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Abstract

Convergence of the policy iteration method for discrete and contin-
uous optimal control problems holds under general assumptions. More-
over, in some circumstances, it is also possible to show a quadratic rate
of convergence for the algorithm. For Mean Field Games, convergence
of the policy iteration method has been recently proved in [9]. Here,
we provide an estimate of its rate of convergence.
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1 Introduction

The policy iteration method, introduced by Bellman [3] and Howard [15], is
a general procedure to solve the Hamilton-Jacobi-Bellman (HJB in short)
equation, a nonlinear equation arising in discrete and continuous optimal
control problems. The solution of the nonlinear HJB equation, which it is
well known to suffer from the so-called “curse of dimensionality” (see [3]),
is replaced by the solution of a sequence of linear problems, coupled at each
step with an optimization problem for the updating of the new policy. It
has been proved that, under general assumptions, the algorithm converges
to the solution of the original problem (see [2, 14, 22, 23, 24]); moreover, in
some cases, it is possible to show a (local) quadratic rate of convergence of
the method which explains its very rapid convergence to the solution of the
original problem (see [7, 17]).

Mean Field Games (MFG in short) theory has been introduced in [16,
21] to characterize Nash equilibria for differential games involving a large
(infinite) number of agents. The corresponding mathematical formulation
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leads to the study of a system of PDEs, composed by a HJB equation,
characterizing the value function and the optimal control for the agents;
a Fokker-Planck (FP in short) equation, governing the distribution of the
population when the agents behaves in an optimal way. In the case of a
finite horizon problem with periodic boundary conditions, the MFG system
reads as 




−∂tu−∆u+H(Du) = σF [m(t)](x) in Q

∂tm−∆m− div(mHp(Du)) = 0 in Q

m(x, 0) = m0(x), u(x, T ) = uT (x) in T
d ,

(1.1)

where Q := T
d × [0, T ], Td stands for the flat torus R

d/Zd, H is a convex
Hamiltonian and σ is a positive constant. The difficulty in solving the
previous system can prevent the concrete application of the MFG model
to real life problems. Indeed, system (1.1) not only involves the resolution
of a HJB equation, but the two equations are strongly coupled and the
system has a forward-backward structure which does not permit to solve
the two equations in parallel. For this reason, strategies other than the
simple discretization of (1.1) must be implemented (see for example [8, 10]).

In [9], the following version of the policy iteration method for the MFG
system (1.1) was considered:

Policy iteration algorithm: Fixed R > 0 and given a bounded, mea-
surable vector field q(0) : Td × [0, T ] → R

d with ‖q(0)‖L∞(Q) ≤ R, iterate

(i) Solve

{
∂tm

(n) −∆m(n) − div(m(n)q(n)) = 0, in Q

m(n)(x, 0) = m0(x) in T
d.

(ii) Solve

{
−∂tu

(n) −∆u(n) + q(n)Du(n) − L(q(n)) = σF [m(n)(t)](x) in Q

u(n)(x, T ) = uT (x) in T
d.

(iii) Update the policy

q(n+1)(x, t) = argmax|q|≤R

{
q ·Du(n)(x, t) − L(q)

}
in Q.

Here L(q) = supp∈Rd{p·q−H(p)} is the Legendre transform ofH. Compared
to the algorithm for the HJB equation alone, each iteration of the previous
method also includes the resolution of the FP equation. The main advantage

2



of the method, in addition to what has already been observed previously for
the HJB equation, is that at each iteration the linear HJB and FP equations
are completely decoupled and can be quickly solved with different numerical
methods. In [9], it was proved that the previous algorithm converges to
a solution (u,m) of the MFG system if the Hamiltonian H is Lipschitz
continuous or if H(p) ≃ |p|γ , γ > 1.

In this paper, we study rates of convergence for the MFG policy iteration
method. We obtain, via purely PDE methods, a linear rate of convergence
for the solution to the HJB equation in MFG system. More precisely, the
error between two successive iterations of the sequence ‖u(n)‖B1+σ‖m(n)‖B2

generated by the algorithm improves linearly with respect to the error of the
previous iterations, for sufficiently large n and small σ, where ‖·‖Bi , i = 1, 2,
denotes some Banach space norm which will be specified later. Without the
coupling, for the HJB equation, the policy iteration method is equivalent
to the Newton’s method (see [23] and also Section 5) and therefore gives a
(local) quadratic improvement with respect to the error |u(n) − u| at each
step. However, since the policy q(n) = Hp(Du(n−1)) enters as a velocity field
in the FP equation, its improvement can correspond at most to a linear
one for the distribution error |m(n) − m|. This also reflects on the HJB
equation due to the coupling term F [m] on the right side of this equation.
This point is further explained by an interpretation of the policy iteration
method for the MFG system as a quasi-Newton’s method obtained, in order
the eliminate the coupling among the equations, by suppressing off-diagonal
elements in Jacobian of the map of which we are calculating the roots.

