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ABSTRACT

Like most multiobjective combinatorial optimization problems, biobjective optimiza-
tion problems on matroids are in general intractable and their corresponding decision
problems are in general NP-hard. In this paper, we consider biobjective optimization
problems on matroids where one of the objective functions is restricted to binary
cost coefficients. We show that in this case the problem has a connected efficient
set with respect to a natural definition of a neighborhood structure and hence, can
be solved efficiently using a neighborhood search approach. This is, to the best of
our knowledge, the first non-trivial problem on matroids where connectedness of the
efficient set can be established.

The theoretical results are validated by numerical experiments with biobjective
minimum spanning tree problems (graphic matroids) and with biobjective knapsack
problems with a cardinality constraint (uniform matroids). In the context of the
minimum spanning tree problem, coloring all edges with cost 0 green and all edges
with cost 1 red leads to an equivalent problem where we want to simultaneously
minimize one general objective and the number of red edges (which defines the
second objective) in a Pareto sense.
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1. Introduction

Optimization problems on matroids have been frequently studied in the literature.
Early references date back to the middle 1930’s, see, for example, [1]. A well-known ex-
ample are graphic matroids, i.e., minimum spanning tree problems in simple connected
graphs. Single objective optimization problems on matroids can be solved efficiently
by a simple greedy strategy. We refer to the books of Kung [2] and Oxley [3] for a
more detailed introduction into this field.

While the literature on single objective matroid optimization is relatively rich, the
work on multiobjective optimization on matroids mostly focuses on multiobjective
spanning tree problems. See, for example, Ruzika and Hamacher [4] for a survey and
Benabbou and Perny [5] for a more recent reference on this topic. Evolutionary meth-
ods for multiobjective spanning tree problems were suggested, among others, in Zhou
and Gen [6], Knowles and Corne [7], Neumann and Witt [8] and Bossek et al. [9]
as well as references therein. Loera at al. [10] describe heuristic approaches to gen-
eral multiobjective matroid optimization problems that rely on adjacency relations
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and nonlinear scalarizations. The methods are implemented in the MOCHA software
package [11]. Approximation schemes were suggested, for example, in Grandoni et al.
[12] and Bazgan et al. [13].

Multiobjective optimization problems on matroids are a special case of multiobjec-

tive combinatorial optimization (MOCO) problems which are known to be notoriously
hard. We refer to [14] for a recent discussion of the prevalent difficulties in MOCO
problems. The decision problem of multiobjective matroid optimization is proven to
be NP-complete in general, see [15]. For multiobjective spanning tree problems it was
shown in [16] that already in the biobjective case the cardinality of the non-dominated
set may grow exponentially with the size of the instance. This result applies also to
multiobjective optimization problems on matroids. As a consequence, for such in-
stances the complete enumeration of the non-dominated set is impractical since it
requires an exponential amount of time. Bökler et al. [17] recently suggested to con-
sider the concept of output sensitive complexity in the context of MOCO problems
and analysed various problem classes. In the dissertation of Bökler [18] the output
sensitive complexity of the biobjective spanning tree problem was related to that of
biobjective unconstrained combinatorial optimization (BUCO) which is, however, also
still open. Despite the general intractability of multiobjective spanning tree problems,
it was shown in the dissertation of Seipp [19] that the number of extreme supported
non-dominated outcome vectors grows only polynomially with the size of the instance.

The above mentioned hardness results usually refer to MOCO instances with ’large’
cost coefficients that may grow exponentially with the instance size. For problems
with ’small’ cost coefficients the situation is different. When coefficients are small,
then the ranges of possible outcome values are bounded, which limits the size of the
non-dominated set. For example, the biobjective minimum spanning tree problem has
only supported efficient solutions when all cost coefficients take only values from the
set {0, 1, 2}, see again [19]. This implies that all efficient solutions of this problem
are connected, i.e., the complete efficient set can be generated by only performing
simple swap operations (e.g., pivot operations in an associated linear programming
formulation) among efficient solutions. In the same work, [19] show that tri-objective
optimization problems on uniform matroids with one general cost function and two
binary cost functions have a connected efficient set. However, in general even com-
parably simple problems like BUCO may possess a non-connected efficient set, see
[20].

In this paper we focus on biobjective optimization problems on matroids that have
binary coefficients in one of the objectives. While the first objective may take arbitrary
non-negative integer values, we assume that the second objective takes only values from
the set {0, 1}. Note that binary coefficients allow for an alternative interpretation of the
problem: When associating a cost of 0, for example, with the color ’green’, and a cost
of 1 with the color ’red’, then we are interested in the simultaneous minimization of
the cost of a solution (w.r.t. the first objective) and of the number of its red elements.

A related problem is the multicolor matroid problem that was discussed by Rendl
and Leclerc [21] and by Brezovec et al. [22]. In this problem, a minimum cost solution
is sought that does not exceed a given bound on the number of elements from different
colors. Srinivas [23] extended the results from Brezovec et al. [22] to the case that the
number of elements of different colors is constrained by linear inequalities. Hamacher
and Rendl [24] generalized the multicolor matroid problem to combinatorial optimiza-
tion problems, now allowing for elements having more than one color. Similar to [22]
the goal is to find minimum cost solutions not exceeding given bounds on the number
of elements in each color. A different optimization objective was considered in Climaco
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et al. [25], who discussed a biobjective minimum cost / minimum label spanning tree
problem in a graph where each edge is associated with a cost value and a label (i.e., a
color). While the first objective is a classical cost objective that is to be minimized, the
second objective is to find a solution with a minimal number of different labels (i.e.,
colors). Since it is already NP-hard to determine the minimum label spanning tree on
a given graph due to a result of Chang and Leu [26], this problem is also NP-hard.

From an application point of view, MOCO problems with one general objective
function and one (or several) binary objectives are closely related to k − max opti-
mization where the kth largest cost coefficient of a solution vector is to be minimized.
Such problems can be translated into a series of problems with binary sum objectives
in a thresholding framework, see, e.g, [27] for more details.

Contribution. This paper extends results from Chapter 10 of the dissertation of
Gorski [28]. It is shown that the non-dominated set of biobjective optimization prob-
lems on matroids with one general and binary objective function contains only sup-
ported efficient solutions and is connected. This is the foundation for an efficient exact
algorithm that enumerates the non-dominated set using a neighborhood search ap-
proach, i.e., using simple swaps between elements contained in different (efficient)
bases of the problem. This Efficient Swap Algorithm ESA can be interpreted as an
extension of the algorithm of [29] for a constrained version of the problem that is guar-
anteed to generate the complete non-dominated set. To the best of our knowledge, this
is the first non-trivial optimization problem on matroids for which connectedness of
the efficient set is established.

Organization of the paper. The remainder of this paper is organized as follows.
In Section 2 we recall basic concepts from matroid theory and from multiobjective
optimization that are relevant for the subsequent sections. The biobjective matroid
optimization problem with one binary cost objective is introduced in Section 3. The
neighborhood search algorithm ESA is presented in Section 4, and connectedness of
the efficient set is proven in Section 5. The numerical results presented in Section 6
confirm the efficiency of the algorithm introduced in Section 4. The paper is concluded
in Section 7 with some ideas for future research.

2. Matroid and Multiobjective Optimization Preliminaries

We first review basic concepts from matroid theory and multiobjective optimization.
For more details on matroid theory we refer to the books of Kung [2] and Oxley [3].
For an introduction into the field of multiobjective optimization, see, e.g., the books
of Ehrgott [30] and Miettinen [31].

2.1. Matroids

Let E = {e1, . . . , en} be a finite ground set with n ∈ N elements and let I be a subset
of the power set P(E) of E . The ordered pair M = (E ,I) is called a matroid if the
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following three conditions are satisfied:

∅ ∈ I (M1)

(I ∈ I ∧ I ′ ⊆ I) ⇒ I ′ ∈ I (M2)

∀I1, I2∈ I with |I1|< |I2| ∃ e∈I2 \ I1 : I1 ∪ {e} ∈ I. (M3)

|I| denotes the cardinality of a finite set I. If M = (E ,I) is a matroid, then all sets
I ∈ I are called independent sets. Conversely, a subset of E is called dependent if it is
not contained in I.

An independent set I ∈ I is called maximal when I ∪ {e} 6∈ I for all e ∈ E \ I.
Similarly, a dependent set D ∈ P(E) \ I is called minimal if D \ {e} ∈ I for all e ∈ D.
Maximal independent sets are called bases of the matroid, and minimal dependent sets
are called circuits of the matroid. All bases of a matroid have the same cardinality,
which is referred to as the rank of M. We denote the set of all bases of a given matroid
by X .

Given a matroid M = (E ,I), a basis B ∈ X , and an element e ∈ E \B, then B∪{e}
contains a uniquely determined circuit C(e,B) containing e. This circuit is also called
the fundamental circuit of e w.r.t. B. An important property of matroids is the basis

exchange property :

∀E,F ∈ X ∀e∈E \ F ∃ f ∈F \E : (E ∪ {f}) \ {e} ∈ X . (B)

The following stronger version of the basis exchange property was proven in [32].

