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Coalitional control for self-organizing agents
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Abstract—Coalitional control is concerned with the manage-
ment of multi-agent systems where cooperation cannot be taken
for granted (due to, e.g., market competition, logistics). This
paper proposes a model predictive control (MPC) framework
aimed at large-scale dynamically-coupled systems whose individ-
ual components, possessing a limited model of the system, are
controlled independently, pursuing possibly competing objectives.
The emergence of cooperating clusters of controllers is contem-
plated through an autonomous negotiation protocol, based on the
characterization as a coalitional game of the benefit derived by a
broader feedback and the alignment of the individual objectives.
Specific mechanisms for the cooperative benefit redistribution
that relax the cognitive requirements of the game are employed
to compensate for possible local cost increases due to cooperation.
As a result, the structure of the overall MPC feedback can be
adapted online to the degree of interaction between different
parts of the system, while satisfying the individual interests of the
agents. A wide-area control application for the power grid with
the objective of minimizing frequency deviations and undesired
inter-area power transfers is used as study case.

I. INTRODUCTION

Major challenges in control are in dealing with the increas-

ing heterogeneity of networked systems—possibly character-

ized by decentralized management, autonomy of the parts

and dynamic structural reconfiguration capabilities [2]. In

such setting, selfish interests may assume a dominant role,

significantly constraining the management of the system and

their performance. This issue is especially evident in public

infrastructures, often co-owned by independent entities, and

whose management requires a tradeoff among sectors in direct

competition [3], [4].

Several works in the distributed control literature have stud-

ied the performance and stability issues for different modalities

of participation of the control agents in the achievement

of the global objective [5], [6]. As the systems become

more complex and articulated, control architectures featuring

flexible cooperation patterns have been recently proposed.

For example, the notion of cooperating sets of controllers

appears in [7], [8]. Within these sets, individual strategies are

optimized considering what others may be able to achieve,

thus indirectly promoting cooperation. The composition of the

sets is updated according to a graph representing the active

coupling constraints. In [9] the hierarchy of the agents is
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adapted to different operational conditions by rearranging the

order followed in the optimization of the control actions. The

work of [10] investigates the design of a hierarchical model

predictive control (MPC) scheme for interconnected systems,

where the sparsity pattern of the overall MPC feedback is

dynamically adjusted to optimize the data link usage.

Methods for the analysis of the relevance of the agents and

the communication paths involved in the distributed control

of complex interconnected systems have been recently studied

by [11]–[13]. The structural information provided by these

methods allows the efficient allocation of the control resources,

promoting sparsity in order to minimize computational and

communicational requirements [14], [15]. A step further is the

online identification of the optimal control structure: besides

accommodating the controller requirements in real-time [16],

such flexibility grants the possibility of reconfiguring the

system for improving robustness or fault-tolerance [17], or

even for featuring plug-and-play capabilities [18].

The majority of the mentioned works addresses the achieve-

ment of a unique goal common to all the agents. Here we

consider instead control agents that focus on some local (eco-

nomically valuable) objectives. In such a scenario, a natural

solution for steering individual interests towards the global

welfare is the employ of incentive mechanisms from game

theory. Several proposals are available so far for traffic or

demand reshaping [19]–[21], and in competing markets like

electric vehicles (EVs) recharge [22]–[24].

When active cooperation is a possibility, then individual

rationality of the agents needs to be taken into account, as

the cooperation will be strictly associated with the expected

share of the collective benefit. In this context, game theoretic

tools for the redistribution of the value of cooperation are

fundamental. A decentralized algorithm for benefit redistri-

bution among cooperating agents is proposed in [25]. The

bargaining protocol is run on a time-varying communication

graph, and the resulting allocation is proven to converge to

a stable one, that is, satisfying all players. The work of [26]

provides a cooperative MPC formulation where cooperation is

subject to bargaining. The satisfaction of a minimum individ-

ual performance is imposed by a disagreement point, defined

as the threshold of maximum allowed loss of performance in

case of cooperation. A cooperative distributed MPC scheme

prioritizing local objectives is presented in [27]: following

situational altruism criteria, local objectives are dynamically

adjusted to fulfill minimum local cost requirements. In [28],

the impact of sparsity constraints on the LQR global feedback

law is analyzed from a communication cost point of view. In

particular, as the sparsity constraint is relaxed to enhance sys-

tem performance, the reallocation of the communication costs

over the cooperating agents is studied. In [29], self-organizing

http://arxiv.org/abs/2108.00802v1


2

coalitions among EVs are considered as a means to enhance

the predictability of the vehicle-to-grid offer, by presenting a

wider energetic portfolio to the grid operator. Analogously, the

work of [30] studies the formation of coalitions among wind

energy producers with the objective of reducing the output

variability in the aggregate offer, and so improve their expected

profit. The authors of [4] investigate how the equilibrium can

be reached in an EV recharging market whose actors are

(coalitions of) charging stations and EV users.

The coalitional distributed MPC architecture described in

this paper is based on analogous game-theoretical grounds.

In particular, we consider coalitions as a means for control

agents to reduce the effect of the externalities represented

by the (otherwise unknown) dynamical coupling imposed

on one another. Even if there are clear incentives—from a

cooperative distributed control standpoint—for all agents to

come together in the interests of minimizing such externalities,

we consider here possible inefficient situations, arising from

structural limitations or informational constraints, that may

lead to the formation of intermediate coalitions [31]. More

specifically, we consider that a set of global MPC control laws

is associated with the possible cooperation structures of the

control agents, and propose a framework allowing to study the

resulting global switching behaviour. The global cooperation

structure emerges as the outcome of the autonomous coalition

formation between the agents, through a pairwise bargaining

procedure where costs of cooperation are taken into account.

The main element of the bargaining is the online redistribution

of the value of a coalition. In particular, it is shown that

convergence to a stable allocation of the coalitional benefit can

be obtained without imposing a heavy cognitive demand on

the agents, thus maintaining compatibility with the restricted

communication characterizing the considered scenario. This is

achieved on the basis of an iterative mechanism guaranteeing

coalition-wise stability, provided that the core of the associated

transferable-utility (TU) game is nonempty [32]–[34]. The

contributions of the paper include the formalization of design

conditions concerning closed-loop stability and nonemptiness

of the core. The analysis shows how, when global model

information is locally unavailable, cooperation costs play a

major role on the outcome of the coalition formation, and that

these can be used as a mechanism to link coalition formation

with desired closed-loop properties. Finally, the effectiveness

of the proposed coalitional control framework is demonstrated

on a wide-area control (WAC) application in power grids,

with the objective of minimizing frequency deviations and

undesired inter-area power transfers.

The document is organized as follows: Section II introduces

the model of the system and of the communication infrastruc-

ture; the controller and the ingredients employed for coalition

formation are formalized in Section III; the utility transfer

scheme and the conditions for nonemptiness of the core are

discussed in Section IV; Section V presents the algorithms for

coalition formation/splitting and the derivation of individual

cost allocation. Section VI illustrates numerical results on a

power grid application.

Notation: All vectors are intended as column vectors, unless

differently specified. Given a set N = {1, . . . , n}, (xi)i∈N de-

notes the column vector (x1, x2, . . . , xn) obtained by stacking

all (column) vectors xi, for all i ∈ N . State and input vectors

relative to coalitions are notated in bold: thus xi is the state

vector of coalition i, whereas xj denotes the state of subsystem

j. x(t|k) denotes the value of x(k + t) estimated at time k.

L is the set of functions ϕ : N → [0,∞), such that ϕ(·) is

decreasing and limt→∞ ϕ(t) = 0.

