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Abstract—Air traffic management (ATM) of manned and
unmanned aerial vehicles (AVs) relies critically on ubiquitous
location tracking. While technologies exist for AVs to broadcast
their location periodically and for airports to track and detect
AVs, methods to verify the broadcast locations and complement
the ATM coverage are urgently needed, addressing anti-spoofing
and safe coexistence concerns. In this work, we propose an ATM
solution by exploiting noncoherent crowdsourced wireless net-
works (CWNs) and correcting the inherent clock-synchronization
problems present in such non-coordinated sensor networks.
While CWNs can provide a great number of measurements for
ubiquitous ATM, these are normally obtained from unsynchro-
nized sensors. This article first presents an analysis of the effects
of lack of clock synchronization in ATM with CWN and provides
solutions based on the presence of few trustworthy sensors
in a large non-coordinated network. Secondly, autoregressive-
based and long short-term memory (LSTM)-based approaches
are investigated to achieve the time synchronization needed for
localization of the AVs. Finally, a combination of a multilateration
(MLAT) method and a Kalman filter is employed to provide
an anti-spoofing tracking solution for AVs. We demonstrate the
performance advantages of our framework through a dataset col-
lected by a real-world CWN. Our results show that the proposed
framework achieves localization accuracy comparable to that
acquired using only GPS-synchronized sensors and outperforms
the localization accuracy obtained based on state-of-the-art CWN
synchronization methods.

Index Terms—Localization, tracking, multilateration, synchro-
nization, Kalman filter, dynamic clock model, TDoA, unmanned
aerial vehicle (UAV)

I. INTRODUCTION

Global air traffic of manned and unmanned aerial vehicles
(AVs) is on a steady rising trend, projecting unmanned aerial
vehicles (UAVs) to outgrow manned aerial vehicles (MAVs)
by several orders of magnitude over the next 20 years [1].
With UAVs entering the civil airspace, air traffic management
(ATM) must expand to handle their coexistence with MAVs,
ensuring safe airspace with ubiquitous tracking capabilities
[2]–[7]. Unlike the MAVs safety system, which includes
onboard navigation aids, a pilot to intervene, and ground
ATM, UAVs safety systems rely primarily on ground ATM
due to size and power limitations [7]. In fact, UAV ATM
becomes particularly crucial in beyond visual line of sight and
autonomous missions.

The essence of ground ATM is AVs’ location information
typically acquired through radio frequency (RF)-based surveil-
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lance systems. The location information can be obtained inde-
pendently from the AV using primary surveillance radar (PSR),
and in an AV-dependent manner using automatic dependent
surveillance-broadcast (ADS-B) with AV’s global position-
ing system (GPS)-based location. While existing surveillance
systems are sufficient for MAVs’ ATM, they are anticipated
to face fundamental challenges when dealing with airspace
featuring both MAVs and UAVs [4]–[6]. First, radar-based
solutions have a fixed coverage radius, and the small UAV
cross-section poses great detection limitations [5,6]. Secondly,
location-broadcast-based methods, such as ADS-B, are ex-
pected to suffer from serious reliability and security risks
with UAVs scaling up the number of AVs in the airspace
[2,4]. Besides, broadcast methods are broadly vulnerable to
spoofing attacks [8,9]. Alternatively, crowdsourced ATM is
gaining considerable research focus, as it addresses coverage
limitations and promises better resilience against malicious
attacks [6]–[9].

Crowdsourced ATM exploits the large-scale deployments
of crowdsourced wireless networks (CWNs) to capture AVs’
broadcast messages, enabling localization using time differ-
ences of arrival (TDoA)-based multilateration (MLAT) [7,10].
TDoA-based MLAT, as an independent means of localization,
does not require any information from the target AV, which
facilitates the detection of spoofing attacks. Currently deployed
CWNs rely on off-the-shelf software-defined radio (SDR)-
enabled receivers to sense the spectrum and forward the
collected data to the network backend via the Internet. While
CWNs’ setup guarantees a smooth expansion of the network
coverage, it results in a network with noncoherent receivers,
consisting of a mix of synchronized and unsynchronized
ones [11]. However, localization using TDoA-based MLAT
requires all receivers involved in the localization process to
be synchronized [12].

The tunable SDR used in CWN receivers enables attractive
synchronization opportunities by relying on reference signals
from existing wireless networks, e.g., Wi-Fi beacons, LTE
synchronization messages, or ADS-B messages from trusted
aircraft. In this article, we tackle the synchronization problem
in noncoherent CWNs by exploiting the ADS-B messages
from registered commercial aircraft, along with the limited
subset of synchronized receivers, to realize the synchronization
needed for TDoA-based MLAT localization. This promising
potential of a crowdsourced-based AV localization and track-
ing, alongside the insisting demand on secure and ubiquitous
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ATM, inspired our work in this article.

A. Related Works

Recently, the localization and tracking problem of AVs in
general, and UAVs in particular, has been studied in several
articles. The approaches proposed in these articles are broadly
categorized into radar systems and localization systems based
on RF signal emitted from the target [13]. In [5], Zheng
et al. investigated the detection and localization problem of
UAV swarms using a radar method based on the Dechirp-
keystone transform and frequency-selective reweighted trace
minimization. Guerra et al. [14] introduced an aerial monos-
tatic dynamic radar network distributed on multiple UAVs to
localize and track any malicious UAV in the surrounding area.
While both [5] and [14] provided a promising accuracy, it is
practically infeasible to deploy such systems for country-wide
UAV tracking. On the one hand, it is economically challenging
considering the high-cost of radar systems [6], and on the other
hand, it might be inappropriate or even forbidden to deploy a
radar system in urban areas due to the relatively high-power
used.

Localization methods based on broadcast RF signals from
AVs offer a cost-efficient alternative with the ability to provide
country-wide coverage by exploiting the large-scale deploy-
ments of CWNs [7,11,15]. Predominantly, these localization
methods employ MLAT based on the received signal strength
(RSS) [16], time of arrival (ToA) [17], or TDoA [12]. In [6],
Yang et al. introduced a cost-efficient crowdsourcing system to
detect and localize UAVs. It has been shown that by exploiting
the Wi-Fi beacons broadcast from UAVs, it is possible to
detect and subsequently localize them using RSS. However,
the considered range was limited to 400 m; scaling up this
range will significantly reduce the localization accuracy, which
is inversely proportional to the true distance between the
UAV and the ground anchor [13,18]. Furthermore, RSS-based
and ToA-based methods require knowledge about the transmit
power and the transmit time used by the target AV, which are
not available in the case of a spoofing target [13]. Such knowl-
edge is not necessary for TDoA-based methods, making it a
favorable choice for MLAT with CWN [10,19]. In [19], Seo et
al. proposed a particle filter-based 3D target tracking algorithm
with measurement fusion of TDoA, frequency difference of
arrival (FDoA), and angle of arrival (AoA). Strohmeier et
al. [7] introduced a grid-based localization approach for AVs
using the 𝑘-nearest-neighbor (𝑘-NN) algorithm with TDoA
measurements at a CWN. The reported results in both [7]
and [19] assumed CWNs with time-synchronized receivers.
However, since CWNs use noncoherent receivers [11,20], this
assumption excludes the majority of CWN receivers that are
not time-synchronized, resulting in sparse CWN coverage. For
instance, in the OpenSky network, the percentage of time-
synchronized receiver sensors is only 15% of the total number
of sensors [15,20].