Lemma 2.1 ([32]). Let E,F ∈ X . For all e ∈ E \ F there exists f ∈ F \E such that

both (E ∪ {f}) \ {e} and (F \ {f}) ∪ {e} are bases in X .

In this context, two bases of a matroid are called adjacent if they havem−1 elements
in common, assuming that the matroid is of rank m. According to the basis exchange
property (B) and Lemma 2.1, a given basis can be transformed into an adjacent basis
by exactly one basis exchange. We refer to this as a swap operation in the following.

If a subset S ⊆ E of the ground set E is deleted from E , we obtain the restriction of
M to E \ S. The ground set of this matroid is the set E \ S and its independent sets
are those independent sets of M that are completely contained in E \ S, i.e., that do
not contain any elements from S. We write M− S for short.

Moreover, if an independent set I of M is contracted we obtain the contraction of
M to I denoted by M/I. The ground set of M/I is given by E \I, and its independent
sets are the sets I ′ ⊆ (E \ I) such that I ′ ∪ I is an independent set of M.

A classical example for a matroid is the uniform matroid of rank k, denoted by Uk,n.
The independent sets of Uk,n are all subsets of E = {e1, . . . , en} that have at most k
elements, and the bases of Uk,n are all subsets of E that have exactly k elements. A
subset of E is a circuit of Uk,n if it contains exactly k + 1 elements of E . Another
common example is the graphic matroid. Given a finite undirected graph G = (V,E)
with node set V and edge set E, the independent sets of M(G) are all forests in G,
and the bases of M(G) are all spanning forests of G. When G is connected, then X is
the set of all spanning trees of G. In this case, a circuit is referred to as a cycle. It is
easy to verify that uniform matroids and graphic matroids satisfy the conditions (M1),
(M2) and (M3). We will use graphic matroids to illustrate the results throughout this
paper.

Since the efficiency of the methods developed in this paper depends on the structure
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of the considered matroid, we briefly review some further matroids in the following.
First consider the matching matroid that is also defined on a finite undirected graph
G = (V,E). The ground set of the matching matroid is a subset of the vertices ofG, i.e.,
E ⊆ V , and all subsets of E that can be covered by a matching of G are independent.
A special case of the matching matroid is the transversal matroid, that is a matching
matroid on a bipartite graph G = (V1 ∪ V2, E) with bipartition V = V1 ∪ V2, where E
equals V1 or V2. The partition matroid is defined on a groundset E = {e1, . . . , en} of n
elements that is partitioned into p ≥ 1 subsets Ei, i = 1, . . . , p. For given non-negative
bounds bi ≥ 0, i = 1, . . . , p, a set I ⊆ E is independent whenever |Ei ∩ I| ≤ bi for all
i = 1, . . . , p. Note that the uniform matroid is a special case of the partition matroid
with p = 1.

2.2. Multiobjective Optimization

Now suppose that a matroid M = (E ,I) is given and that p ≥ 2 cost coefficients
wi(e) ≥ 0, i = 1, . . . , p, are associated with each element e ∈ E of the ground set E .
The cost of a subset S ⊆ E in the ith objective is computed as wi(S) =

∑
e∈S wi(e),

i = 1, . . . , p. Then the multiple objective matroid problem (MOMP) can be formulated
as

min w(B) = (w1(B), . . . , wp(B)) (MOMP)

s.t. B ∈ X .

The feasible solutions of (MOMP) are the bases B ∈ X of the matroid, and y =
w(B) ∈ Rp denotes the cost vector or outcome vector of the basis B. In the following,
we will enumerate different outcome vectors by using superscripts and refer to their
components by subscripts. The minimization in problem (MOMP) is understood w.r.t.
the Pareto concept of optimality that is based on the componentwise ordering in Rp:

y1 ≦ y2 :⇔ y1i ≤ y2i , i = 1, . . . , p,

y1 6 y2 :⇔ y1i ≤ y2i , i = 1, . . . , p and y1 6= y2,

y1 < y2 :⇔ y1i < y2i , i = 1, . . . , p.

We say that an outcome vector y1 dominates another outcome vector y2 if and only
if y1 6 y2, and y1 strongly dominates y2 if and only if y1 < y2. A feasible solution
B ∈ X (i.e., a feasible basis) is called efficient or Pareto optimal if there does not
exist another feasible solution B̄ ∈ X that dominates B, i.e., for which w(B̄) 6 w(B).
Similarly, B ∈ X is called weakly efficient or weakly Pareto optimal if there does not
exist B̄ ∈ X that strongly dominates B, i.e., for which w(B̄) < w(B) (cf. also Figure 4
in Section 5 below). We are interested in finding the efficient set (or the weakly efficient

set, respectively) of problem (MOMP) given by

XE := {B ∈ X : there exists no B̄ ∈ X with w(B̄) 6 w(B)},

XwE := {B ∈ X : there exists no B̄ ∈ X with w(B̄) < w(B)}.
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Given XE and XwE, the images of these two sets under the vector-valued mapping w
are called non-dominated set and weakly non-dominated set, respectively:

YN := w(XE)

YwN := w(XwE).

A subset XcE of XE satisfying w(XcE) = YN is called a complete set of efficient

solutions. Note that in general XcE ( XE. If in addition |w(XcE)| = |YN| holds true,
we say that the set XcE is of minimal cardinality or just minimal, for short. Note that
in this case, XcE contains exactly one efficient solution for each vector in the non-
dominated set. Algorithms designed to solve (MOMP) often aim to compute YN and
XcE rather than YN and XE. An efficient basis B is called supported efficient if it is a
minimizer of the non-trivial weighted sum problem min{

∑p
i=1 λiwi(B), B ∈ X} with

λi ∈ (0, 1), i = 1, . . . , p and
∑p

i=1 λi = 1. Note that the image w(B) of a supported
efficient basis B is called supported non-dominated outcome vector and lies on the
boundary of the convex hull conv(Y) of the set Y = w(X ) of feasible outcome vectors
in the objective space. Moreover, if a basis B is supported efficient and if w(B) is an
extreme point of conv(Y) then B is called an extreme supported efficient basis and
w(B) is called an extreme supported non-dominated point. See Figure 4 in Section 5
for an illustration.

An important subset of the efficient set is the set of lexicographically optimal solu-
tions: An outcome vector y1 is lexicographically optimal if for all other outcome vectors
y2 it holds that y1i < y2i with i = min{j ∈ {1, . . . , p} : y1j 6= y2j }.

Based on the concept of adjacent bases, the adjacency graph G = (V,E) of efficient
bases of Problem (MOMP) is defined analogous to [20]. The node set V consists of
all efficient bases of (MOMP). An (undirected) edge is introduced between all pairs
of vertices corresponding to adjacent bases of the underlying problem. These edges
form the set E. The set XE is said to be connected if its corresponding adjacency
graph G is connected, i.e., if every pair of vertices in V is connected by a path. As
shown in [28], the adjacency graph G is not connected in general, even if it is extended
to include weakly efficient bases. Nevertheless, the adjacency graph always contains
a connected component given by the supported efficient bases of (MOMP), see [15].
Although the adjacency graph is not connected in general, many solution methods
make use of the adjacency structure of matroids. Some examples for such solution
strategies are described in [10].

3. Problem Formulation and Notation

Let M = (E ,I) be a matroid and let X denote the set of all bases of M. We assume
that rank(M) = m > 0, i.e., the cardinality |B| of all bases B ∈ X is equal to m. In the
following we consider two different types of cost functions on the ground set E . While
the first function c : E → N is given by arbitrary non-negative integer coefficients, we
assume that the second cost function b : E → {0, 1} only takes binary values on the
elements of the ground set. According to these definitions the two different costs of a
basis B ∈ X are given by c(B) =

∑
e∈B c(e) and b(B) =

∑
e∈B b(e), respectively. The

related biobjective matroid problem with binary costs (BBMP) is given by
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min
B∈X

(c(B), b(B)) . (BBMP )

Since the second cost function b has binary coefficients for all elements e ∈ E , the
corresponding objective function values of feasible bases B ∈ X are lower bounded by
zero and upper bounded by m. In other words, b(X ) := {b(B) : B ∈ X} ⊆ {0, . . . ,m}
is of size O(m), and thus the same bound also holds for YN.

For solving Problem (BBMP ) we introduce the following two associated ε-
constraint versions of the problem. The first is given by

min c(B)
s.t. b(B) ≤ k,

B ∈ X ,
(BMP≤)

where k ∈ {0, . . . ,m} is a fixed integer bound on the binary cost function b. From
the theory of multiple criteria optimization (see e.g. [33]) we know that each optimal
solution of Problem (BMP≤) is at least weakly efficient for Problem (BBMP ). Note
that this is not true in general when the inequality constraint in Problem (BMP≤) is
replaced by an equality constraint. Indeed, given an optimal solution of the equality
constrained problem

min c(B)
s.t. b(B) = k,

B ∈ X ,
(BMP=)

this solution may be dominated in Problem (BBMP ). An example for this situation
can be seen in Figure 4. There, each basis B ∈ X that maps to the outcome vector
(c(B), b(B)) = (18, 5) is optimal for Problem (BMP=) with k = 5, while it is domi-
nated by all bases that map to the outcome vector (17, 4) for the biobjective problem.
Nevertheless, we will use Problem (BMP=) to generate a sequence of optimal solu-
tions by varying k ∈ {0, . . . ,m} and show that there exists a critical index j such that
for all k ≤ j all generated bases that are optimal for Problem (BMP=) correspond to
efficient bases of Problem (BBMP ).