Despite the previous limitations, however, the policy iteration method
retains the advantage of replacing the resolution of a strongly coupled non-
linear system with a sequence of decoupled linear problems. Moreover, in a
neighbourhood of the solution, the rapid convergence of the value function
u(n) is also reflected in an equally rapid convergence of the distribution m(n)

(see [9] and [19] for some numerical simulations).
In this paper we restrict the discussion to MFGs with separable Hamil-

tonians. Recently in [19] the authors considered the convergence rate of
policy iteration algorithms for MFGs with non-separable Hamiltonians us-
ing contraction fixed point method. The key difference is that here we do
not impose the short time assumption, which is essential for the reasoning
in [19].

The paper is organized as follows. In Section 2, we introduce some
notations and recall the convergence result in [9]. In Section 3 and 4, we
prove the convergence rate for the MFG policy iteration method for the
evolutive problem and, respectively, for the stationary one. In Section 5,
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we provide the interpretation of the policy iteration algorithm as a quasi-
Newton method.

2 The policy iteration method for the Mean Field

Games system

In this section, we recall some results about the convergence of the policy
iteration method for the MFG system.

Throughout the paper we work with maps which are periodic in space,
i.e. on the torus Td. This simplification allows us to ignore problems related
to boundary conditions or growth conditions on the data. The main ideas of
this paper can be extended to consider models in R

d . We denote by Lr(Td),
1 ≤ r ≤ ∞, the set of r summable periodic functions and byW k,r(Td), k ∈ N

and 1 ≤ r ≤ ∞, the Sobolev space of periodic functions having r-summable
weak derivatives up to order k. For any r ≥ 1, we denote by W 2,1

r (Q) the

space of functions f such that ∂δ
tD

β
xf ∈ Lr(Q) for all multi-indices β and δ

such that |β|+2δ ≤ 2. All these spaces are endowed with the corresponding
standard norm.
Defined W 1,0

s (Q) as the space of functions such that the norm

‖u‖W 1,0
s (Q) := ‖u‖Ls(Q) +

∑

|β|=1

‖Dβ
xu‖Ls(Q)

is finite, we denote by H1
s(Q) the space of functions u ∈ W 1,0

s (Q) with
∂tu ∈ (W 1,0

s′ (Q))′, where 1
s +

1
s′ = 1, equipped with the natural norm

‖u‖H1
s(Q) := ‖u‖W 1,0

s (Q) + ‖∂tu‖(W 1,0

s′
(Q))′ .

If s > d+ 2, then H1
s(Q) is continuously embedded onto Cδ,δ/2(Q) for some

δ ∈ (0, 1), see [20, Appendix A].
We describe the assumptions on the data of the problem. Concerning the
Hamiltonian, we consider two different settings

(H1) H is differentiable, convex and globally Lipschitz continuous, i.e. there
exists a constant R0 > 0 such that

|DpH(p)| ≤ R0 for all p ∈ R
d .

(H2) H is of the form
H(p) = |p|γ , γ > 1.
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Recall that

H(p) = p · q − L(q) if and only if q = DpH(p) .

Concerning the coupling cost, we assume that

(F1) F maps continuously P(Td), the set of probability measure on T
d, into

a bounded subset of C0,1(Td). Moreover
∫

Td

(F [m1]− F [m2])d(m1 −m2) > 0 if m1 6= m2.

for x1, x2 ∈ T
d, m1,m2 ∈ P1(T

d).

Finally, for the initial and terminal data, we suppose that

(I) uT ∈ W 2− 2
r
,r(Td), r > d+ 2;

m0 ∈ W 1,s(Td), s > d+ 2, m0 ≥ 0 and
∫
Td m0(x)dx = 1.

In the following we recall some a priori estimate for the solution of the
linear equations involved in policy iteration method (see [9, Lemma 2.1 and
2.2])

Lemma 2.1. Given b ∈ L∞(Q;Rd), f ∈ Lr(Q) and uT ∈ W 2− 2
r
,r(Td) for

some r > 1, then the problem
{
−∂tu−∆u+ b(x, t)Du = f(x, t) in Q

u(x, T ) = uT (x) in T
d

admits a unique solution u ∈ W 2,1
r (Q) and it holds

‖u‖W 2,1
r (Q) ≤ C(‖f‖Lr(Q) + ‖uT ‖

W 2− 2
r ,r(Td)

),

where C depends on the norm of the coefficients as well as on r, d, T . Fur-
thermore, if r > d+ 2 we have Du ∈ Cα,α/2 for some α ∈ (0, 1).

Lemma 2.2. Given a bounded, measurable vector field g : Q → R
d and

m0 ∈ L2(Td), m0 ≥ 0, then the problem
{

∂tm−∆m− div(g(x, t)m) = 0 in Q,
m(x, 0) = m0(x) in T

d,

has a unique non negative solution m ∈ H1
2(Q). Furthermore, if m0 ∈

Ls(Td), s ∈ (1,∞), then m ∈ L∞(0, T ;Ls(Td)) ∩ H1
2(Q) and, if m0 ∈

W 1,s(Td), then
‖m‖H1

s(Q) ≤ C

for some constant C = C(‖g‖L∞(Q;Rd), ‖m0‖W 1,s(Td)).
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In [9, Theorems 2.3 and 2.5], it has been proved the following convergence
result for the policy iteration method.

Theorem 2.3. Let either (H1) or (H2), (F1) and (I) be in force. Then,
for R sufficiently large, the sequence (u(n),m(n)), generated by the policy
iteration algorithm, converges to the solution (u,m) ∈ W 2,1

r (Q)×H1
s(Q) of

(1.1).

