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We study the compatibility between the conformal symmetry together with the unitarity and

the continuous higher-form symmetries. We show that the d-dimensional unitary conformal field

theories are not consistent with continuous p-form symmetries for certain (d, p), assuming that

the corresponding conserved current is a conformal primary operator. We further discuss several

dynamical applications of this constraint.
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1 Introduction and Summary

As quantum field theories (QFT) are subject to the renormalization group (RG) flow [1], one is

naturally interested in its special points, one of which is the fixed point(s) at the end. The theories

at the fixed points are scale invariant by definition, but they often enjoy even larger symmetry:

gapless theories are often conformal field theories (CFT), and gapped theories are often topologi-

cal quantum field theories (TQFT), where the latter includes the trivially gapped theory with only

one vacuum as a special case. To examine these fixed-point theories, it is useful to find some

universal features of the QFT that persist along the RG flow, and it has been widely appreciated

that the global symmetries and their ’t Hooft anomalies are the two prominent ones. In the sim-

plest cases, the presence of nontrivial ’t Hooft anomaly implies that the IR fixed point cannot be

a trivial theory with a symmetric ground state on an arbitrary spatial manifold [2–4]. However,

it is natural to ask whether and how one can further constrain the fixed-point theories, beyond

just knowing whether they can be trivial or not. Hopefully, the answer seems to be affirmative;

for gapped IR fixed points, it has been realized recently that certain systems with discrete global

symmetries cannot flow to a symmetry-preserving TQFT in the IR [5–7].

The aim of this short note is to find such more-refined constraints for gapless fixed points,

focusing on continuous higher-form symmetries. As a main result, we find that d-dimensional

unitary CFTs are not compatible with continuous p-form symmetries for some pairs of (d, p).

Some special instances have been discussed in the literature; for d = 6, supersymmetric CFTs are

not compatible with continuous 1-form symmetry [8], and for d = 4, CFTs are compatible with

continuous 1-form symmetry only when it is chiral [9]. To the best of the authors’ knowledge,

the discussion for generic (d, p) without imposing the supersymmetry has not been presented
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explicitly in the literature, and the purpose of this note is to fill this gap. The incompatibility

between unitary CFTs and certain higher-form symmetries can also be used to reinterpret some of

the known results that certain free field theories are scale invariant but not conformal [10, 11].

The paper is organized as follows. In Section 2, we review the conformal algebra and its

representations. In Section 3, we examine the scaling dimensions of the conserved currents for

the continuous p-form symmetries, and find that some of them violate the unitarity bounds and

thus are forbidden in unitary CFTs. We also apply the result to various examples and mention its

consequences. In Appendix A, we list additional constraints under the presence of supersymmetry.

2 Conformal algebra and representation

To set up the notations, let us start by reviewing the conformal algebra and its representation.

Throughout, we work in the Euclidean space, with all-positive signature. We follow the conven-

tion in [12].

Conformal algebra The conformal symmetry algebra in d spacetime dimensions is so(d+1, 1).

The generators are the translations Pµ, the rotationsMµν , the scalingD, and the special conformal

transformations Kµ, and they obey the following algebra

[Mµν ,Mαβ] = −i (ηµβMνα + ηναMµβ − ηµαMνβ − ηνβMµα),

[Mµν , Pα] = −i (ηναPµ − ηµαPν),

[Mµν , D] = 0,

[Mµν , Kα] = −i (ηναKµ − ηµαKν),

[D,Pµ] = −iPµ,

[D,Kµ] = iKµ,

[D,D] = 0,

[Pµ, Pν] = 0,

[Pµ, Kν] = −2i (ηµνD +Mµν),

[Kµ, Kν ] = 0,

(2.1)

where ηµν is the metric with the Euclidean signature.

Representation of operators at the origin In a theory with the conformal symmetry, the local

fields O can be organized into representations of the conformal algebra (2.1). Under the radial

quantization, there is a natural correspondence between a local field O(0) at the origin and a state

at the past infinity,

O(0) ↔ |O〉 ≡ O(0) |0〉 (2.2)
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where |0〉 is the vacuum state. The Hermiticity condition for the conformal symmetry generators

are

M †
µν = Mµν ,

P †
µ = Kµ,

K†
µ = Pµ,

D† = −D.