The noncoherent and widely-distributed nature of CWNs
restrains them from establishing applications such as coop-
erative signal decoding and cooperative localization [21]. An
autoregressive (AR)-based approach, joint with a Kalman filter

(KF), has been adopted in [22,23] to model the clock behavior
in devices with low-precision clocks. While the AR process
enables promising clock models, the provided results were
based on co-located sensors in a single indoor or outdoor
environment. In addition, a reference broadcast signal for
synchronization was available on-demand. Calvo-Palomino et
al. [24] proved that CWNs could achieve a certain level of
synchronization, sufficient for cooperative signal decoding, by
using synchronization messages from existing LTE infrastruc-
ture. However, this method requires resynchronization with
every received message. This requirement is overwhelming
for the CWN backend, and for the receivers that have limited
processing power.

Another promising synchronization reference for noncoher-
ent CWNs is the ADS-B messages from registered commer-
cial aircraft with their trusted broadcast positions. The work
presented in [25] exploits these trusted ADS-B messages in
conjunction with the limited subset of synchronized receivers
to model and subsequently compensate for the clock offset
based on an AR model. Such clock offset compensation sug-
gests a great potential to achieve the synchronization needed to
enable accurate TDoA-based MLAT. Nevertheless, the results
presented in [25] were only preliminary, lacking details on
the clock offset behavior, AR model analysis, and the overall
localization performance. Moreover, the framework structure
and its workflow were not presented.

B. Contribution and Article Structure

This article addresses AVs’ localization problem using
widely distributed noncoherent CWNs, aiming at large-scale
and anti-spoofing crowdsourced-based ATM. We consider a
real-life CWN with receivers classified into 15% of GPS-
enabled sensors (GSNs) with GPS-synchronized clocks and
85% of non-GPS sensors (SNs) with drifting clocks that are
not synchronized. We investigate the clock offset of the SN
receivers, allowing them to engage in the TDoA-based MLAT
process. We also extend and refine our previous work [25]
by introducing a full localization system design and detailing
the workflow for processing both training and test data.
Furthermore, we introduce a novel machine-learning-based
clock offset modeling, along with comprehensive analyses,
concerning the performance of both clock offset modeling and
AV localization. The main contributions and merits of this
article are summarized as follows:
• We propose a novel localization framework and a full

localization system design, enabling AVs tracking using
a noncoherent CWN with a mix of SN and GSN receivers.
The proposed system presents a large-scale RF-based
ATM solution, which can be used to verify the broadcast
location of both manned and unmanned vehicles, enabling
spoofing attacks detection and tracking.

• The proposed localization framework investigates two
synchronization approaches for noncoherent CWNs: AR-
based and long short-term memory (LSTM)-based. We
rely on broadcast messages from trusted AVs and the few
available GSN to characterize the dynamic el of the SNs.
Subsequently, the resulting model is used to compensate
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for SNs’ clock offset, enabling target AVs tracking with
TDoA-based MLAT, joint with a KF.

• Finally, a measurement-based dataset collected from a
real-world CWN is used to assess the performance of
the proposed localization framework. Our results confirm
the effectiveness of the proposed framework, minimizing
the localization error by around 50% compared to instan-
taneous SNs synchronization using their prior measured
offsets.

The rest of the article is organized as follows. In Section
II, we present the system model and the TDoA method.
Subsequently, the clock offset model is detailed in Section
III. Section IV presents our proposed localization framework
with noncoherent CWNs. Subsequently, we present our exper-
imental results in Section V. Finally, Section VI concludes this
article.

Notation: Italic letters, simple bold letters, and capital
bold letters represent scalars, vectors, and matrices, respec-
tively. (𝑎1, 𝑎2, . . . ) represents a sequence and [𝑎1, 𝑎2, . . . ]T
represents a column vector, with [.]T being the transpose
operator. We use 𝑥, 𝑥−, and 𝑥 to denote the estimate (or the
prediction), the a priori estimate, and the KF-based estimate,
of 𝑥, respectively.

II. SYSTEM MODEL

This section presents the noncoherent CWN model consid-
ered in this work. Subsequently, it introduces the TDoA-based
MLAT method employed in the proposed framework.

A. Crowdsourced Network Model

Consider a ground-based crowdsourced ATM network de-
ployed to localize and track AVs, as illustrated in Fig. 1. We
assume that AVs send periodic RF signals which are received
by 𝑁 receivers, denoted by 𝑅𝑥1, 𝑅𝑥2, ..., 𝑅𝑥𝑁 where the 𝑖th
receiver 𝑅𝑥𝑖 ∈ {GSN , SN} with 𝑖 = 1, 2, . . . , 𝑁 . The receivers
register the signal’s ToAs, and subsequently, forward them to a
centralized station where the location of the corresponding AV
is estimated. To develop a suitable localization method, it is
crucial first to identify the characteristics of the crowdsourced
ATM networks. In particular, the communication channel and
the receivers’ characteristics.

