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Abstract

We investigated the effects of the spacetime curvature and extra dimensions
on the excitations of a self-interacting vector field known as the bumblebee
field. The self-interacting quadratic potential breaks the gauge invariance
and the vacuum expectation value (VEV) of the bumblebee field bM vi-
olates the local particle Lorentz symmetry. By assuming the bumblebee
field living in a AdS5 bulk, we found an exponential suppression of the self-
interacting constant λ and the bumblebee VEV along the extra dimension.
The fluctuations of the bumblebee upon the VEV can be decomposed into
transverse and longitudinal modes with respect to bM . Despite the curva-
ture, the transverse mode acquires massive Kaluza-Klein towers, while the
longitudinal mode acquires LV mass λb2. On the other hand, the current
conservation law prevents massive Kaluza-Klein modes for the longitudinal
mode. For a spacelike bM along the extra dimension and assuming a FRW
3-brane embedded in the AdS5 yields to an additional dissipative term to
the longitudinal mode. The cosmological expansion leads to decay of the
longitudinal mode in a time ∆t ≈ H−1, where H = ȧ/a is the Hubble pa-
rameter and a(t) is the scale factor. For a timelike bM , the longitudinal
mode does not propagate on the brane and its amplitude decays in time
with a−3 and in the extra dimension with z−λb2l2 .

Keywords: Spontaneous Lorentz symmetry breaking. Braneworld.
Cosmology

1. Introduction

In recent decades, the possible Lorentz violating (LV) effects steaming
from Planck scale has been extensively studied. Some models in string
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theory [1], very special relativity [2], noncommutative spacetime [3] and loop
quantum gravity [4], among others, enable Lorentz symmetry violation in the
gravitational UV regime. A framework to explore Lorentz violating theories
is provided by the Standard Model Extension (SME), wherein LV coefficients
lead to violation of the particle Lorentz symmetry [5]. A mechanism for
the local Lorentz violating is provided by a spontaneous symmetry breaking
potential due to self-interacting tensor fields. The vacuum expectation value
(VEV) of these tensor fields yields to background tensor fields, which by
coupling to the Standard Model (SM) fields violate the particle local Lorentz
symmetry [6, 7, 8]. Moreover, the spontaneous Lorentz violation allows the
LV terms in the Lagrangian to satisfy the Bianchi identities, a key property
for the gravitational field [6].

A self-interacting vector field, the so-called bumblebee BM has a VEV
bM which defines a privileged direction in spacetime [9]. In flat spacetimes,
causality and stability features of this model were studied, both classically
[10, 11, 12] and at the quantum level [13, 14]. The spontaneous breaking
of the Lorentz symmetry leads to the emergence of Nambu-Goldstone (NG)
modes and massive modes [10]. For a quadratic potential, in the so-called
Kostelecky-Samuel (KS) model in 3+1 dimensions, the fluctuations around
the vev bM yield to two transverse NG modes and one longitudinal massive
mode. Since only the transverse modes are propagating, the photon can be
interpreted as a NG mode of the bumblebee field instead of an elementary
particle [10, 15, 16].

In 3+1 curved spacetimes, the modifications of the bumblebee upon the
gravitational field were studied for black holes [17, 18, 19], wormholes [20]
and cosmology [21]. In higher dimensions, the bumblebee VEV modifies the
Kaluza-Klein spectrum for bulk fields [22, 30, 24]. For a generalized bum-
blebee dynamics, an analysis of the fluctuations was performed in Ref.[16].