Remark 2.4. If (H1) holds, one can write H(p) = sup|q|≤R0
{p · q−L(q)}.

Therefore, in this case, it is sufficient to consider R = R0 in the policy
iteration algorithm to get a converging sequence to the solution of (1.1).
If (H2) holds and (u,m) is the solution of (1.1), then there exists a constant
R such that ‖Du(t)‖L∞(Td) ≤ R for any t ∈ [0, T ] (see [9, Lemma 2.4]).
Then one introduces the truncated Hamiltonian defined by

HR(p) =

{
|p|γ if |p| < R ,

(1− γ)R
γ
+ γR

γ−1
|p| if |p| ≥ R ,

and the problem





−∂tu−∆u+HR(Du) = σF [m(t)](x) in Q,

∂tm−∆m− div(mDpHR(Du)) = 0 in Q,

m(x, 0) = m0(x), u(x, T ) = uT (x) in T
d .

(2.1)

Observe that a solution (u,m) of (1.1) is also a solution of (2.1) and HR

is globally Lipschitz continuous. Since HR satisfies assumption (H1), the
policy iteration method with R = R converges to the solution of (2.1) and
therefore also of (1.1).

Note also that, by the Sobolev embedding of W 2,1
r (Q) in C1+α, 1+α

2 (Q) for
r > d+ 2 with

‖u‖C1+α,(1+α)/2(Q) ≤ C‖u‖
W 2,1

r (Q)

(see [18, Cor. IV.9.1]) and since q(n) = Hp(Du(n−1)), it also follows the
convergence of policy q(n) to the optimal control q = Hp(Du) in L∞(Q) for
n → ∞.

Remark 2.5. Sobolev regularities for solutions to the Fokker-Planck equa-
tion in the MFG system have been also considered in [5, Section 10.3].
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3 A rate of convergence for the policy iteration

method: the finite horizon problem

In this section, we give an estimate of the rate of convergence for the policy
iteration method. We replace assumption (H1) with

(H3) H is two times differentiable, satisfies (H1) and for any S > 0, there
exists CS > 0 such that

Hpp(p)q · q ≤ CS |q|
2 for any |p| ≤ S, q ∈ R

d.

and (F1) with

(F2) F : Td × Ls(Td) → Lr(Td) and for all t ∈ (0, T ),

‖F [m1]− F [m2]‖Lr(Td) ≤ CF‖m1 −m2‖Ls(Td),

for r, s > d+ 2 and all m1, m2 ∈ H1
s(Q).

We prove an estimate for the rate of convergence for the policy iteration
method.

Theorem 3.1. Let either (H2) or (H3), (F2) and (I) be in force and R
as in Theorem 2.3. Then, there exists a constant C, depending only on the
data of problem, such that, if (u(n),m(n)) is the sequence generated by the
policy iteration method, we have

‖m(n+1) −m(n)‖C(0,T ;Ls(Td)) ≤ C‖q(n+1) − q(n)‖L∞(Q), (3.1)

‖m(n+1) −m(n)‖H1
2(Q) ≤ C‖q(n+1) − q(n)‖L∞(Q), (3.2)

‖u(n+1) − u(n)‖W 2,1
r (Q) ≤ C

(
‖u(n) − u(n−1)‖2

W 2,1
r (Q)

+ σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

)
.

(3.3)

Proof. Along the proof, the constant C can change from line to line, but it
is always independent of n.
Set Mn+1 = m(n+1) −m(n). Then Mn+1 satisfies the equation

∂tM
n+1 −∆Mn+1 − div(q(n+1)Mn+1) = div((q(n+1) − q(n))mn). (3.4)

with Mn+1(0) = 0.
We first show (3.1). The proof follows the techniques from [11, Lemma 4.1].
We set

f0 = q(n+1)Mn+1 + (q(n+1) − q(n))m(n),
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and, for any τ such that 0 < τ < t, we notice

d

dτ
|Mn+1(τ)|s

=s|Mn+1(τ)|s−2Mn+1(τ)
∂Mn+1(τ)

∂τ

=s|Mn+1(τ)|s−2Mn+1(τ)
(
∆Mn+1(x, τ) + divf0(τ)

)
.

Integrating the previous relation in T
d and observing that

∫

Td

s|Mn+1(τ)|s−2Mn+1(τ)∆Mn+1(τ)dx

= −s(s− 1)

∫

Td

|Mn+1(τ)|s−2|DMn+1(τ)|2dx

= −s(s− 1)

∫

Td

(
|Mn+1(τ)|(s−2)/s|DMn+1(τ)|2/s

)s
dx,

we get

∫

Td

d

dτ
|Mn+1(τ)|sdx

+ s(s− 1)

∫

Td

(
|Mn+1(τ)|(s−2)/s|DMn+1(τ)|2/s

)s
dx

= s

∫

Td

|Mn+1(τ)|s−2Mn+1(τ)
(
divf0(τ)

)
dx

= −s(s− 1)

∫

Td

|Mn+1(τ)|s−2DMn+1(τ)f0(τ)dx

≤ s(s− 1)

∫

Td

|Mn+1(τ)|s−2||DMn+1(τ)||f0(τ)|dx.

