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Abstract

We consider a two-stage generation scheduling problem comprising a for-

ward dispatch and a real-time re-dispatch. The former must be conducted

facing an uncertain net demand that includes non-dispatchable electricity

consumption and renewable power generation. The latter copes with the

plausible deviations with respect to the forward schedule by making use of

balancing power during the actual operation of the system. Standard indus-

try practice deals with the uncertain net demand in the forward stage by

replacing it with a good estimate of its conditional expectation (usually re-

ferred to as a point forecast), so as to minimize the need for balancing power

in real time. However, it is well known that the cost structure of a power

system is highly asymmetric and dependent on its operating point, with the

result that minimizing the amount of power imbalances is not necessarily

aligned with minimizing operating costs. In this paper, we propose a bilevel

program to construct, from the available historical data, a prescription of

the net demand that does account for the power system’s cost asymmetry.
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Furthermore, to accommodate the strong dependence of this cost on the

power system’s operating point, we use clustering to tailor the proposed

prescription to the foreseen net-demand regime. By way of an illustrative

example and a more realistic case study based on the European power sys-

tem, we show that our approach leads to substantial cost savings compared

to the customary way of doing.

Keywords: Smart predict, Net demand prescription, Two-stage power

generation scheduling, Data-driven optimization

1. Introduction

Many decision-making processes under uncertainty can be modeled by

optimization problems where some of the input parameters are not perfectly

known. The field of Optimization under Uncertainty focuses on developing

tools to tackle these problems depending on the knowledge of those param-

eters that the decision maker actually has. For example, if these parame-

ters can be modeled reasonably well as random variables following certain

probability distributions, then the decision maker should probably resort

to stochastic programming techniques (Birge and Louveaux, 2011). In con-

trast, if all the decision maker knows about said parameters is their range

of variation or support, then she should rather opt for robust optimization

methods instead (Ben-Tal et al., 2009).

In the realm of power system operations, there is a vast literature on op-

erations research methods, models, and algorithms for power dispatch that

rely on stochastic programming or robust optimization or hybrids of both.

The richness of this literature makes it materially impossible and point-

less to embrace it all in this paper. Instead, we refer the reader to mono-

graph Morales et al. (2013) and references therein for examples of power
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systems operating problems based on stochastic programming, to the sem-

inal work Bertsimas et al. (2012) on the application of robust optimization

for unit commitment and generation scheduling, and to the recent contri-

bution Dvorkin (2019) on a distributionally robust chance-constrained elec-

tricity market.

Despite the firm and promising advances in Optimization under Uncer-

tainty, still one of the most widely extended practices in decision making is

to replace the unknown parameter with a sensible value or estimate, some

sort of “the most likely value” that the parameter can take on. A natural

candidate to play that role is the expected value of the parameter. Thus, the

decision maker can, in addition, exploit all the powerful tools that the dis-

ciplines of Statistics, Forecasting and Machine Learning have developed for

decades to estimate that expected value conditional on all the information

the decision maker has available at the moment the decision must be made.

The adherence of the power sector to this strategy is particularly notorious,

essentially because it is argued to be simpler, more transparent, computa-

tionally cheaper and easily accepted by the different stakeholders (see, e.g.,

Morales et al. (2014); Wang and Hobbs (2015); Morales and Pineda (2017);

Kazempour et al. (2018) for further details on this issue). However, oper-

ations researchers have repeatedly shown that this strategy results in sub-

optimal decisions in general, because the conditional expected value of the

parameter ignores the impact of the parameter’s uncertainty on the deci-

sion’s value (Birge and Louveaux, 2011).

Against this background, research efforts have been recently placed on

finding a compromise solution. Intuitively, the idea is still to replace the

uncertain parameter but with a point estimate (generally different from the

parameter’s conditional expectation) that is purposely computed to result
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in the optimal or a nearly optimal decision in view of the parameter’s un-

certainty. This alternative point estimate is usually called a prescription

and the term smart predict has been recently coined to refer to this mid-

way solution strategy. In this line, we find a number of research works, e.g.,

Donti et al. (2017); Muñoz et al. (2022); Elmachtoub and Grigas (2022); El Balghiti et al.

(2019). In particular, the authors in Donti et al. (2017) propose a heuristic

gradient-based procedure to produce estimates of uncertain parameters in

optimization problems based on the objective of the task for which these

estimates will be used. In Muñoz et al. (2022), instead, they introduce a

bilevel programming framework to the same end. In Elmachtoub and Grigas

(2022), they deal with linear programs with an uncertain cost vector, for

which they develop a tailored convex loss function to compute an estimate

of the cost vector that accounts for the underlying linear optimization prob-

lem. Finally, the work in El Balghiti et al. (2019) is a continuation of that

in Elmachtoub and Grigas (2022) (first released as an arXiv preprint in

2017), where the authors provide bounds on how well a certain method

to predict the cost vector from training data generalizes out of sample.

In the field of power systems, it has also been shown that, by smartly

tuning the input parameters of current operational and procedures, these

can mimic the performance of their stochastic-programming-based counter-

parts to a large extent. For instance, in Morales et al. (2014), they propose a

bilevel programming model to compute the amount of (uncertain) renewable

power generation that must be considered in a forward electricity market

to maximize the short-run market efficiency. In the same vein, the authors

in Dvorkin et al. (2018) show that, by means of bilevel programming too,

the reserve requirements in an European-style two-stage electricity market

can be set so that the market can be almost as cost-efficient as the ideal
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two-stage electricity market run by a full stochastic programming approach.

Our proposal is in the same spirit, but we make use of bilevel programming

not to directly prescribe renewable production or reserve capacity, but to

determine straightforward rules to improve the value of the (net-demand)

forecasts currently employed by system operators. In any case, the works

of Morales et al. (2014) and Dvorkin et al. (2018) reveal that the power

sector can highly benefit from the aforementioned smart-predict strategy.

Actually, in Donti et al. (2017), they apply it to power generation and grid-

scale electricity battery operation, and in Muñoz et al. (2022) to the offering

problem of a thermal power producer competing strategically in an electric-

ity market. In Carriere and Kariniotakis (2019) and Muñoz et al. (2020),

they focus instead on renewable energy producers, for which they propose

different smart-predict strategies for energy trading. Lastly, the authors

in Garcia et al. (2021) use a bilevel programming framework similar to that

proposed in Muñoz et al. (2022) whereby they train several autoregressive

models to estimate the uncertain demand and the size of the energy reserves

in a joint reserve allocation and energy dispatch problem.

Within this context, and given a two-stage power scheduling problem,

our contributions are the following:

• We propose a bilevel program to learn the value of the net demand

(i.e., that obtained by subtracting the weather-driven renewable power

production from the non-dispatchable power load) that the scheduling

problem must consider so that the power system operating costs are

minimized in expectation. This value (that is, the prescription) is, in

general, different from the conditional mean of the net demand that is

currently employed in standard industry practice.
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• We show that our method can be easily used to upgrade any given

point forecast of the net demand into a prescription that accounts for

the power system’s cost asymmetry.

• Motivated by the fact that a power system usually features distinct

net-demand regimes, we introduce a data clustering and partitioning

strategy that, on the one hand, increases the performance of the pre-

scription of the net demand that our approach produces (by making

it dependent on the foreseen net-demand regime), and, on the other,

substantially decreases the computational effort to solve the associated

bilevel estimation problem.