II. PROBLEM STATEMENT

A. System description

Consider a system that can be described as a collectionN =
{1, . . . , |N |} of coupled linear processes, each governed by a

local control agent, and modeled by the following discrete-

time state-space equations:

xi(k + 1) = Aiixi(k) +Biiui(k) + wi(k), (1a)

wi(k) =
∑

j∈Mi

Aijxj(k) +Bijuj(k), (1b)

where xi ∈ R
ni and ui ∈ R

qi are respectively the state and

local control input vectors of subsystem i ∈ N , constrained

in the sets Xi and Ui respectively.1 Matrices Aii, Bii are

properly sized state-transition matrices relative to the local

states and inputs. Similarly, Aij , Bij are the matrices de-

scribing the coupling wi ∈ R
ni with states and inputs of

neighbor subsystems. The neighborhood set is defined as

Mi = {j ∈ N \ {i} : Aij 6= 0 ∨Bij 6= 0}. Models analo-

gous to (1) have been employed for the control of large-

scale systems such as drinking water networks composed of

interconnected water tanks [35], irrigation canals [10], [36],

[37], supply chains [38], [39], traffic networks [40] and power

grids [41].

Denoting the global state as x = (xi)i∈N ∈ R
n and the

global input as u = (ui)i∈N ∈ R
q, the state evolution of the

whole system of systems is governed by the following equation

x(k + 1) = Ax(k) +Bu(k), (2)

where A = [Aij ]i,j∈N ∈ R
n×n and B = [Bij ]i,j∈N ∈ R

n×q,

n =
∑

i∈N ni, q =
∑

i∈N qi. We designate the global system

constraints as X =
∏

i∈N Xi and U =
∏

i∈N Ui.

B. Exchange of information

Control agents can communicate through a network in-

frastructure schematized by the undirected graph G(k) =
(N , E(k)), where E(·) ⊆ N × N . We consider a time

variant set of links E(·) reflecting the possibility of establish-

ing/disrupting communication links at some given time steps.

In particular, let TC ⊆ N. For any two consecutive elements

k′, k′′ ∈ TC , with k′ < k′′, we have E(k) = E(k′) for all

k ∈ {k′, . . . , k′′ − 1}. Any communication link (i, j) ∈ E(k)
defines the mutual availability of state (and input) feedback

information between agents i, j ∈ N . Thus, the graph G(k)
delineates a partition P(G(k)) = {C1, . . . , Cnc

} of the set of

controllers into nc ∈ [1, |N |] connected components, referred

1Without loss of generality and for notational convenience, we assume in
the remainder that ni = nj and qi = qj for all i, j ∈ N .
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to as (non-overlapping) coalitions, such that Ci ⊆ N , Ci∩Cj =
∅, ∀i, j ∈ {1, . . . , nc}, i 6= j, and

⋃nc

i=1 Ci = N [42].

In other words, P(G(k)) reflects the (sparse) global control

feedback structure. Each coalition Cr ∈ P(G(k)) can be

considered as a unique system, where the dynamics (1a) of

all subsystems involved are aggregated as

xr(k + 1) = Arrxr(k) +Brrur(k) +wr(k), (3)

where xr = (xi)i∈Cr
∈ R

ni is the aggregate state vector, and

Arr = [Aij ]i,j∈Cr
the relative state transition matrix, describ-

ing the state coupling between members of the same coalition.

The components of ur = (ui)i∈Cr
∈ R

qi are the local

control inputs of the subsystems in Cr, and Brr = [Bij ]i,j∈Cr

is the associated coalitional input matrix. Finally, the vector

wr = (w
(r)
i )i∈Cr

gathers the disturbance due to the coupling

with subsystems external to the coalition. For each i ∈ Cr we

have

w
(r)
i =

∑

j∈Mi\Cr

Aijxj(k) +Bijuj(k), (4)

and w
(r)
i = 0 ifMi \Cr = ∅. Note that the definition of w

(r)
i

is equivalent to (1b) except the sum is restricted to Mi \ Cr.

Thus, from the coalition standpoint, the modeling uncertainty

comes from subsystems j ∈
(
⋃

i∈Cr
Mi

)

\ Cr.

III. COALITIONAL CONTROL

Cooperation between local control agents translates into

better performances [5]. This comes however at the expense

of higher communication and computation requirements [43].

Indeed, the effort required for the coordination increases with

the number of agents involved in a coalition. Costs incurred

for cooperation can be taken into account by means of ad-hoc

indices related to, e.g., the size of the coalition, the distance

between its members [44], the number of data links needed to

establish communication between them [10], [45]. The design

of a networked controller architecture can be formulated as

a trade-off between control performance and savings on the

coordination costs [14], [28], [46], [47].

In this paper we propose a game theoretical framework for

the dynamic establishment of cooperation in the control of a

multi-agent system. The presence of an omniscient supervisor

is not assumed here: the cooperation between any two parties

is established autonomously, as the outcome of a pairwise

bargaining between the coalitions in P(G(·)). The object

of the bargaining is the reallocation of the benefit derived

from coordination. Thus, the overall cooperation structure

dynamically evolves following a trade-off between increased

performance and costs incurred for cooperation.

From now on, the parties involved in a bargaining over

the formation of a (bigger) coalition will be designated as

players 1 and 2; for notational convenience, the index ‘1∪2’

will refer to their merger. Note that the term player may refer

to either a single control agent or a group of agents that, as

a consequence of their participation in the same coalition,

act as a single entity. Formally, these agents are identified

by the sets P1,P2 ∈ P(G(k)). Before defining the criterion

for the coalition formation bargaining, we discuss the perfor-

mance improvement offered by cooperative control—viewed

as coalitional benefit—and highlight the issues of the absence

of benefit redistribution from the (economic) standpoint of the

individual agents.

A. Control objective

We consider control agents j ∈ N implementing an optimal

control policy aimed at minimizing a local (quadratic) stage

cost ℓj : Rnj × R
qj → R, over an horizon Np. In particular,

we assume that this optimal control policy is derived through

a model predictive control (MPC) approach [48]. We will

refer to ℓj(xj , uj) as the selfish objective. It is worth to

point out that the selfish objective is implicitly a function

of other systems’ states, through the coupling in (1). The

impact of this coupling on the local cost is uncertain unless

cooperation is introduced. Within each Ci ∈ P the coalitional

stage cost is defined as Λi(xi,ui) : Rni × R
qi → R, with

ni =
∑

j∈Ci
nj , qi =

∑

j∈Ci
qj . Built upon the selfish

objectives, the coalitional objective allows to improve on them

by exploiting the shared feedback information available at

coalition level and explicitly include the coupling variables

in its formulation. Following an MPC approach, at time k
a control input for Ci is derived from the solution of the

optimization problem [48], [49]

u∗
i = argmin

ui

=

Np−1
∑

t=0

Λi(xi(t|k),ui(t|k)) + V f
i (x(Np|k))

(5a)

s.t.

xi(t+ 1|k) = Aiixi(t|k) +Biiui(t|k), (5b)

xi(t|k) ∈
∏

j∈Ci

Xj , t = 0, . . . , Np − 1, (5c)

ui(t|k) ∈
∏

j∈Ci

Uj , t = 0, . . . , Np − 1, (5d)

xi(Np|k) ∈ Ωi, (5e)

xi(0|k) = xi(k), (5f)

where (5b) is the prediction model for the evaluation of

the cost function (5a) over the horizon of length Np; the

second term in (5a), V f
i (Np|k), denotes the terminal cost.

