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We construct a Lagrangian for general nonlinear electrodynamics that features electric and mag-
netic potentials on equal footing. In the language of this Lagrangian, discrete and continuous
electric-magnetic duality symmetries can be straightforwardly imposed, leading to a simple formu-
lation for theories with the SO(2) duality invariance. When specialized to the conformally invariant
case, our construction provides a manifestly duality-symmetric formulation of the recently discov-
ered ModMax theory. We briefly comment on a natural generalization of this approach to p-forms
in 2p + 2 dimensions.

Nonlinear electromagnetic theories with actions of the
form

S =

∫

L(s, p) d4x, s ≡ 1

2
FµνF

µν , p ≡ 1

2
Fµν ⋆F

µν

(1)
have surfaced historically in relation to topics as di-
verse as mitigating classical field divergences due to point
charges [1–4], induced interactions of photons via cou-
pling to matter [5–9], effective low-energy description of
open string theory [10, 11] and construction of regular
black holes [13–16]. Here, Fµν ≡ ∂µAν − ∂νAµ and the
Hodge star is defined by ⋆Fµν = ǫµνσρF

σρ/2, while most
generally we view L as an arbitrary function.

There are many reasons one may want to recast (1) in
a language where both the electric potential Aµ and its
dual magnetic potential Bµ (satisfying ⋆Fµν ≡ ∂µBν −
∂νBµ in the free Maxwell theory) appear explicitly. For
one thing, one may be interested in coupling this theory
to both electrically and magnetically charged matter, as
done for free theories in [17–20]. Furthermore in many
cases, such as the free Maxwell theory, or the celebrated
Born-Infeld (BI) theory [1, 10–12], the equations of mo-
tion are invariant under continuous rotations of F into
⋆F [21–37], and it is desirable to have an action principle
that manifests this symmetry [17, 38–50].

The purpose of this Letter is to give a democratic for-
mulation in terms of electric and magnetic potentials to a
general theory of the form (1) and to explore the proper-
ties of this formulation for special cases of current inter-
est. In our construction, we shall rely on the approach of
[51, 52] that, for free fields, provides a polynomial refor-
mulation of the Pasti-Sorokin-Tonin (PST) theory [40–
42]. It turns out that this approach is well-suited for
including interactions, as we shall now demonstrate.

General formulation: We start by recalling the formu-

lation of [51, 52] for free fields:

LMaxwell = −1

4
Hb

µνH
bµν +

a(x)

4
ǫbc ε

µνλρ F b
µν Q

c
λρ , (2)

where Hb
µν ≡ F b

µν + aQb
µν , b = 1, 2, a(x) is an auxiliary

scalar familiar from the PST theory, and

F b
µν = ∂µ A

b
ν − ∂ν A

b
µ , Qb

µν = ∂µ R
b
ν − ∂ν R

b
µ . (3)

Despite the large number of fields (Ab, Rb, a), this La-
grangian describes a single propagating Maxwell field
whose electric potential is A1 and magnetic potential A2.
To see this, we observe that (2) is invariant under the
usual gradient shifts of Ab and Rb (the Lagrangian de-
pends only on the corresponding field strengths) and has
two additional symmetries:

δa = 0, δAb
µ = −aub ∂µa, δRb

µ = ub ∂µa, (4)

where ub(x) is an arbitrary doublet of scalar field pa-
rameters, and another gauge symmetry that shifts a(x)
arbitrarily and correspondingly corrects the other fields.
Further details can be found in [52]. As a consequence of
these symmetries, any solution of the equations of motion
can be gauged to

Rb = 0, ⋆F a
µν + ǫab F b

µν = 0 , (5)

leaving a single propagating Maxwell field.
To include interactions in this formalism, we intend to

deform the free action (2) in a way that maintains its
gauge symmetries. To this end, we first note that Hb

µν

is invariant by itself under the transformations (4) while
the second term in (2) changes by a total derivative. As
a result, if we replace Hb

µνH
bµν by an arbitrary scalar

function of Hb
µν , the resulting interacting theory still au-

tomatically respects both gradient shifts of Ab and Rb,
and (4), which is crucial for the emergence of (5).
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There are six functionally independent scalars one can
build from Hb

µν (Uab = U ba, V ab = V ba):

Uab ≡ 1

2
Ha

µν H
bµν , V ab ≡ 1

2
Ha

µν ⋆H
bµν . (6)

Our algorithm to construct a nonlinear generalization of
(2) is then to start with