(2.3)

To specify the representation, one first needs to determine the Cartan subalgebra of (2.1), or

equivalently, the maximal commuting subset of the generators. A convenient choice for such

subset is {D,M12,M34, ...,M2m−1,2m} for m = ⌊d
2
⌋, and then each operator O (and hence each

state |O〉) is labeled by the scaling dimension ∆O and the highest weight1 [{hi}]O of the so(d)

representation. The other generators are the “ladder” operators which raise or lower them. For

example, the momentum operator is represented in the standard way,

[Pµ,O(x)]
∣

∣

x=0
= −i∂µO(x)

∣

∣

x=0
↔ Pµ |O〉 = −i∂µ |O〉 , (2.4)

and therefore, Pµ|O〉 has a scaling dimension (∆O + 1). In the following, we also restrict O(0)

to be a conformal primary operator, which is defined to commute with the generators of special

conformal transformations Kµ, and the corresponding state is annihilated by Kµ,

[Kµ,O(0)] = 0 ↔ Kµ |O〉 = 0. (2.5)

3 Constraint on unitary CFT from higher-form symmetries

In this section, we will consider the scaling dimension ∆J and the highest weights [{hi}]J of the

conserved currents associated with continuous higher-form symmetries, and check whether they

satisfy the unitarity bounds of the conformal representation.

3.1 Unitarity bound in CFT

As discussed in Section 2, the state-operator correspondence maps a conformal primary operator

O to a conformal primary state |O〉, and correspondingly, each state is labeled by the scaling

dimension ∆O and the highest weights [{hi}]O. Here, the unitarity requires all states to have non-

negative norms, i.e. 〈O|O〉 ≥ 0 in the Euclidean spacetime. For the descendant state
∏n

i=1 Pνi |O〉,

this can be rephrased as all the eigenvalues of the matrix

〈O|
n
∏

j=1

Kµj

n
∏

i=1

Pνi |O〉 (3.1)

1Here we adopt the orthogonal basis (rather than the fundamental-weight basis associated with the Dynkin labels),

where hi ∈
1

2
Z and h1 ≥ · · · ≥ hm for generic d, following [12]. (Note that for d = 4, the representations will be

labeled in terms of su(2) × su(2).) For more details of the representation theory including the relation between two

bases, see standard textbooks e.g. [13].
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d Lorentz Algebra Representation Unitarity Bound ∆O ≥

3 so(3) [h]O

0 (h = 0)

1 (h = 1
2
)

h + 1 (h ≥ 1)

4 so(4) [h1, h2]O

0 (h1 = h2 = 0)

h1 + 1 (h1 > 0, h2 = 0)

h2 + 1 (h1 = 0, h2 > 0)

h1 + h2 + 2 (h1 > 0, h2 > 0)

5 so(5) [h1, h2]O

0 (h1 = h2 = 0)

2 (h1 = h2 =
1
2
)

h1 + 2 (h1 = h2 6= 0, 1
2
)

h1 + 3 (h1 > h2)

6 so(6) [h1, h2, h3]O

0 (h1 = h2 = h3 = 0)

h1 + 2 (h1 = h2 = |h3| 6= 0)

h1 + 3 (h1 = h2 > |h3|)

h1 + 4 (h1 > h2)

Table 1: Unitarity bounds of local primary operators from the non-negativity of the norms of their

first descendants. The highest weights hi’s are all in terms of the orthogonal basis.

should be non-negative. The constraint for n = 1 has been completely solved in [14] for d = 4,

and in [12] for general dimensions, which we summarize in Table 1. It turns out that there are no

further constraints coming from n ≥ 2 unless O is a Lorentz scalar (i.e. so(d) singlet) [14].

3.2 Unitarity bounds for conserved currents of higher-form symmetry

A continuous p-form global symmetry is accompanied by a (p+1)-form current J = Jµ1···µp+1dxµ1∧

... ∧ dxµp+1 which is conserved

d ∗ J = ∂µ1
Jµ1···µp+1 = 0, (3.2)

and the p + 1 indices are fully anti-symmetrized [15]. The conserved charge is defined by inte-

grating ∗J over a (d− p− 1)-dimensional submanifold Σd−p−1

Q =

∫

Σd−p−1

∗J , (3.3)
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d = 3 d = 4 d = 5 d = 6