Ωi ⊆
∏

j∈Ci
Xj is a terminal set constraint [50]. The first

element of u∗
i , (u∗

i (0|k), . . . u
∗
i (Np − 1|k)) is applied

at time k to the subsystems involved in the coalition, i.e.,

ui(k) , u∗
i (0|k) = (u∗j (0|k))j∈Ci

, and (5) is solved again at

subsequent time instants in a receding horizon fashion.

Problem (5) is solved independently by each coalition

Ci ∈ P(N ,G(k)). The computation of (5) can be performed

by a coalition leader, or distributed across the members of the

coalition. Several algorithms are available for the distributed

solution of convex MPC problems, see, e.g., [51].

In case of singleton coalition, i.e., Ci = {i}, i ∈ N , (5)

corresponds to the selfish optimization control problem. When

all the agents are pursuing their own selfish objective through a

local state feeedback, a decentralized noncooperative feedback

law emerges globally. In contrast, when the grand coalition is

formed, the solution of (5) coincides with a centralized MPC
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feedback law. In all other cases, a semi-cooperative global

feedback law is implemented.

Remark 1. Although in absence of cooperation costs the

centralized MPC feedback law results in the social optimum,

in the setting considered here the grand coalition is not

necessarily the most efficient cooperation structure.

Remark 2. Reflecting the state feedback structure imposed

by P(G(·)), wi is absent in the prediction model. Although

the performance of the MPC control law might be enhanced

by including an estimated external coupling term in (5b), its

derivation is in general application-oriented and out of the

scope of this paper.

Assumption 3 (Weak coupling). All subsystems are input-to-

state stable (ISS) when controlled with the MPC feedback law

κi :
∏

j∈Ci
Xj →

∏

j∈Ci
Uj derived from (5), treating (1b) as

an unknown disturbance. Moreover, the small-gain condition

for the interconnected systems holds for the global control law

κP : X → U , κP , (κi)i∈P associated with each possible

P(G(·)), and (2) is ISS [52].

Assumption 4 (Dwell time). There exist a set TC ⊆ N defining

the switching instants, and τ̄D > 0 such that for every two

consecutive elements k′, k′′ ∈ TC it holds k′′ − k′ ≥ τ̄D,

and for which the system (2) in closed loop with the set of

switched control laws {κP : X → U}, associated with each

possible P(G(·)), is ISS [53], [54].

Remark 5. Several characteristics of model predictive control

make it the ideal choice in this setting, e.g., clear definition

of the performance objectives, direct consideration of input

and state constraints. Nonetheless, the essential feature that

facilitates the coalitional framework is the receding-horizon

evaluation of the controller performance—intrinsic to MPC

control. This will be clear by the next section.

B. Evaluation of coalitional benefit

In the following we will employ an index expressing the

control performance and cooperation costs associated to a

given coalition.

Definition 6 (Coalition value). We define the value of coali-

tion Ci ⊆ N as the function v : 2N → R,

v(Ci) =

Np−1
∑

t=0

Λi(xi(t|k),ui(t|k)) + χi(Gi(k)), (6)

where the cooperation cost χi(·) : (N , E) → [0,∞) depends

on the subgraph describing the connections between the mem-

bers of Ci. We assume here that χi(·) is monotone increasing

in the number of nodes in the graph.

Given a pair of players P1,P2 ∈ P, (6) is evaluated for

the two players separately (unilateral strategies) and for their

merger (coalitional strategy).

Remark 7. The evaluation of (6) requires the mutual inter-

action model between (the subsystems in) P1 and P2 in the

solution of (5). This model is assumed available during the

bargaining process.

1) Evaluation of the merger: Λi(·, ·) is evaluated with

the input sequences u∗
1∪2 and the associated predicted state

trajectories x∗
1∪2 obtained as the solution of (5) relative to

the coalition P1 ∪ P2. χ1∪2(G1∪2(k)) is evaluated over the

subgraph describing all the connections (i, j) ∈ E1∪2(k)
between every pair of agents i, j ∈ (P1 ∪P2). We refer to the

jointly optimized input sequence u∗
1∪2 as coalitional strategy.

2) Evaluation of unilateral strategies: If the players are

dynamically coupled, their optimal trajectories will be in-

terdependent. Therefore, a consistent evaluation of unilateral

strategies can only be performed if some knowledge about

the input and state sequences applied by the other player is

available. Unilateral strategies can be derived over an iterative

procedure, as follows: (i) set ũj , u
(l−1),∗
j , i.e., the optimal

control sequence computed at iteration l − 1 by player j 6= i,

and x̃j , x
(l−1),∗
j , its associated state trajectory; (ii) solve (5)

for i, j = {1, 2}, j 6= i, replacing (5b) with

x
(l)
i (t+ 1|k) = Aiix

(l)
i (t|k) +Biiu

(l)
i (t|k)

+Aij x̃j(t|k) +Bij ũj(t|k). (7)

The tails of the optimal sequences computed at time k−1 can

be used as initial trajectories, i.e., u
(0),∗
j (t|k) , u∗

j (t+1|k−1),
provided they are feasible. Finally, χi(Gi(k)) is evaluated over

the subgraph describing all the connections (j, j′) ∈ Ei(k)
between every pair of agents j, j′ ∈ Pi.

C. Individual rationality

The premise here is that agents are rational: they accept

to cooperate only if the redistribution of the coalition benefit

constitutes an improvement upon the outcome of the unilateral

strategy. A necessary condition for this is that the benefit

outperforms the aggregate outcome of unilateral strategies, i.e.,

v(P1 ∪ P2) ≤ v(P1) + v(P2), (8)

with v(·) defined in (6). Let the cost incurred by player i ∈
{1, 2} under the coalitional strategy u∗

1∪2 be

v(P1 ∪ P2)|(i) ,

Np−1
∑

t=0

Λi(x
∗
1∪2(t|k),u

∗
1∪2(t|k))

+ χ1∪2(G1∪2(k))|(i), (9)

where, with an abuse of notation, Λi(x
∗
1∪2(·),u

∗
1∪2(·)) means

that the influence of the coupling of player j ∈ {1, 2}\{i} on

the cost of player i is taken into account for the computation of

Λi. Note that v(P1 ∪P2)|(1) + v(P1 ∪P2)|(2) = v(P1 ∪P2),
and the value of χ1∪2(G1∪2(k))|(j) is a proper (predefined)

allocation of the cooperation costs. We are now ready to

formally state the leading thread of this work. It can be easily

verified by example, so we present it without proof.

Proposition 8. Condition (8) does not imply lower incurred

costs to both players, i.e.,

v(P1 ∪ P2) ≤ v(P1) + v(P2)

6=⇒ v(P1 ∪ P2)|(j) ≤ v(Pj), ∀j ∈ {1, 2}, (10)

where v(·) is defined in (6), and v(·)|(j) is defined in (9).
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We refer to the RHS in (10) as the individual rationality

requirement. In other words, the merger forms if and only if

v(P1∪P2)|(j) ≤ v(Pj) is fulfilled for both players j ∈ {1, 2}.
The same argument leading to (10) can be extended to

the individual members of any coalition. Even if cooperation

allows to decrease the aggregate cost, it can indeed be unfa-

vorable for some agents from the point of view of the locally

incurred costs. Thus, there is not a straightforward relationship

between cooperation and individual rationality—unless some

means of transferring the value between agents is provided.

D. Transferable utility

Assumption 9 (Transferable utility (TU)). The coalitional

performance (6) is an economic index. A value equivalent to

v(P1) + v(P2)− v(P1 ∪ P2), i.e., the surplus of the merger,

can be reallocated between the agents.

Let p
(i)
j ∈ R designate the cost reallocated to agent j ∈

Ci ⊆ N , and p(i) = (p
(i)
j )j∈Ci

the vector of allocations to the

members of Ci.