L = a ǫbcF
b ∧Qc + f(U,11 U,12 U,22 V,11 V,12 V 22) , (7)

and constrain f by the requirement that there is an extra
symmetry shifting a(x) arbitrarily, so that it is a pure
gauge degree of freedom, or equivalently [52], that the
equations of motion for Ab and Rb,

d[(fU
bc + fU

cb) ⋆H
c − (fV

bc + fV
cb)H

c + a ǫbcQ
c] = 0 , (8)

d[a{(fU
bc + fU

cb) ⋆H
c − (fV

bc + fV
cb)H

c − ǫbc F
c}] = 0 , (9)

where fU
ab ≡ ∂f/∂Uab, f

V
ab ≡ ∂f/∂Vab (fU

21 ≡ 0 ≡ fV
21),

imply the equation of motion for a(x),

Qb ∧ Kb = 0 , (10)

with

Ka ≡ (fU
ab + fU

ba) ⋆Hb − (fV
ab + fV

ba)Hb − ǫab H
b . (11)

For that, we first note that multiplying (8) by a(x) and
subtracting it from (9), one gets (we use the differential
form notation following the derivations of [52])

da ∧Kb = 0 . (12)

There is a natural way to ensure that (12) implies (10)
in a manner analogous to the free theory [52]. Indeed, if

Ka ± ǫab ⋆Kb ≡ 0 , (13)

then (12) implies Kb = 0 by elementary differential form
algebra. Hence, (10) is satisfied whenever (8-9) are sat-
isfied [56].

One can translate (13) to the following condition on f :

± δac (fU
cb + fU

bc) − ǫac (fV
cb + fV

bc) + δab = 0 . (14)

These linear PDEs are solved in full generality by

f(U, V ) = ∓ 1
2Uaa + g(λ1, λ2) , (15)

λ1 = ±U12 − 1
2 (V11 − V22) , (16)

λ2 = V12 ± 1
2 (U11 − U22) . (17)

where g(λ1, λ2) is an arbitrary function (we will hence-
forth use the upper signs only). The Lagrangian is then

L = LMaxwell + g(λ1, λ2) , (18)

where λ1,2 can be read off (16-17) and (6). This La-
grangian respects a gauge symmetry that shifts a:

δa = ϕ(x) , δAb
µ =−a δRb

µ =
ϕ

(∂a)2
a∂νa(Qb

νµ−ǫbc⋆Qc
νµ) .

(19)

The gauge transformation rules do not depend on the
function g(λ1, λ2) and, in particular, are the same as in
the free case [52]; λ1,2 are invariant under (4) and (19).
The Lagrangian (18) contains a single arbitrary function
of two variables, as does (1). We shall proceed to show its
relation to the single-field formulation (1) after discussing
the surprisingly simple way additional electric-magnetic
symmetries can be imposed on (18).

Duality symmetry: Under the discrete Z4 interchange
of electric and magnetic degrees of freedom, H1 →
H2 , H2 → −H1, and hence λ1 → −λ1, λ2 → −λ2.
Therefore, theories with such discreet duality symmetry
are described by g(λ1, λ2) satisfying

g(−λ1,−λ2) = g(λ1, λ2) . (20)

Next, one may ask for the full SO(2) duality symmetry
with respect to rotating Ab and Rb in the b-plane. Under
such a rotation by an angle α, the pair (λ1, λ2) simply ro-
tates as a vector by an angle 2α, therefore only the radial
part is invariant. Hence, the SO(2)-invariant theories are
encoded in full generality by

g(λ1, λ2) = h(w) , w =
√

λ2
1 + λ2

2 , (21)

and their Lagrangian is given by

L = LMaxwell + h(w) . (22)

One can show that

w =
√
− detH , (23)

where Hab ≡ (⋆Ha
µν − ǫacHc

µν)(⋆Hbµν − ǫbdHdµν)/2 .

Conformal invariance: Another symmetry one may
require from (1) is conformal invariance [34–36], which
can be expressed by a condition of the form

UabfU
ab + V abfV

ab = f . (24)

Then, g(λ1, λ2) is a homogeneous function of degree one:

g = λ1 g̃(λ1/λ2) , (25)

where g̃(x) is an arbitrary function.
If we require both SO(2) symmetry and conformal in-

variance, (22) reduces to

L = −1

2
Hb ∧ ⋆Hb + a ǫbcF

b ∧Qc + δ w , (26)

where δ is an arbitrary real number, w given by (23).
As we shall show below, this construction provides an
explicit duality-symmetric formulation of the ModMax
theory recently introduced in [34] (see also [35–37]).