∆J [h]J ∆J [h1, h2]J ∆J [h1, h2]J ∆J [h1, h2, h3]J

p = 0, Jµ 2 [1] 3 [1
2
, 1
2
] 4 [1, 0] 5 [1, 0, 0]

p = 1, Jµν 1 [1] 2 [1, 0]⊕ [0, 1] 3 [1, 1] 4 [1, 1, 0]

p = 2, Jµνρ 1 [1
2
, 1
2
] 2 [1, 1] 3 [1, 1, 1]⊕ [1, 1,−1]

p = 3, Jµνρσ 1 [1, 0] 2 [1, 1, 0]

p = 4, Jµνρση 1 [1, 0, 0]

Table 2: Scaling dimensions and so(d) Lorentz representations of the conserved currents of p-

form symmetry in d = 3, 4, 5, 6.

and the charged operators are supported on p-cycles linked by Σd−p−1. The background field for

the p-form symmetry is (p+ 1)-form B(p+1), which couples to the action via the coupling term

∫

B(p+1) ∗ J . (3.4)

This term is invariant under the background gauge transformation B(p+1) → B(p+1) + dλ(p), due

to the conservation condition (3.2).

We will assume that, when a CFT has continuous p-form symmetry G,2 there is at least one

operator charged under it. This implies that the conserved current should not be a derivative of

another operator, since otherwise the chargeQ vanishes, meaning that there is no charged operator

in the theory and hence the symmetry is decoupled [16]. In other words, the current should be

a conformal primary operator. Furthermore, by applying the state-operator correspondence to

the conservation condition (3.2), one finds that the first descendant of the primary state |J〉 is a

null state. Hence |J〉 belongs to a short conformal multiplet and the unitarity bound tabulated in

Table 1 must be saturated.

Note that the symmetry charge Q by definition has to commute with the conformal algebra. In

particular, the scaling dimension of Q has to vanish ∆Q = 0, and this fixes the scaling dimension

of the corresponding current to be ∆J = d − p − 1. In Table 2, we enumerate them along

with the so(d) representation labeled by the highest weights. By comparing it with the unitarity

bounds in Table 1, we can determine the pairs (d, p) which are not compatible with unitary CFT,

as summarized in Table 3. For instance, when d = 3, the current for the 1-form symmetry violates

the unitarity bound since ∆J = 1 < h + 1 = 2. We will refer to the symmetry whose conserved

current violates the unitarity bound as the “forbidden” symmetry. We summarize our main result

as a theorem:

2Since p-form symmetries with p ≥ 1 must be Abelian, G is either U(1) or R (or multiple copies thereof).

5



d = 3 d = 4 d = 5 d = 6

p = 0 ✓ ✓ ✓ ✓

p = 1 ✗ ✓ : if chiral ✗ : otherwise ✓ ✓

p = 2 ✗ ✗ ✓ : if chiral ✗ : otherwise

p = 3 ✗ ✗

p = 4 ✗

Table 3: p-form symmetries that saturates (✓) or violates (✗) the unitarity bound, in spacetime

dimensions d = 3, 4, 5, 6. “Chiral” means both the self-dual and anti-self-dual components of the

current are conserved, i.e. d ∗ J = 0 and dJ = 0.

Theorem: A unitary CFT cannot have the “forbidden” p-form symmetry (✗) whose conserved

current is the conformal primary operator.

The cases (d, p) = (4, 1) and (6, 2) deserve additional comments; in these two cases, the

conserved currents are in reducible representations of Lorentz symmetry, and can be decomposed

into self-dual (SD) and anti-self-dual (ASD) currents, each of which is irreducible. For instance,

for (d, p) = (4, 1), the SD and ASD currents are defined as Jµν
± = 1

2
(Jµν ± 1

2
ǫµνρσJρσ), belonging

to irreducible representations [1, 0] and [0, 1] respectively. Their scaling dimensions are identical,

i.e. ∆J = ∆J± = 2. From the unitarity bound in table 1, it follows that in a unitary CFT, both

the SD and ASD currents should be conserved, ∂µJ
µ
± = 0. We will call such global symmetries

and their currents “chiral". On the contrary, a unitary CFT in 4d is not compatible with non-chiral

1-form global symmetries. Similar comments apply to (d, p) = (6, 2).

3.3 Dynamical applications

The conflicts between the conformal symmetry (together with the unitarity) and higher-form sym-

metries lead to several dynamical consequences. Starting from a Lorentz-invariant d-dimensional

QFT with a “forbidden” continuous p-form global symmetryG at arbitrary energy scale, we would

like to ask

Q1. UV completion: if there exists a UV fixed point which flows to the original QFT by turning

on certain G-symmetric relevant operator, can the UV fixed point be a unitary G-symmetric

CFT?