(3.5)

By Young inequality with 1/s+ 1/s′ = 1, we have

|

∫

Td

|Mn+1(τ)|s−2DMn+1(τ)f0(τ)dx|

≤

∫

Td

(
|Mn+1(τ)|(s−2)/2|DMn+1(τ)|

)s′
|Mn+1(τ)|s

′(s−2)/2dx

+C‖f0(τ)‖
s
Ls(Td).

By
s′(s − 2)

2
·

1

1− s′/2
= s

8



and

(
|Mn+1(τ)|(s−2)/2|DMn+1(τ)|

)s′
|Mn+1(τ)|s

′(s−2)/2

≤
1

2

((
|Mn+1(τ)|(s−2)/2|DMn+1(τ)|

)s′)2/s′
+ C

(
|Mn+1(τ)|s

′(s−2)/2)
1

1−s′/2 ,

we estimate
∫

Td

(
|Mn+1(τ)|(s−2)/2|DMn+1(τ)|

)s′
|Mn+1(τ)|s

′(s−2)/2dx

≤
1

2
‖|Mn+1(τ)|(s−2)/s|DMn+1(τ)|2/s‖sLs(Td) + C‖Mn+1(τ)‖sLs(Td).

Moreover

‖f0(τ)‖
s
Ls(Td)

≤2s−1
(
‖q(n+1)(τ)Mn+1(τ)‖sLs(Td) + ‖(q(n+1)(τ)− q(n)(τ))m(n)(τ)‖sLs(Td)

)

≤C
(
‖Mn+1(τ)‖sLs(Td) + ‖q(n+1)(τ)− q(n)(τ)‖sL∞(Td)

)
.

Replacing the previous estimate in (3.5), we obtain

∂τ‖M
n+1(τ)‖sLs(Td) +

1

2
s(s− 1)‖|Mn+1(τ)|(s−2)/s|DMn+1(τ)|2/s‖sLs(Td)

≤C
(
‖Mn+1(τ)‖sLs(Td) + ‖q(n+1)(τ)− q(n)(τ)‖sL∞(Td)

)
.

and, using Gronwall’s inequality, we finally get

sup
0<t<T

‖Mn+1(t)‖Ls(Td) ≤ C‖q(n+1) − q(n)‖L∞(Q).

We then proceed to show (3.2). Multiplying both sides of (3.4) by Mn+1

and integrating in T
d, we get

1

2

d

dt
‖Mn+1(t)‖2L2(Td) +

∫

Td

|DMn+1(x, t)|2dx

=−

∫

Td

q(n+1)(x, t)Mn+1(x, t)DMn+1(x, t)dx

−

∫

Td

(q(n+1)(x, t)− q(n)(x, t))m(n)(x, t)DMn+1(x, t)dx.

(3.6)
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Next we integrate both sides of equation (3.6) on the interval [0, T ], and get

‖Mn+1(T )‖2L2(Td) − ‖Mn+1(0)‖2L2(Td) +

∫ T

0

∫

Td

|DMn+1|2dxdt

=−

∫ T

0

∫

Td

q(n+1)Mn+1DMn+1dxdt

−

∫ T

0

∫

Td

(q(n+1) − q(n))m(n)DMn+1dxdt,

from which, recalling that Mn+1(0) ≡ 0, we get

∫ T

0

∫

Td

|DMn+1|2dxdt ≤

∫ T

0

∫

Td

|q(n+1)Mn+1DMn+1|dxdt

+

∫ T

0

∫

Td

|(q(n+1) − q(n))m(n)DMn+1|dxdt.

(3.7)

Using (3.1) and Young inequality, we estimate

∫ T

0

∫

Td

|q(n+1)Mn+1DMn+1|dxdt

≤
1

4

∫ T

0

∫

Td

|DMn+1|2dxdt+
3

4

∫ T

0

∫

Td

|q(n+1)Mn+1|2dxdt

≤
1

4

∫ T

0

∫

Td

|DMn+1|2dxdt+ C‖q(n+1) − q(n)‖2L∞(Q),

(3.8)

and
∫ T

0

∫

Td

|(q(n+1) − q(n))m(n)DMn+1|dxdt

≤
1

4

∫ T

0

∫

Td

|DMn+1|2dxdt+
3

4

∫ T

0

∫

Td

|(q(n+1) − q(n))m(n)|2dxdt

≤
1

4

∫ T

0

∫

Td

|DMn+1|2dxdt+ C‖q(n+1) − q(n)‖2L∞(Q).

(3.9)

Replacing (3.8) and (3.9) in (3.7)

1

2

∫ T

0

∫

Td

|DMn+1|2dxdt ≤ C‖q(n+1) − q(n)‖2L∞(Q),

so that, with (3.1), we get

‖m(n+1) −m(n)‖
W 1,0

2 (Q)
≤ C‖q(n+1) − q(n)‖L∞(Q). (3.10)
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For any test function φ ∈ W 1,0
2 (Q), we multiply both sides of (3.4) by φ

and integrate on Q to obtain

∫ T

0

∫

Td

∂tM
n+1φdxdt = −

∫ T

0

∫

Td

DMn+1 ·Dφdxdt

−

∫ T

0

∫

Td

Dφ · (q(n+1)Mn+1)dxdt−

∫ T

0

∫

Td

Dφ · ((q(n+1) − q(n))mn)dxdt.