• We evaluate the economic benefits that our approach achieves through

an out-of-sample test on a stylized version of the European power

system that makes use of real data, in particular, of actual and day-

ahead predicted net-demand values downloaded from the ENTSO-e

Transaparency Platform (ENTSO-E Transparency Platform, 2020).

The rest of this paper is organized as follows. Section 2 describes the

two-stage power generation scheduling problem we consider throughout our

paper, motivates the ultimate goal of our work, and formulates the generic

bilevel program we use to construct, from the available historical data, pre-

scriptions of the net demand intended to minimize the expected system

operation costs. In Section 3, we resort to various simplifying assumptions

to guarantee that the globally optimal solution of the bilevel program can be

obtained by solving a mixed-integer linear program (MILP). The potential

of the net-demand prescriptions provided by this MILP is then illustrated,

discussed and justified using a small power system in Section 4. In Sec-

tion 5, we introduce a procedure based on data clustering and partitioning
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to enhance the value of our prescription and to speed up the solution of the

mixed-integer prescription problem. A case study based on the European

power system is used in Section 6 to investigate the benefits of our approach

on real data. Finally, Section 7 concludes the paper with some final remarks.

2. Problem description

We consider a two-stage generation scheduling problem consisting of a

forward power dispatch and a real-time balancing phase. The forward dis-

patch is decided some time prior to the actual delivery of energy, for in-

stance, from 15 minutes to 36 hours in advance. The forward dispatch

is required to decide the output levels of inflexible generating units (e.g.

nuclear-based power plants) that need advance planning due to technical

limits such as ramping constraints or minimum times. The real-time bal-

ancing phase processes the energy imbalances with respect to the forward

production schedule. The real-time balancing rescheduling aims at adjust-

ing the output of flexible generating units (such as gas-based power plants)

that can quickly deviate from the forward schedule to ensure the equilib-

rium between electricity production and consumption. More details about

the two-stage generation scheduling problem used in this paper can be found

in Morales et al. (2013)

In our framework, the forward stage first determines the power dispatch

that minimizes the anticipated electricity production costs by solving

min
zF

fobj(zF, ŷ) (1a)

s.t. fgen(zF, ŷ) ≤ 0 (1b)

fnet(zF, ŷ) ≤ 0, (1c)

7



where zF denotes the scheduling decisions (such as the dispatch of thermal

generating units and the consumption of dispatchable loads) and ŷ repre-

sents a point or single-value estimate of the uncertain parameters (in our

case, the net demand, given as the difference between the non-dispatchable

load and the weather-driven renewable power generation). Objective func-

tion (1a) determines the forward system operating costs, while the generic

constraints (1b) and (1c) enforce the technical limitations of the generating

units and the network, respectively.

Since the net demand is uncertain, the scheduling decisions that results

from the forward problem (1) are to be adjusted during the real-time oper-

ation of the power system to accommodate the eventual net-demand value

that is realized. This adjustment is conducted through the following generic

real-time balancing problem:

min
zB

gobj(zF, zB,y) (2a)

s.t. ggen(zF, zB,y) ≤ 0 (2b)

gnet(zF, zB,y) ≤ 0, (2c)

where zB symbolizes the adjustment variables in relation to the forward de-

cisions zF—here treated as a known and fixed input vector coming from (1)—

and y represents the eventually realized value of the uncertain parameters.

The objective function (2a) includes both the forward dispatch cost (which,

at this point, is known and constant and, therefore, could be removed from

the minimization) and the imbalance cost caused by unexpected net-load

variations that occur very close to the real-time operation of the system.

Similarly to problem (1), the constraints (2b) and (2c) enforce the technical

limitations of the generating units and the network, respectively. As cus-

tomary, the objective function and constraints of models (1) and (2) are well
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known and properly defined.

Morales et al. (2014) show that the value ŷ of the net demand that is

used in the forward scheduling problem (1) may have a major impact on

the subsequent balancing costs (2a). Current practice, however, is content

with a simple and direct solution, which is to take ŷ as an estimate of the

expectation of the net demand y conditional on all the information at the

forecaster’s disposal. This information is generally known as context. Yet,

this expectation is oblivious to the minimization of the balancing costs that

drives the real-time balancing problem (2) and therefore, may turn out to

be highly suboptimal. In other words, the conditional expectation overlooks

the typical asymmetries affecting the minimization of the balancing costs,

such as the fact that the distribution of the renewable generation is often

skewed and that the costs of supplying upward and downward balancing

energy are usually different.

Instead of employing the conditional expectation of the uncertain pa-

rameters y as the estimate ŷ used in the forward scheduling problem (1),

we propose a regression procedure that provides an alternative value for ŷ

that explicitly accounts for the potential impact of the uncertain parame-

ters on the subsequent real-time balancing problem (2). This alternative

value is what is called a prescription and a procedure to obtain it runs

as follows. Suppose we have a sample of N data points expressed in the

form {(xi,yi)}i∈N := {(x1,y1), . . . , (xi,yi), . . . , (xN ,yN )}, where x ∈ R
p is

a vector of features or covariates making up the context and y ∈ R
m is a

vector of uncertain parameters. Our objective is to utilize said sample to

infer a functional relation ŷ = h(x) with h : Rp → R
m such that, given the

context x, the provided prescription ŷ is trained to deliver the minimum

total system costs in expectation when inserted into the forward scheduling
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problem (1).

Now suppose that the prescriptive function h is parameterized on a co-

efficient vector q of appropriate dimension, we propose to train hq(·), i.e.,

to estimate q, by way of the following bilevel optimization problem:

min
q,zF

i
,zB

i

1

|N |

∑

i∈N

gobj(zFi , z
B
i ,yi) (3a)

s.t. ggen(zFi , z
B
i ,yi) ≤ 0, ∀i ∈ N (3b)

gnet(zFi , z
B
i ,yi) ≤ 0, ∀i ∈ N (3c)

zFi ∈ {argmin
z

fobj(z, hq(xi)) (3d)

s.t. fgen(z, hq(xi)) ≤ 0 (3e)

fnet(z, hq(xi)) ≤ 0},∀i ∈ N . (3f)

Essentially, the bilevel program (3) seeks the q-parameterized prescriptive

function hq(·) that minimizes the empirical expectation of the total dispatch

and re-dispatch costs over the data set {(xi,yi)}i∈N . For this purpose, it

replicates, per data point {(xi,yi)}, the sequential two-stage scheduling pro-

cess consisting of the forward power dispatch (3d)–(3f) and the subsequent

balancing re-dispatch (3a)–(3c). From a statistical point of view, prob-

lem (3) takes the form of an empirical risk minimization problem and as such,

is amenable to regularization and robustification (Shafieezadeh-Abadeh et al.,

2019), admitting strategies for feature selection too.