In this work, we are interested in study the propagation of the bum-
blebee fluctuations in curved spacetime. We consider the bumblebbe living
in a five dimensional Anti de Sitter spacetime, AdS5, with one spacelike
extra dimension. Since AdS5 is a maximally symmetric and conformal to
a flat Minkowski spacetime, AdS5 allows us to extended some results to
curved spacetimes. We show that the bulk curvature makes the bumblebee
self-coupling constant λ depends on the spacelike extra dimension. Assum-
ing two parallel 3-branes, this leads to an exponential suppression of λ,
as in the Randall-Sundrum model [25, 26]. Assuming a homogeneous and
isotropic Friedmann-Robertson-Walker (FRW) 3-brane embedded in AdS5,
for a spacelike VEV in the extra dimension the cosmological expansion pro-
duces a dissipative term for the longitudinal mode which decays in a rate
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∆t ≈ H−1. For a timelike VEV, the longitudinal fluctuation has an am-
plitude that vanishes as a−3. These results reveal that additional modes
steaming from spontaneous symmetry breaking of the Lorentz symmetry in
the early universe may be suppressed by the cosmological expansion. That
seems an expected feature since spontaneous violation of Lorentz symmetry
is believed to occur during early universe phase transitions [27, 28, 29].

The work is organized as the following. In section 2 we present the
bumblebee dynamics in five dimensions, obtain the equations of motion for
the fluctuations and study the propagation of these modes. In section 3,
we investigate the effects of cosmic expansion considering a warped metric
for both massless NG and massive modes. Final remarks are summarized
in section 4. Throughout the text, we adopt the capital Roman indices
(A,B, ... = 0, 1, 2, 3, 4) denote 5-dimensional bulk spacetime indices, the
Greek indices (µ, ν, ... = 0, 1, 2, 3) the spacetime indices of the worldbrane.
Moreover, we adopt the metric signature (−,+,+,+).

2. Bumblebee dynamics in 5D

In this section, we consider the bumblebee field living in a 5D curved
spacetime, called bulk, and see how the bulk curvature affects the dynamics
of the bumblebee on a 3+1 hypersurface called 3− brane. We start defining
a 5D KS model action by [9, 10]

S =

ˆ

d5xe

[

− α

4
BMNBMN − λ

2
(BMBM ± b2)2

]

, (1)

where, b2 = gMN bMbN and the e =
√−g the determinant of the bulk metric

in the five dimensional spacetime whose interval is ds25 = gMNdxMdxN . We
consider a fixed background spacetime, i.e., the spacetime is not modified
by the bumblebee. Moreover, the field-strength tensor BMN of the bumble-
bee field BM is defined as BMN = ∂MBN − ∂NBM . In order to keep the
bumblebee field with mass dimension one, we introduce the constant α with
also mass dimension one, which we will discuss the details later.

The quadratic potential chosen induces the spontaneous Lorentz vio-
lation, where λ is a mass dimension one positive self-interaction coupling
constant, b2 is a positive constant with squared mass dimension and the ±
sign meaning if bM is spacelike or timelike. Moreover, the vacuum condition
V = 0 implies the existence of a vacuum expectation value < BM >= bM is
the form

gMN bMbN = ∓b2. (2)
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In order to investigate the effects of spacetime curvature and extra di-
mensions on the bumblebee fluctuations, we adopt a special warped geom-
etry in the form [25, 26]

ds25 = e−2cyds2brane + dy2, (3)

where e−2cy is the so-called warp factor of the Randall-Sundrum model,
which depends only on the fifth dimension y. For a flat 3-brane, i.e.,
ds2brane = ηµνdx

µdxν , this metric describes an Anti De Sitter spacetime,
AdS5, which in the conformal coordinate z = ecy

c takes the form [25]

ds25 =
l2

z2
(ηµνdx

µdxν + dz2), (4)

where l = 1/c is the AdS radius and

z = lecy (5)

is the conformal coordinate. It is worthwhile to mention that this five-
dimensional line element preserves four-dimensional Poincaré invariance of
the 3-brane embedded in the AdS5 bulk. The AdS5 is a maximally symmet-
ric spacetime, i.e., RMNPQ = R

20(gNQgMP −gNP gMQ), where R = −20/l2 is
the AdS5 constant and negative Ricci scalar. The Anti de Sitter spacetime
is a solution of Einstein equation with a negative cosmological constant of
form RMN − R

2 gMN + ΛgMN = 0, with Λ = −6c2. It is upon this sym-
metric background spacetime that we study the behaviour of the bumblebee
fluctuations.