(3.11)

We estimate the three terms on the right hand side of (3.11) by

∫ T

0

∫

Td

DMn+1 ·Dφdxdt

≤
(∫ T

0

∫

Td

|DMn+1|2dxdt
) 1

2
(∫ T

0

∫

Td

|Dφ|2dxdt
) 1

2

≤C‖q(n+1) − q(n)‖L∞(Q)‖Dφ‖L2(0,T ;L2(Td)),

∫ T

0

∫

Td

Dφ · (q(n+1)Mn+1)dxdt

≤R
(∫ T

0

∫

Td

|Mn+1|2dxdt
) 1

2
(∫ T

0

∫

Td

|Dφ|2dxdt
) 1

2

≤C‖q(n+1) − q(n)‖L∞(Q)‖Dφ‖L2(0,T ;L2(Td)),

and

∫ T

0

∫

Td

Dφ · ((q(n+1) − q(n))mn)dxdt

≤‖q(n+1) − q(n)‖L∞(Q)

(∫ T

0

∫

Td

|mn|2dxdt

) 1
2
(∫ T

0

∫

Td

|Dφ|2dxdt

) 1
2

≤C‖q(n+1) − q(n)‖L∞(Q)‖Dφ‖L2(0,T ;L2(Td)).

Replacing in (3.11), we obtain

sup
φ∈W 1,0

2 (Q)

∫ T

0

∫

Td

∂tM
n+1φdxdt ≤ C‖q(n+1) − q(n)‖L∞(Q)‖φ‖W 1,0

2 (Q),

i.e.
‖∂tM

n+1‖(W 1,0
2 (Q))′ ≤ C‖q(n+1) − q(n)‖L∞(Q). (3.12)
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From (3.10) and (3.12), we get (3.2).
We now prove the estimate (3.3) for the HJB equation. The function

Un+1 = u(n+1) − u(n) satisfies the equation

−∂tU
n+1 −∆Un+1 + q(n+1)DUn+1 = F(x, t)

with Un+1(x, T ) = 0, where

F(x, t) = σF [m(n+1)]−σF [m(n)]+q(n)Du(n)−L(q(n))−(q(n+1)Du(n)−L(q(n+1))).
(3.13)

Hence, recalling that q(n+1) = Hp(Du(n)) is bounded, we have the estimate
(see Lemma 2.1)

‖Un+1‖W 2,1
r (Q) ≤ ‖F‖Lr(Q). (3.14)

To estimate ‖F‖Lr(Q), first observe that, since

q(n+1)Du(n) − L(q(n+1)) = sup
q∈Rd

{
q ·Du(n) − L(q)

}

≥ q(n)Du(n) − L(q(n)),

then we have

F(x, t) ≤ σ(F [m(n+1)](x)− F [m(n)](x)). (3.15)

Moreover, by q(n) = Hp(Du(n−1)) and

H(Du(n−1)) = q(n)Du(n−1) − L(q(n)),

we have

q(n)Du(n) − L(q(n))− (q(n+1)Du(n) − L(q(n+1))) =

q(n)Du(n) +H(Du(n−1))− q(n)Du(n−1) −H(Du(n)) =

H(Du(n−1))−H(Du(n)) +Hp(Du(n−1))(Du(n) −Du(n−1)) =

−
1

2
Hpp(θDu(n) + (1− θ)Du(n−1))(Du(n) −Du(n−1)) · (Du(n) −Du(n−1))

for some θ ∈ (0, 1). Therefore, either by (H3) or by (H2), recalling that
‖Du(n)‖∞ is uniformly bounded in n ∈ N, we get

F(x, t) ≥ σ(F [m(n+1)]− F [m(n)])−C|Du(n)(x, t)−Du(n−1)(x, t)|2. (3.16)
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Recall that r > d + 2. From (3.15), (3.16) and Minkowski inequality we
obtain

‖F‖Lr(Q) ≤C‖Du(n) −Du(n−1)‖2L2r(Q) + σ‖F [m(n+1)]− F [m(n)]‖Lr(Q)

≤C
(
‖u(n) − u(n−1)‖2

W 2,1
r (Q)

+ σ‖F [m(n+1)]− F [m(n)]‖Lr(Q)

)

From (F2), for each t we have

‖F [m(n+1)](t)− F [m(n)](t)‖Lr(Td) ≤ C‖m(n+1)(t)−m(n)(t)‖Ls(Td),

so that

‖F [m(n+1)]− F [m(n)]‖Lr(Q) ≤C‖F [m(n+1)]− F [m(n)]‖L∞(0,T ;Lr(Td))

≤C‖m(n+1) −m(n)‖C(0,T ;Ls(Td)).

Then we can get (3.3) from (3.14).

A key difficulty for estimating convergence rate using Theorem 3.1 is
that we cannot control the constants C in (3.2) and (3.3). We do not have
additional information other than they depend on the data of the problem
and not on n. To address this difficulty, we introduce an additional assump-
tion on the smallness of σ. It is not needed for the convergence of the policy
iteration method but allows us to get a linear convergence rate to the solu-
tion of MFG system in the policy iteration. This type of assumption also
plays a key role in [12] for considering MFGs of aggregation.