Depending on the nature of variables zF, zB and functions fobj, fgen,

fnet, gobj, ggen, gnet, and hq, the difficulty of solving the bilevel optimization

problem (3) can vary significantly. For instance, if the forward scheduling de-

cisions zF include binary variables representing the on/off status of thermal

generating units, then computing the global optimal solution of the bilevel

problem is tremendously challenging as discussed in Fanghänel and Dempe
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(2009). Likewise, even in the case that all scheduling decisions zF are con-

tinuous, the lower-level problem (3d)–(3f) can be non-convex if constraints

gnet account for the nonlinear AC power flow equations. In that case too,

computing the global optimal solution of (3) is also a very challenging task.

If all variables are continuous and all functions affine, then the bilevel op-

timization problem (3) can be solved by replacing the lower-level problem

with its equivalent KKT optimality conditions (Muñoz et al., 2022). Said

strategy, however, requires additional binary variables and large enough con-

stants that increase the numerical instability and the computational burden

of the resulting single-level optimization problem. Besides, as discussed in

Pineda and Morales (2019) and Kleinert et al. (2020), existing methods to

validate these upper bounds may fail and lead to suboptimal solutions.

Given that the development of methods to solve a generic bilevel program

like (3) is outside the scope of this paper, in the next section we make use

of some simplifying assumptions that allow us to efficiently solve the bilevel

problem (3) to global optimality using commercially available software for

mixed-integer programming. In practice, we may not need to solve the

estimation problem (3) to global optimality. In effect, finding a good feasible

solution to this problem may be enough to reap the bulk of the benefits of

our approach. This enables the use of heuristics to solve problem (3).

We also remark that some system operators are indeed aware of the

importance of scheduling generation taking into account the subsequent

real-time operation of the power system. For example, the California In-

dependent System Operator (CAISO) manually modifies the load forecast,

anticipating the ramping capacity needs based on the operator’s experience

(Yurdakul et al., 2021). This is explicitly explained in California Independent System Operator

(2020) as follows: “Operators in the ISO and energy imbalance market can
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manually modify load forecasts used in the market through load adjustments

(...) to increase ramping capacity within the ISO by (...) committing addi-

tional units.” Our approach is not only consistent with this modus operandi,

but also supports it with a scientifically grounded methodology to modify

the load forecast.

Once the bilevel problem (3) is solved and the prescriptive function hq

is obtained, the forward dispatch for an unseen value of the context x can

be easily determined by solving the following deterministic optimization

problem:

min
zF

fobj(zF, hq(x)) (4a)

s.t. fgen(zF, hq(x)) ≤ 0 (4b)

fnet(zF, hq(x)) ≤ 0. (4c)

It is important to realize that the strategy we propose is completely in

contrast with those other approaches that make use of stochastic program-

ming to simultaneously decide the forward scheduling decisions and the real-

time adjustments, see, e.g., Aghaei et al. (2009); Pritchard et al. (2010);

Zavala et al. (2017). Indeed, our approach builds upon the fact that, in

practice, the forward dispatch and the subsequent balancing re-dispatch are

sequentially optimized. The next section elaborates on the simplifying hy-

potheses we make to transform the bilevel program (3) into a single-level

mixed-integer optimization problem.

3. Contextual merit-order dispatch

For the remainder of this article, we assume the following.
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• Forward dispatch decisions and real-time balancing actions are all

modeled by continuous variables, that is, on/off binary variables are

not considered.

• The inter-temporal constraints of power production portfolios, such as

ramping limits and minimum-up and -down times, are not explicitly

accounted for in the generation scheduling problem.

• Network constraints are only taken care of in the real-time stage using

a pipeline representation of the transmission network. That is, con-

straints (3f) are removed from the bilevel optimization problem (3).

• All power loads are assumed to be non-dispatchable and therefore, the

objective function of the two-stage scheduling problem boils down to

the minimization of the generating cost of dispatchable units.

With these assumptions in place, the forward scheduling problem (1) is

simplified to a merit-order dispatch whereby generators are scheduled based

on their marginal production costs, as explained later. Furthermore, with

the pipeline representation of the transmission network, our setup becomes

more aligned with European practices, in keeping with the case study we

present in Section 6. Likewise, we consider non-dispatchable loads only

just to simplify the subsequent exposition of our approach. Finally, by way

of the rest of the assumptions, the bilevel model (3) becomes simpler and

computationally manageable.

Nevertheless, any of these assumptions could also be dropped at the

expense of increasing the complexity of this model as discussed at the end

of Section 2. For instance, if on/off commitment decisions of the generating

units are considered, solving the bilevel model (3) requires specific solution
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methodologies depending on the application. If all decisions are continuous

but additional intertemporal or network constraints are included in the day-

ahead stage, then the single-level reformulation of model (3) requires dual

variables of the lower-level constraints and large enough constants, which

increases its computational burden and endangers optimality guarantees.

Finally, the use of a linearized (e.g., DC) power flow model in the real-time

operational stage (2) of the generation scheduling problem would not have

any qualitative impact on the computational complexity of the estimation

problem (3).

All in all, the particular forward generation scheduling problem we con-

sider in this paper is given as follows:

min
pg,g∈G

∑

g∈G

Cgpg (5a)

s.t.
∑

g∈G

pg = L̂ (5b)

0 ≤ pg ≤ P g, ∀g ∈ G, (5c)

where pg, P g, Cg ∈ R
+ and G ⊆ N is the set of generation units (it can also

represent generation blocks with different cost). Each unit g has associated

a production level pg and a marginal cost Cg. Equation (5b) enforces the

aggregate power balance, with parameter L̂ ∈ R
+ representing a point or

single-value estimate of the total net demand L ∈ R
+ in the system, which

is unknown at the moment the forward scheduling is determined and thus,

is to be treated as a random variable. Lastly, equation (5c) sets the capacity

of each generation unit.

The linear program (5) stands for an economic dispatch problem whereby

generation units are dispatched following a cost-merit order, meaning that

units g with a lower cost Cg are dispatched first. This is illustrated in
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Cg

(e/MWh)

L (MWh)
P 1 P 2 P 3 P 4

L̂

C1

C2

C3

C4

Figure 1. Illustration of a cost-merit order dispatch. The vertical solid line represents the

total net demand L̂ and the shadow area represents the optimal dispatch computed by

model (5).

Figure 1 for four units with capacities P 1, P 2, P 3, P 4 and marginal costs

C1, C2, C3, C4, respectively. The vertical solid line represents the total net

demand L̂ and the shadow area indicates the optimal dispatch computed

by model (5). Since units 1 and 2 are the cheapest ones, their dispatch

is set at their maximum capacity. Unit 3 is partially dispatched until the

demand is fulfilled. Unit 4 is the most expensive one and therefore, is left

out of the demand supply. To ease the discussion that follows, hereinafter

we consider that the units in the set G are ordered such that g < g′ if and

only if Cg < Cg′ . Hence, if we denote the optimal solution to (5) as {p∗g}g∈G,

it holds that p∗g′ > 0 implies that p∗g = P g, whenever g < g′.