1) Communication Channel Characteristics: The commu-
nication channel between AVs and ground terminals depends
on the propagation environment and the location of the AV
with respect to the ground terminal. A widely adopted air-
to-ground channel model [26,27] is presented in [28]. As
reported in this work, the line-of-sight (LoS) and non-line-
of-sight (NLoS) links are considered separately, along with
their probabilities of occurrence, and are expressed as

PL𝑛 = 20 log
(
4𝜋 𝑓 𝑑
𝑐

)
+ 𝜇𝑛 , 𝑛 ∈ [LoS,NLoS] , (1)

where 𝑓 is the carrier frequency, 𝑐 is the speed of light,
𝜇LoS denotes the mean excessive path loss, and 𝑑 is the
direct distance between the AV and the ground terminal,
given by 𝑑 =

√
ℎ2 + 𝑟2. The probability of having a LoS link

𝑦

𝑥

𝑧

Unsynchronized SN

Synchronized  GSN

Synchronization

Internet

Broadcast Data Target tracking

CWN backend

Trusted AV

Target AV

𝑟

ℎ𝑑

𝜃

Fig. 1: Target AVs tracking using a noncoherent CWN with broadcast
messages from trusted AVs used as a synchronization reference.

fundamentally depends on the environment, including density
and height of buildings, as well as the elevation angle between
the AV and the ground terminal. Accordingly, the expression
of the LoS probability can be written as [26,28]

PLoS =
1

1 + 𝑎𝑜 exp (−𝑏𝑜𝜃)
, (2)

where 𝑎𝑜 and 𝑏𝑜 are environment dependent constants [28]
and 𝜃 is the elevation angle shown in Fig. 1. The NLoS
probability is simply PNLoS = 1 − PLoS. Intuitively, for cases
where ℎ >> 𝑟 , and 𝑟 ≠ 0, we have 𝜃 → 90°, resulting in a
PLoS that converges to one with roughly free-space path loss
model [13]. For instance, commercial aircraft experience such
high LoS probability as they fly well-above buildings. While
low-altitude AVs might encounter NLoS links, they generally
experience a LoS probability significantly higher than that of
ground-to-ground scenario [13,26,28].

In terms of range, the channel can be classified as a
long-range communication channel. In the case of a rotary-
wing AVs, the range varies from a few hundreds of meters
to kilometers. This range typically increases by orders of
magnitude in the case of fixed-wing AVs.

2) Receivers Characteristics: Crowdsourced ATM net-
works aim at providing global coverage that is not limited
to airports and airfields. To this end, a massive number of
receivers with various off-the-shelf hardware are used, e.g.,
Radarcape, SBS-3, and GRX1090 [15]. From the TDoA
localization perspective, receivers can be categorized as syn-
chronized, namely GSN, and unsynchronized, namely SN.
The GSN receivers are usually GPS synchronized, meaning
that they are constantly resynchronized to compensate for any
clock offset. These receivers use a GPS disciplined oscillator
(GPSDO) as a stable time reference for their local clocks
[29]. Moreover, GSN receivers’ timestamps have a rather high
resolution. Unsynchronized SN receivers, on the other hand,
are subject to (sometimes heavy) drifting, and their timestamps
have a lower resolution compared to GSNs. For instance, in
the OpenSky network [15], GSNs and SNs have resolutions
of about 40-60 MHz and 12 MHz, respectively.
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B. MLAT Location Estimation Method
The MLAT process establishes a set of equations relating

the TDoA measurements, the receivers’ positions, and the
unknown target position. The approaches used for solving
the MLAT’ set of equations can be classified as statistical,
numerical, and algebraic [10]. The statistical approaches are
highly dependent on the environment’s statistical characteris-
tics and are considered open-form algorithms, as they do not
provide a closed-form solution [30]. Numerical approaches
can introduce a closed-form solution; however, a formally
driven parameter from the target is required for the numerical
approximation [10]. Consequently, in the following, we adopt
an algebraic approach that uses neither statistical assumptions
nor numerical approximations [12], offering an elegant closed-
form solution.

Consider a CWN employing MLAT localization based on
TDoA measurements among its distributed receivers. The
TDoA associated with the 𝑖th receiver, 𝑅𝑥𝑖 and the 𝑗 th
receiver, 𝑅𝑥 𝑗 , is 𝑡 𝑗−𝑡𝑖 , where 𝑡𝑖 and 𝑡 𝑗 are the ToAs at 𝑅𝑥𝑖 and
𝑅𝑥 𝑗 respectively. Accordingly, one can define the difference
in distance 𝑑𝑖 𝑗 as

𝑑𝑖 𝑗 := 𝑑𝑖 − 𝑑 𝑗

= (𝑡𝑖 − 𝑡𝑜)𝑐 − (𝑡 𝑗 − 𝑡𝑜)𝑐 = (𝑡𝑖 − 𝑡 𝑗 )𝑐 , (3)

where 𝑐 is the speed of light, 𝑡𝑜 is the AV clock time, and
𝑑𝑖 and 𝑑 𝑗 are the distances from the AV to 𝑅𝑥𝑖 and 𝑅𝑥 𝑗 ,
respectively. The distance from the AV to the 𝑖th receiver is
expressed as

𝑑𝑖 =

√︃
(𝑥𝑖 − 𝑥)2 + (𝑦𝑖 − 𝑦)2 + (𝑧𝑖 − 𝑧)2 , (4)

where (𝑥, 𝑦, 𝑧) is the AV position and (𝑥𝑖 , 𝑦𝑖 , 𝑧𝑖) is the position
of 𝑅𝑥𝑖 with 𝑖 = 1, 2, ..., 𝑁 . Without loss of generality, the
origin of the Cartesian coordinate system is set at 𝑅𝑥1, i.e.,
(𝑥1, 𝑦1, 𝑧1) = (0, 0, 0). Consequently, using (4), 𝑑1 can be
written as

𝑑1 =

√︃
𝑥2 + 𝑦2 + 𝑧2. (5)

Now, given that 𝑑𝑖1 = 𝑑𝑖 − 𝑑1, (4) can be rewritten in terms of
𝑑𝑖1 as

(𝑑𝑖1 + 𝑑1)2 = 𝐷2
𝑖 − 2𝑥𝑖𝑥 − 2𝑦𝑖𝑦 − 2𝑧𝑖𝑧 + 𝑑2

1 , (6)

where
𝐷2

𝑖 = 𝑥2
𝑖 + 𝑦2

𝑖 + 𝑧2
𝑖 . (7)

Expanding (6), one obtains

− 𝑥𝑖𝑥 − 𝑦𝑖𝑦 − 𝑧𝑖𝑧 = 𝑑𝑖1𝑑1 +
1
2

(
𝑑2
𝑖1 − 𝐷2

𝑖

)
. (8)

In order to localization a target in 3D, we need 𝑁 ≥ 4 [10].
Let us define the target position as q := [𝑥, 𝑦, 𝑧]T, following
(8) we can express the problem in matrix format as

Bq = 𝑑1m + c , (9)

where B, m, and c are respectively expressed as

B =


𝑥2 𝑦2 𝑧2

𝑥3 𝑦3 𝑧3
...

...
...

𝑥𝑁 𝑦𝑁 𝑧𝑁


, m =


−𝑑21

−𝑑31
...

−𝑑𝑁 1


, c =

1
2



𝐷2
2 − 𝑑2

21

𝐷2
3 − 𝑑2

31
...