Analysis of the equations of motion: As explained
under (13), equations (8-9) imply

Kb = 0 (27)
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for theories of the form (18). Plugging (27) into (8), we
deduce:

da ∧ dRb = 0 , (28)

exactly the same equation as for the free field case [52].
This, in turn, implies that the fields Rb can be gauge-
transformed to zero (see [52] for details):

Rb = 0 , Hb = F b . (29)

Note that the two equations (27) are Hodge-dual to each
other due to (13), and can hence be expressed as a single
equation (g1 ≡ ∂g/∂λ1, g2 ≡ ∂g/∂λ2):

⋆F 1 + F 2 = g2 (⋆F 1 − F 2) − g1 ⋆(⋆F 1 − F 2) , (30)

which includes the free case (5) given by g(λ1, λ2) = 0.
Taking into account that (with Rb = 0)

λ1 = 1
2 Gµν ⋆G

µν , λ2 = − 1
2 Gµν G

µν , (31)

where Gµν ≡ ⋆F 1
µν − F 2

µν , g(λ1, λ2) is expressed through
G, while the right hand side of (30) is equal to −∂g/∂G.
Therefore, (30) is an expression for ⋆F 1 + F 2 in terms
of ⋆F 1 − F 2. This means that, similarly to the free field
case, there is only one independent field strength, while
all the auxiliary fields have been gauged away. Hence, we
are really dealing with a theory of one dynamical gauge
field, as intended.

Relation to the conventional single-field formula-

tion: The two formulations of nonlinear electrodynam-
ics, given by (1) and (18), are related by nonlinear alge-
braic equations involving derivatives of the corresponding
Lagrangians. We now proceed to establish this relation.
If one solves (30) for F1, by Lorentz invariance, the re-
sulting expression must be of the form (see, e.g., [33])

F 1 = α(s, p)F 2 + β(s, p)⋆F 2 , (32)

where s and p are the two independent invariants of F 2,

s =
1

2
F 2
µνF

2µν , p =
1

2
F 2
µν⋆F

2µν , (33)

and α and β depend on the specific form of g. If we
apply the exterior derivative operator to (32), the left-
hand side vanishes, and F 1 disappears from the equation.
What remains is the equation of motion for the theory
(1), where F is identified with F 2 and

α(s, p) = −∂L
∂p

, β(s, p) =
∂L
∂s

. (34)

Thus, our democratic formulation reproduces dynami-
cally the theory (1) for a single electromagnetic field with
self-interactions.

One can recast (32) as the following equations in terms
of the invariants:

g1 =
2α

α2 + (β + 1)2
, g2 =

α2 + β2 − 1

α2 + (β + 1)2
. (35)

Here, g is specified as a function of λ1 and λ2. The latter
can be extracted from (32) and (16-17) as

λ1 = 2α (1 + β) s− [α2 − (1 + β)2] p ,

λ2 = [α2 − (1 + β)2] s + 2α (1 + β) p ,
(36)

so that

w ≡
√

λ2
1 + λ2

2 = (α2 + (β + 1)2)
√

s2 + p2 . (37)

For any concrete g(λ1, λ2), (35) provides a 2 × 2 system
of nonlinear algebraic equations for α and β as functions
of s and p. Given a solution of this system, one can re-
duce the equations of motion of the democratic theory to
the single-field form (32). Conversely, to recast a given
single-field theory of the form (1) in terms of the demo-
cratic formulation (18), one needs to obtain α and β from
(34), then λ1 and λ2 from (36) and then g from (35).

Single-field formulation for duality-symmetric

theories: There is little one can say in general about
solutions to (35-36), but extra structures emerge for spe-
cial classes of theories. For the SO(2)-invariant case of
(22), one gets

λ1

w
h′ =

2α

α2 + (β + 1)2
,

λ2

w
h′ =

α2 + β2 − 1

α2 + (β + 1)2
. (38)

Eliminating h′ gives λ1(α2 + β2 − 1) = 2αλ2, and then

β2 +
2s

p
αβ − α2 = 1, (39)

which is, in view of (34), exactly the same as the general
SO(2)-invariance condition in the single-field formalism
[21, 23, 28, 31, 35, 36, 46]. The remaining equation can
then be written as

(αs + (β + 1)p) h′
∣

∣

∣

w=
√

s2+p2(α2+(β+1)2)
= α

√

s2 + p2.

(40)
If one is moving from the single-field formalism to the
democratic one for SO(2)-invariant theories, (39) is sat-
isfied from the start, and (40) is what must be solved to
reconstruct h(w).