Since the system net demand is uncertain, the power dispatch that re-

sults from the forward problem (5) is to be adjusted during the real-time

operation of the power system to satisfy the actual net demand. The aim of

the real-time balancing problem is to correct the imbalance of the system in a

cost-efficient manner. To this end, we consider a pipeline model where G(b)
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and D(b) represent the set of generation units and loads that are connected

to node b, in that order. With some abuse of notation, let (Ldi ∈ R)d∈D(b)

be a certain realization i ∈ N of the net load d ∈ D(b) connected to node b

of the system. We also define o(l) and e(l) as the origin and ending nodes

of line l, respectively. Thus, {l : o(l) = b} and {l : e(l) = b} represent the

subset of lines that start or end at node b, in that order. Once introduced

this notation, the real-time balancing problem under consideration renders

min
Ξ

G∑

g=1

(Cu
g r

u
g − Cd

g r
d
g ) (6a)

s.t. 0 ≤ p∗g + rug − rdg ≤ P g, ∀g ∈ G (6b)

0 ≤ rug ≤ Ru
g , ∀g ∈ G (6c)

0 ≤ rdg ≤ Rd
g , ∀g ∈ G (6d)

∑

g∈G(b)

(p∗g + rug − rdg ) =
∑

d∈D(b)

Ldi +
∑

l:o(l)=b

fl −
∑

l:e(l)=b

fl, ∀b ∈ B (6e)

|fl| ≤ F l, ∀l ∈ Λ, (6f)

where Ξ := {rug , r
d
g ∈ R

+, g ∈ G, fl ∈ R, l ∈ Λ} is the set of decision variables

and p∗g, R
u
g , R

d
g , C

u
g , C

d
g , P g, F l ∈ R

+ and Ldi ∈ R are known parameters.

The power output of each flexible unit g may be increased by an amount

rug , based on the marginal cost for upward balancing energy Cu
g , or decreased

by an amount rdg of downward balancing energy, which entails a marginal

benefit (linked to fuel-cost savings) of Cd
g . These actions are driven by

the nodal power balance equation (6e) and the minimization of the total

balancing costs (6a). Naturally, the amount of balancing energy provided

from each generation unit g, either upward or downward, must be such that

the eventual power output from that unit (taking into account the forward

optimal schedule p∗g) is positive and lower than its capacity P g, as stated
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in equation (6b). Moreover, constraints (6c) and (6d) limit the amount of

up- and down-balancing power that can be deployed from each generation

unit to Ru
g and Rd

g , which are indicative of how flexible the underlying asset

actually is. Finally, line capacity limits are imposed by (6f), with fl being

the power flow through line l and F l the capacity of the line.

Now suppose we have a sample of N data points expressed in the form

{(xi, Li)}i∈N := {(x1, L1), . . . , (xi, Li), . . . , (xN , LN )}, where x ∈ R
p is a

vector of features or covariates making up the context and L ∈ R
+ is the

random net system demand. As stated in the previous section, our objective

is to utilize said sample to infer a functional relation L̂ = h(x), h : Rp → R
+,

such that, given the context x, the provided prescription L̂ is trained to

deliver the minimum total system costs in expectation when inserted into

the power balance equation (5b). For simplicity, and because it proves to

perform very satisfactorily in the numerical experiments of Section 6, we

restrict h to the family of affine linear functions, i.e., h(x) = q⊤ x, with q ∈

R
p and with one of the features, say x1, fixed to one. This selection, together

with the particular structure of problems (5) and (6) circumvent the need

for applying the conventional procedures to solve the bilevel problem (3).

Instead, to determine q, we solve the following empirical risk minimization

problem:

min
q,Υ

1

N

∑

i∈N

∑

g∈G

(Cgpgi + Cu
g r

u
gi − Cd

g r
d
gi) (7a)

s.t. 0 ≤ pgi + rugi − rdgi ≤ P gi, ∀i ∈ N , ∀g ∈ G (7b)

0 ≤ rugi ≤ Ru
g , ∀i ∈ N , ∀g ∈ G (7c)

0 ≤ rdgi ≤ Rd
g , ∀i ∈ N , ∀g ∈ G (7d)
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∑

g∈G(b)

(pgi + rugi − rdgi) =
∑

d∈D(b)

Ldi +
∑

l:o(l)=b

fli −
∑

l:e(l)=b

fli,∀i ∈ N ,∀b ∈ B

(7e)

|fli| ≤ F l, ∀i ∈ N , ∀l ∈ Λ (7f)
∑

g∈G

pgi = L̂i, ∀i ∈ N (7g)

L̂i =

p∑

j=1

qjxji, ∀i ∈ N (7h)

ugiP g ≤ pgi ≤ u(g−1)i P g, ∀i ∈ N , ∀g ∈ G : g > 1 (7i)

ugiP g ≤ pgi ≤ P g, ∀i ∈ N , g = 1 (7j)

ugi ≤ u(g−1)i, ∀i ∈ N , ∀g ∈ G : g > 1 (7k)

ugi ∈ {0, 1}, ∀i ∈ N , ∀g ∈ G, (7l)

where Υ := {pgi, r
u
gi, r

d
gi, ugi, fli}{i,g,l}. Intuitively, the estimation prob-

lem (7) computes the coefficient vector q = (q1, . . . , qp) such that the total

system cost averaged over the sample is minimized. This is the reason why

all the decision variables related to the power dispatch and the provision

of regulating power, i.e., pgi, r
u
gi, r

d
gi, appear augmented with the sample in-

dex i in (7). Constraints (7b)–(7g) serve exactly the same purpose as their

analogs in (5) and (6). Equation (7h) expresses the prescription L̂i of the

net system demand L under context xi as an affine function of the fea-

tures, whose coefficients are to be computed by solving (7). Finally, the set

of constraints (7i)–(7l) guarantee that the power dispatch {pgi}g∈G coming

from (7) for each sample i is optimal in the forward problem (5), that is,

these constraints constitute the optimality conditions of the forward dis-

patch problem (5). Accordingly, these constraints enforce, for each sample

i, the merit-order dispatch of the generation units {pgi}g∈G, forcing that
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pg′i > 0 =⇒ pgi = P g, for all g ∈ G : g < g′. Importantly, this formu-

lation of the optimality conditions of problem (5) neither necessitates dual

variables, nor large enough constants, both of which are frequently used to

solve lineal bilevel programs (Pineda and Morales, 2019).

Problem (7) is, therefore, a mixed-integer linear program due to the

binary character of variables ugi, which are used to impose the cost-merit

order. As such, this problem can be solved using commercially available

solvers such as CPLEX (IBM ILOG CPLEX Optimization Studio, 2020).

Once we obtain the optimal coefficient vector q∗, we can produce the net-

demand prescription L̂ = (q∗)⊤x, which is to be fed into (5b) under the

context x to readily obtain the forward dispatch decisions.

Now, let LF denote the expected net-demand value (which is typically

known as a point prediction of the net demand). Even though this expected

value has been and is normally used as L̂ in the forward problem (5), it is

not consistent with the plausible asymmetry in the cost of dealing with the

subsequent prediction errors through the real-time problem (6). Indeed, it

is most often the case that the cost of increasing the electricity production

in real time is different from that of diminishing it. In this line, problem (7)

offers a handy way to construct a new estimate L̂ to be used in (5) that takes

into account the referred cost asymmetry. Indeed, the training problem (7)

can be used in practice to upgrade the point prediction LF to a prescription

for L̂, which does account for the asymmetry of the power system’s balancing

costs. For this, it suffices to include LF as one of the features that are part

of the context x. This is what we do in the following example and in the

case study of Section 6. That said, the context x could include any other

information that could be deemed useful to improve the prescription L̂, for

instance, the estimated standard deviation or quantiles of the conditional
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net demand, if these were available through a probabilistic forecast.