Q2. IR fate: if we turn on a G-symmetric relevant coupling and flow down along the RG, what

will be the IR fixed point? Can it be a unitary G-symmetric CFT?

Below, we propose that there can be following dynamical scenarios; namely, the UV or IR fixed

point theory can be

6



gapless gapped

unitary non-unitary

4
conformal scale inv.

3symmetry not decoupled
2

decoupled 1

Table 4: Summary of dynamical scenarios in the presence of forbidden (✗) symmetry.

1. a unitary CFT, but the p-form symmetry G is decoupled.

2. scale invariant but not conformal, and the p-form symmetry G may or may not decouple.

3. non-unitary.

4. gapped TQFT (including a trivial theory).

See Table 4 for a comparison between different scenarios. Some comments are in order.

• The scenario 1 is consistent from the unitarity bound analyses in Section 3.2, because there

we assumed that the current does not decouple.

• The scenario 2 appears somewhat exotic, since the scale invariance usually comes together

with the conformal invariance, which was shown to be always the case in d = 2 [17]. How-

ever, in higher dimensions, there is no such proof, and in fact there are some counterex-

amples [10, 11, 18]. Below, we will clarify that those scale-invariant but non-conformal

theories actually possess “forbidden” symmetries, which do not allow them to be unitary

and conformal at the same time.

• Regarding the scenario 4, the UV fixed point theory is unlikely to be a TQFT with a unique

vacuum, because the only local operator would be the identity operator, and hence there is

no relevant operator to trigger the RG flow to the original theory. If there are multiple vacua,

one can analyze the TQFT in one particular vacuum, and the same conclusion follows.

• Although TQFT is a special case of CFT, it is actually compatible with continuous p-form

symmetries forbidden by the unitarity bound. This is because the current annihilates the

vacuum J |0〉 = 0, and therefore 〈0|J†DJ |0〉 = 0, where we do not find the nontrivial

inequality following from (3.1).

In the following, we will look into various concrete examples and see which scenario takes place

in each case.
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3.3.1 Free compact scalar

Consider a free real compact scalar φ with φ ∼ φ + 2πR in d spacetime dimensions. The La-

grangian is given by

L =
1

2
(∂µφ)

2, (3.5)

and φ (and hence the radius R) has the scaling dimension d−2
2

. This theory enjoys two global

symmetries (G(p) denotes the p-form symmetry group G):

• U(1)(0) electric shift symmetry: φ→ φ+ λ.

• U(1)(d−2) topological symmetry: the conserved current is Jµ1···µd−1 = 1
2πR

ǫµ1···µd−1µd∂µd
φ,

where we have normalized the current so that the charge is an integer.

Let us analyze the RG flow of this theory. For d = 2, the theory is scale invariant, and is also

conformal, known as the free boson CFT. For d ≥ 3, the radius R is dimensionful with a positive

scaling dimension, and hence it grows under the RG flow.

UV fixed point (R → 0): The radius of φ shrinks to zero, and the electric shift symmetry

U(1)(0) becomes trivial and vanishes. However, since the scalar is still compact, the topological

symmetry survive, although it becomes R(d−2) symmetry. To see how U(1) becomes R and how

it acts on the gapless degrees of freedom, it is convenient to perform an S-duality transformation.

Under the duality, dφ is mapped to − 1
2π
(∗F ), where F = dA for a (d−2)-formA. The Lagrangian

(3.5) then becomes

L = −
1

8π2
F ∧ ∗F (3.6)

where A has the scaling dimension ∆A = d−2
2

. Note that for d = 3, (3.6) is the standard free

Maxwell theory with A being a 1-form gauge field. The periodicity of the (d − 2)-form gauge

field is A ∼ A+ 2πη
R

, where η is a (d− 2)-form flat gauge field with the scaling dimension d− 2,

and integrates to 1 on Sd−2.