Definition 10 (Efficiency). An allocation is efficient w.r.t. the

coalition value v(Ci) if
∑

j∈Ci
p
(i)
j = v(Ci).

We refer to πi ,
∑

j∈Ci
p
(i)
j as the aggregate cost allocated

over coalition Ci.

Lemma 11. Let (8) and Assumption 9 hold for a given tuple

{C1, C2, C1∪C2}, where C1, C2 ∈ P(G(k)). Then there exists an

efficient allocation of the merger cost, i.e., vectors p(1) ∈ R
|C1|

and p(2) ∈ R
|C2| such that

∑

j∈Ci

p
(i)
j ≤ v(Ci), for i ∈ {1, 2},

and
∑

j∈C1

p
(1)
j +

∑

j∈C2

p
(2)
j = v(C1 ∪ C2).

Proof. A straightforward solution is the egalitarian redistribu-

tion, where an equal share of the merger surplus is assigned

to each player, i.e.,

πi = v(Ci)−
1

2
(v(Ci) + v(Cj)− v(Ci ∪ Cj)) , (11)

for i ∈ {1, 2} and j 6= i. Geometrically, the allocation (π1, π2)
corresponds to the midpoint of the line segment connecting

(v(C1), v(C1 ∪ C2) − v(C1)) and (v(C1 ∪ C2) − v(C2), v(C2))
(and also coincides with the Shapley value formula for a two-

player game) [55].

So far, the discussion has been carried out without explicitly

dealing with the case |Pi| > 1. In Section IV we address the

redistribution of the aggregate cost πi allocated to coalition Ci
over each one of its members.

E. Closed-loop performance

In this section we discuss the closed-loop performance of

the proposed coalitional MPC control scheme. More specifi-

cally, we address the deviation between the predicted and the

closed-loop control cost as a consequence of the formation of

a coalition.

Consider Ci ∈ P(G(k)), and assume that P(G(k)) does not

change in the interval [k, k +Np − 1]. Let

̟i(k) ,

k+Np−1
∑

t=k

Λi(xi(k),ui(k))−

Np−1
∑

t=0

Λi(xi(t|k),ui(t|k))

(12)

measure the deviation between the predicted cost and the cost

actually incurred in closed loop, i.e., when all the agents apply

the optimal trajectories ui(k) = u∗
i (0|k) over t = {k, . . . , k+

Np−1} (since coupling from external subsystems is neglected

in (5b), we expect ̟i(k) 6= 0). We have seen in the previous

section that the formation of a coalition is associated with

an expected decrease in the control cost—derived through the

jointly optimized control law—that (at least) compensates for

the increase in the coordination effort. The aim of this section

is to define the conditions under which the global control cost

does not increase upon the formation of a coalition.

Assumption 12. For any tuple {C1, C2, C1∪C2}, with C1, C2 ∈
P, we assume that |̟1∪2(·)| ≤ |̟1(·)|+ |̟2(·)|.

The above assumption implies that the dynamical effect of

the rest of agents N \ (C1∪C2) on the subset C1∪C2 does not

change irrespective of how the agents in C1 ∪ C2 organize

themselves into coalitions. Observe that as a consequence

of (4) and Assumption 3, Assumption 12 is generally mild.

The following result, concerning the stability of the closed

loop, follows from Assumption 12 and the input-to-state

stability of the interconnected system.

Theorem 13. Consider P = {C1, . . . , Cnc
}, P

+ = P \
{C1, C2} ∪ {C1 ∪ C2}, and let V and V

+ be the associated

closed-loop global costs over the interval [k, k + Np − 1].
Let Λi(·, ·) be a convex function, and let Assumption 12 hold.

Then there exists a cooperation cost function χi(·) : (N , E)→
[0,∞) for which V

+ ≤ V.

Proof. Let Ji =
∑Np−1

t=0 Λi(x
∗
i (t|k),u

∗
i (t|k)). Now notice

that (8) must hold for P
+ to be a successor structure to P.

Then, from (12) we can write

V
+ , J1∪2 +̟1∪2 +

nc
∑

r=3

(Jr +̟′
r)

≤ J1∪2 + |̟1∪2|+
nc
∑

r=3

(Jr +̟′
r) (13a)

= v(C1 ∪ C2)− χ1∪2(P
+) + |̟1∪2|+

nc
∑

r=3

(Jr +̟′
r)

(13b)

≤ v(C1) + v(C2)− χ1∪2(P
+) + |̟1∪2|+

nc
∑

r=3

(Jr +̟′
r)

(13c)

≤ J1 + J2 + χ1(P) + χ2(P)− χ1∪2(P
+)

+ |̟1|+ |̟2|+
nc
∑

r=3

(Jr +̟′
r) (13d)

≤ V+ χ1(P) + χ2(P)− χ1∪2(P
+)
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+ 2(|̟1|+ |̟2|)−
nc
∑

r=3

̟r +

nc
∑

r=3

̟′
r, (13e)

where the inequality (13b) follows from (6), (13c) from (8),

(13d) from Assumption 12, (13e) from the definition of V and

the upper bound to the worst case in which ̟1, ̟2 < 0. Then

V
+ ≤ V⇔

nc
∑

r=3

̟′
r ≤

nc
∑

r=3

̟r

− 2(|̟1|+ |̟2|) + χ1∪2(P
+)− χ1(P)− χ2(P). (14)

The proof is concluded by observing that since X and U are

compact, ‖
∑nc

r=3̟
′
r−
∑nc

r=3̟r+2(|̟1|+|̟2|)‖ is bounded,

and the desired properties for χi(·), i.e., monotone increasing

in the coalition size, are fulfilled.

Remark 14. In practice, the cases in which either ̟1 < 0 or

̟2 < 0 (or both) and ̟1∪2 > ̟1 + ̟2 can be considered

singular, in the sense that they are associated with mutual

synergetic actions between the two players. In these cases,

in presence of nonnegligible cooperation costs the players

will likely be better off with unilateral strategies than with

coalitional ones, and the bound in (14) can be reduced to
∑nc

r=3̟
′
r ≤

∑nc

r=3̟r + χ1∪2(P
+)− χ1(P) + χ2(P).

IV. COALITIONAL STABILITY

Consider again the vector p(i) = (p
(i)
j )j∈Ci

of allocations to

the members of Ci. We have seen so far that rational agents

j ∈ N will choose an allocation p
(a)
j (associated to a coalition

Ca ⊆ N ) over p
(b)
j (associated to another coalition Cb ⊆ N )

if p
(a)
j < p

(b)
j .

Given a coalition C ∈ P(G(k)), we seek allocations of

v(C) such that no agent j ∈ C has incentive to leave the

coalition. For this we consider the cooperative TU game

ΓN (k) = 〈N , v〉, and restrict our attention on the subgame

ΓC(k) = 〈C, v〉, where the characteristic function v(·) is

defined in (6). Since the objective is to redistribute the entire

cost associated to the members of C, we start from the set of

efficient vector allocations

Ψ ,

{

p ∈ R
|C| :

∑

j∈C

pj = v(C)

}

, (15)

and define the excess as the difference between the value the

members of S ⊂ C can achieve as standalone coalition, and

the aggregate cost allocated over them by participating in C.

Definition 15 (Excess). For any subcoalition S ⊆ C, the

excess w.r.t. p ∈ Ψ is

e(S, p) = v(S)−
∑

j∈S

pj ,

and e(∅, p) = 0.

From (15) it follows e(C, p) = 0. This concept allows us

to define the set of allocations for which no agent has an

incentive to leave C for joining a coalition S ⊂ C.