Note that the binary cost function b introduced above also allows for another in-
terpretation as used, for example, in [29] and [34]: Given a matroid M = (E ,I) and
a (first) cost function c : E → N, one of the two colors red and green is assigned to
each element of E . In [29] and [34] algorithms are presented that determine a min-
imum cost basis B ∈ X that contains exactly k red elements from E (here, k is a
predetermined parameter). To establish a connection between the problem discussed
in [29] and [34] and the problems considered here, we simply identify the red elements
r ∈ E from the ground set E with the binary costs b(r) = 1, while all green elements
g ∈ E are considered to have binary cost b(g) = 0. Hence, determining a minimum
cost basis B ∈ X containing at most or exactly k red elements from E corresponds
to solving Problem (BMP≤) and (BMP=), respectively. In this context, especially
Problem (BMP=) can be seen as a generalized version of a single objective matroid
problem with an additional constraint, where the original problem is obtained when
E only consists of red elements and k = m. Note that for a better illustration, we will
make use of the idea of red and green elements in the further sections.

7



4. Solving Biobjective Matroid Problems with Binary Costs

In this section we present an algorithm that computes the complete non-dominated
set of Problem (BBMP ) in polynomial time. The method is based on the ideas stated
in [29] and can be used to establish a connectedness result for the adjacency graph of
Problem (BBMP ). In more detail, the algorithm generates a sequence of optimal so-
lutions of Problem (BMP=) for decreasing right-hand side values k. In Subsection 4.1
we formulate the theoretical results that are needed to prove the correctness of the
method, and in Subsection 4.2 we present the algorithm itself and illustrate it at a
graphic matroid.

To simplify the discussion, we use the following notation for set operations through-
out this and the following sections: Let S denote a subset of the finite ground set
E and let e, f ∈ E . We write S + e to denote the set S ∪ {e} and S − f to denote
the set S \ {f}. Furthermore, let Sc := E \ S denote the complement of S in E . To
further simplify the notation we assume throughout this section that set operations
are executed from left to right. Given an instance of Problem (BBMP ), we denote
by E0 := {e ∈ E : b(e) = 0} the subset of E containing all elements with binary cost 0
(green elements) while E1 := {e ∈ E : b(e) = 1} = Ec

0 denotes the set of elements with
binary cost 1 (red elements). By definition, E0 and E1 form a partition of E .

Throughout this section, we consider Problem (BBMP ) on a given matroid M =
(E ,I) with set of feasible bases X .

4.1. Minimal Swaps

The idea of our approach to generate the complete non-dominated set of Prob-
lem (BBMP ) is based on the stronger version of the basis exchange property for
matroids stated in Lemma 2.1. Given this property we define swaps between elements
from E0 and E1.

Definition 4.1. Let B ∈ X . Then the swap (e, f) w.r.t. B is an ordered pair of
elements such that e ∈ E1 ∩ B, f ∈ E0 \ B and B − e + f ∈ X is a basis. The cost

of the swap (e, f) is defined as c(e, f) := c(f) − c(e). A swap (e, f) is called minimal

w.r.t. B if c(e, f) ≤ c(e′, f ′) for all e′ ∈ E1 ∩B and f ′ ∈ E0 \B with B − e′ + f ′ ∈ X .

By definition, a swap always improves the binary cost function by one unit since a
red element from E1 is replaced by a green element from E0. The idea of the efficient

swap algorithm (ESA) is to generate a sequence of minimal swaps that yields all non-
dominated outcome vectors of Problem (BBMP ), as outlined in Algorithm 4.1.

A detailed description of this approach will be given in Algorithm 4.2 below, after
a thorough analysis of the individual steps.

For this purpose, let i ∈ {0, . . . ,m} and Xi := {B ∈ X : |B ∩E0| = i} be the set of
all bases with exactly i green elements. Note that Xi might be empty for low or high
values of i, respectively. Furthermore, let

Si := {B ∈ Xi : c(B) ≤ c(B′)∀B′ ∈ Xi}

denote the set of all bases with minimal costs containing exactly i green elements from
E0. By construction, B ∈ Si is an optimal basis of Problem (BMP=) with right hand
side value k = m− i.

From [29] we recall that given an optimal solution B ∈ Si−1, a minimal swap can
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Algorithm 4.1 Outline of the Efficient Swap Algorithm (ESA) for Biobjective Ma-
troid Problems with one Binary Cost Function

Input: An instance ((M,X , (c, b)) of Problem (BBMP ).
Output: YN and a complete set XcE of efficient solutions.
1: Determine a basis Bj, which is optimal with respect to c, and a basis Bu, which is

optimal with respect to b, such that both bases have as many elements as possible
in common.

2: Compute a sequence of minimal swaps, which describes the necessary swaps to get
from basis Bj to basis Bu.

3: Sort the swaps in non-decreasing order with respect to their costs.
4: Compute from the sorted swap sequence a complete set XcE of efficient solutions

and the corresponding outcome vectors YN.
5: return XcE and YN.

1 2 3

4 5 6

7

1 2

4
2

8

9

3

7
5

4

6

Figure 1. Graph G = (V, E) with costs c(e), e ∈ E, for the graphic matroid considered in Example 4.4.
Dashed green lines correspond to edges e ∈ E with b(e) = 0 and solid red lines correspond to edges with
b(e) = 1, respectively.

be used to generate an optimal solution contained in Si whenever Si is non-empty.

Theorem 4.2 (see [29], Augmentation Theorem 3.1). Let B ∈ Si−1 for an i ∈
{1, . . . ,m} and assume that Si 6= ∅. If the swap (e, f) is minimal w.r.t. B, then B−e+f
is contained in Si.

The following result is an immediate consequence of Theorem 4.2.

Corollary 4.3. Let s, t ∈ N with 0 ≤ s < t ≤ m such that Ss 6= ∅ 6= St. Then Si 6= ∅
for all i ∈ {s, . . . , t}.

Note that Corollary 4.3 does not state that Problem (BMP=) is feasible for all
right-hand side values k ∈ {0, . . . ,m}. However, it implies that there exist fixed lower
and upper bounds l, u ∈ N (satisfying 0 ≤ l ≤ u ≤ m) such that Si 6= ∅ for all
i ∈ {l, . . . , u} while Sj = ∅ for all j ∈ {0, . . . ,m} \ {l, . . . , u}.

The results of Theorem 4.2 and Corollary 4.3 imply a simple algorithm that allows to
generate a superset of the non-dominated set for a given instance of Problem (BBMP )
by swapping between the optimal bases contained in Si for i = {l, . . . , u}. In this
method, a sequence of minimal swaps has to be generated. The algorithm presented
in [29] uses a recursive procedure to generate this sequence. Further details on the
generation of minimal swaps are given in Subsection 4.2 below. Example 4.4 illustrates
the idea of sequential minimal swaps at a graphic matroid.

Example 4.4. We consider the graphic matroid induced by the graph G = (V,E)
given in Figure 1. Note that X is the set of all spanning trees of G, and that the
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matroid has rank m = 6. The objective coefficients of the first objective function c
are depicted next to each edge. For the second objective b, a solid red edge is used to
indicate a cost of 1, while a dashed green edge indicates a cost of 0.

The spanning trees T1, . . . , T5 given in Figure 2 correspond to optimal solutions
for Problem (BMP=) for the right-hand side values k ∈ {1, . . . , 5}. We have that
Ti ∈ Si, i ∈ {1, . . . , 5} while S0 = S6 = ∅, i.e. l = 1 and u = 5. The objective vector
(c(Ti), b(Ti)) of tree Ti, i = 1, . . . , 5, is stated in the first column, below the name
of the respective tree. The corresponding trees are shown in the second column. The
tables in the right-most column list relevant swaps w.r.t. the tree Ti, i = 1, . . . , 5,
together with the respective cost, where minimal swaps are highlighted in bold. Here,
the “in”-column goes through the list of all dashed green edges that are not yet
contained in Ti and that may hence potentially be included. Adding the respective
edges induces a unique cycle, and the best possible outgoing edge is shown in the
“out”-column. It is selected as a solid red edge in this cycle with maximum cost.
Since we exchange a red against a green edge, the swap with minimal cost c(e, f)
w.r.t. Ti leads to an optimal spanning tree Ti+1 ∈ Si+1. While the spanning tree T1

is dominated by T2 (the implemented swap decreases each objective by one unit),
the remaining trees form a complete set of efficient solutions and we conclude that
YN = {(17, 4), (22, 3), (27, 2), (34, 1)}.