Under the duality, the U(1)(d−2) topological symmetry of the original theory (3.5) becomes

the U(1)(d−2) electric shift symmetry of the dual theory (3.6). At the UV fixed point, the compact

U(1) gauge field becomes non-compact, i.e. an R gauge field. Since the R
(d−2) symmetry acts

on the gapless gauge field A, it does not decouple, and the general result on the unitarity bound

in Section 3.2 applies; from Table 3, we find that the (d − 2)-form symmetry is forbidden for all

the dimensions d = 3, 4, 5, 6, and we conclude that the UV fixed point cannot be a unitary CFT

(i.e. the scenario 1 is ruled out). Our result is consistent with the analyses in [10,11,18,19] where

it has been explicitly shown (by computing the correlation function and conformal currents) that

the theory (3.5) is unitary, scale invariant but not conformal (i.e. the scenario 2 is realized).
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IR fixed point (R → ∞): The radius of φ becomes infinite, and hence one has a theory of a

non-compact real free scalar. The U(1)(0) electric shift symmetry becomes a R
(0) shift symme-

try, while the U(1)(d−2) topological symmetry disappears because the current J becomes trivial.

Therefore, the IR theory does not have any higher-form symmetry, and the unitarity bounds do not

provide any further obstructions to conformal invariance. As shown explicitly in [10, 11, 18, 19],

the non-compact free scalar theory is a CFT on a flat manifold in any dimensions, which is con-

sistent with our result. On a curved manifold, one needs to add a term
∫

ddxRφ2 proportional

to the scalar curvature R to make the conformal symmetry manifest. Note that this coupling is

forbidden when φ is compact, because it is not invariant under the shift φ → φ+ 2πR.

3.3.2 Free Maxwell theory

Consider another class of free field theory - the free Maxwell theory. The Lagrangian is

L = −
1

8π2
F ∧ ∗F (3.7)

where F = dA for a compact U(1) 1-form gauge fieldA. The periodicity isA ∼ A+ 2πη
R

, where η

is a 1-form flat gauge field which integrates to 1 on S1, and R is a dimensionful scalar specifying

the (inverse) radius of A. The theory again enjoys two global symmetries:

• U(1)(1) electric shift symmetry: A→ A+ ξ, where ξ is a 1-form flat gauge field.

• U(1)(d−3) topological symmetry: the conserved current is Jµ1···µd−2 = R
4π
ǫµ1···µd−1µdFµd−1µd

,

where we have normalized the current so that the charge is an integer.

Let us analyze the RG flow. The only dimensionful coupling constant is R with scaling dimen-

sion ∆R = 4−d
2

. When d = 3, ∆R > 0 and R increases under the RG flow; as discussed in

Section 3.3.1, the 3d free Maxwell theory is dual to free compact scalar theory, and one can di-

rectly refer to the results there. When d = 4, ∆R = 0 and R is invariant under the RG flow; the

theory (3.7) is not only scale invariant, but is also conformal, known as the Maxwell CFT. Finally,

when d ≥ 5, ∆R < 0 and R decreases under the RG flow. Let us take a closer look at the fixed

points.

UV fixed point (R → ∞): The U(1)(1) electric shift symmetry disappears. By performing

the S-duality as in Section 3.3.1, one can see that the U(1)(d−3) topological symmetry becomes

R
(d−3), and acts as a electric shift symmetry on the gapless (d − 3)-form dual gauge field. Note

that for d = 5, 6, by comparing with the results in Table 3, the conserved currents violate the

unitarity bound. Hence the UV fixed point cannot be a unitary CFT. Our result is again consistent

with [10, 11, 18, 19], where the UV fixed point has been proved to be scale invariant but not

conformal.

IR fixed point (R → 0): The U(1)(1) electric symmetry becomes R(1), while U(1)(d−3) decou-

ples. The R(1) symmetry is compatible with the unitarity bound for d ≥ 5, and we cannot rule out

the possibility of unitary CFT.
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3.3.3 Four-derivative Maxwell theory in 6d

In Section 3.3.2, we have noted that the 4d free Maxwell theory (3.7) is a CFT. In 6d, it has been

shown [20, 21] that the four-derivative Maxwell theory

L =
1

4e2
Gµν∇

2Gµν (3.8)

is also conformal. Here, G = dB is the field strength of the 1-form gauge field B, and e is the

coupling constant. As always, this 6d theory has two global symmetries:

• U(1)(1) electric shift symmetry: B → B + ξ, where ξ is a 1-form flat gauge field.

• U(1)(3) topological symmetry: the conserved current is J = 1
2π

∗ dB.

Both symmetries act nontrivially on the gapless modes. For the former, it is obvious because it

shifts the gauge field B. For the latter, it is easier to consider the dual theory as in the previous

examples; the dual theory is also a free theory, with the quadratic Lagrangian F (4) ∧ ∇−2 ∗ F (4),

where F (4) = dC(3) is the 4-form field strength, and the 3-form global symmetry is just the shift

symmetry C(3) → C(3) + η(3).