The ModMax theory: For the conformally invariant
case (26), equation (40) becomes linear, and it can be
solved together with (39):

α(s, p) = − sinh γ
p

√

p2 + s2
, (41)

β(s, p) = sinh γ
s

√

p2 + s2
− cosh γ . (42)

With these functions, (32) reproduces the equations of
motion of the ModMax theory introduced in [34] and
defined by the Lagrangian

L(s, p) = − coshγ s + sinh γ
√

s2 + p2 . (43)
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Thus, with the identification

δ = coth
γ

2
, (44)

a democratic description of the ModMax theory is pro-
vided by (26). This solution corresponds to δ > 1 (γ > 0)
or δ < −1 (γ < 0). For the region −1 < δ < 1, which can
be given as δ = tanh γ

2 , we get the same action (43), but
with an overall minus sign. This is what happens if we
replace Fµν → ⋆Fµν , γ → −γ in the Lagrangian (43),
so it is the ModMax theory written in terms of the dual
magnetic potential. The case δ = 1 [57] corresponds to
the Bia lynicki-Birula electrodynamics [53, 54].

Other duality-invariant theories: While we have out-
lined the general way to connect the single-field and
democratic formulations, it involves solving nonlinear al-
gebraic equations, which is only possible explicitly in spe-
cial cases. Furthermore, the functions appearing in the
democratic Lagrangian may be complicated for known
simple single-field theories, and vice versa.

We demonstrate here the conversion procedure for the
generalized BI theory [34, 36],

LGBI =
√
UV −T, U ≡ 2u+eγ T, V ≡ −2v+e−γ T ,

(45)

where u ≡ (s+
√

p2 + s2)/2, v ≡ (−s+
√

p2 + s2)/2, and
T is an arbitrary constant (related to the string tension
in [10]). The BI theory corresponds to γ = 0. From (38),

h′ =

√
U −

√
V√

U +
√
V

. (46)

From (36),

w =
T

2

(

e−γ U

V
− eγ

)(

1 +

√

V

U

)2

. (47)

Introducing eλ ≡
√

V/U , one can multiply (46) by
∂w/∂λ and integrate to obtain

h(λ) = 4T sinh2 λ

2
cosh(λ + γ) ,

w(λ) = −4T cosh2 λ

2
sinh(λ + γ) .

(48)

These formulas provide an implicit definition for h(w)
corresponding to the generalized BI theory in the demo-
cratic formulation (22).

Conclusions: We have provided a democratic formu-
lation (18) for the nonlinear electrodynamics (1) that
explicitly features both electric and magnetic gauge po-
tentials. It includes two auxiliary gauge fields and an
auxiliary scalar, all of which are pure gauge degrees of
freedom. The propagating degrees of freedom are those
of (1).

The SO(2) duality invariance is expressed in this for-
malism by the strikingly simple condition (21) which

takes place of the nonlinear PDE given by (39) and (34)
responsible for the same property in the single-field for-
malism (this PDE is sometimes referred to [31, 46] as the
Courant-Hilbert equation after the classic treatise [55]).
This makes it easy to specify arbitrary SO(2)-invariant
interactions in (22), without any need to satisfy addi-
tional constraints. In particular, polynomial interactions
can be straightforwardly introduced by choosing h(w) in
(22) as a polynomial in w2. If conformal symmetry is
imposed in addition to the SO(2) invariance, the theory
further simplifies to (26), which is a democratic formula-
tion of the ModMax theory introduced in [34].

Our formulation has been developed as a nonlinear ex-
tension of the approach employed for free fields in [51, 52].
In the free field context, this approach is closely related
to the PST formulation [40–42], which is recovered by
integrating out the auxiliary form fields. The relation
is less obvious for the interacting theories discussed here
since the equations of motion are no longer linear. If the
auxiliary gauge fields can be successfully integrated out,
a PST-like formulation of nonlinear electrodynamics will
be produced.

Our approach to constructing the Lagrangian (18) has
been rather systematic in that we started with a sim-
ple Lagrangian ansatz that automatically respects all
the necessary gauge symmetries except for the symme-
try that shifts the auxiliary scalar. Then, enforcing this
last symmetry fixed the form of the Lagrangian. An ad-
vantage of the resulting theory (18) is that all the gauge
symmetries are realized in a universal manner, indepen-
dent of the form of interactions [58].