Note that the procedure that is used to iteratively determine minimal swaps in Ex-
ample 4.4 originates from [34]. In the following, we will present an improved procedure
that avoids the computation of many unnecessary swaps. Example 4.4 further shows
that not all optimal spanning trees for Problem (BMP=) result in an efficient solution
for Problem BBMP . However, we will show in the following that there exists a fixed
index j ∈ {l, . . . , u} such that B ∈ Si is efficient whenever i ≥ j. Having a closer look
at the example, it can be recognized that the minimal swaps that lead from T1 to T5

have non-decreasing costs. To prove that this property holds in general, we need the
following lemma from [29].

Lemma 4.5 (see [29], Lemma 3.2). Let B be a basis containing the element e ∈ E1∩B.

Let (e, f) be a swap w.r.t. B that has minimal cost among all swaps w.r.t. B involving

e, and set B′ = B − e + f . Given g ∈ E1 ∩ (B − e) arbitrary but fixed, let (g, h) and

(g, h′) denote swaps w.r.t. B and B′, respectively, that have minimal costs w.r.t. B
and B′, respectively, and that involve g. Then it holds that c(g, h) ≤ c(g, h′).

Using Lemma 4.5 it can now be shown that the sequence of costs induced by a
sequence of minimal swaps is non-decreasing for increasing i ∈ {l, . . . , u}.

Theorem 4.6. Let u ≥ l+2. For i ∈ {l, . . . , u−1} let Bi ∈ Si and let (ei, fi) denote a

minimal swap w.r.t. Bi leading to Bi+1. Then the sequence of costs of minimal swaps

{c(ei, fi)}
u−1
i=l is non-decreasing, i.e. c(ei, fi) ≤ c(ei+1, fi+1) for all i ∈ {l, . . . , u− 2}.

Proof. Let {c(ei, fi)}
u−1
i=l be a cost sequence of minimal swaps and let i ∈ {l, . . . , u−2}

arbitrary but fixed. Note that ei 6= ei+1 since ei ∈ Bi\Bi+1. Moreover, ei+1 ∈ Bi∩Bi+1

since otherwise ei+1 would be contained in Bi+1 \Bi, i.e. ei+1 = fi. But since ei+1 is
a red element of E while fi is a green element, this is impossible.

Now consider a swap (ei+1, f) w.r.t. Bi that has minimal cost among all swaps
w.r.t. Bi that involve ei+1. Note that the existence of a swap w.r.t. Bi involving the
edge ei+1 follows from the basis exchange property (B): For the two bases Bi, Bi+2

we have ei+1 ∈ Bi \ Bi+2 and hence there exists an element f ∈ Bi+2 \ Bi such that
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T1

(18, 5)

1 2 3

4 5 6

7

1 2

2

3

4

6

in out c(e, f)
[2, 5] [6, 7] 3
[2, 6] [6, 7] 1
[3,6] [6,7] −1

[4, 5] [6, 7] 2

T2

(17, 4)

1 2 3

4 5 6

7

1 2

2

3

5

4
in out c(e, f)

[2, 5] [5, 6] 6
[2,6] [2,3] 5

[4, 5] [5, 6] 5

T3

(22, 3)

1 2 3

4 5 6

7

1

2

3

7 5

4 in out c(e, f)
[2, 5] [5, 6] 6
[4,5] [5,6] 5

T4

(27, 2)

1 2 3

4 5 6

7

1

2

8

7 5

4
in out c(e, f)

[2,5] [2,4] 7

T5

(34, 1)

1 2 3

4 5 6

7

1

8

9 7 5

4
in out c(e, f)

Figure 2. Sequence of optimal spanning trees {T1, . . . , T5} for (BMP=) for the graphic matroid defined in
Example 4.4. Left column: tree Ti and corresponding objective vector. Center column: associated tree. Right
column: computation of a minimal swap c(e, f) w.r.t. Ti, i = 1, . . . , 5.

Bi− ei+1+ f ∈ X . Hence, (ei+1, f) is a feasible swap w.r.t. Bi involving ei+1 and with
f ∈ Bi+2 \Bi = {fi, fi+1}.

Since (ei, fi) is a minimal swap w.r.t. Bi it follows that c(ei, fi) ≤ c(ei+1, f). If
f = fi+1, we are done. Otherwise, we conclude from Lemma 4.5 that c(ei+1, f) ≤
c(ei+1, fi+1), since the swap (ei+1, fi+1) is minimal w.r.t. Bi+1. Combining these results
we get c(ei, fi) ≤ c(ei+1, fi+1), which completes the proof.

Since we have that

c(Bi+1)− c(Bi) = c(fi)− c(ei) = c(ei, fi), (1)

Theorem 4.6 implies that the minimum costs of bases B ∈ Si define a convex function
for i = |B∩E0| ∈ {l, . . . , u}. Furthermore, if c and b are conflicting, then there must ex-
ist an index j ∈ {l, . . . , u} such that, starting from this index, all subsequent bases con-
tained in the sequence {Bi}

u
i=j correspond to efficient solutions of Problem (BBMP ).
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This holds since the value of the binary objective function b is decreased by one unit
when a swap from Bi to Bi+1 is performed, while the corresponding value of the cost
function c remains constant or is increased. By construction, the index j is the first
index from {l, . . . , u− 1} for which c(ei, fi) > 0 holds true. This implies the following
result.

Theorem 4.7. Let {Bi}
u
i=l denote the sequence of minimum cost bases such that Bi ∈

Si for i ∈ {l, . . . , u}. Assume that u ≥ l+2. If there exists an index j ∈ {l+ 1, . . . , u}
such that c(Bj−1) < c(Bj), then c(Bi) < c(Bi+1) holds true for all i ∈ {j−1, . . . , u−1}.

Proof. Let j ∈ {l + 1, . . . , u} denote the index where c(Bj−1) < c(Bj) holds true for
the first time. If j = u then there is nothing to show. So, let j < u. It suffices to prove
that c(Bj) < c(Bj+1) holds true. From Equation (1) it follows that c(ej−1, fj−1) > 0.
Furthermore, Theorem 4.6 implies that

c(Bj+1)− c(Bj) = c(ej , fj) ≥ c(ej−1, fj−1) > 0,

which shows that c(Bj) < c(Bj+1) is valid.

Note that the basis Bj where j is the index such that c(ej , fj) > 0 holds true for
the first time is lexicographically optimal w.r.t. c (with secondary optimization w.r.t.
b). This means that Bj is optimal w.r.t. c and additionally satisfies b(Bj) ≤ b(B) for
all B ∈ X with c(B) = c(Bj). A lexicographically optimal basis Bj can be computed
efficiently using a greedy algorithm by computing an optimal basis w.r.t. the costs
w(e) = (m+ 1) · c(e) + b(e) for all e ∈ E, where m is the rank of M.

Theorem 4.7 induces a method that generates a minimal complete set XcE of efficient
bases. Starting from a lexicographically optimal basis contained in Sj , we compute a
sequence of minimal swaps {(ei, fi)}

u−1
i=j which is called swap sequence in the following.

By construction, we have that each of the generated bases Bi is contained in Si for
i ∈ {j+1, . . . , u}. The basis Bj as well as all subsequently generated bases correspond
to efficient solutions of Problem (BBMP ). Note that starting with basis Bj rather
than with Bl has the advantage that all generated bases are efficient. For example, for
the graphic matroid from Example 4.4 the basis Bl corresponds to T1 in Figure 2 while
basis Bj is given by T2. Therefore, one unnecessary swap is omitted. Nevertheless, in
the worst case Bl = Bj holds and all swaps have to be calculated.

Since the binary objective b decreases by one unit in each iteration of this procedure,
it is ensured that no non-dominated outcome vector is missed in the objective space
and hence Bj , . . . , Bu form a minimal complete set of efficient bases. Hence, we have
proven the following result:

Theorem 4.8. Let {Bi}
u
i=j denote a sequence of bases generated by a swap sequence.

Then X = {Bj , . . . , Bu} forms a minimal complete set of efficient solutions and YN =
{(c(Bi), b(Bi)), i = j, . . . , u}.

4.2. The Efficient Swap Algorithm

The Efficient Swap Algorithm (ESA) presented in this section utilizes swap se-
quences to efficiently generate a minimal complete set of efficient solutions for Prob-
lem (BBMP ). Note that ESA can be interpreted as an extension of the algorithm
stated in [29] for the solution of Problem (BMP=) for fixed k. Indeed, it was shown in
[29] that this algorithm generates a complete swap sequence {(ei, fi)}

k−1
i=l starting from
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Bl ∈ Sl and leading to Bk ∈ Sk. Setting k = u and starting from a lexicographically
optimal basis Bj thus induces ESA, and hence we omit detailed proofs for the correct-
ness of this part of the algorithm. We rather focus on explaining how a complete swap
sequence is generated without calculating a multiplicity of unnecessary swaps that do
not lead to new efficient bases of the biobjective problem (BBMP ). At the end of this
subsection we apply our algorithm to the graphic matroid from Example 4.4 to show
how ESA works in practice.