𝐷2
𝑁
− 𝑑2

𝑁 1



Following [12,31], the position of the AV, defined as q̃ :=
[𝑥, �̃�, 𝑧]T, can be obtained by solving (9) for q, which gives

q̃ =

(
BTB

)−1
BT (𝑑1m + c) . (10)

Equation (10) contains 𝑑1, which is unknown. Substituting
(10) into (5) yields a quadratic equation in 𝑑1. Solving for 𝑑1
and substituting the positive root back into (10) gives the final
solution for q̃. In the case of two positive solutions for 𝑑1,
we choose the one that lies in the domain of interest, e.g., the
one that presents a positive altitude [31]. To obtain an accurate
position, all receivers need to be synchronized. However, in
crowdsourced ATM networks, receivers are of two categories:
GSNs, with clocks that are constantly GPS synchronized, and
SNs, with clocks that are subject to drifts. In the next section
we present the clock modeling and highlight its main design
parameters.

III. CLOCK MODELING AND NOISE ANALYSIS

The broadcast signal from the AV is received by multiple
receivers, among which some are unsynchronized. Therefore,
it is crucial to model the clock’s behavior to compensate for
any offset. The time difference with the actual time, at the 𝑘th
sample index, is called time offset 𝜂 [𝑘 ] , and the instantaneous
clock offset rate of change is known as clock skew 𝜆 [𝑘 ] . In fact,
the instantaneous time offset depends on the instantaneous
clock skew 𝜆 [𝑘 ] , and the previous clock offset. Accordingly,
for a given receiver’s clock, the discrete-time clock offset
model is expressed as

𝜂 [𝑘 ] = 𝜂 [𝑘−1] + 𝜆 [𝑘−1]𝜏[𝑘−1] + 𝜔 [𝑘 ] , (11)

where 𝑘 is the sample index, 𝜏𝑘 is the 𝑘th sampling period1,
and 𝜔 [𝑘 ] is a zero-mean normally distributed noise. Following
(11), we identify two influential parameters in the clock model,
the clock skew 𝜆 [𝑘−1] and the additive noise 𝜔 [𝑘 ] .

A. Clock Skew
Clock skew results in a clock that runs at a varying speed

compared to the actual time. This varying speed is attributed
to the oscillator noise, which varies with the supply voltage,
age, temperature, and other environmental factors, resulting
in a time-varying skew with certain randomness. In general,
the oscillator noise is characterized as a nonstationary process;
however, the influential parameters’ range of change, such as
temperature and humidity, varies relatively slowly with time,
resulting in a quasi-stationary process [23,32]. Therefore, it is
of utmost importance to keep track of the quasi-stationarity
behavior when modeling the clock skew. In fact, the time-
series stationarity characteristics define how often we need to
re-calibrate the skew model.

Time-series-based models are used to represent the time-
varying skew over an hours-long timescale [23]. Such re-
cursive models must be designed to capture the dynamic as
well as the stochastic clock behavior. Once the skew, 𝜆 [𝑘 ] ,
is estimated, we exploit the model in (11) to predict the
clock offset, and subsequently, compensate for it in TDoA
calculations.

1The sampling period 𝜏[𝑘−1] is the difference in time between the 𝑘th and
the (𝑘 − 1)th samples
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Fig. 2: The clock offset histogram of an SN receiver measured with respect to
a GSN receiver by relying on common ADS-B messages from trusted AVs,
as given in (12).

B. Clock Noise and Offset Error

In addition to the clock skew, the additive offset noise has
a noticeable effect on the clock modeling precision. In fact,
the vast majority of clock models in the literature assume a
normally distributed clock noise [22,23]. Adding the normally
distributed noise to the time-varying clock skew, results in
a clock offset with a clear tenancy towards a multimodal
distribution. In fact, clocks often drift differently depending on
the influential parameter [33]. For instance, the instantaneous
clock skew could vary at different rates with the receiver’s
printed circuit board temperature, which changes with the
processing load. Thus, the same clock could have different
clock drift rates on different occasions, resulting in a clock
offset with a multimodal distribution.

Figure 2 illustrates the histogram of the clock offset in an
SN receiver with respect to a GSN one. The figure depicts a bi-
modal error distribution, indicating a skew process with multi-
ple influential parameters [23]. Such non-Gaussian distribution
restrains the use of conventional TDoA solutions and Bayes
filtering algorithms, which are typically designed assuming a
Gaussian-type error [34]. Therefore, after compensating for
the offset, it is essential to track the residual clock error
distribution to make sure that the non-Gaussian distribution
is eliminated and that it follows a normal distribution.

IV. AV TRACKING USING CWNS

In this section, we introduce our localization and tracking
framework using noncoherent CWNs. Figure 3 depicts the
block diagram of the proposed framework. As shown in the
figure, it consists of three main blocks: the data preparation
block, the synchronization block, and the localization block. In
the following, we detail each block’s role in the AVs tracking
process.

A. Data Preparation Block

The broadcast messages in noncoherent CWNs, arriving
from various AVs, are captured by two types of sensors:

GSN and SN. This block is mainly responsible for pre-
processing and sorting the collected data as well as feeding it
to the relevant subsequent block. First, the captured messages’
sources must be distinguished as either trusted AVs or target
AVs. Subsequently, the received messages are sorted based on
the receiver’s type, namely GSN or SN. Messages arriving
from trusted AVs are used in constructing the training data as
they carry AV’s location information, speed, and identification.
In particular, the proposed framework utilizes trusted AVs’
broadcast messages mutually received by GSNs and SNs to
construct the training data for SN clock offset modeling. To
this end, consider a trusted AV’s broadcast message received
by a GSN receiver and an SN receiver. Given the locations of
both receivers and the trusted AV location, we can express the
measured clock offset as

𝜂 [𝑘 ] = 𝑡GSN[𝑘 ] − ΔGSN[𝑘 ] + ΔSN[𝑘 ] − 𝑡SN[𝑘 ] , (12)

where 𝑡GSN[𝑘 ] and 𝑡SN[𝑘 ] are the measured ToAs at the GSN
receiver and SN receiver, respectively, ΔGSN[𝑘 ] and ΔSN[𝑘 ]
denote the broadcast message’s time of flight (ToF) from the
AV to the GSN and SN receivers, respectively. Note that the
ToF can be easily measured by dividing the distance between
the trusted AV and the receiver, as given in (4), over the speed
of light, 𝑐. Following (12), we construct the training dataset,
which is fed to the synchronization block where the clock
offset model of the corresponding SN receiver is estimated.
Now, messages from target AVs can be exploited to estimate
their locations or verify the broadcast ones. Messages received
from the target AV by GSNs are passed directly to the MLAT
process in the localization block, whereas those received by
SNs must first pass through the synchronization block, as
illustrated in Figure 3.