Recalling that the 3-form symmetry U(1)(3) is not compatible with the conformal symmetry

and the unitarity, the theory can only be a non-unitary CFT. Indeed, it has been explicitly computed

in [22] that the coefficient of the two point correlation function of the stress-energy tensors in the

theory (3.8) is negative, which implies that there exist negative-norm states and thus the theory is

indeed non-unitary.

3.3.4 QED4

We now proceed to discuss an interacting theory, QED4. The Lagrangian is

L = −
1

4e2
F ∧ ∗F +

Nf
∑

i=1

ψ̄i(/∂ − i /A)ψi. (3.9)

The only higher-form global symmetry is the U(1)(1) topological symmetry, with the current

J = 1
2π

∗ dA. Note that this symmetry is non-chiral unless the gauge field decouples from the

fermion.

It is well-known that the 1-loop beta function of QED4 is positive for arbitrary Nf . Hence in

the IR, the theory becomes free and the fermion and gauge sectors decouple. In the low energy

limit, the theory flows to a unitary CFT because both the free Maxwell theory in 4d, as well as the

free fermion, are unitary CFTs. This is consistent with our main result in Section 3.2.

In the UV limit, QED4 is regarded as ill-defined, because there is a Landau pole where the

coupling constant diverges. Therefore, it should only be regarded as a low-energy effective theory.

One way to make it well-defined in the UV limit is to embed it into a larger theory (possibly a non-

Abelian gauge theory). Suppose there exists such a parent theory, and the embedding preserves

the non-chiral U(1)(1) symmetry in the QED4. Then, our result might be able to constrain the

property of the UV fixed point of the parent theory. Similar analysis can also be applied to d ≥ 5.
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3.3.5 A variant of QED6

Our last example is a variant of QED6, which was discussed in [20]. The Lagrangian is

L =
1

4e2
Fµν∇

2F µν +

Nf
∑

i=1

ψ̄i(/∂ − i /A)ψi (3.10)

where the ordinary Maxwell term is replaced by the four-derivative Maxwell term. As discussed

in Section 3.3.3, there are two global symmetries, but only the U(1)(3) symmetry survives once the

gauge field couples to the fermion with charge 1. Since this symmetry is not compatible with the

conformal invariance and the unitarity, it is tempting to use it to constrain the RG flow of (3.10).

It was computed in [20] that the beta function of (3.10) is negative, βe = − ǫ
2
e −

Nf

120π3 e
3 +

O(e5), where ǫ = 6−d is the parameter introduced in the dimensional regularization. This means

that in the UV limit, the gauge sector decouples from the fermion, and hence the UV fixed point

is a non-unitary CFT analyzed in Section 3.3.3, tensored with a unitary free fermion CFT. In the

IR, the theory (3.10) becomes strongly-coupled.

If the RG flow does not explicitly break the U(1)(3) symmetry, then our main theorem can

be used to constrain the possible scenario of the IR fixed point. Note that although the pure

four-derivative Maxwell term is non-unitary, the IR fixed point may still be unitary, when Nf is

sufficiently large.
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A Unitarity bounds for conserved currents in SCFT

Here, we show the constraints from the unitarity bounds for conserved currents associated with

the higher-form symmetries in superconformal field theories (SCFT). We assume that the higher-

form symmetries commute with the superconformal algebra, and thus the currents do not carry

R-charges. Due to the additional generators Qα and Sα compared to the ordinary conformal

algebra, there are additional states, and correspondingly all the eigenvalues of the matrix

〈O|
n
∏

j=1

Qαj

n
∏

i=1

Sβi
|O〉 (A.1)

should also be non-negative. This gives rise to additional unitarity bounds [8, 12], and as a result,

continuous 1-form symmetries in d = 5, 6 are newly forbidden, and continuous 2-form symme-

tries in d = 6 newly refuse anti-self-dual conserved currents. The results are shown in Table 5,

which only depend on the existence of the supersymmetry but not on its amount N in all dimen-

sions.

d = 3 d = 4 d = 5 d = 6

p = 0 − − − −

p = 1 − − ✗ ✗

p = 2 − − ✗ : if ASD

p = 3 − −

p = 4 −

Table 5: Newly forbidden p-form symmetries under the presence of supersymmetry.
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