We use the ideas from Theorem 4.2 and Corollary 4.3 to avoid the calculation of
unnecessary swaps. In a first step, we generate bases Bj ∈ Sj and Bu ∈ Su such that
these two bases have as many elements as possible in common. The following two
properties hold if and only if Bj and Bu coincide in a maximal number of elements:

(a) Bj ∩ E0 ⊆ Bu, i.e., Bu contains all green elements from Bj .
(b) Bu ∩ E1 ⊆ Bj , i.e., Bj contains all red elements from Bu.

Note that properties (a) and (b) imply that U := Bu\Bj ⊆ E0 and that J := Bj\Bu ⊆
E1, respectively, and that |U | = |J |.

If both properties (a) and (b) hold, then all elements of the matroid that are neither
contained in Bj nor in Bu are redundant for ESA and can be removed from the ground
set of the problem, i.e., we continue by considering the restriction M − (Bj ∪ Bu)

c.
Furthermore, only those elements have to be swapped that are not contained in both
bases simultaneously (see [29] for a detailed proof of this fact). This means that it
is sufficient to consider the contraction of the matroid w.r.t. all elements that are
contained in both bases. ESA works on this reduced problem (M− (Bj ∪Bu)

c)/(Bj ∩
Bu) and uses a recursive swap sequence generation procedure (SSG) to generate a
swap sequence. We will illustrate the main aspects of this procedure in the following,
assuming that Bj and Bu satisfy properties (a) and (b) above and that we start from
Bj .

If we add a green element f from Bu \ Bj ⊆ E0 with minimal costs to Bj, then a
uniquely defined circuit C(f,Bj) is generated. Note that all elements of this circuit,
with the only exception of f , are elements of Bj. If these elements are all red, then a
minimal swap (e∗, f) w.r.t. Bj containing f , where e∗ ∈ C(f,Bj) \ f and c(e∗, f) ≤
c(e, f) for all e ∈ C(f,Bj) \ f , has to be contained in a swap sequence. The reason
for this is that no other element of this circuit will lead to a better swap than the
swap (e, f) does, when f is added to Bj . Otherwise, if the circuit C(f,Bj) contains
red and green elements from Bj , then a minimal swap w.r.t. Bj containing f that is
contained in a swap sequence cannot be deduced immediately. The idea in this case
is to generate two smaller subproblems by contraction that do not intersect on the
original ground set E . The reduction to two subproblems is repeated until adding f
leads to a circuit with only red edges besides f .

As will be explained in the following, problem splitting can be realised such that
all swaps that are already guaranteed to be contained in a final swap sequence by
the criterion given above are preserved (see [29] for further details). Moreover, the
problem can be split until adding f leads to a circuit with only red edges besides f .
Note that this is always satisfied when the respective ground sets of the contracted
matroids consist of two elements e ∈ Bj and f ∈ Bu only. In this case, the swap (e, f)
must be contained in a final swap sequence since this swap is minimal.

More formally, the split of the reduced matroid (M− (Bj ∪ Bu)
c)/(Bj ∩ Bu) into

smaller parts is induced by a bisection of the sets U = Bu \ Bj ⊆ E0 and J =
Bj \ Bu ⊆ E1. At first, the sets U and J are partitioned into two subsets U1, U2 and
J1, J2 satisfying the following two conditions:
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Algorithm 4.2 Efficient Swap Algorithm (ESA) for Biobjective Matroid Problems
with one Binary Cost Function

Input: An instance ((M,X , (c, b)) of Problem (BBMP ).
Output: YN and a complete set XcE of efficient solutions.
1: XcE = ∅, YN = ∅.
2: Determine a lexicographically optimal basis Bj

3: Determine a minimum basis Bu with respect to c such that Bu contains a maximal
number of elements from E0, all elements from Bj ∩ E0 and only those elements
from E1 that are also contained in Bj .

4: Call SSG((M−(Bj∪Bu)
c)/(Bj∩Bu), Bj\Bu, Bu\Bj) to generate a swap sequence.

5: Let {(ei, fi)}
u−1
i=j denote the swap sequence found by Procedure SSG, where the

swaps are sorted in non-decreasing order with respect to their costs.
6: Set B = Bj , γ = c(Bj) and β = b(Bj).
7: XcE = {B} and YN = {(γ, β)}
8: for i = j to u− 1 do

9: Set B = B − ei + fi, γ = γ + c(ei, fi) and β = β − 1.
10: Set XcE = XcE ∪ {B} and YN = YN ∪ {(γ, β)}.
11: end for

12: return XcE and YN.

Algorithm 4.3 Swap Sequence Generation SSG(M, J, U) ([29])

Input: A matroid M and two sets of elements J ⊆ Bj\Bu and U ⊆ Bu\Bj , |J | = |U |.
Output: A minimal swap (e, f) or two recursive calls of the procedure SSG.
1: if |U | = 1 then

2: return the swap (e, f), where J = {e} and U = {f}.
3: else

4: Let U1 be the set of ⌊|U |/2⌋ smallest elements with respect to c (contained in
E0) and set U2 = U \ U1.

5: Determine J1 such that B = J1 ∪U1 forms a minimal basis for M with respect
to c satisfying B ∩ E0 = U1 and set J2 = J \ J1.

6: Call SSG((M− U2)/J1, J2, U1) to find the swaps for the elements in U1.
7: Call SSG((M− J2)/U1, J1, U2) to find the swaps for the elements in U2.
8: end if

(1) The set U1 ⊆ E0 consists of the ⌊|U |/2⌋ smallest elements of U with respect to c.
(2) The set B = J1 ∪ U1 is a minimum basis for M with respect to c satisfying

B ∩ E0 = U1.

In a second step, the given problem is split into two different subproblems and the
procedures SSG((M− U2)/J1, J2, U1) and SSG((M− J2)/U1, J1, U2) are executed.

Applying this procedure, it can be shown (cf. [29]) that all involved matroid
problems remain feasible and that all swaps contained in the final swap sequence
are preserved. Furthermore, if a subproblem consists of exactly one red element
e ∈ J ⊆ (Bj \ Bu) ∩ E1 and one green element f ∈ U ⊆ (Bu \ Bj) ∩ E0, it is
guaranteed that the swap (e, f) is in the swap sequence.

The Efficient Swap Algorithm ESA for the solution of Problem (BBMP ) is sum-
marized in Algorithm 4.2. The associated bisection procedure SSG that is recursively
called during the course of ESA is outlined in Algorithm 4.3. At the beginning of
Algorithm 4.2 the two bases Bj and Bu are calculated. Then, using Algorithm 4.3, a
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swap sequence for the (contracted) matroid (M− (Bj ∪Bu)
c)/(Bj ∩Bu)) with ground

set (Bj ∪ Bu) \ (Bj ∩ Bu) is generated recursively. Finally, the generated swaps are
sorted in non-decreasing order of their costs and, based on the result of Theorem 4.8,
the non-dominated set YN as well as a minimal complete set XcE of efficient solutions
are determined.

Note that during the course of Algorithm 4.3 it may happen that swaps (or elements)
with the same cost occur. So, a rule how to cope with ties in Line 4 of Algorithm 4.3 has
to be given. We follow the approach suggested in [29]: First assume that the elements
of E0 are sorted and indexed according to their costs c in non-decreasing order. Then,
in Line 4 of Algorithm 4.3 we always choose the first ⌊|U |/2⌋ elements from U . When
there are ties in the costs of the swap sequence, then the affected swaps are arranged
in increasing order of the indices with respect to the elements that are contained in
E0. The following theorem summarizes the results.

Theorem 4.9. Algorithm 4.2 is correct and returns the non-dominated set and a

minimal complete set of efficient solutions.

Proof. The correctness of the algorithm follows from Theorem 4.8 and from the cor-
rectness of the algorithm for solving Problem (BMP=) stated in [29].

Note that the complexity of Algorithm 4.2 depends on the considered matroid prob-
lem. For graphic matroids with G = (V,E), for example, it is shown in [29] that their
basic algorithm solves Problem (BMP=) within O(m log log(2+m/n) n+n·log(n)) time,
where |V | = n and |E| = m. Hence, Algorithm 4.2 has the same time bound in this
case, since the additional construction of XcE and YN takes at most O(m) time. For a
matching matroid and a transversal matroid the time bound is O(n log n+mℓ), which
follows again from a corresponding result in [29], where n is the number of vertices of a
graph, ℓ is the number of edges in a maximum matching and m is the number of edges
in the graph. Again, Algorithm 4.2 has the same time bound, since the additional
construction of XcE and YN takes at most O(ℓ) time. Furthermore, it is proven in
[29] that the Problem (BMP=) can be solved in linear time, i.e. O(n), for a partition
matroid (and therefore also for a uniform matroid) on a groundset E which consists of
n elements. In this case the construction of XcE and YN takes at most O(n) time and
hence Algorithm 4.2 has the same time bound.

Example 4.10. We apply ESA to the graphic matroid introduced in Example 4.4.
To simplify the notation, the edges of the graph G (see Figure 1) are identified by
their associated costs c rather than by their respective end nodes. This only induces
ambiguity in the case of the edges [2, 3] and [2, 4] which both have cost 2, and in the
case of the edges [1, 4] and [3, 7] which both have cost 4. We will refer to the edge
[2, 3] by writing 2′ and to the edge [1, 4] by writing 4′ in the following to distinguish
between these edges.