We finish this discussion with an important remark. Despite the fact

that constraints (7i)–(7l) turn our training problem (7) into a mixed-integer

program, enforcing the cost-merit order through these constraints is critical

to train an affine model h(x) = q⊤x that renders economic benefits within

the two-stage scheduling problem described in Section 2. Furthermore, even

though the training problem (7) may require some computational effort to

be solved, the affine model it delivers is intended to remain effective for a

period of time (e.g., weeks or months), and hence, the task of solving the

mixed-integer program (7) only has to be undertaken once in a while. That

said, the parameter vector q is to be re-estimated offline on a regular basis

to capture changes in the dynamics of the electricity market and the power

system (for example, to account for seasonal variations).

4. Example

Consider the small three-bus system depicted in Figure 2, which is com-

posed of one random demand L at bus 3, two thermal generators, G1 and G2,

at buses 1 and 2, respectively; and two lines, Line 1 and Line 2, connecting

nodes 1 and 3, and buses 2 and 3, in that order.

G1

1

Line 1

3

L

2

G2

Line 2

Figure 2. Three-bus power system with one random demand and two thermal generators.
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Cg Cu
g Cd

g P g Ru
g Rd

g

G1 5 30 -20 60 60 60

G2 15 20 10 150 150 150

Table 1. Technical and economic specifications of power plants. Marginal costs are given

in e/MWh and capacities in MW.

The technical and economic characteristics of generating units G1 and

G2 are collated in Table 1. Note that, in comparison, unit G1 is smaller and

cheaper than G2. In contrast, the latter is significantly more flexible as it

features re-dispatch costs, i.e., Cu
g and Cd

g , that are much more competitive.

We remark that Cd
1 = −20 e/MWh implies that this power unit must be

paid 20 e for each MWh its production is decreased in the real-time stage.

Unless stated otherwise, line capacities are assumed infinite.

The only demand in the system, namely, L, is random. Suppose we

have a sample {(xi, Li)}
N
i=1, where the feature xi = (1, LF

i )
⊤. Again, LF

i

represents a classical point prediction of the demand L built out of whichever

available information the forecaster had at her disposal to produce it by

way of whatever machine learning or forecasting technique she could have

developed to that end. We stress that this setup is very common in reality,

where power system operators often count on specialized software to produce

good point predictions LF
i . Our objective is to use our methodology and

training model (7) described in Section 3 to recycle this standard point

prediction with the aim of fabricating a better value for L̂ in equation (5b).

For this small example, we generate samples in the form {(xi, Li)}
N
i=1

as follows. We consider that the per-unit (p.u.) point forecast of the net
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demand L follows a uniform distribution between a and b. Therefore, LF ∼

L · U(a, b), where L is a factor representing the maximum power load at

bus 3. We further assume that the per-unit net demand itself L/L follows

a Beta distribution with mean equal to LF/L and standard deviation σ.

Hence, L ∼ L · Beta(α, β), where the scale and shape parameters α and β

are related to the mean LF/L and the standard deviation σ as follows:

LF

L
=

α

α+ β
, (8a)

σ2 =
α · β

(α + β)2(α+ β + 1)
. (8b)

Equations (8) guarantee that the point prediction LF is an unbiased es-

timator of the conditional net demand L. In this illustrative example we

fix σ = 0.075 p.u. and generate 20 samples {(xi, Li)}
N
i=1 with N = 750.

Each LF
i in xi is randomly drawn from L · U(a, b). Given LF

i /L and σ, and

provided that the system of nonlinear equations (8) has a solution (notice

that α, β > 0), parameters αi and βi can be computed as

αi = −
1

σ2

((
LF
i

L

)2

−
LF
i

L
+ σ2

)
LF
i

L
, (9a)

βi =
1

σ2

((
LF
i

L

)2

−
LF
i

L
+ σ2

)(
LF
i

L
− 1

)
. (9b)

Each Li is then randomly taken from L ·Beta(αi, βi). We take the first 500

data points of each sample as the training set and the last 250 as the test

set.

We postulate the affine model L̂ = q0 + q1L
F and solve problem (7) on

the training set to determine coefficients q0 and q1. Finally, to evaluate the

performance of the affine model, for each data point (xi, Li) in the test set,

we simulate the sequential forward and real-time problems (5) and (6), with
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L̂ = q0 + q1L
F
i in (5b), and Li in (6e). We then compute the sum of the

forward and real-time production costs averaged over the 250 data points

in the test set. This mean sum is further averaged over the 20 samples

we generate. Our approach, which uses a prescription of the system net

demand for scheduling generation, is referred to as P-SC (from prescriptive

scheduling). We compare it with the customary practice of directly using

the point forecast LF
i as L̂ in (5b), which is referred to as F-SC (from forecast

scheduling). Notice that our approach boils down to the conventional one

if q0 = 0 and q1 = 1. Finally, the relative cost difference between these

approaches is denoted as ∆cost.

In the results we discuss next, we set a base case with a = 0.03, b = 0.97,

L = 100 MW, and the technical and economic parameters of the three-bus

system described above1. We then define variants of this case by changing

one or some of those parameters.

4.1. Impact of power regulation costs

Table 2 provides the cost savings that our approach achieves with re-

spect to the conventional one under different G2’s power regulation costs.

For completeness, this table also includes the average cost of these two ap-

proaches for the test set and the values of the intercept q0 and the linear

coefficient q1 of the affine model for L̂ our approach utilizes. These values

represent expectations over the test data points of the 20 samples generated

as indicated above. The first row in the table corresponds to the base case.

Interestingly, our approach systematically corrects the point forecast of

the net demand L downwards, with a linear coefficient q1 which is, on av-

1We take a = 0.03 and b = 0.97 pu to ensure that (8) has a real solution.
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erage, lower than or equal to 1, and a negative intercept q0 in expectation.

This is so because it is economically advantageous for the system to cope

with positive net demand errors (i.e., eventual demand increases) by deploy-

ing upward balancing energy from unit G2. Indeed, the alternative would be

to deal with negative demand errors by down-regulating (i.e., by providing

downward balancing energy) with unit G1, a recourse that is clearly much

more expensive.

To further elaborate on this phenomenon, the second row in Table 2

provides results for a variant of the base case in which Cu
2 has been decreased

from 20 to 15 e/MWh. Now that up-regulating (i.e., providing upward

balancing energy) through unit G2 is even cheaper, the downward correction

of our approach to the net demand point forecast is more pronounced and

the associated cost savings due to said phenomenon become larger. On the

contrary, if it is the provision of downward balancing energy by G2 what

becomes 5 e/MWh cheaper and, hence, free (see third row of Table 2), the

net demand point forecast is barely corrected and the costs savings brought

by our approach (with regard to F-SC) become smaller as a result. Note

that correcting the point forecast upwards in this case (in an attempt to

profit from the free downward balancing energy provided by G2) would be

counterproductive in reality, as the system may risk having to resort to the

high-cost downward balancing energy of unit G1 in those likely scenarios in

which the net demand ends up being lower than the capacity of this unit.