Corollary 3.2. Under the same assumptions of Theorem 3.1, there exist
constants σ0 > 0 and 0 < C∗ < 1, such that for sufficiently large n and
∀σ < σ0,

‖u(n+1)−u(n)‖W 2,1
r (Q)+σ‖m(n+1)−m(n)‖C(0,T ;Ls(Td)) ≤ C∗‖u(n)−u(n−1)‖W 2,1

r (Q).

(3.17)

Proof. First note that, by parabolic Sobolev embedding theorem ([18], Corol-
lary IV.9.1 p.342) and the fact that r > d+ 2, we have

‖q(n+1) − q(n)‖L∞(Q) ≤ C‖u(n) − u(n−1)‖W 2,1
r (Q).

By (3.3) and (3.2) we have

‖m(n+1) −m(n)‖C(0,T ;Ls(Td)) ≤ C‖q(n+1) − q(n)‖L∞(Q)

≤ C1‖u
(n) − u(n−1)‖

W 2,1
r (Q)

.
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From (3.3) we have

‖u(n+1) − u(n)‖
W 2,1

r (Q)
≤ C2

(
‖u(n) − u(n−1)‖2

W 2,1
r (Q)

+ σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

)
.

Here C1 and C2 are always independent of n and σ. Then for sufficiently
small σ we have C2C1σ < C∗

4 and

‖u(n+1) − u(n)‖W 2,1
r (Q) + σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

≤C2‖u
(n) − u(n−1)‖2

W 2,1
r (Q)

+ 2C2C1σ‖u
(n) − u(n−1)‖W 2,1

r (Q).

Since u(n) converges in W 2,1
r (Q) and C2 is independent of n, we have for

sufficiently large n,

C2‖u
(n) − u(n−1)‖W 2,1

r (Q) <
C∗

2
,

so that

‖u(n+1) − u(n)‖W 2,1
r (Q) + σ‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

≤ C∗‖u(n) − u(n−1)‖
W 2,1

r (Q)

Remark 3.3. Assumption (F2) is satisfied for example if

F [m] =

∫

Td

K(x, y)m(y, t)dy,

for some bounded kernel K : Td × T
d → R. We have

‖F [m1(t)]− F [m2(t)]‖Lr(Td) ≤ C‖F [m1(t)]− F [m2(t)]‖L∞(Td)

≤ C‖K‖L∞(Td×Td)‖m1(t)−m2(t)‖Ls(Td).

If K(x, y) = K(x − y), it is sufficient to assume that K ∈ Lζ(Td), with
1/s + 1/ζ = 1/r + 1. Indeed, by Young’s convolution inequality, we have in
this case

‖F [m1(t)]− F [m2(t)]C(0,T ;Ls(Td))]‖Lr(Td)

≤ ‖K‖Lζ(Td×Td)‖m1(t)−m2(t)‖Ls(Td).

Note that estimate (3.17) also holds for the case of a local coupling, i.e.
F = F (x,m), assuming F to be Lipschitz continuous in m, uniformly in x
and r ≤ s.
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Remark 3.4. The results can be generalized to a Hamiltonian H dependent
on x ∈ T

d, where the assumptions (H1), (H2), (H3) are replaced respectively
by

(H̃1) H is differentiable, convex and globally Lipschitz continuous, i.e. there
exists a constant R0 > 0 such that

|DpH(x, p)| ≤ R0 for all p ∈ R
d ,

uniformly in x.

(H̃2) H is of the form

H(x, p) = h(x)|p|γ , γ > 1,

where 0 < h0 < h(x) < h1, h0 and h1 are two constants.

(H̃3) H is two times differentiable, satisfies (H̃1) and for any S > 0, there
exists CS > 0 such that

Hpp(x, p)q · q ≤ CS |q|
2 for any |p| ≤ S, q ∈ R

d,

uniformly in x.

When either (H̃1) or (H̃2) holds, the uniform boundedness of Du has been

shown in [13]. Moreover, either by (H̃2) or by (H̃3), we get (3.16).

Remark 3.5. We can also generalize the results to include the case

u(x, T ) = σ′uT [m],

where σ′ is a positive constant, i.e. the final cost depends on the agents state
distribution, assuming the regularizing assumption

‖uT [m1]− uT [m2]‖
W 2− 2

r ,r(Td)
≤ C‖m1(T )−m2(T )‖Ls(Td). (3.18)

The function Un+1 = u(n+1) − u(n) satisfies the equation

−∂tU
n+1 −∆Un+1 + q(n+1)DUn+1 = F(x, t),

with Un+1(x, T ) = σ′(uT [m
(n+1)]− σ′uT [m

(n)]), F defined as (3.13). Then,
using Lemma 2.1 and (3.18) to estimate

‖uT [m
(n+1)]− uT [m

(n)]‖
W 2− 2

r ,r(Td)
≤Cσ′‖m(n+1)(T )−m(n)(T )‖Ls(Td)

≤Cσ′‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

15



we will have

‖u(n+1) − u(n)‖W 2,1
r (Q) ≤ C

(
‖u(n) − u(n−1)‖2

W 2,1
r (Q)

+ (σ + σ′)‖m(n+1) −m(n)‖C(0,T ;Ls(Td))

)
.