In a first step the optimal bases Bj and Bu are determined. This leads to the
spanning trees T2 and T5, respectively, shown in Figure 2, i.e. Bj = {1, 2, 2′, 3, 4, 5}
and Bu = {1, 4, 5, 7, 8, 9}. Hence, U = Bu \ Bj = {7, 8, 9} ⊆ E0, J = Bj \ Bu =
{2, 2′, 3} ⊆ E1, and Bj ∩ Bu = {1, 4, 5}. This implies that the edges 1, 4 and 5, i.e.,
the edges [1, 2], [3, 6] and [3, 7], are contained in every efficient spanning tree in the
set XcE generated by ESA, and the edges 4′ and 6, i.e., the edges [1, 4] and [6, 7], can
be removed from the problem since they are not contained in Bj ∪Bu. The contracted
matroid M1 := (M−(Bj∪Bu)

c)/(Bj∩Bu) is shown in Figure 3. From now on, we will
enumerate (contracted) matroids and their respective subsets by superscripts, while
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M1

M2
M3

2

8

9 7

3

2’

2’

7

8

2
9 3

Figure 3. Contracted graphic matroids M1, M2 and M3 from Example 4.10. Solid red lines correspond to
edges e with b(e) = 1 while the green dashed lines correspond to edges with b(e) = 0. The edges are identified
by their associated cost value c, where ambiguities are resolved by using the notation 2 and 2′ to refer to the
edges [2, 4] and [2, 3], respectively.

referring to the corresponding subsets U1, U2, J1, J2 by subscripts, as before.
Then the procedure SSG is called with SSG(M1, J1, U1), where J1 := J = {2, 2′, 3}

and U1 := U = {7, 8, 9}. Since |U1| = 3 > 1, the matroid M1 has to be split into two
smaller matroids. We first determine the ⌊|U1|/2⌋ smallest elements of U1 as U1

1 = {7}
and set U1

2 := U1 \ U1
1 = {8, 9}. Now we determine J1

1 such that B1 = J1
1 ∪ U1

1 is a
minimum basis for M1 with respect to c satisfying B1 ∩ E0 = U1

1 . This implies that
J1
1 = {2, 3}, J1

2 := J1 \ J1
1 = {2′} and B1 = {2, 3, 7}. Now the procedure SSG is called

recursively with SSG(M2, J2, U2) and SSG(M3, J3, U3), respectively, where M2 and
M3 correspond to the contracted matroids shown in Figure 3, and J2 = J1

2 , J
3 = J1

1 ,
U2 = U1

1 and U3 := U1 \ U1
1 = {8, 9}. SSG(M2, J2, U2) returns immediately the

swap (2′, 7) while SSG(M3, J3, U3) needs another recursion to compute the swaps
(3, 8) and (2, 9). Sorting these swaps in non-decreasing order of their costs leads to the
swap sequence {(2′, 7), (3, 8), (2, 9)} with costs 5, 5, 7. This immediately leads to the
final result YN = {(17, 4), (22, 3), (27, 2), (34, 1)} and XcE = {T2, T3, T4, T5}, see also
Figure 2.

5. Connectedness of the Efficient Set

In the following we show that the set of efficient bases XE for Problem (BBMP ) is
always connected. We recall from Section 2.1 that the set XE is said to be connected if
its corresponding adjacency graph is connected. Recall also that two efficient bases of
a matroid of rank m are called adjacent if they have m− 1 elements in common. Our
proof is based on the fact that the set of supported efficient bases is always connected
with respect to the above given definition of adjacency for efficient bases. For more
details on this topic we refer to [15]. In the following we show that every efficient basis
of Problem (BBMP ) is a supported efficient solution which implies that the adjacency
graph of the problem is always connected.

To do so, we first formulate a sufficient condition that guarantees that the non-
dominated set of a general biobjective combinatorial minimization problem only con-
sists of supported non-dominated outcome vectors. Given the non-dominated set
YN = {z1, . . . , zn} ⊂ R2 of the problem, where n ≥ 3 and zi = (xi, yi) ∈ R2, with
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x1 < . . . < xn and y1 > . . . > yn, we define the sequence of slopes {mi}
n−1
i=1 of subse-

quent points of YN by setting

mi =
yi+1 − yi
xi+1 − xi

, i = 1, . . . , n− 1.

Note that mi ∈ (−∞, 0) holds for all i ∈ {1, . . . , n− 1}.

Lemma 5.1. Consider a biobjective combinatorial minimization problem and sup-

pose that the sequence of slopes {mi}
n−1
i=1 is non-decreasing. Then all non-dominated

outcome vectors in the set YN are supported.

Proof. Suppose that, to the contrary, there is a non-supported non-dominated out-
come vector zt ∈ YN, t ∈ {2, . . . , n − 1}. Since a non-dominated outcome vector is
supported if and only if it is an element of the convex hull of Y, it follows that there
exist supported non-dominated outcome vectors zi, zj ∈ YN and a weight λ ∈ (0, 1)
such that the point zλ = (xλ, yλ) := λzi+(1−λ)zj ∈ R2 strongly dominates zt, where
1 ≤ i < t < j ≤ n holds. Note that zλ can not be an element of YN since otherwise it
would dominate zt. Without loss of generality we may assume that i = 1 and t = 2.
Since x1 < xλ < x2 and yλ < y2 < y1 holds, it follows that

(yλ − y1) · (x2 − x1) < (y2 − y1) · (x2 − x1) < (y2 − y1) · (xλ − x1) < 0.

Since zλ is an element of the straight line connecting z1 and zj , it follows that

m⋆ :=
yj − y1
xj − x1

=
yλ − y1
xλ − x1

<
y2 − y1
x2 − x1

= m1.

This is impossible, since by assumption m1 ≤ mi for all i ∈ {1, . . . , n}, and hence

yj = y1 +

j−1∑

i=1

(yi+1 − yi) = y1 +

j−1∑

i=1

mi · (xi+1 − xi)

≥ y1 +m1 ·

j−1∑

i=1

(xi+1 − xi) = y1 +m1 · (xj − x1).

Therefore, it has to hold that m⋆ ≥ m1, which is a contradiction.

We combine the results of Theorem 4.7, Theorem 4.8 and Lemma 5.1 to conclude
that all nondominated outcome vectors of biobjective optimization problems on ma-
troids with one binary objective function are supported.

Lemma 5.2. Consider a feasible instance of Problem (BBMP ), i.e., assume that

Y 6= ∅. Then the non-dominated set YN consists only of supported non-dominated

outcome vectors.

Proof. Using the notation introduced in Section 4, we denote by {(ei, fi)}
u−1
i=j a swap

sequence starting from a lexicographically optimal basis Bj that induces a set of effi-
cient bases Bi ∈ Si for Problem (BBMP ), i = j, . . . , u. According to Theorem 4.8 we
have that YN = {(c(Bi), b(Bi)), i = j, . . . , u}.
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Note that the result is trivial when |YN| ≤ 2. When |YN| ≥ 3 we know from
Lemma 5.1 that it suffices to show that the sequence of slopes {mi}

u−1
i=j , where

mi =
b(Bi+1)− b(Bi)

c(Bi+1)− c(Bi)
=

−1

c(Bi+1)− c(Bi)

is non-decreasing. Since in this case |YN| ≥ 3 we have that j ≤ u− 2. For an arbitrary
but fixed index i ∈ {j, . . . , u− 2} it follows from Theorem 4.6 and Theorem 4.7 that

c(Bi+2)− c(Bi+1) = c(ei+1, fi+1) ≥ c(ei, fi) = c(Bi+1)− c(Bi) > 0.

This implies that

mi+1 =
−1

c(Bi+2)− c(Bi+1)
≥

−1

c(Bi+1)− c(Bi)
= mi,

and hence the sequence of slopes {mi}
u−1
i=j is non-decreasing. This implies that YN

contains only supported non-dominated outcome vectors.
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Figure 4. Non-dominated set of the graphic matroid introduced in Figure 1. Non-dominated outcome vectors
are shown in black and weakly non-dominated points shown in grey. The remaining (white) points are all
dominated outcome vectors. Note that the points y2, y4 and y5 are extreme supported non-dominated outcome
vectors while y3 is a non-extreme supported non-dominated outcome vector. The nodes yi correspond to the
trees Ti from Figure 2.

Note that not every supported non-dominated outcome vector must be extreme
supported. Indeed, when the costs of two consecutive swaps (ei, fi) and (ei+1, fi+1) in
a swap sequence are equal, then the point (c(Bi+1), b(Bi+1)) is not an extreme point of
conv(Y). To see this we consider again the graphic matroid introduced in Figure 1, c.f.
Example 4.4. The set of feasible outcome vectors Y in the objective space is shown in
Figure 4. In this example, the supported non-dominated point y3 (which is the image
of the spanning tree T3 from Figure 2) is not an extreme point of conv(Y) and thus
not extreme supported.

We finally conclude that the set of efficient bases is connected.

Theorem 5.3. Consider a feasible instance of Problem (BBMP ). Then the set of

efficient solutions XE is connected.