B. Synchronization Block

This block models the clock of SNs and compensates for
any clock offset. It takes the ToA registered at a given SN,
from the target AV broadcast, as an input. Besides, it also
exploits the ToAs recorded at both SNs and GSNs, from
trusted AVs, as training references. Since commercial AVs
send ADS-B messages every second, one might intuitively
suggest using the prior measured offset to compensate for
the subsequent clock offset. Despite the wide availability
of ADS-B messages, less than 35% of these messages are
received by more than one receiver due to the low reliability
of ADS-B messages in urban areas [2]. In addition, receiving
the ADS-B message by multiple receivers does not necessarily
mean having a GSN one to act as a reference in measuring the
clock offset of other SNs. As a result, consecutive clock offset
measurements are separated by relatively long time gaps, e.g.,
several minutes. Modeling the clock offset enables predicting
the clock offset during these time gaps, which guarantees
the continuity of the localization service. The proposed syn-
chronization block investigates two approaches to model the
clock offset and synchronize SNs’ ToA measurements: AR
and LSTM-based recurrent neural network (RNN).

1) Autoregressive-Based Synchronization: When using the
recursive model in (11) to model the clock offset, one needs
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Fig. 3: The block diagram of the proposed AV localization framework illustrating the two clock synchronization approaches considered. Broadcast messages
from trusted AVs are exploited to train clock offset models, enabling both GSNs and SNs to engage in the target AV localization.

to measure the skew, 𝜆 [𝑘 ] . The clock skew is time-varying;
however, for a given measurement duration, it can be mod-
eled using an AR process [23]. In particular, autoregressive
integrated moving average (ARIMA) considers the dynamic as
well as the stochastic behavior of the clock, and is confirmed
suitable for modeling clock skew [22,23]. Consider an ARIMA
model, with orders 𝑝′,𝑑 ′, and 𝑞′; the skew can be represented
by

(
1 −

𝑝′∑︁
𝑖=1

𝑎𝑖𝐿
𝑖

)
︸            ︷︷            ︸

autoregressive

(1 − 𝐿)𝑑′︸     ︷︷     ︸
integrated

𝜆 [𝑘 ] =

(
1 +

𝑞′∑︁
𝑖=1

𝑏𝑖𝐿
𝑖

)
𝜉 [𝑘 ]︸                  ︷︷                  ︸

moving average

, (13)

where 𝐿 is the lag operator2, 𝜉 [𝑘 ] denotes a zero-mean
Gaussian noise, 𝑎𝑖’s and 𝑏𝑖’s are the AR and the moving
average coefficients, respectively. The model in (13) represents
an ARIMA(𝑝′, 𝑑 ′, 𝑞′) process where 𝑝′, 𝑑 ′, and 𝑞′ are non-
negative integers representing the order of the autoregressive
model, the degree of differencing, and the order of the moving
average, respectively. ARIMA models are particularly attrac-
tive for skew modeling because of their ability to handle any
possible non-stationarity in the data [22,35]. The differencing
degree 𝑑 ′ is set in order to achieve stationarity in the time-
series dataset used for model training and testing. Applying
the KPSS test for stationarity [36] reveals that, based on the
receiver, a differencing degree of zero or one 𝑑 ′ = [0, 1]
is sufficient to guarantee a stationary clock offset for all
SN receivers of the CWN considered in this work. The
orders of the autoregressive 𝑝′ and the moving average 𝑞′

can be identified using the Box-Jenkins methodology [37],

2The lag operator raised to the power 𝑖 implies that 𝐿𝑖𝜆[𝑘 ] = 𝜆[𝑘−𝑖 ]

TABLE I: RNN Model Architecture

Layer index Type Details

1 Sequence input -

2 LSTM
Units: 10
State activation: tanh
Gate activation: sigmoid

3 Fully connected Units: 5
4 Dropout 0.2
5 Fully connected Units: 1
6 Regression output Mean squared error

which relies on the autocorrelation function (ACF) and partial
ACF (PACF) of the time-series data (cf. Subsection V-A).
The identified state-space formulation of the ARIMA model,
results from substituting (13) in (11), allows a KF formulation
[22]. Therefore, as presented in [22] and [23], a KF is typically
used in conjugation with the model presented in (11), to
track the time-varying skew and offset, further mitigating any
residual error of the ARIMA model.

2) LSTM-Based Synchronization: The LSTM network, a
type of RNN, is known for its effective handling of long-term
dependencies in time-series data [38]. The LSTM network
has feedback connections, enabling predictions based on time-
dependent characteristics. Since the clock offset is by default a
time-series process, LSTM network can learn its behavior over
time, and subsequently, make predictions for future values.

The proposed RNN consists, first, from an LSTM layer
with 30 hidden units for the time-series-based clock offset
learning. Subsequently, the LSTM layer is followed a fully
connected layer, a dropout layer and another fully connected
layer. Finally, a regression output layer is presented, delivering
the output of the clock offset learning model. The Adam
optimizer [39], a first-order gradient-based optimizer, with a
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learning rate of 0.01 is used for clock model training. Table I
details the architecture of the LSTM-based RNN model used
in this work.

Clock offset models provide predictions for the clock be-
havior. In particular, we train the models so that we can
predict 𝜂 [𝑘 ] based on 𝜂 [𝑘−1] . However, the nondeterministic
nature of the clock skew prevents a particular clock model
from precisely tracking its behavior, resulting in a model’s
residual error. Consider the AR and the LSTM clock offset
models, let 𝜂 [𝑘 ] denote the 𝑘-th sample model-based clock
offset prediction; the residual error of the corresponding model
is then expressed as

𝑒𝑟 [𝑘 ] = 𝜂 [𝑘 ] − 𝜂 [𝑘 ] . (14)

where 𝜂 [𝑘 ] represents the true clock offset.