Definition 16 (Core). The core of the TU game ΓC is the set

O = {p ∈ Ψ : e(S, p) ≤ 0, ∀S ⊆ C} .

It follows that all p ∈ O fulfill individual rationality, i.e.,

pj ≥ v({j}), for all j ∈ C, as well as group rationality, i.e.,
∑

j∈S pj ≥ v(S), for all S ⊆ C (therefore O ⊆ Ψ). This

means that no p ∈ O can be improved by a subcoalition S ⊂
C. In contrast, for any p ∈ Ψ \ O there exists a set of players

S ⊂ C that can claim a better allocation through a demand

against p.

Definition 17 (Demand). A demand of a subcoalition S ⊂ C
against p ∈ Ψ is a pair (S, δ), where δ = e(S, p).

It follows that a demand (S, δ) is satisfied by any allocation

p′ = (p′j)j∈C such that e(S, p′) = 0. This can be achieved

by defining the new allocation p′ according to an egalitarian

redistribution,

p′j =

{

pj −
e(S,p)
|S| , if j ∈ S,

pj +
e(S,p)
|C\S| , if j ∈ C \ S.

(16)

Notice that p′ ∈ Ψ since
∑

p′j =
∑

pj = v(C).
Next, we provide the conditions under which there exists

p′ ∈ Ψ that can satisfy any demand (S, δ) from any S ⊂
C. In other words, the objective is to define some sufficient

conditions for the nonemptiness of the core of a given subgame

ΓC . To do this, we will use the following assumption, whose

implications are delineated in the next proposition.

Assumption 18. Given a coalition C ⊆ N , there exists α ∈ L

such that v(C) = α(|C|)
∑

i∈C v({i}), and α(·) ≤ 1.

Remark 19. Note that assumption 18 is an extension of (8)

to n ≥ 2 players. Let JS be the predicted cost for a coalition

S ∈ P(G(·)) over the horizon [k, k + Np − 1], as defined

in Theorem 13, and Ji ,
∑Np−1

t=0 ℓi(x
∗
i (t|k), u

∗
i (t|k)) the

predicted selfish cost for agent i ∈ N over the same horizon.

Then, by (6), (8), and the convexity of the stage cost Λi(·, ·),
Assumption 18 holds for coalition S ∈ P(G(·)) if

JS ≤ α
∑

i∈S

Ji −∆χ
S(α)

holds for some α ≤ 1, where ∆χ
S(α) , χS −α

∑

i∈S χi > 0.

Lemma 20. Let Assumption 18 hold for all coalitions S ⊆
C ∈ P. Moreover, let α(·) be such that α(n) ≤ 2α(n − 1)−
α(1). Then the core of the subgame ΓC = 〈C, v〉 is nonempty.

Proof. Convexity of a game implies nonemptiness of the

core [56]. Given the definition of convex cost game [57]

v(S ∪ {j})− v(S) ≥ v(T ∪ {j})− v(T ), ∀T ⊆ S ⊆ C \ {j},

for all j ∈ C, we use Assumption 18 to obtain

α(|S| + 1)

(

∑

i∈S

v({i}) + v({j})

)

− α(|S|)
∑

i∈S

v({i})

≥ α(|T |+ 1)

(

∑

i∈T

v({i}) + v({j})

)

− α(|T |)
∑

i∈T

v({i}),

∀T ⊆ S ⊆ C \ {j}.

From here we derive the upper bound conditions on α(·), over

the possible coalition sizes, that guarantee the convexity of the

game.
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Now we are ready to state the main property of the proposed

algorithm, which stems from the work of [33] and [56].

Theorem 21. Consider the subgame ΓC = 〈C, v〉 associated

to the coalition C ∈ P, and let Assumptions 9 and 18 hold.

Let p(l) be an allocation vector resulting from the reallocation

mechanism described by (16) at a given iteration l ∈ N. Let

the core OC of ΓC be a nonempty set. Then the distance of any

allocation to the core decreases at each successive iteration,

i.e., minz∈OC
‖p(l) − z‖2 ≤ minz∈OC

‖p(l−1) − z‖2.

Proof. The proof relies on [33], and on the nonemptiness of

the core, established in Lemma 20.

Remark 22. This is not a sharp result. Convexity is a strong

condition, sufficient but not necessary for the nonemptiness

of the core. Indeed, the latter is directly connected with the

less strict category of balanced games. However, balancedness

of a game needs to be numerically addressed even for a

number of agents as low as five [58]. Hence, convergence of

the redistribution mechanism may hold even if the convexity

requirements established in Lemma 20 are not met.

Finally, we report an additional relevant property of the

algorithm.

Corollary 23. Let O = ∅, and let O(ε) be the least-core,

defined as

O(ε) = {p ∈ Ψ : e(S, p) ≤ ε, ∀S ⊆ C} . (17)

where ε ≥ 0 is the smallest such that O(ε) is nonempty. Then

the results of Theorem 21 apply to z ∈ O(ε).

Remark 24. Nonemptiness of the core can be checked in

polynomial time if the complete description of the game is

available [59]. However, notice that one of the main features of

the proposed algorithm is that the computation of the value of

the complete subgame (i.e., 2|C| possible pairs {S, C\S}, with

S ⊆ C, evaluated following the procedure in Section III-B) is

not required for convergence. Under the informational con-

straints that characterize the system under study, this becomes

very relevant from a practical point of view, as it substantially

relaxes the cognitive and computational requirements of the

proposed scheme [34].

V. BARGAINING PROCEDURE

At every time k ∈ TC , Algorithm 1 is executed. All

players initiate a pairwise bargaining whose outcome will

dictate the evolution of the coalitional structure. The procedure

follows the evaluation of the coalitional benefit described in

Section III-B. Note that the possible pairs are restricted to

those considering dynamically coupled players.

Remark 25. In general it might not be viable to exhaustively

evaluate all possible pairs of coalitions in {C1, . . . , Cnc
}.

In practice, several (dynamically coupled) pairs P1,P2 ∈
P(G(k)) can be randomly selected; in this case the final out-

come of the coalition formation process might be influenced

by the random selection order [60].

If condition (8) is verified for a given pair C1, C2 ∈ P, the

coalition C1 ∪ C2 is formed. The allocation of all the agents

composing the new coalition is initialized by an equal share

of the aggregate cost. Since this allocation is not necessarily

stable (in the coalitional sense), Algorithm 3 is executed.

Requests for utility transfer within C1 ∪ C2 are checked over

a finite number of different subsets S1 ⊂ C1 ∪ C2 (note that

the check is made over both S1 and its complementary set

S2 = (C1 ∪ C2) \ S1). If some subset of agents is dissatisfied

with the currently assigned allocation, the iterative utility

transfer scheme described in Section IV is performed.

Algorithm 3 is performed also in the case where all the

agents have already joined the grand coalition (no pairs are

available), and in the case in which the merger between two

players is not successful. Demands are checked similarly as

described for the case in which a new merger is formed. Let

Ci be the coalition under analysis, and S1,S2 ⊂ Ci. In this

case the predictions for v(S1), v(S2), v(Ci) will be updated

according to the current state of the system, and condition (8)

might not be fulfilled anymore. If this happens, either of

the subsets S1,S2 will leave the coalition. Thus, while any

coalition is formed through a bilateral agreement, a player

can leave it unilaterally.