(3.19)

Hence, we get a linear rate of convergence if we assume both σ and σ′ suf-
ficiently small.

Remark 3.6. Assume that F is independent of m, i.e. F [m](x) = F (x).
In this case, by Proposition 3.1, we recover two well known properties of the
policy iteration method for the Hamilton-Jacobi-Bellman equation. Firstly,
by (3.15), we have that Un+1 = u(n+1) − u(n) satisfies

−∂tU
n+1 −∆Un+1 + q(n+1)DUn+1 ≤ 0

with Un+1(x, T ) ≡ 0. Therefore, by comparison principle, Un+1 ≤ 0, hence
the policy iteration method generates a decreasing sequence u(n). Moreover,
by estimate (3.3), we get a (local) quadratic rate of convergence for the
method (a similar estimate is proved in [17] via probabilistic techniques).

4 A rate of convergence for the policy iteration

method: the ergodic problem

In this section, we prove a rate of convergence for the policy iteration method
for the the ergodic MFG system





−∆u+H(Du) + λ = σF [m] in T
d

−∆m− div(mHp(Du)) = 0 in T
d

∫
Td m(x)dx = 1, m ≥ 0,

∫
Td u(x)dx = 0 .

(4.1)

Policy iteration algorithm: For fixed R > 0 and given a bounded, mea-
surable function q(0) such that ‖q(0)‖L∞(Td) ≤ R, a policy iteration method
for (4.1) is given by

(i) Solve {
−∆m(n) − div(m(n)q(n)) = 0, in T

d
∫
Td m

(n)(x)dx = 1, m(n) ≥ 0.

(ii) Solve

{
−∆u(n) + q(n) ·Du(n) − L(q(n)) + λ(n) = σF [m(n)] in T

d
∫
Td u

(n)(x)dx = 0.
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(iii) Update the policy

q(n+1)(x, t) = argmax|q|≤R

{
q ·Du(n)(x)− L(q)

}
in T

d.

In [9, Section 4], the following convergence theorem is proved

Theorem 4.1. Let either (H1) or (H2) and (F1) be in force and R suf-
ficiently large. Then, the sequence (u(n), λ(n),m(n)), generated by the policy
iteration algorithm converges to the solution (u, λ,m) ∈ W 2,r(Td) × R ×
W 1,s(Td) of (4.1), uniformly in T

d.

For the proof of the convergence estimate, we need a preliminary lemma.

Lemma 4.2. Let f ∈ W−1,s(Td) = (W 1,s′(Td))′, s′ = s/(s − 1), and q ∈
L∞(Td). If M satisfies

{
−∆M − div(qM) = f, in T

d
∫
Td Mdx = 0,

(4.2)

then
‖M‖W 1,s(Td) ≤ C‖f‖W−1,s(Td). (4.3)

Proof. From [6, Prop. 1.2.3])

‖M‖W 1,s(Td) ≤C‖div(qM) + f‖W−1,s(Td)

≤C
(
‖q‖L∞(Td)‖M‖Ls(Td) + ‖f‖W−1,s(Td)

)

≤C(‖M‖Ls(Td) + ‖f‖W−1,s(Td)).

(4.4)

We claim this leads to (4.3). Following the argument in [25, pag.6], we
assume by contradiction that there exists a sequence Mk of solutions to
(4.2) such that

‖Mk‖W 1,s(Td) = 1, ‖AMk‖W−1,s(Td) → 0,

∫

Td

Mkdx = 0.

where
A := −∆ · −div(q·).

By Rellich-Kondrachov Theorem, W 1,s(Td) is compactly embedded in Ls(Td)
for 1 < s < ∞. Then from Banach-Alaoglu theorem there is a subsequence,
again denoted by Mk, which converges weakly in W 1,s(Td) and strongly in
Ls(Td). We have

‖Mj −Mk‖W 1,s(Td) ≤ C(‖AMj −AMk‖W−1,s(Td) + ‖Mj −Mk‖Ls(Td)).
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Then we have that Mk converges to M̄ in W 1,s(Td) and

AM̄ = 0,

∫

Td

M̄dx = 0,

By Theorem 4.2 and Lemma 4.3 in [4], the previous problem has only a
trivial solution and therefore a contradiction since ‖M̄‖W 1,s(Td) = 1.

Theorem 4.3. Let either (H2) or (H3), (F2) be in force, r, s > d and R
as in Theorem 4.1. Then, there exists a constant C, depending only on the
data of problem, such that, if (u(n), λ(n),m(n)) is the sequence generated by
the policy iteration method, we have

‖m(n+1) −m(n)‖W 1,s(Td) ≤ C‖q(n+1) − q(n)‖L∞(Td), (4.5)

‖u(n+1) − u(n)‖W 2,r(Td) + |λ(n+1) − λ(n)| ≤ C
(
‖u(n) − u(n−1)‖2W 2,r(Td)

+σ‖m(n+1) −m(n)‖W 1,s(Td)

)
,
(4.6)

Proof. Along the proof, the constant C can change from line to line, but it
is always independent of n.
Set Mn+1 = m(n+1) −m(n). Then Mn+1 satisfies the equation