At this point, it may be instructive to see what happens when we drop

constraints (7i)–(7l) from the mixed-integer program through which we train

the affine model L̂ = q0 + q1L
F. This is indeed very tempting, because,

if these constraints are removed, the training model (7) becomes a very

pleasant linear program, similar to the stochastic-programming-based for-
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C2 Cu
2 Cd

2 F-SC cost P-SC cost ∆cost q0 q1

15 20 10 418.59e 416.91e 0.40% -0.277 0.982

15 15 10 404.40e 391.88e 3.10% -0.253 0.899

15 20 15 413.65e 412.93e 0.17% -0.285 1.009

Table 2. Cost savings in percentage under different values of G2’s balancing energy costs

C
u

2 and C
d

2 (both given in e/MWh).

mulation advocated, for instance, in Pritchard et al. (2010)(with the data

points in (7) playing the role of the “scenarios” in Pritchard et al. (2010)).

However, these constraints ensure the optimality of the lower-level problem

(3d)–(3f) and guarantee that the above affine model is learned following a

cost-merit-order principle. Therefore, if these constraints are dropped from

(7), the affine model L̂ = q0 + q1L
F is not trained for the target task. This

is exactly what Table 3 shows. This table is analogous to Table 2, but for

a linear training model made up of constraints (7a)–(7h) only. We denote

this approach as L-SC from “Linear”). The training model L-SC ignores the

merit order and hence, takes for granted that the system can benefit from

the cheap downward balancing energy of unit G2 by allocating a non-zero

production to this unit in the forward problem regardless of whether unit

G1 has been fully dispatched or not. This is, however, an strategy forbidden

by the problem, which explains the poor actual performance of L-SC. This

phenomenon is especially notorious for the case Cd
2 = 15 e/MWh, in which

the demand is heavily overestimated (the mean of the estimated demand is

increased by 45%) and only the free downward regulation from unit G2 is

used.

Therefore, due to the catastrophic impact that removing the merit-order
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C2 Cu
2 Cd

2 F-SC cost L-SC cost ∆cost q0 q1

15 20 10 418.59e 444.05e -6.08% 4.967 0.964

15 15 10 404.40e 418.84e -3.57% 5.490 0.883

15 20 15 413.65e 680.92e -64.61% 36.807 0.722

Table 3. Cost savings in percentage under different values of G2’s balancing energy costs

C
u

2 and C
d

2 (both given in e/MWh). Constraints (7i)–(7l) have been dropped from the

training model (7).

constraints (7i)–(7l) from the training model (7) may have on the actual

performance of the obtained affine model, the strategy L-SC is no longer

considered in the rest of our analysis.

4.2. Impact of grid congestion

Here we introduce a variant of the base case in which the capacity of

Line 1 has been set to 30 MW. Recall that the capacity of this line in the

base case is unlimited, which we denote by symbol “∞” in Table 4. The

results collated in this new table are analogous to those in Table 2.

Recall that the estimation problem (7), whereby we determine the affine

function L̂ = q0 + q1L
F , explicitly accounts for network constraints. In

contrast, the computation of the net-demand point forecast LF is typically

based on statistical criteria alone and, consequently, ignores any possible

limiting effect of the grid.

When the capacity of Line 1 is limited to 30 MW, our approach strongly

corrects the point prediction LF downwards, so that L̂ is kept in between

16 and 32 MW approximately. Thus, unit G1 is dispatched well below

the expected demand. This is clever because, in doing so, no (expensive)

downward regulation from this unit has to be deployed in real time to comply
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F 1 (MW) F-SC cost P-SC cost ∆cost q0 q1

∞ 418.59e 416.91e 0.40% -0.277 0.982

30 1034.70e 724.46e 29.98% 15.725 0.175

Table 4. Impact of grid congestion on cost savings.

with the limiting capacity of Line 1. In this way, the eventual realized

demand at bus 3 can be satisfied, instead, with cheaper up-regulation from

unit G2 through Line 2. The ultimate result is that using L̂, given by our

approach, in the forward problem (5) is way more profitable than using the

raw point forecast LF.

Based on this analysis, if network constraints were accounted for at the

day-ahead stage, that is, in the optimization problem (5), the cost savings

achieved by our approach would decrease, at the expense of significantly

complicating the resolution of the bilevel problem (3).

4.3. Impact of the peak demand

Now we change the peak demand and consider two variants of the base

case in which we take L = 50 MW and L = 150 MW (in the base case, L =

100 MW). The results of this new analysis are compiled in Table 5.

Again, as in the analysis of the impact of G2’s balancing energy costs

in Section 4.1, our approach systematically corrects the net-demand point

forecast downwards to reduce the usage of down-regulation from G1 in favor

of the up-regulation from G2. However, the cost savings achieved by our

approach get diluted as the peak demand is augmented. The reason for this

is twofold. First, the probability of events where the net demand takes on a

value below the capacity of unit G1 diminishes with growing L. For instance,
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L F-SC cost P-SC cost ∆cost q0 q1

50 182.92e 181.55e 0.75% -0.138 0.982

100 418.59e 416.91e 0.40% -0.277 0.982

150 751.73e 750.54e 0.16% -0.421 0.997

Table 5. Impact of peak demand.

when L = 50 MW, the probability that the net demand is smaller than the

capacity of G1 is equal to one, which explains why our method delivers the

highest cost savings in this variant (from among the three cases considered in

this analysis). In contrast, as L grows, that probability diminishes and the

cheaper downward balancing generation from G2 becomes more available.

Second, the balancing costs account for a lower percentage of the total costs

as the peak demand L increases.

4.4. Impact of the net demand regime

We conclude this small example by studying how the net demand regime

affects the prescriptive power of the affine function L̂ = q0 + q1L
F that we

determine by way of problem (7). To this end, we modify the support of the

uniform distribution from which the per-unit net-demand point prediction

is randomly drawn. Thus, we distinguish a low-demand regime, with LF ∼

L · U(0.03, 0.5), and a high-demand regime, with LF ∼ L · U(0.5, 0.97). We

also consider the base case, where LF ∼ L · U(0.03, 0.97) and therefore, no

demand regime is differentiated. The corresponding results are provided in

Table 6.

In line with the observations in the previous analysis of the impact of

the peak demand, under a low-demand regime, the expensive, but flexible
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unit G2 is not dispatched in the forward problem. The downward correction

to the net-demand point forecast our approach prescribes is then intended

to benefit from the up-regulation provided by G2, which is clearly more

competitive than the down-regulation offered by G1. The system features,

therefore, a distinct cost asymmetry given by the expensive downward bal-

ancing generation of G1 versus the cheap upward balancing generation of

G2. Our approach sees this asymmetry and corrects the net-demand point

forecast downwards accordingly. In addition, since the beta distribution

modeling the point forecast error is right-skewed for low levels of demand,

said correction leads to substantial cost savings. In contrast, under a high-

demand regime, G2 is very likely to participate in the forward dispatch,

whereas there is a lower probability that G1 be needed to provide downward

balancing energy, since the distribution of the point forecast error is left-

skewed. Consequently, the cost structure of the system looks very different

under a high-demand regime, which prompts a quite different affine function

and reduces the cost savings obtained from our method.