Algorithm 1 Bottom-up coalitional control

Input: P = {C1, . . . , Cnc
}

Output: coalition structure P
+, allocation vector p+ ∈ R

|N |

if nc > 1 then

for all pairs P1,P2 ∈ P(k) such that ∃i ∈ P1, j ∈ P2 :
i ∈Mj ∨ j ∈Mi do

Call Algorithm 2;

end for

else

Call Algorithm 3 with PA = N and PB = ∅.

end if

Algorithm 2 Coalition formation

Input: P1,P2 ∈ P, max_iter

Output: P
+, allocation vector (p+j )j∈P1∪P2

v(P1 ∪ P2)← minimize (5) over u1∪2;

initialize ũ1 and ũ2 with feasible trajectories;

for t = 1, . . . , max_iter do

v(S1) ← solve (5) over u1 w.r.t. ũ2, replacing (5b)

with (7);

v(S2) ← solve (5) over u2 w.r.t. ũ1, replacing (5b)

with (7);

ũ1 ← u∗
1; ũ2 ← u∗

2;

end for

if (8) is verified then

P
+ ← P \ {P1,P2} ∪ {P1 ∪ P2}; {Form coalition}

pj := v(P1∪P2)/|P1∪P2| for all j ∈ P1∪P2; {Initialize

with egalitarian allocation}
(p+j )j∈P1∪P2

← Call Algorithm 3;

else

Call Algorithm 3 for P1 and P2. {Check for demands

within each coalition}
end if
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Algorithm 3 Utility transfer / Coalition splitting

Input: P ∈ P, allocation vector (pj)j∈P , max_loops,

max_iter

Output: {C′1, . . . , C
′
nc
} where

⋃

i C
′
i = P , allocation vector

(p′j)j∈
⋃

i
C′
i

1: nc ← 0;

2: n_loops← 0;

3: flag←FALSE;

4: repeat

5: (randomly) choose S1 ⊂ P ;

6: S2 ← P \ S1;

7: π1 ←
∑

j∈S1
pj ; π2 ←

∑

j∈S2
pj ;

8: initialize ũ1 and ũ2 with feasible trajectories;

9: for t = 1, . . . , max_iter do

10: v(S1) ← solve (5) over u1 w.r.t. ũ2, replacing (5b)

with (7);

11: v(S2) ← solve (5) over u2 w.r.t. ũ1, replacing (5b)

with (7);

12: ũ1 ← u∗
1; ũ2 ← u∗

2;

13: end for

14: if πi + πj > v(Si) + v(Sj) then

15: flag←TRUE; {Pr splits into S1 and S2}
16: for i = 1, 2 do

17: j ∈ {1, 2} \ {i};
18: nc ← nc + 1;

19: Cnc
← Si;

20: Initialize payoff of every agent in Cns
by equally

splitting v(Si);
21: Call Algorithm 3 for Cns

;

22: end for

23: else

24: if π1 > v(S1) or π2 > v(S2) then

25: e← π1 − v(S1);
26: p′j ← pj − e/|S1| for j ∈ S1; {Satisfy demand}
27: p′j ← pj + e/|S2| for j ∈ S2;

28: end if

29: end if

30: n_loops←n_loops+1;

31: until flag=FALSE and n_loops<max_loops.

Remark 26. The procedure is independent for every pair of

players, and the execution of the algorithm can be parallelized.

Finally, for all instants k ∈ N, the allocation of each agent

j ∈ Ci is updated as

pj(k) =
pj(k

′)

v(Ci)
[Λi(xi(k),ui(k)) + χi(Gi(k

′))] , (18)

where k′ ∈ TC is the time corresponding to the last execution

of Algorithm 1, and v(Ci) is the value of coalition Ci computed

at time k′.

VI. EXAMPLE

To test the proposed algorithm, we address the wide-area

control (WAC) of power networks [61]. The objective of WAC

is to damp inter-area oscillations arising among connected

generators, causing undesired power transfers. These oscilla-

tions have been poorly controllable with local (decentralized)

P23

P25

P12

P45

P34

∆d1

∆P̄1

∆ω1

∆d2

∆P̄2

∆ω2

∆d3

∆P̄3

∆ω3

∆d4

∆P̄4

∆d5

∆P̄5

∆ω5

∆ω4

Fig. 1. Power network composed of 5 areas with local supply [63]. Power
transfers are possible between areas connected by transmission lines. The
objective is to control inter-area oscillations—cause of undesired power
transfers—and to minimize the deviation from the nominal frequency under
step variations in the load. Two cases are considered: (i) local production
capacity is sufficient for locally matching the demand, (ii) the capacity of
local generation is impaired, making energy transfers from neighboring areas
necessary for demand satisfaction.

TABLE I
SYMBOLS EMPLOYED IN THE POWER NETWORK EXAMPLE.

Symbol Description Unit

∆d Deviation of the load from the nominal value (p.u.) [-]

∆θ Variation in the rotor angle w.r.t. revolving magnetic
field

[rad]

∆ω Deviation from the nominal frequency [rad/s]

∆Pm Deviation from the nominal mechanical power (p.u.) [-]

∆Pv Deviation from the nominal steam valve position
(p.u.)

[-]

∆P̄ Deviation of the power setpoint from the nominal
value (p.u.)

[-]

H Machine inertia constant [s]

rv Rotor velocity regulation [rad/s]

ρf Load change / frequency variation (%) [-]

τt Prime mover time constant [s]

τg Governor time constant [s]

P 0

ij Synchronizing power coefficient [rad−1]

control. The development of flexible AC transmission systems

(FACTS) and the recent availability of a capillary network

of sensors such as the phasor measurement units (PMUs)

have opened new possibilities in the control of the power

grid [18]. Yet the dense information exchange between PMUs

installed at substations managed by different utility companies

is not free of costs, and research has been focusing on the

development of WAC strategies promoting the sparsity of

inter-area communications [28], [62].

A. System description

The power network consists of several areas coupled by

transmission lines (see Fig. 1). Local generation is available

within each area. Our focus in on the load-frequency con-

trol (LFC) loop, to (i) maintain the frequency around the

nominal value, and (ii) reduce power transfers between areas.

In particular, we test the proposed framework in providing

automatic generation control (AGC) to regulate the frequency

to its nominal value in presence of step changes in the load.

The energy supply in each area is provided by a power

station equipped with single-stage turbines. We consider resis-

tive loads, not sensitive to frequency variations (e.g., lighting,
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heating). Let each area be identified by an index in the set

N = {1, . . . , 5}. The linearized dynamics of synchronous

generators in area i ∈ N result in the following continuous-

time model [64, Chap. 12]:

ẋi = Aiixi +Biiui +Di∆di +
∑

j∈M

Aijxj , (19)

where xi , [∆θi,∆ωi,∆Pmi
,∆Pvi ] ∈ R

4, ui = ∆P̄i ∈
R, and ∆di ∈ R is the variation in the demand (symbols

are defined in Table I). The last term in (19) describes the

influence of coupled areas, identified in the set Mi = {j ∈
N \ {i}|Aij 6= 0}. Matrices are composed as

Aii =













0 1 0 0

−
∑

j∈Mi
P 0

ij

2Hi
−

ρfi

2Hi

1
2Hi

0

0 0 − 1
τti

1
τti

0 − 1
rviτgi

0 − 1
τgi













Bi =











0

0

0
1
τgi











Aij =











0 0 0 0
P 0

ij

2Hi
0 0 0

0 0 0 0

0 0 0 0











Di =











0

− 1
2Hi

0

0











.

(20)

For reasons of space, the values of the parameters are not

reported here (the reader is referred to [63]). The coupling

of the generation frequency between areas connected through

transmission lines appears in the second row of Aii and Aij .