C. Localization Block

The localization block consists of the MLAT localization
method, introduced in Subsection II-B, followed by a KF.
This combination of the MLAT and KF enables tracking of
the target AV position over time. The movement of the AV is
modeled as a dynamic system. Given the periodic transmis-
sions from an AV, the state vector at the 𝑘th transmission is
written as

s[𝑘 ] = [𝑥 [𝑘 ] , 𝑦 [𝑘 ] , 𝑧 [𝑘 ] , ¤𝑥 [𝑘 ] , ¤𝑦 [𝑘 ] , ¤𝑧 [𝑘 ]]T ∈ R6, (15)

where the sequence (𝑥 [𝑘 ] , 𝑦 [𝑘 ] , 𝑧 [𝑘 ]) denotes the position of
the AV, and ( ¤𝑥 [𝑘 ] , ¤𝑦 [𝑘 ] , ¤𝑧 [𝑘 ]) represents its velocity. Moreover,
the input of this dynamic system is represented by the AV’s
acceleration which, at the 𝑘th transmission, is given by

u[𝑘 ] = [ ¥𝑥 [𝑘 ] , ¥𝑦 [𝑘 ] , ¥𝑧 [𝑘 ]]T ∈ R3, (16)

where the sequence ( ¥𝑥 [𝑘 ] , ¥𝑦 [𝑘 ] , ¥𝑧 [𝑘 ]) represents the accelera-
tion of the AV. Now, assuming four receivers are available,
one can use (10) to calculate the AV’s position using TDoA.
Consequently, we express the 𝑘th measurement vector q̃[𝑘 ] ,
which is the calculated position from (10), as

q̃[𝑘 ] := [𝑥 [𝑘 ] , �̃� [𝑘 ] , 𝑧 [𝑘 ]]T ∈ R3. (17)

Finally, the dynamic system can be written as

s[𝑘 ] = 𝚽[𝑘−1] s[𝑘−1] + 𝜷 [𝑘−1] u[𝑘−1] + w[𝑘−1] , (18)

q̃[𝑘 ] = H s[𝑘 ] + v[𝑘 ] , (19)

where 𝚽[𝑘 ] ∈ R6×6 is the state transition matrix, 𝜷 [𝑘 ] ∈ R6×3

is the input matrix, u[𝑘 ] ∈ R3 is the model input vector,
and H ∈ R3×6 represents the measurement matrix. Moreover,
in (18) and (19), vectors w[𝑘 ] and v[𝑘 ] represent the model
and measurement noise, respectively. They are assumed to be
independent and normally distributed, i.e.,

w[𝑘 ] ∼ N(0,Q[𝑘 ]) with Q[𝑘 ] = E[w[𝑘 ]w
T

[𝑘 ]],

v[𝑘 ] ∼ N(0,R[𝑘 ]) with R[𝑘 ] = E[v[𝑘 ]v
T

[𝑘 ]],

where E[.] denotes the expected value. Now, the KF
formulation including the predictions and the updates is
expressed as [34]

Algorithm 1 Tracking AVs using the proposed framework

1: Input: AV, AVDynamicModel, clockARIMAmodel, re-
ceivers: 𝑅𝑥1, 𝑅𝑥2, 𝑅𝑥3, . . .

2: Output: Estimated location track of the AV (ŝ[𝑘 ])

3: while True do
4: Msg ← newBroadcastMessage(AV)
5: 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 ← receivers.hasReceived(Msg)
6: 𝑁 ← count(𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠)
7: ToA ← 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠.getToA(Msg)

——————— AR-based approach ———————

8: for ∀ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 where type == SN do
# using (11), (13)

9: ToA ← KF1(ToA, clockARIMAmodel)
10: end for

——————- LSTM-based approach ——————-

11: for ∀ 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠 where type == SN do
12: ToA ← predict(ToA, lstmRNNmodel)
13: end for

14: TDoAs ← calculateTDoAs(ToA)
15: if 𝑁 ≥ 4 then
16: 𝑘 ← getAVtransmissionIndex(Msg)

# using (10)
17: q̃[𝑘 ] ← MLAT(TDoAs, 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑅𝑒𝑐𝑒𝑖𝑣𝑒𝑟𝑠.location)

# using (20a)-(21c)
18: ŝ[𝑘 ] ← KF2(q̃[𝑘 ] , AVDynamicModel)
19: end if
20: end while

Predict:

ŝ−[𝑘 ] = 𝚽[𝑘−1] ŝ[𝑘−1] + 𝜷[𝒌−1] u[𝑘−1] (20a)

P−[𝑘 ] = 𝚽[𝑘−1]P[𝑘−1]𝚽[𝑘−1] +Q[𝑘−1] (20b)

Update:

G[𝑘 ] = P−[𝑘 ]H
T (HP−[𝑘 ]H + R[𝑘 ])−1 (21a)

ŝ[𝑘 ] = ŝ−[𝑘 ] +G[𝑘 ] (q̃[𝑘 ] −Hŝ−[𝑘 ]) (21b)

P[𝑘 ] = (I −G[𝑘 ]H)P−[𝑘 ] (21c)

where I is an identity matrix, P[𝑘 ] ∈ R6×6 is the state error
covariance matrix, and G[𝑘 ] ∈ R6×3 is the KF gain. The KF
presented in equations (20a)-(21c) is able to overcome the
Gaussian noise from the TDoA calculated position due to the
clock offset noise.

In order to assess the performance of the proposed frame-
work, we use the localization error as a performance metric.
Considering a 3D Cartesian coordinate system, we defined the
localization error as

E =

√︃
(𝑥 − 𝑥)2 + (𝑦 − �̂�)2 + ((𝑧 − 𝑧)/10)2 , (22)

where (𝑥, 𝑦, 𝑧) is the true position of the AV and (𝑥, �̂�, 𝑧) is
the KF-based estimated one. In (22), we give less weight to
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Fig. 4: The sample ACF of the measured clock offset with one degree of
differencing (𝑑′ = 1).

altitude estimation, since 𝑥-𝑦 position is typically more critical
than altitude estimation in tracking applications.

D. Workflow and Algorithm Summary

A summary of the proposed framework is presented in
Algorithm 1. The algorithm works as follows. With each
broadcast from AVs, the algorithm collects the ToA from all
available receivers (currentReceivers). Subsequently, it checks
the type of each receiver. For each unsynchronized receiver
(i.e., type == SN), it passes its data to the synchronization
process, with the corresponding approach being either AR-
based or LSTM-based. Once all ToAs are synchronized, they
are used to calculate TDoAs, which are subsequently used
to estimate the location (q̃[𝑘 ]) by employing MLAT. The
estimated location is then processed using a KF (i.e., KF2) with
the AV dynamic model to obtain the final location estimate
(ŝ[𝑘 ]).

V. EXPERIMENTAL RESULTS

In this section, we assess the performance of the proposed
method when applied on a dataset collected by the OpenSky
Network [20]. The dataset consists of ADS-B messages sent
from commercial aircraft and received by a total of 523
receivers, uniformly distributed around Europe, with 15% of
them are GSNs and the rest are SN receivers. The dataset is
stored in different files, where each file represents a one-hour
recording of ADS-B messages received by all 523 receivers.
The stored data includes the actual time at the server, the
aircraft ID, the number of available receivers for each mes-
sage, and the receivers’ information. The receiver information
contains its ID, location, ToA, and type. Table II depicts a
visualization of the dataset. In addition, the true locations of
the aircraft are also available. The true position is used to
calculate the localization error from (22). It is worth noting
that although the considered dataset is based on MAV, the
performance analysis is also valid for other AV. This due to the
fact that the LoS probability PLoS given in (2) approaches one
at altitudes above the average buildings height [13], leading
to a steady TDoA performance above this altitude. Moreover,
similar to the ADS-B technology in MAVs, the majority of
UAVs use Wi-Fi for communication [6], allowing CWNs to
capture their Wi-Fi beacons [40].