Proof. Lemma 5.2 implies that all non-dominated outcome vectors in YN are sup-
ported, and hence all efficient solutions in XE are supported. Using the fact that the
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(sub)graph of all supported efficient solutions is always connected (see [15]) implies
the result.

6. Numerical Results

The main advantage of ESA is its computational efficiency. In this section we present
numerical results that validate this statement for the examples of graphic and uniform
matroids. In addition we address the question whether, and if yes, how far the results
on the connectedness of the efficient set can be extended to more general cases. Towards
this end, we randomly generated instances of uniform matroids with more than two
(integer) values for the coefficients in the second objective. For all instances we compute
the complete efficient set XE and count the number of instances for which XE is non-
connected.

We note that other generalizations have been investigated for specific matroids. [19],
for example, analyzes uniform matroids with one general cost function and two binary
cost functions in a tri-criteria model. They suggest an exact solution method that is,
similar to ESA, based on neighborhood search. In contrast to ESA their algorithm may
generate dominated solutions. Nevertheless, they show that a complete set of efficient
solutions can be generated in polynomial time with this method and that the efficient
set consists only of supported solutions and is thus connected.

6.1. Performance of the Efficient Swap Algorithm

In this section, we present numerical results on randomly generated instances of
graphic matroids and of uniform matroids to validate the efficiency of ESA.

6.1.1. Graphic Matroids

For graphic matroids on undirected connected graphs G = (V,E), i.e., for biobjective
minimum spanning tree problems with one general and one binary cost function, we
evaluate the computational time needed by ESA to compute the non-dominated set
YN. To set this time in relation to the combinatorial complexity of the respective
instances, we also provide the total number of feasible solutions, i.e., of spanning trees
of the graph, and evaluate the time needed to determine all efficient trees from this set
by total enumeration. This complete enumeration approach (CE) is implemented by
using the matlab code by Matthias Hotz [35] for the generation of all spanning trees
that is based on an algorithm described in [36]. For a recent survey and numerical
comparison of exact algorithms for general multiobjective minimum spanning tree
problems we refer to [37]. Note that the problem could also be solved by n = |V |
restarts of the method of Gabow and Tarjan [29] with appropriately chosen constraints
on the number of green edges. ESA avoids these restarts as well as the computation of
dominated solutions by initializing the swap sequence with a lexicographically optimal
basis. The induced savings depend on the considered instance and are most significant
when the non-dominated set is rather small compared to |V |.

The efficiency tests are run on a computer with an Intel(R) Core(TM) i7-8700 CPU
@ 3.20GHz processor, 12MB Cache and 32 GB RAM. Both algorithms are imple-
mented in MATLAB Version R2020a.

Recall from Section 3 that the objective values of the binary objective b can only take
values between 0 andm, i.e., b(B) ∈ {0, 1, . . . ,m} wherem is the rank of the underlying

19



matroid and B is an arbitrary basis. As a consequence, we have that |YN| = O(m). For
an instance of the graphic matroid on a connected graph G = (V,E) with n vertices
and m edges, this implies that b(T ) ∈ {0, 1, . . . , n − 1} for all spanning trees T of
G. Note that due to the common notation that |V | = n and |E| = m for graphic
matroids, the rank of a graphic matroid is thus n − 1. The CE approach determines
all efficient spanning trees by maintaining a list with n entries, one for each potential
value of b(T ) ∈ {0, 1, . . . , n−1} that stores the currently best cost value c(T ) together
with all corresponding trees that were enumerated so far.

Table 1 summarizes the times needed to compute all non-dominated outcome vec-
tors with ESA for instances with up to n = 1000 nodes and m = 45000 edges. To
randomly generate connected graphs, we use a code from [38] that first constructs a
random spanning tree for the required number of nodes and afterwards the remaining
edges are randomly added. For all instances, the cost coefficients of the first objective
were uniformly distributed random integers between 1 and 50 000 that were linearly
transformed such that the smallest cost value is always equal to zero. For the second
objective, the cost coefficients were uniformly distributed random integers from the
set {0, 1}. To reduce the effect of fluctuations due to varying processor loads, all times
are averaged over ten runs on the same instance. Despite the exponentially growing
cardinality |X | of the feasible set, which was computed using Kirchhoff’s matrix tree
theorem (see, e.g., [39]) for instances up to n = 100, the computational time of ESA
always remains below one minute. It can be observed that both the number |YN| of
non-dominated outcome vectors as well as the computational time needed by ESA
grow mainly with n, and only marginally with m and with the number |E1| of edges
that have cost 1, i.e., which are in the set E1 = {e ∈ E : b(e) = 1} in the second
objective b.

The numerical results shown in Table 1 confirm the expected efficiency of ESA.
Indeed, since ESA computes the set of non-dominated outcome vectors YN (which has
at most n elements) rather than the set of all efficient solutions XE, the number of
iterations of ESA is bounded by n. Moreover, each iteration requires a simple swap
operation that can be implemented very efficiently.

Note that ESA generates only one pre-image, i.e., one feasible tree for each non-
dominated outcome vector, while the number of efficient trees may be substantially
larger. As an example, consider an instance where all edges have the same coefficients
in both objectives. Then all spanning trees map to the same outcome vector in the
objective space, i.e., |YN| = 1, and are thus efficient, i.e., |XE| = |X |. In order to test
whether this is a common situation also in randomly generated instances, we computed
the complete set XE with the CE approach for the smaller instances from Table 1. It
turns out that this is not the case for randomly generated instances on small graphs
with a rather large range for the objective coefficients.

Note also that since ESA exploits the fact that the non-dominated set YN solely con-
sists of supported non-dominated outcome vectors when one of the objective functions
has binary coefficients only (c.f. Lemma 5.2), a numerical comparison with general
solvers for bi- and multiobjective minimum spanning tree problems is not meaning-
ful. In two-phase methods, for example, the search for unsupported non-dominated
outcome vectors could be omitted, leading to an implementation that is somewhat
similar to ESA. On the other hand, algorithms that generalize classical methods for
the single objective minimum spanning tree problem to the multiobjective case cannot
be expected to be competitive with ESA since they generally enumerate far too many
irrelevant trees.
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Table 1. Computational results for randomly generated graphs with n vertices,
m edges, and |E1| edges with cost 1 in the binary cost function b. |XE| is the
number of efficient solutions, |YN| is the number of non-dominated points and
|X | is the number of spanning trees for this instance. The last two columns give
the time in seconds for ESA and for CE, respectively.

(n, m) |E1| |YN| |XE| |X | ESA [s] CE [s]
(7, 10) 2 1 1 76 0.065 0.010
(7, 10) 4 4 4 66 0.032 0.001
(7, 15) 8 2 2 1 615 0.010 0.013
(7, 15) 12 3 3 1 807 0.014 0.015
(7, 20) 8 4 4 12 005 0.019 0.080
(7, 20) 11 5 5 12 005 0.023 0.081
(7, 20) 12 5 5 12 005 0.022 0.081
(10, 20) 10 6 6 26 646 0.027 0.203
(10, 20) 11 5 5 21 560 0.023 0.167
(10, 20) 15 2 2 18 956 0.011 0.139
(10, 30) 15 3 3 1.85 · 106 0.016 11.808
(10, 30) 17 2 2 1.62 · 106 0.012 10.215
(10, 30) 20 5 5 1.60 · 106 0.021 10.202
(10, 40) 17 6 6 3.06 · 107 0.029 172.213
(10, 40) 18 7 7 3.01 · 107 0.032 171.100
(10, 40) 20 3 3 3.01 · 107 0.016 168.403
(15, 30) 13 5 5 5.35 · 106 0.025 38.684
(15, 30) 15 5 5 4.11 · 106 0.023 29.293
(15, 30) 16 5 5 4.66 · 106 0.024 33.935
(15, 60) 27 5 - 2.97 · 1011 0.028 -
(15, 60) 28 7 - 3.95 · 1011 0.034 -
(15, 60) 34 10 - 2.86 · 1011 0.034 -
(15, 100) 46 6 - 9.46 · 1014 0.034 -
(15, 100) 48 8 - 9.35 · 1014 0.040 -
(15, 100) 51 7 - 9.35 · 1014 0.036 -
(20, 40) 19 7 - 1.18 · 109 0.034 8 663.920
(20, 40) 20 10 - 7.42 · 108 0.044 5 419.526
(20, 100) 47 12 - 5.76 · 1017 0.058 -
(20, 100) 48 13 - 4.43 · 1017 0.062 -
(20, 100) 52 13 - 4.15 · 1017 0.059 -
(20, 180) 83 7 - 8.91 · 1022 0.047 -
(20, 180) 84 10 - 8.89 · 1022 0.057 -
(20, 180) 103 11 - 8.94 · 1022 0.057 -
(100, 200) 93 36 - 4.94 · 1044 0.198 -
(100, 200) 101 32 - 5.06 · 1045 0.179 -
(100, 200) 102 36 - 1.06 · 1045 0.193 -
(100, 1 000) 476 39 - 2.20 · 10125 0.296 -
(100, 1 000) 488 48 - 5.74 · 10125 0.341 -
(100, 1 000) 494 50 - 2.14 · 10125 0.345 -
(100, 2 000) 981 48 - 3.00 · 10156 0.452 -
(100, 2 000) 988 43 - 3.00 · 10156 0.427 -
(100, 2 000) 1 047 52 - 2.32 · 10156 0.457 -
(100, 4 000) 1 960 49 - 5.39 · 10186 0.700 -
(100, 4 000) 1 976 46 - 5.43 · 10186 0.681 -
(100, 4 000) 1 998 55 - 5.53 · 10186 0.723 -
(1 000, 2 000) 970 355 - - 3.695 -
(1 000, 2 000) 976 320 - - 3.445 -
(1 000, 2 000) 1 008 353 - - 3.695 -
(1 000, 15 000) 7 419 489 - - 8.101 -
(1 000, 15 000) 7 441 478 - - 7.999 -
(1 000, 15 000) 7 541 511 - - 8.325 -
(1 000, 30 000) 14 894 494 - - 12.805 -
(1 000, 30 000) 14 947 482 - - 12.416 -
(1 000, 30 000) 14 988 510 - - 12.708 -
(1 000, 45 000) 22 430 470 - - 17.375 -
(1 000, 45 000) 22 548 514 - - 17.996 -
(1 000, 45 000) 22 632 517 - - 18.011 -
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Table 2. Computational results for randomly gen-
erated instances of uniform matroids Uk,n. The two
last columns show the accumulated average com-
putation time over all k = 1, . . . , n/2 in seconds,
rounded over 10 repetitions for each instance, for
ESA (for the computation of YN) and for DP (for
the computation of XE), respectively. For instances
with 80 or more elements DP needs more than 600
seconds.