Most importantly, in the base case, when no net-demand regime is dis-

tinguished, most of the benefits our approach can potentially bring for low

values of net demand are lost. This motivates us to cluster net-demand ob-

servations into different regimes and use optimization problem (7) to com-

pute a possibly different affine model in the form L̂ = q0 + q1L
F for each

demand regime, similarly to segmented regression in classical statistics. This

is formalized in the next section.
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U(a, b) F-SC cost P-SC cost ∆cost q0 q1

U(0.03, 0.97) 418.59e 416.91e 0.40% -0.277 0.982

U(0.03, 0.50) 239.60e 234.54e 2.11% -0.102 0.917

U(0.50, 0.97) 587.82e 586.42e 0.24% -6.646 1.088

Table 6. Impact of the net-demand regime.

5. Data clustering and partitioning

Take N := {1, . . . , i, . . . , N}, that is, the index set of the data sample

{(x1, L1), . . ., (xi, Li), . . ., (xN , LN )} with xi ∈ R
p and Li ∈ R

+,∀i ∈ N .

We partition N into a collection {Nk}
K
k=1 of K subsets that are pairwise

disjoint and whose union is equal to N . Consider the one-to-one mapping

φ : N → {1, 2, . . . ,K}, such that φ(i) = k if data point (xi, Li) ∈ Nk.

Therefore, Nk := {i ∈ N : φ(i) = k}.

We compute K affine models of the form L̂ = q⊤
k x, k ≤ K, by solving

the estimation problem (7) for each subset sample Nk. In practice, this

means replacing N and N in (7) with |Nk| and Nk, respectively.

To construct a meaningful mapping φ, we employ theK-means algorithm

that is implemented in the Python package scikit-learn (Pedregosa et al.,

2011), using the Euclidean distance. We note that, to construct φ, this

algorithm receives the feature sample {x}i∈N as input. Once the mapping φ

is computed, it is used to determine the cluster to which a new feature vector

x belongs. That cluster is the one that minimizes the distance between its

centroid and the feature vector x. That is, given a new observation of x,

say xN+1, φ(xN+1) = k means that xN+1 is predicted to belong to partition

Nk, and therefore, L̂ = q⊤
k xN+1 is to be used in the forward problem (5).

30



On a different issue, the estimation problem (7) is a MIP program and, as

such, computationally expensive in general. Actually, the size of (7) grows

linearly with the sample size. To keep the time to solve (7) reasonably

low, we reduce the cardinality of subsets {Nk}
K
k=1 by means of the PAM

K-medoids algorithm (Kaufman and Rousseeuw, 2009) through the Python

package implementation scikit-learn-extra. This algorithm selects the most

representative data points within each subset Nk, the so-called medoids,

by minimizing the sum of distances between each point in Nk and said

medoids. We remark that this reduction process results in data points (the

medoids) with unequal probability masses, so extra care should be taken

when formulating objective function (7a) for each subset Nk considering the

medoids only. More specifically, the uniform weight 1
N

appearing in the

objective function (7a) should be replaced with a medoid-dependent weight

representing the probability mass assigned to each medoid as a result of the

reduction process.

6. Case Study

In this section we assess the performance of our approach in a realistic

case study that is based on the stylized model for the European power system

that is described in Nahmmacher et al. (2014). Accordingly, we consider a

pipeline network model with 28 nodes, each representing an European coun-

try. The capacities of the lines are also obtained from Nahmmacher et al.

(2014), in particular, we take the values from “Table 14. Transmission ca-

pacities between model regions (GW)” that correspond to the year 2020. We

assume that each node in the network (i.e., each European country) includes

two types of power plants technologies, which we denote as base and peak,
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Country AT BE BG CH CZ DE DK EE ES FI FR GB GR HR

base 0.4 6.1 6.7 3.4 14.4 46 2.4 2 16.3 6.5 68.3 20.6 3.9 1.3

peak 5.9 6.8 1 0.6 1.3 27.9 1.7 0.2 29.6 3.6 11.9 31.2 4.9 0.7

Country HU IE IT LT LU LV NL NO PL PT RO SE SI SK

base 3.3 1.8 8.7 0 0 0 4.5 0 27.8 1.8 5.4 11.1 1.8 2.7

peak 4.1 4.2 46.2 1.8 0.1 1.2 19.3 0 3.5 4.6 2.9 1.1 0.7 1.5

Table 7. Base and peak generation capacity (GW) installed per node of the European

network.

respectively. Again, the available capacity of both technologies has been

assigned based on the data in Nahmmacher et al. (2014) corresponding to

2020 for each country. More specifically, the base power-plant capacities

have been obtained by adding up the installed capacities of the technologies

“Nuclear”, “Hard coal”, “Oil” and “Lignite” and the peak power-plant ca-

pacities from the technologies “Natural Gas”, “Waste” and “Other gases”.

The nodes of the system and the resulting generation capacities of each type

are listed in Table 7.

To build a data sample of the form {(xi, Li)}i∈N , we have collected the

actual aggregate hourly demand, wind, solar and hydro energy production

for each country (node of the system) in 2020 from the ENTSO-e Trans-

parency Platform (ENTSO-E Transparency Platform, 2020). We have also

retrieved the day-ahead forecast of the hourly demand and the produced

wind and solar energy from this platform. To get series of net demand val-

ues (both forecast and actual), we have subtracted the respective wind, solar

and hydro power data series from the aggregate day-ahead forecast/actual

demand series. We clarify that no day-ahead forecast for the hydro power

production is available in ENTSO-E Transparency Platform (2020), so the
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C Cu Cd

base U(8, 12) U(60, 70) U(-40, -50)

peak U(36, 44) U(45, 50) U(30, 35)

Table 8. Uniform distributions from which the marginal production, up- and down-

balancing costs (in e/MWh) of the units in the European system have been sampled.

series of real hydro power production has been used (instead of the miss-

ing day-ahead hydro forecast) for the computation of day-ahead forecasts

of the nodal net demands. Some minor gaps in the data extracted from

ENTSO-E Transparency Platform (2020) have been filled through linear in-

terpolation.

The marginal costs of energy generation and up- and downward balanc-

ing energy provision of each unit are randomly sampled from the uniform

distributions specified in Table 8. The so-obtained values for these costs

have remained fixed throughout the experiments performed in this section.

We point out that in the uniform distributions of Table 8, we have consid-

ered that base power units are cheap but inflexible, and thus, with costly

balancing energy. In contrast, peak power plants are expensive, but flexible,

and hence, with more competitive balancing energy costs.

We conduct a rolling simulation on the data of 2020, in which we gradu-

ally select non-overlapping windows of 150 points each. From each window,

we randomly sub-sample (without replacement) the indexes corresponding

to the training and test sets, which are eventually made up of 100 and 50

samples, respectively. We take ten windows over which we average the re-

sults that follow. First, we compute the average cost of the baseline method

F-SC, i.e., the method that uses the point forecast LF of the net demand as
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L̂ in (5), which amounts to 5092.8ke. For comparison, we also compute the

average cost of a perfect information benchmark in which L̂ is equal to the

actual realization of the net demand L. This perfect forecast approach is

unrealistic but can be used to assess how much could be gained from improv-

ing the prescribed net demand. For this case study, the perfect information

cost is 3380.9ke, i.e, 33.6% lower than that delivered by method F-SC.