For small deviations from the nominal value, inter-area power

flows can be modeled as [64]

∆Pij = P 0
ij(∆θi −∆θj), i, j ∈ N , (21)

where P 0
ij , referred to as the synchronizing coefficient, is the

slope of the power-angle curve at the initial operating angle

∆θij0 = ∆θi0 − ∆θj0 between areas i and j. These flows

appear as a load increase in one area, and a load decrease in

the other area. In particular, positive values of ∆Pij indicate

a transfer from area i to area j.
Classic discretization yields non-sparse structures, unless

very small sampling steps are employed [65]. In order to

preserve the topology of the system in the structure of the

discrete-time model while avoiding the dependence on the

sampling time, the continuous-time model (19) is discretized

following the method of [66], with Ts = 1 s. More specifically,

by treating ui as an exogenous input along with ∆di and xj ,

the input-decoupled structure of the continuous-time model

is replicated in discrete time. Notice that the use of such a

method is reasonable in this kind of framework, where one ba-

sic assumption is that system-wide knowledge of the model is

not likely to be achieved (besides communication constraints,

one further reason is the dependence of the time constants

characterizing the linear model on the current setpoints [62]).

From now on, any mention of the above matrices will refer to

the discrete-time model.

B. Controller design

It can be inferred from (21) that large energy transfers

are caused by large differences in the angle deviation. The
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Fig. 2. Scenario 2: the capacity of local generation is impaired, making
energy transfers from neighboring areas necessary for demand satisfaction.
Variation of the demand (dashed lines) and local power generation in the 5
areas. In the left plot, relative to ccoal = 10−3, the lack of supply in Area 3
due to a 10% capacity drop w.r.t the demand value is supplemented with
energy transfers from Areas 4 and 5. Similarly, the right plot, corresponding
to ccoal = 5 ·10−4, shows that Area 3 receives additional supply from Areas
2 and 5 (see Fig. 4). Power setpoints are computed with the RTO (23).

TABLE II
CONSTRAINTS ON LOCAL GENERATION.

‖u1‖
∞

≤ ‖u2‖
∞

≤ ‖u3‖
∞

≤ ‖u4‖
∞

≤ ‖u5‖
∞

≤

S1 0.2310 0.1680 0.1050 0.0840 0.1050

S2 0.3465 0.1512 0.0945 0.1260 0.0945

minimization of the energy transferred between connected

areas can be implicitly addressed by penalizing large values

of ∆θi; additionally, measures available from cooperating

nodes can be exploited by penalizing the angle difference

between the members of a given coalition. Therefore, the state

weighting matrices in the objective function are chosen as

Qii = diag(qθii +
∑

j∈Mi

qθij + qθji, q
ω
ii, q

Pm

ii , qPv

ii ),

Qij = diag(−
∑

j∈Mi

qθij + qθji, 0, 0, 0),
(22)

where Qij ∈ R
ni×nj is the submatrix of Q ∈ R

n×n relative

to the coupling between nodes i and j. For noncooperative

control, qij = qji = 0; the rest of the values are defined as

in [63], i.e., Qii = diag(500, 0.01, 0.01, 10) and Ri = 10,

∀i ∈ N . In case of cooperation, we set qij = qji = 1000.

We test the capability of the coalitional controller based on

autonomous coalition formation in achieving ∆ωi → 0 for

all i ∈ N in presence of step variations in the load ∆di. Two

scenarios are considered: in the first, local production capacity

is sufficient for locally matching any demand, and the objective

is to track the AGC reference (x̄, ū), computed as a function

of the change in the grid load. Since each area’s load must

be matched with the local production, the components of the

setpoint vector are defined as x̄i = (0, 0,∆di,∆di), ūi =
∆di, corresponding to the increment in the energy generation

required to balance an increase in the demand. In the second

scenario the capacity of local generation is impaired, making

energy transfers from neighboring areas necessary for demand

satisfaction (see Table II). These transfers are described by the
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coalitional setpoints optimized by an RTO layer

min
uref

i ,xref

i

Np−1
∑

t=0

∥

∥uref
i (t|k)− ūi(t|k)

∥

∥

2

Ri

+
∥

∥xref
i (t+ 1|k)− x̄i(t+ 1|k)

∥

∥

2

Qi
(23a)

s.t.

xi(t+ 1|k)(I −Aii)−Biiui(t|k) = Diδi(t|k),
(23b)

1⊺ui(t|k) = 1⊺δi(t|k), (23c)

ui(t|k) ∈
∏

j∈Ci

Uj , t = 0, . . . , Np − 1, (23d)

∑

r

Prj(∆θr −∆θj) = [∆dj − u
max
j ]+,

j ∈ Ci, ∀r ∈Mj ∩ Ci,
(23e)

δ(t|k) = δ̂i(k + t), t = 0, . . . , Np − 1, (23f)

where uref
i , (uref

i (k), . . . ,uref
i (k + Np − 1)) is the input

reference trajectory along the horizon Np for Ci, and xref
i ,

(xref
i (k+1), . . . ,xref

i (k+Np)) is the associated state reference.

In the steady-state condition (23b), δi , (∆dj)j∈Ci
is the

demand vector relative to all members of the coalition; (23c)

defines the demand-supply equilibrium within a coalition, i.e.,
∑

j∈Ci
∆P̄j =

∑

j∈Ci
∆dj . In (23e), [·]+ , max(·, 0). The

quadratic coalitional stage cost in (23a) is defined by the

weighting matrices Qi = diag(Qii) and Ri = diag(Rii),
with Qii = (10, 0, 100, 100) and Rii = 100. The setpoint

(uref
i ,xref

i ) ≡ (x̄i, ūi) is assigned to singleton coalitions, since

power transfers cannot be arranged for them.

The procedure described in Section V is followed to evalu-

ate the possible formation of coalitions. At each time step the

MPC problem (5)—reformulated accordingly for the tracking

of references (xref
i ,uref

i )—is independently solved by the

coalitions in P(G(k)) [67]. Cooperation costs are defined as

χ = ccoal|C|2, for |C| ≥ 2, χ = 0 otherwise. The prediction

horizon length is set to Np = 5. Following [68] and setting

Qf
i = 20Qi, the terminal cost in (5a) is

V f
i (xi(Np|k)) = (xi(k)− x̄i)

⊺Qf
i(xi(k)− x̄i). (24)

C. Results

In order to evaluate the variation of the controller perfor-

mance over different degrees of cooperation, two indices are

defined. The first is the average overall frequency deviation,

η(ω) =
1

Tsim

Tsim
∑

t=1

∑

i∈N

∆ω2
i , (25)

and the second reflects the energy transferred between areas,

ψ(θ) =

Tsim
∑

t=1

∑

i∈N

∑

j∈Mi

‖∆Pij(t)Ts‖
2
, (26)

where ∆Pij is defined in (21), and Ts is the sampling time.

These indices provide a measure of the global performance not

dependent of the particular evolution of the coalition structure.

