System

	6 NMPC Demonstration Results
	7 Conclusions
	References