As in the example of Section 4, we consider a feature vector x made

up of the day-ahead forecast of the system net demand, LF, (measured in

MWh), enlarged with an additional feature fixed to one to accommodate

the intercept of the affine models L̂ = q⊤
k x = q0k + q1kL

F, k ≤ K.

In the analysis we conduct next, we consider various values for K (num-

ber of partitions and hence of affine models) and several percentage reduc-

tions of the number of data in each partition Nk, k ≤ K. The results of this

analysis are summarized in Table 9, where “r%” in the first column means

that only that percentage of medoids in the partition Nk (more precisely
⌈

r
100 |Nk|

⌉
, where ⌈·⌉ denotes the ceiling operator) have been used to esti-

mate the affine function L̂ = q⊤
k x through (7). This table shows the average

cost achieved by our approach for different values of r and K, the cost sav-

ings with respect to the cost of the baseline method F-SC (5092.8ke), and

the average time the solution to the K estimation problems (7) takes. The

reported cost savings have been computed out of sample, that is, on the

test sets. Beyond the fact that these savings are significant in general, it is

clear that our prescriptive approach benefits from exploiting different affine

models under different net-demand regimes, which confirms the preliminary

conclusion we draw in this regard through the small example of Section 4.

Nevertheless, it is also true that the added benefit rapidly plateaus as K

grows. Actually, the bulk of the economic gains we get through the par-
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titioning of the data sample is already reaped with K = 2. On the other

hand, increasing K has a positive side effect: It remarkably reduces the

time to solve the MIP problem (7). In addition, this time can be shortened

even further, with a tolerable reduction in cost savings, by using only the

medoids of the partitions Nk, k ≤ K, when estimating the affine models

through (7). Notwithstanding this, K cannot be made arbitrarily big since

it can lead to overfitting. Therefore, the choice of K should be guided by a

training-validation scheme similar to the one we show in Table 9 to ensure

that increasing K does not lead to a reduction in the benefits of the affine

rules out of sample.

To comprehend where those cost savings our approach yields come from,

in Figure 3 we plot the predicted aggregate net demand LF against the one

prescribed by our method, i.e., L̂. The plot corresponds to one window of

150 data points taken at random out of the ten we have considered in the

rolling-window simulation. Furthermore, the figure depicts results from the

case with five partitions (K = 5). It can be seen that, when the system net

demand is predicted low, our method prescribes to overestimate it. This

prescription is motivated by two facts. On the one hand, the overestimation

of the net demand in the forward problem is covered by cheap power plants,

whereas it reduces the need for upward balancing. On the other, even though

it slightly increases the demand for downward balancing, the group of units

that down-regulate remains the same in any case, i.e., with and without

the overestimation, due to the limitations of the network. As a result, the

cost savings linked to the reduction in up-balancing outweigh the extra costs

incurred by the increase in down-balancing. It is interesting to note that,

as mentioned at the end of Section 2, system operators, based on their

accumulated experience, often introduce an upward bias into the net demand
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r K P-SC cost ∆cost Time (s)

100% 1 4948.7ke 2.83% 2127.7

100% 2 4874.4ke 4.29% 283.7

100% 5 4851.6ke 4.74% 75.9

100% 7 4851.1ke 4.75% 28.0

50% 1 4956.9ke 2.67% 180.0

50% 2 4877.3ke 4.23% 27.2

50% 5 4869.4ke 4.39% 7.4

50% 7 4886.1ke 4.06% 5.5

20% 1 4971.6ke 2.38% 8.3

20% 2 4883.2ke 4.12% 3.2

20% 5 4882.8ke 4.12% 1.1

20% 7 4890.9ke 3.97% 1.4

Table 9. Average cost savings and average time to solve the estimation problem (7) for a

number K of partitions and various levels r of reduction in the size of the original training

sets (in percentage).
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Figure 3. Prescribed affine transformation of the day-ahead net-demand forecast (aggre-

gated system-wise). Demand is given in GW.

forecast (California Independent System Operator, 2020), precisely as our

model here suggests.

As the level of net demand grows, the overestimation of the system net

load that our method prescribes diminishes to a point where the prescribed

amount flattens (see partitions N4 and N5). Again, this phenomenon is

caused by the network and the limitations it imposes. Indeed, our method

avoids dispatching power plants in the forward problem which, despite be-

ing their turn in the cost-merit order, would have been irretrievably down-

regulated in real time because of network bottlenecks. For instance, in

partition N4, F-SC consistently dispatches the DE base generator, with its

massive 46 GW, to maximum capacity. However, due to grid constraints,

this unit is subsequently down-redispatched to around 30 GW. On the con-

trary, P-SC takes into consideration that this power plant is one of the latest

to be scheduled in this partition and foresees the grid limitation on the power
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flow, thus constraining the aggregated energy production and systematically

dispatching such a unit to the previously mentioned 30 GW.

Finally, Figure 3 also illustrates that, even though the prescriptive func-

tions hq(·) we employ are affine, the use of several clusters leads to a piece-

wise affine function that is able to approximate the non-linear relationships

between the features and the prescribed parameters.

7. Conclusions

In this paper, we have proposed a data-driven method to prescribe

the value of net demand that the forward stage in a two-stage generation

scheduling problem should use in order to minimize the expected total cost

of operating the underlying power system. For this purpose, we have formu-

lated a mixed-integer linear program that trains an affine function to map

the predicted net demand into the prescribed one.

Numerical experiments conducted out of sample on a stylized model of

the European electricity grid reveal that the cost savings implied by the

estimated affine mappings are substantial, well above 2%. Furthermore, on

the grounds that the cost structure of a power system is highly dependent on

its operating point, and hence, on the level of net demand, we have devised

a K-means-based partition strategy of the data sample to train different

affine mappings for different net-demand regimes. The utilization of this

strategy is shown to have a positive twofold effect in the form of substantially

increased costs savings and a remarkable drop in the computational burden

of the proposed MIP training model. Finally, we have further complemented

the partitioning of the data sample with a medoid-based reduction in the

size of the partitions, achieving additional speedups in solution times. All
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this together opens up the possibility to leverage our prescriptive approach

in larger instances.

Future work will include attempts to optimize the partitioning of the

data sample by embedding it into the MIP training model and to devise a

procedure to efficiently update the parameters of the affine rules as new data

become available without having to solve a new instance of the estimation

problem (3). Another direction for future research is the extension of the

proposed methodology to prescribe net demand trajectories (of 24 hours,

for example) for generation scheduling problems that include inter-temporal

constraints such as ramping limits or minimum times.
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A. Muñoz: Data curation, Software, Methodology, Investigation, Formal

analysis, Validation, Writing - Original Draft. S. Pineda: Conceptualiza-

tion, Methodology, Investigation, Formal analysis, Writing - original draft,

Supervision.

Acknowledgments

This work was supported in part by the European Research Council

(ERC) under the EU Horizon 2020 research and innovation program (grant

agreement No. 755705), in part by the Spanish Ministry of Science and Inno-

vation (AEI/10.13039/501100011033) through project PID2020-115460GB-

I00, and in part by the Junta de Andalućıa (JA) and the European Regional
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