In this case, the supply capacity in Area 3 is not always

sufficient to fulfill the local demand; meanwhile, generators in

Time [s]
5 10 15 20 25 30 35 40 45 50 55 60

A
ge

nt
s

1
2
3
4
5

[1e-3]

Time [s]
5 10 15 20 25 30 35 40 45 50 55 60

A
ge

nt
s

1
2
3
4
5

[5e-4]

Time [s]
5 10 15 20 25 30 35 40 45 50 55 60

A
ge

nt
s

1
2
3
4
5

[1e-4]

Time [s]
5 10 15 20 25 30 35 40 45 50 55 60

A
ge

nt
s

1
2
3
4
5

[1e-5]

Fig. 3. Scenario 1: production capacity is sufficient for locally matching
any demand. Formation of coalitions for different values of ccoal. Costs of
cooperation are increasing with the coalition size, i.e., χ = ccoal|C|

2, for
|C| ≥ 2.
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Fig. 4. Scenario 2: the capacity of local generation is impaired, making
energy transfers from neighboring areas necessary for demand satisfaction (see
Fig. 2). The plots show the evolution of coalitions for different values of ccoal.
Costs of cooperation increase with the coalition size, i.e., χ = ccoal|C|

2, for
|C| ≥ 2. The cooperation in this case follows a more stable pattern.
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Fig. 5. Performance index η(ω) (left) and ψ(θ) (right), respectively regarding
the minimization of the frequency deviation and of inter-area energy transfers,
for increasing values of ccoal. Plots marked with S1 are relative to Scenario 1,
while S2 refers to the case in which areas 2, 3 and 5 experience limitations
in their power generation. The dotted line marks the performance of the
strictly cooperative strategy (centralized MPC), whereas the dashed-dotted
line refers to the strictly noncooperative one. See Fig. 7 for details on
the box representation. Even with scarce cooperation (ccoal = 10−3), the
performance improvement over noncooperative control is sensible: indices
η(ω) and ψ(θ) are enhanced in Scenario 1 by about 18% and 31%,
respectively. In Scenario 2, η(ω) is improved by about 18%; however, power
transfers cannot be avoided in this scenario, and the low coordination between
areas results in an increase of ψ(θ) by 5%.
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different values of ccoal (costs of cooperation are increasing with the coalition
size, i.e., χ = ccoal|C|

2). Plots marked with S1 are relative to Scenario 1,
while S2 refers to the case in which areas 2, 3 and 5 experience limits on the
power generation. See Fig. 7 for details on the box representation.

Area 5 cannot decrease their production to match the lowest

local demand level, so the excess of production is transferred

to other areas. As can be seen in Figure 2, the lack of supply

capacity is covered by neighboring generators.

Figures 5 and 6 gather the results of a set of 200 sim-

ulations for the two scenarios, showing the performance for

different values of ccoal. Coalition formation is disincentivized

as ccoal is increased, deteriorating the achievable performance.

Roughly speaking, the performances of coalitional control fall

between those obtained through fully-cooperative (centralized)

and noncooperative MPC control. It is interesting to see

how, even with a reduced cooperation effort, the performance

TABLE III
TU SCHEME ALLOCATION FOR THE GRAND COALITION.

Dec. MPC Centr. MPC TU alg. Shapley

Area 1 0.424 0.433 0.359 0.353
Area 2 0.365 0.268 0.329 0.333
Area 3 0.136 0.080 0.085 0.085
Area 4 0.057 0.052 0.054 0.052
Area 5 0.143 0.101 0.110 0.112

improvement over the noncooperative control is sensible: with

ccoal = 10−3 (see top plot in Fig. 3), yielding an average

coalition size of 1.2, indices η(ω) and ψ(θ) are enhanced

by about 18% and 31%, respectively. In Scenario 2, η(ω) is

improved by about 18%; however, power transfers cannot be

avoided in this scenario, and the low coordination between

areas results in an increase of ψ(θ) by 5%.

Table III shows the accumulated control costs for each

area, in Scenario 1 (cooperation costs are not included). The

allocation produced by the proposed iterative utility transfer

algorithm is compared to the Shapley value. In order to

better evaluate these two outputs, the agents were not allowed

to leave the grand coalition in the simulations relative to

Table III. The first two columns show the control costs as-

sociated to centralized (fully cooperative) and noncooperative

MPC: notice how for Area 1 cooperation implies an increase

of the local cost. Individual rationality is achieved for all

areas with both allocation methods. The results relative to

the iterative transfer algorithm have been obtained with 10

iterations, i.e., the dissatisfaction w.r.t. the assigned allocation

has been checked for 10 randomly selected subcoalitions (see

Section V). Instead, the Shapley value required at each time

step the evaluation of all possible subcoalitions, in this case

25 = 32.

Figures 7 and 8 show the accumulated control costs for the

5 areas, and their corresponding online reallocation, resulting

over 200 simulations for the two scenarios. Notice how—

particularly in Scenario 1—individual rationality is not always

fulfilled when cooperation costs become appreciable. Online

reallocation mitigates this issue and provides an incentive for

the cooperation (see especially the case of Area 1).

VII. CONCLUSION AND OUTLOOK

A coalitional control framework based on a switching model

predictive control (MPC) architecture for large-scale systems

is proposed in this paper. In particular, the framework is

directed at systems with heterogeneous character, in which

the autonomous components possibly pursue competing ob-

jectives, and possess a limited model of the system. By

characterizing as a transferable-utility cooperative game the

benefit provided to local control agents by a broader feedback

and the pursuit of a common objective, the formation of

coalitions of controllers is promoted accordingly. The redis-

tribution of the coalitional benefit is used as incentive for

cooperation. Taking into account the informational constraints

of the considered setting, a proper allocation of the control

cost is derived without the need of a complete knowledge

of the game. The analysis shows that, when global model

information is only partially available, cooperation costs play a
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Fig. 7. Scenario 1: production capacity is sufficient for locally matching any demand. Cost—involving both control and cooperation—locally incurred by
agents, accumulated along the simulated interval. Plots marked with TU show the result of the online reallocation with the proposed algorithm. Box plots gather
the results of 200 simulations, for different values of ccoal (costs of cooperation are increasing with the coalition size, i.e., χ = ccoal|C|

2, for |C| ≥ 2). As a
reference, the costs corresponding to the fully cooperative strategy are denoted by the dotted line, showing the influence of cooperation costs. These—initially
equally supported by the agents—are reallocated online with the proposed algorithm, as shown by the dotted line in ‘TU’ plots. The dashed-dotted line refers
to the local cost with the noncooperative strategy. Boxes cover the range between the 25th and the 75th percentiles (the central mark is the median), and
outliers (data exceeding a distance from the box extremes of 1.5 times the difference between the 25th and the 75th percentiles) are plotted separately.
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Fig. 8. Scenario 2: the capacity of local generation is impaired, making energy transfers from neighboring areas necessary for demand satisfaction. Control cost
locally incurred by agents, accumulated along the simulated interval. Plots marked with TU show the result of the online cost reallocation with the proposed
algorithm. As a reference, the costs corresponding to the fully cooperative strategy are denoted by the dotted line, showing the influence of cooperation
costs. These—initially equally supported by the agents—are reallocated online with the proposed algorithm, as shown by the dotted line in ‘TU’ plots. The
dashed-dotted line refers to the local cost with the noncooperative strategy. See Fig. 7 for details on the box representation.

major role on the outcome of the coalition formation, and that

these can be used as a mechanism to link coalition formation

with desired closed-loop properties. Simulation results from

a case study of power grid wide-area control show that the

reconfiguration capabilities provided to the system through

the proposed framework are suited for fault-tolerance needs

or plug-and-play settings.

One of the most interesting control challenges arising in

the considered setting comes from an informational point

of view. The effect of circumscribed information availability

on the overall system stability have recently been subject

of study [69]–[71]. Depending on the system dynamics and

on the performance requirements, a matter of study could

be the design of the terminal ingredients employed in the

receding-horizon optimization. A non-conservative design of

these elements generally requires information only available at

global level, although the actual synthesis can be distributed

across the agents [72]. We believe this is an interesting

topic when privacy concerns need to be taken into account.

Another aspect to be further addressed is the deviation of

the actual realization of the cooperation benefit from the

expected one, on which the coalitional agreeement and the

allocation mechanism are based [30]. Future work might also

consider overlapping coalitions, as a means for enhancing the

flexibility of cooperation and providing further possibilities for

the dynamic reallocation of the agents’ control effort.
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