The approach adopted here naturally lends itself to
generalizations to higher form field interactions, and it
would be interesting to explore them. An educated guess
is that for (2k−1)-form fields in 4k dimensions, the most
general nonlinear democratic Lagrangian is

L = Lfree + g(λi) , (49)

where the first term is the free Lagrangian from [52]
and the second term is an arbitrary function of all in-
dependent Lorentz scalars λi built out of the tensor
⋆Ha − ǫabHb. The equations of motion will imply a de-
formed twisted self-duality relation that expresses, as in
(30), ⋆F a + ǫabF b as a function of the opposite chirality
combination ⋆F a − ǫabF b. The SO(2) symmetry condi-
tion will further constrain g to depend on a specific set
of combinations of λi. Similarly, for the chiral 2k-forms
in 4k+ 2 dimensions, a natural guess is of the same form
(49), with the free part given as in [51, 52], while now λi

are all independent Lorentz scalars built out of the tensor
⋆H−H . These structures will be explored in more detail
in future works.
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Poincaré invariance, Phys. Rev. Lett. 110 (2013) 011603
arXiv:1208.6302 [hep-th].

[33] G. Buratti, K. Lechner and L. Melotti, Duality invariant
self-interactions of abelian p-forms in arbitrary dimen-
sions, JHEP 09 (2019) 022 arXiv:1906.07094 [hep-th].

[34] I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend,
A non-linear duality-invariant conformal extension of
Maxwell’s equations, Phys. Rev. D 102 (2020) 121703
arXiv:2007.09092 [hep-th].

[35] B. P. Kosyakov, Nonlinear electrodynamics with the max-
imum allowable symmetries, Phys. Lett. B 810 (2020)
135840 arXiv:2007.13878 [hep-th].

[36] I. Bandos, K. Lechner, D. Sorokin and P. K. Townsend,
On p-form gauge theories and their conformal limits,
JHEP 03 (2021), 022 arXiv:2012.09286 [hep-th].

[37] S. M. Kuzenko, Superconformal duality-invariant models
and N = 4 SYM effective action, arXiv:2106.07173 [hep-
th].

[38] M. Henneaux and C. Teitelboim, Dynamics of chiral
(selfdual) p-forms, Phys. Lett. B 206 (1988) 650.

[39] J. H. Schwarz and A. Sen, Duality symmetric actions,
Nucl. Phys. B 411 (1994) 35 arXiv:hep-th/9304154 .

[40] P. Pasti, D. P. Sorokin and M. Tonin, Note on mani-

mailto:z.avetisyan@math.ucsb.edu
mailto:oleg.evnin@gmail.com
mailto:k.mkrtchyan@imperial.ac.uk
http://www.arXiv.org/abs/hep-th/9509050
http://www.arXiv.org/abs/2005.12396
http://www.arXiv.org/abs/hep-th/0406216
http://www.arXiv.org/abs/hep-th/9908105
http://www.arXiv.org/abs/hep-th/9802179
http://www.arXiv.org/abs/gr-qc/9911046
http://www.arXiv.org/abs/gr-qc/0006014
http://www.arXiv.org/abs/gr-qc/0407072
http://www.arXiv.org/abs/1408.0306
http://www.arXiv.org/abs/hep-th/9906079
http://www.arXiv.org/abs/2004.05668
http://www.arXiv.org/abs/hep-th/9506035
http://www.arXiv.org/abs/hep-th/9602064
http://www.arXiv.org/abs/hep-th/9611065
http://www.arXiv.org/abs/hep-th/9705226
http://www.arXiv.org/abs/hep-th/9712103
http://www.arXiv.org/abs/hep-th/9906103
http://www.arXiv.org/abs/hep-th/0001068
http://www.arXiv.org/abs/hep-th/0007231
http://www.arXiv.org/abs/hep-th/0303192
http://www.arXiv.org/abs/1208.6302
http://www.arXiv.org/abs/1906.07094
http://www.arXiv.org/abs/2007.09092
http://www.arXiv.org/abs/2007.13878
http://www.arXiv.org/abs/2012.09286
http://www.arXiv.org/abs/2106.07173
http://www.arXiv.org/abs/hep-th/9304154


6

fest Lorentz and general coordinate invariance in duality
symmetric models, Phys. Lett. B 352 (1995) 59
arXiv:hep-th/9503182 .

[41] P. Pasti, D. P. Sorokin and M. Tonin, Duality symmetric
actions with manifest space-time symmetries, Phys. Rev.
D 52 (1995) 4277 arXiv:hep-th/9506109 .

[42] P. Pasti, D. P. Sorokin and M. Tonin, On Lorentz invari-
ant actions for chiral p-forms, Phys. Rev. D 55 (1997)
6292 arXiv:hep-th/9611100 .

[43] D. Berman, SL(2, Z) duality of Born-Infeld theory from
non-linear self-dual electrodynamics in 6 dimensions,
Phys. Lett. B 409 (1997) 153 arXiv:hep-th/9706208 .

[44] A. Nurmagambetov, Duality symmetric three-brane and
its coupling to type IIB supergravity, Phys. Lett. B 436

(1998) 289 arXiv:hep-th/9804157 .
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