To construct the training and the test datasets, we consider
a one-hour recording of ADS-B messages mutually received
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Fig. 5: The sample PACF of the measured clock offset with one degree of
differencing (𝑑′ = 1).

by four nodes, which corresponds to a total of approximately
12700 messages. First, we filtered out messages from eight
aircraft and used them as a test dataset, representing the target
AVs. The reaming dataset is assumed to be collected from
trusted AVs, which are used to measure the clock offset of SNs
using equation (12). Subsequently, we train both the LSTM-
based RNN and the ARIMA models based on messages within
a window of 20 minutes. The resulting models are then used
to predict the clock offset for the subsequent time instants at
which messages from the target AVs arrive. The models are
retrained again after 20 minutes with an updated training data
of the same size. This 20 minutes retraining period is chosen
empirically to 1) guarantee a sufficient amount of common
new messages (e.g., > 100 messages over a span of 20
minutes) between the SN and a GSN for effectual retraining,
2) bound the predictions’ cumulative error, and 3) make sure
that the clock offset measurements used in model training
and testing represent a stationary process. The time required
to train the clock offset models varies based on the size of
the available training messages. For the considered ARIMA
model, once 𝑝′, 𝑑 ′, and 𝑞′ are identified, the training time
ranges from 0.5 to 3 seconds, whereas for the LSTM-based
model, the training time ranges from 30 to 60 seconds3. In the
following, we first analyze the proposed clock synchronization
approaches. Subsequently, the localization performance of the
proposed framework is investigated.

A. Synchronization Analysis

To identify the order of the ARIMA model, we adopt the
Box-Jenkins methodology [37], which recommends choosing
the autoregressive order 𝑝′ and the moving average order
𝑞′ based on the number of lags that have values above the
confidence bounds of the PACF and ACF, respectively. Figure
4 and Figure 5, respectively, present the ACF and PACF
of an SN’s clock offset with 90% concordance bounds. In
both figures, we introduce one degree of differencing to make
sure that the considered clock offset is a stationary process.
The negative correlation in the figures is attributed to this
differencing. Following Figure 4, we set 𝑞′ = 1. Similarly,
based on Figure 5, we infer an AR order 𝑝′ = 6. Putting
all together, the resulting model is ARIMA(6,1,1). Here, it is

3A desktop computer without a dedicated Graphics processing unit (GPU)
is used for training the models considered in this work.
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TABLE II: Representation of the Dataset Structure

𝑅𝑥1 𝑅𝑥𝑁

Time [sec] avID 𝑁 [ID1, location1, ToA1, type1] . . . [ID𝑁 , location𝑁 , ToA𝑁 , type𝑁 ]
T = 0.5 630 5 [12, (46.6810,7.6653,10), 121.., GSN] . . . [22, (46.0810,7.2653,8), 123.., SN]

T = 1.2 1033 4 [63, (52.3564,4.9522,12), 113.., SN] . . . [24, (44.0810,6.2653,20), 173.., SN]
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Fig. 7: Probability plot comparing the distribution of the clock offset residuals
to the normal distribution.

worth noting that for the SNs considered in this work, where
no differencing is needed to achieve stationarity, similar orders
𝑞′ and 𝑝′ are observed from the corresponding ACF and PACF
plots, resulting in an ARIMA(6,0,1) model.

Figure 6 presents the clock offset modeling when using
LSTM and ARIMA over 30 minutes period. As shown in
the figure, both approaches provide a rather accurate offset
modeling that ranges in the margin of 400 nanoseconds. As
illustrated in the figure, both approaches confirmed their ability
to cope with the clock offset, despite its nonlinearity and
randomness.

As stated in Section III, it is crucial to make sure that
the clock model’s residual error follows a normal distribution.
This normality is needed for the subsequent localization block.
Figure 7 presents the histogram plots for an SN receiver’s
clock offset. The figure depicts the bimodal distribution of
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Fig. 8: The empirical CDF of the localization error with for both LSTM-based
RNN and ARIMA-based synchronization approaches.

the normalized offset before any compensation. As shown
in the figure, employing AR and LSTM models to predict
and compensate for the clock offset results in residual errors
(𝑒𝑟 [𝑘 ]’s) with a bell-shaped normal distribution. Accordingly,
it can be confirmed that both ARIMA and LSTM clock models
are able to successfully eliminate the bimodal distribution,
leading to normally distributed residual errors. Such normally
distributed error can be handled by the KF in the subsequent
localization block.

B. Localization and Tracking

Figure 8 demonstrate the empirical cumulative distribution
function (CDF) of the localization error using the proposed
framework. The figure represents the localization error based
on 1250 received broadcasts, which correspond to eight air-
craft broadcasting messages over 40 minutes period. In this
scenario, we consider four receivers, two of which are unsyn-
chronized, i.e., two GSNs and two SNs. Figure 8 compares
between the two synchronization approaches considered. In
addition, the figure presents a scenario in which all receivers
are GPS-synchronized, i.e., GSN receivers. Analyzing the
figure, several observations can be drawn.

1) First, the figure shows that the considered ARIMA and
LSTM-based synchronization models roughly provide
a matching performance in terms of the localization
error probability. However, the figure exhibits a slight
performance gain for the LSTM-based approach over the
ARIMA-based approach. This gain is attributed to the
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Fig. 9: The empirical CDF of the localization error with different numbers of
GSNs and SNs.

structure of LSTM-based RNN that enables it to learn
both long-term and short-term correlations and discard
all the irrelevant ones in between [38].

2) Furthermore, Figure 8 proves the significant localiza-
tion gain obtained by using the proposed framework.
The proposed framework brings the localization perfor-
mance nearly 50% closer to GSN receivers’ performance
compared to relying on the prior measured offset for
synchronization without any clock modeling, similar to
the synchronization method adopted in [24]. For in-
stance, using the proposed framework’s synchronization
approaches, e.g., ARIMA or LSTM, brings the 80%
error probability upper-bound from 1100 m using prior
offset down to 600 m.

3) Lastly, Figure 8 emphasizes that even with all receivers
being GSP-synchronized, it is still possible to experience
localization error in the range of hundreds of meters.
This shows that the achieved accuracy has other lim-
iting factors in addition to the clock synchronization.
Examples of these factors are the receivers’ orientation
with respect to the target [7,12] and the packets’ time-
tagging mechanize that may varies from one receiver to
another [41].