−∆Mn+1 − div(q(n+1)Mn+1) = div((q(n+1) − q(n))m(n)).

with
∫
Td M

n+1dx = 0. Hence, by (4.3) we have

‖Mn+1‖W 1,s(Td) ≤C‖div((q(n+1) − q(n))m(n))‖W−1,s(Td)

≤C‖(q(n+1) − q(n))m(n)‖Ls(Td)

≤C‖(q(n+1) − q(n))‖L∞(Td)‖m
(n)‖Ls(Td)

≤C‖(q(n+1) − q(n))‖L∞(Td)

and therefore (4.5).
The couple Un+1 = u(n+1)−u(n), Λn+1 = λ(n+1)−λ(n) satisfies the equation

−∆Un+1 + q(n+1)DUn+1 + Λn+1 = F(x)

with
∫
Un+1(x)dx = 0, where

F(x) = σ(F [m(n+1)]−F [m(n)])+q(n)Du(n)−L(q(n))−(q(n+1)Du(n)−L(q(n+1))).
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Exploiting the results in [4] (Theorem 6.1, Pag. 196), we get

|Λn+1| ≤ ‖F(x)‖Lr(Td) (4.7)

‖Un+1‖W 2,r(Td) ≤ C‖F(x)‖Lr(Td) (4.8)

Repeating similar computations to the one of the corresponding estimate in
Theorem 3.1, we obtain

‖F(x)‖Lr(Td) ≤ C
(
‖Du(n) −Du(n−1)‖2L∞(Td) + σ‖F [m(n+1)]− F [m(n)]‖Lr(Td)

)
.

Replacing the previous estimate in (4.7)-(4.8) and exploiting (F2) and r, s >
d, we get (4.6).

Remark 4.4. For s = 2, estimate (4.5) is a special case of Lemma 3.8 from
[1].

Arguing as in Corollary 3.2, we can obtain the rate of convergence

Corollary 4.5. Under the same assumptions of Theorem 4.3, there exist
constants σ1 and 0 < C∗∗ < 1, such that for σ < σ1

‖u(n+1) − u(n)‖W 2,r(Td) + |λ(n+1) − λ(n)|+ σ‖m(n+1) −m(n)‖W 1,s(Td)

≤C∗∗‖u(n) − u(n−1)‖2W 2,r(Td).

5 An interpretation of the policy iteration method

for the MFG system

The following computations only hold at a formal level and, for simplicity,
we assume that F is local coupling. Define the map

F : (u,m) →




−∂tu−∆u+H(Du)− σF (m)
∂tm−∆m− div(mHp(Du))
u(T )− uT (x)
m(0)−m0(x)


 .

Then system (1.1) is equivalent to find the roots of F and the corresponding
Newton’s iterations can be written as

JF(u(n−1),m(n−1))((u(n),m(n))− (u(n−1),m(n−1))) = −F(u(n−1),m(n−1)).
(5.1)
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The Jacobian of F is given by

JF(u,m)(·, ·) =




−∂t · −∆ ·+Hp(Du)· −σF ′(m)·

−div(mHppD·) ∂t · −∆ · −div(Hp(Du)·)
·|t=T − uT (x) 0
0 ·|t=0 −m0(x)


 .

where F ′ = dF
dm . Replacing in (5.1), we obtain for the first component of

(5.1)

− ∂t(u
(n) − u(n−1))−∆(u(n) − u(n−1)) +Hp(Du(n−1))(u(n) − u(n−1))

− σF ′(m(n−1))(m(n) −m(n−1))

= ∂tu
(n−1) +∆u(n−1) −H(Du(n−1)) + σF (m(n−1))

Now recalling that q(n) = Hp(Du(n−1)) and H(Du(n−1)) = q(n)Du(n−1) −
L(q(n)), the previous equation is equivalent to

− ∂tu
(n) −∆u(n) + q(n)Du(n) − L(q(n)) = σF (m(n−1))

+ σF ′(m(n−1))(m(n) −m(n−1))
(5.2)

with the final condition u(n)(x, T ) = uT (x). Note that, if F = F (x) and
therefore F ′ ≡ 0, we see by (5.2) that the policy iteration method is a
Newton’s method applied to the HJB equation. With similar computation
we get

∂tm
(n) −∆m(n) − div(m(n)q(n))

= div(m(n−1)Hpp(Du(n−1))(m(n) −m(n−1)))
(5.3)

with the initial condition m(n)(x, 0) = m0(x).
By Theorem 2.3, the terms on the right side of (5.2)-(5.3), which corre-

spond to the off-diagonal entries of the Jacobian JF , are infinitesimal. In
the policy iteration method, we suppress these terms from the beginning, in
order to remove the coupling between the two equations. In this sense, the
policy iteration method can be interpreted as a quasi-Newton method since,
instead of the full Jacobian of F , we only use an approximation of it. In any
case, after some iterations, the influence of the neglected terms is vanish-
ing and the policy iteration method approximately behaves as a Newton’s
method, explaining the rapid convergence observed experimentally (see [9,
Section 6]).
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Some numerical examples have been considered in [19] for comparing
the policy iteration method and the Newton method for solving MFGs. In
many of these the policy iteration method turns out to be more efficient in
terms of computing time.
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