n |E1| |YN| |XE| ESA [s] DP [s]
20 9 64 83 0.02 0.08
20 10 65 65 0.02 0.06
20 11 64 74 0.03 0.06
30 12 129 129 0.03 0.44
30 15 135 166 0.03 0.50
30 16 134 134 0.02 0.30
50 21 340 364 0.06 35.33
50 21 340 340 0.07 27.29
50 29 340 413 0.06 14.43
60 27 489 523 0.09 131.83
60 30 495 627 0.09 130.62
60 32 492 502 0.09 80.36
70 34 664 690 0.12 327.33
70 35 665 716 0.12 336.23
70 38 659 705 0.12 248.97
80 38 857 935 0.21 > 600
80 44 850 899 0.27 > 600
80 50 805 860 0.21 > 600
90 45 1 080 1 181 0.20 > 600
90 46 1 079 1 213 0.21 > 600
90 47 1 077 1 159 0.19 > 600

100 46 1 315 1 361 0.25 > 600
100 50 1 325 1 483 0.46 > 600
100 51 1 324 1 441 0.27 > 600

6.1.2. Uniform matroids

As a second test case we consider uniform matroids Uk,n on the ground set E =
{e1, . . . , en}, from which exactly k elements have to be selected in a basis. Rather
than minimizing the cost of a basis we aim at maximizing its profit w.r.t. one general
and one binary cost function to reflect the similarity of this problem to biobjective
knapsack problems with bounded cardinality.

To determine the profit vectors of each element ei ∈ E , we generated n uniformly
distributed random values from the set {0, 1, . . . , 10n} (for the first objective) and n
values from the set {0, 1} (for the second objective). After sorting the values for the
first objective in non-decreasing order and the values of the binary objective in non-
increasing order, the coefficients were combined into profit vectors for the elements
e1, . . . , en.

For each instance on n elements, Table 2 shows the accumulated results over all
values of k ∈ {1, . . . , n2 }. In order to analyse the relation between |YN| and |XE|,
we applied a simple implementation of a dynamic programming algorithm (DP) for
multiobjective knapsack problems as described, for example, in [40]. Different from
the biobjective minimum spanning tree instances described above, we consistently
observe that the number of efficient solutions exceeds the number of non-dominated
outcome vectors, however, not by very much. As was to be expected, ESA easily solves
larger instances within fractions of a second, while the computational time required
by DP grows significantly with the size of the instance. The efficency tests are run on
a computer with an Intel(R) Core(TM) i7-7500U CPU @ 2.70GHz processor and 8
GB RAM. The algoithms are implemented in MATLAB, Version R2019b.
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Table 3. Number of observed nc-instances in 300 000 randomly generated instances
of Uk,20, cumulated for all k ∈ {1, . . . , 10}, for different values of β.

β 2 3 4 5 6 7 8 9 11 13 15 20 25 30
nc-instances 0 0 0 0 0 0 2 4 3 2 8 10 12 13

6.2. Connectedness for more General Cost Functions

The proof of the connectedness of the efficient set of Problem (BBMP ) (c.f. Theo-
rem 5.3) relies on two basic properties: On one hand, this is the matroid structure
of the considered problem, and on the other hand it is the fact that one of the two
objective functions has only binary cost coefficients. While the first property ensures
the feasibility of elementary swap operations, the latter implies that two adjacent non-
dominated outcome vectors always differ by exactly one unit in the binary objective
function.

In general, i.e., when the objective coefficients can be chosen freely, biobjective
optimization problems on uniform matroids may have non-connected efficient sets.
Corresponding examples are provided in [20] indicating that such non-connected in-
stances (nc-instances) are very rare in randomly generated instances. The question
remains whether non-connected instances already exist when the cost coefficients in
the second objective are restricted to {0, 1, 2} (rather than {0, 1}), or, more generally,
to {0, 1, . . . , β} with β ≥ 2.

The frequency in which nc-instances occurred for different values of β in
a large numerical study are reported in Table 3. For each value of β ∈
{2, . . . , 9, 11, 13, 15, 20, 25, 30} we randomly generated 300 000 instances of uniform
matroids Uk,n with n = 20 elements. The profit vectors were chosen as described
in Section 6.1 above, where the coefficients for the second objective were now drawn
from the set {0, 1, . . . , β}. All instances were solved for all k ∈ {1, . . . , n2 } using a DP
approach for multiobjective knapsack problems, see [40].

Table 3 indicates that it seems to become more likely to find nc-instances the larger
the range for the coefficients in the second objective function is, i.e., the larger the
value of β is. Nevertheless, we suspect that nc-instances also exist for smaller values of
β but that such instances are extremely rare. While nc-instances may be more likely
for larger values of n, analysing large data sets becomes more and more challenging
since this requires the exact computation of the complete efficient set for each instance
(without the possibility of using ESA). We note that preliminary tests with n = 30
and n = 50 did not provide further insight on this topic.

A necessary condition for the existence of nc-instances is the existence of non-
dominated non-supported outcome vectors. But in contrast to nc-instances it is quite
easy to generate knapsack problems with such outcome vectors. An example is given
in Table 4. In the first column of the left table the number of an item, in the second
column the first weight and in the third column the second weight with β = 2 is given.
In the right table, the efficient bases for k = 3 are given with their outcome vectors.
Recall that we interpret the uniform matroid as a special case of a knapsack problem
with bounded cardinality and thus consider both objective functions as maximization
objectives. As can be seen in Figure 5, the basis {e1, e4, e5} is non-dominated and
non-supported. Nevertheless, the efficient set of this instance is connected.
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Table 4. Left: Elements ei i = 1, . . . , k of a knapsack U3,6 with
their weights with β = 2. Right: Efficient bases for the knapsack.

e c(e) b(e) B c(B) b(B)
e1 6 0 {e1, e2, e3} 13 0
e2 5 0 {e1, e2, e4} 13 1
e3 2 0 {e1, e2, e5} 13 2
e4 2 1 {e1, e4, e5} 10 3
e5 2 2 {e1, e5, e6} 8 4
e6 0 2 {e4, e5, e6} 4 5
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Figure 5. Non-dominated set of the uniform matroid introduced in Table 4. Non-dominated outcome vectors
are shown in black and weakly non-dominated points shown in grey. The point y3 corresponds to a non-
dominated and non-supported outcome vector.

7. Conclusions

In this paper we investigate biobjective matroid problems involving one binary cost
objective. We present an efficient swap algorithm (ESA) that solves this special kind of
biobjective matroid problem efficiently, although the decision problem of the general
version of this problem is known to be NP-complete (cf. [15]). The idea of ESA is based
on a method of [29] for a constrained version of single-objective matroid optimization
problems. The complexity of ESA depends on the matroid type. For a graphic matroid
on a graph G = (V,E), for example, it is given by O(m + n · log(n)), where |V | = n
and |E| = m. Numerical experiments confirm the efficiency of this approach.

The efficient swap algorithm can be interpreted as a neighborhood search approach
with an efficient strategy for the identification of relevant swaps. The correctness of this
approach is based on the proof of the connectedness of the efficient set in this special
case, which is in turn based on the insight that the non-dominated set consists only
of supported non-dominated outcome vectors. This is surprising since it was shown in
[28] that the efficient set is in general non-connected for biobjective matroid problems.
To the best of our knowledge this is the first class of problems where connectedness
of XE can be established even though the non-dominated set is not contained in a
hyperplane.
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