Since the proposed framework relies on GSNs to synchro-
nize SNs as well as to take part in the localization process,
it is important to explore the impact of the proportion of
GSNs in the CWN. The effect of the proportion of GSNs
and SNs employed to localize the same target AVs from
Figure 8 is presented in Figure 9. As the figure illustrates, the
scenario with three GSNs and one SN outperforms the scenario
where one GSN and three SNs are used. By comparing
both scenarios, we confirm the positive impact of having
more GSNs involved in the target localization. Nonetheless,
the localization performance difference between the two sce-
narios is rather small, proving the considerable impact of
the proposed synchronization methods. For instance, with
LSTM-based synchronization, Figure 9 shows a roughly 3%
difference in performance between the scenarios with one GSN
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Fig. 10: The localization gains obtained by employing the proposed framework
in a CWN with AV’s trajectory parallel to the receivers’ positions.
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Fig. 11: The localization gains obtained by employing the proposed framework
in a CWN with AV’s trajectory perpendicular to the receivers’ positions.

and three GSNs. In fact, this difference in performance with
the proportion of employed GSNs and SNs is notably less
pronounced compared to the effect of receivers’ orientation
with respect to the target AV (cf. Figure 10 and Figure 11).

The localization gains obtained with the proposed frame-
work are also depicted in Figure 10 and Figure 11. The figures
exhibit both synchronization approaches, along with the case
without synchronization. The MLAT cases without synchro-
nization, presented in Figure 10 and Figure 11, illustrate the
significant influence of the considered receivers’ clock offset
on deteriorating the localization performance before employ-
ing the proposed framework. Figure 10 presents an aircraft
trajectory roughly parallel to the receiver’s locations. The
corresponding localization errors are summarized in Table III.
As shown in the table, using the ARIMA model to compensate
for the clock offset decreases the error by orders of magnitude.
Comparable performance is also achieved with LSTM-based
synchronization. Furthermore, Table III highlights the effect
of the location-based KF (i.e., KF2) on the localization per-
formance, refining the performance of the TDoA-based MLAT
process.
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TABLE III: Localization Error in Figure 10

AV tracking method Mean E [m] Median E [m]

Without synchronization 104×103 60×103

AR-based sync. without KF2 951 540
AR-based synchronization 719 460
LSTM-based sync. without KF2 940 512
LSTM-based synchronization 680 420

TABLE IV: Localization Error in Figure 11

AV tracking method Mean E [m] Median E [m]

Without synchronization 30×103 24×103

AR-based sync. without KF2 200 108
AR-based synchronization 160 105
LSTM-based sync. without KF2 210 106
LSTM-based synchronization 155 103

The performance of MLAT-based localization is consider-
ably influenced by the target’s position relative to the receivers’
positions [7,12]. In Figure 11, we present another scenario,
with the same set of receivers, where the AV’s trajectory is
perpendicular to the curve connecting the receivers’ locations.
As shown in Table IV, better performance is achieved with
the same set of receivers and the same clock model. In
particular, using the proposed framework with LSTM-based
synchronization, an average localization error of 155 m is
achieved. Similarly, comparable accuracy is obtained using
the AR-based approach. In addition, it can be seen that even
though the unsynchronized receives’ performance improved by
a factor of 3.4 in Table IV w.r.t. Table III, synchronized ones
improved by nearly a factor of 4.5, showing the significance
of the clock offsets corrected using the proposed framework.
Furthermore, the mean localization errors of the proposed
framework presented in Table III and Table IV shows a
comparable performance to the 199 m mean error reported in
[7]. However, unlike our proposed method which utilizes both
GSN and SN receivers, the TDoA-based MLAT method in [7]
only considers the GPS-synchronized GSN receivers.

The performance analysis of the proposed framework illus-
trates that LSTM-based and ARIMA-based methods provide
comparable performances. In order to select one approach over
the other, several aspects must be taken into account. The
first aspect is the computational power since training LSTM
models requires significantly more computational power than
training ARIMA models. This article assumes that the model
training is done at the network backend, which typically
has sufficient computational power [11]. However, if a CWN
opts for model training to run on the receiver’s companion
computer, then the ARIMA model is a more suitable approach.
Another important aspect is the model tuning and updating
over time as LSTM models provide a more sustainable and
futureproof solution compared to ARIMA models. For all
sensors considered in this work, we used the same LSTM-
based RNN architecture, showing promising synchronization
capabilities. On the contrary, choosing the ARIMA model’s
orders requires special attention to the stationarity, the amount
of correlation, and the considered training period in the time-
series data, which all may vary from one receiver to another.

VI. CONCLUSION

The localization of AVs using a partially unsynchronized
CWN has been investigated. Particularly, a noncoherent CWN
with a mix of synchronized and unsynchronized receivers has
been considered. This paper proposed a framework for the
localization and tracking of AVs, including spoofing ones.
The proposed framework investigated two synchronization
approaches for the noncoherent CWN: AR-based and LSTM-
based. Subsequently, we used a TDoA-based MLAT, along
with a KF, to estimate the location of the targeted AV.
The proposed method has been validated using an OpenSky
dataset, where it proved that both synchronization approaches
were able to provide significant gains in terms of AVs lo-
calization accuracy, improving it by orders of magnitude.
Finally, the reported results motivate investigating other deep-
learning-based methods, such as convolutional neural networks
(CNNs), with CWNs, where datasets recorded over several
hours could potentially enable end-to-end location estimation.
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[4] A. Allouch, A. Koubâa, M. Khalgui, and T. Abbes, “Qualitative and
quantitative risk analysis and safety assessment of unmanned aerial
vehicles missions over the internet,” IEEE Access, vol. 7, pp. 53392–
53410, 2019.

[5] J. Zheng, T. Yang, H. Liu, T. Su, and L. Wan, “Accurate detection and
localization of uav swarms-enabled mec system,” IEEE Transactions on
Industrial Informatics, 2020.

[6] G. Yang, X. Shi, L. Feng, S. He, Z. Shi, and J. Chen, “Cedar: A cost-
effective crowdsensing system for detecting and localizing drones,” IEEE
Transactions on Mobile Computing, vol. 19, no. 9, pp. 2028–2043, 2020.

[7] M. Strohmeier, I. Martinovic, and V. Lenders, “A k-NN-based local-
ization approach for crowdsourced air traffic communication networks,”
IEEE Transactions on Aerospace and Electronic Systems, vol. 54, no. 3,
pp. 1519–1529, 2018.
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