Before approaching the equation of the motion (EoM) for the bumblebee
field and the propagation of the fluctuating modes that appear in the KS
theory in five dimensions, let us first analyze the effects of bulk curvature
effective action in 3+1 dimensions and the corresponding effective constants
λ and α. Suppose that the bumblebee field and its VEV have a dependence
on the conformal extra dimension z of the form BM = B̃M (xµ)Υ(z) and
bM = b̃M (xµ)Ψ(z). Thus, the VEV condition (2) leads to

bM = (l/z)b̃M (xµ) (6)

where b̃M b̃M = b̃2 is constant with respect to the flat 5-D Minkowski metric
ηMNdxMdxN = ηµνdx

µdxν+dz2. Supposing that the bumblebee field decays
as the VEV bM , we obtain BM = (l/z)B̃M (xµ).

Let us now consider two parallel and fixed 3-branes, one at the origin
and other at y = L, the well-known RS-I model[25]. For bM = (l/z)b̃M (xµ)
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and BM = (l/z)B̃M (xµ), the potential term leads to the y-dependent self-
interacting coupling constant λeff = ( lz )

5, or in the y coordinate,

λeff = λeff (y) = λe−5cy. (7)

Therefore, the AdS5 curvature in the RS I model yields to an exponential
suppression of the bumblebee self-interaction constant between the 3-brane
at y = 0 and at y = L. Note that, although the bumblebee vev bM decays
as bM = e−cy b̃M , the b2 is kept constant throughout the entire AdS5.

In its turns, α varies with the extra dimension as

αeff = α(y) = αe−2cy. (8)

Thus, at the visible brane at y = L, the Lorentz violating effects given by
the self-interacting are much more suppressed than those described by the
usual kinetic term.

In the RS II model, wherein there is only one 3-brane at the origin [26],
by integrating out the 5-D potential term in the extra dimension yields to

SV = −λ

ˆ ∞

0
(l/z)5dz

ˆ

d4x
√
−g4(η

µνB̃µB̃µ ± b2)2. (9)

Thus, the effective (3+1) coupling constant in the brane at y = L is given
by

λeff =
1

2c
λ. (10)

Since c has mass dimension one, for a five dimensional bumblebee self cou-
pling constant λ with mass dimension one, then λeff is dimensionless. For
the constant α, integrating the kinetic term along the extra dimension, we
obtain

SK = −2α

ˆ L

0
(e−2cydy)

ˆ

d4xBµνBµν . (11)

Accordingly, the relation between the five dimensional constant α and the
four dimensional αeff is given by

αeff =
α

c
. (12)

Once again, the effective constants depend not on the length of the extra
dimension but on the AdS5 spacetime curvature. A similar dimensional
reduction result appears in the original RS II model for the gravitational
constant [26].
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2.1. Equations of motion for the fluctuations

In this part of the work, we will develop the equations of motion for
bumblebee fluctuations considering that ds2brane is curved. Varying with
respect to the bumblebee field the action (1), we obtain the equations of
motion [9, 10]

DNBNM = JM
B (13)

where JM
B arises from the bumblebee self-interaction and it is given by [9, 10]

JM
B = 2V ′BM . (14)

Moreover, the antisymmetry of the bumblebee field strength BMN implies
a conservation law:

DMJM
B = 0. (15)

Now consider the fluctuation about the bumblebee VEV, i.e.,

BM ≈ bM + χM , (16)

where < BM >= bM . The linearized Lagrange density takes the form

eL̃KS = −1

4
ebMN bMN − 1

4
eχMNχMN − 1

2
eχMN bMN − 2eλ(bMχM )2, (17)

where bMN = ∂MbN−∂NbM and χMN = ∂MχN−∂NχM . Thus, the equation
of motion for the fluctuations is given by

�χN −DN (DMχM )−R N
T χT +DMbMN ≈ 4λ(χM bM )bN , (18)

where � = DMDM = gMNDMDN is the 5D D’Alembertian operator and
RMN = RP

MPN is the Ricci tensor in 5D.
It is worth noting that for the vacuum solution, i.e., BM = bM the Eq.

(13) is given by DMbMN = 0, since we have a minimum of the potential,
V ′ = 0, for the vacuum solution. But as shown in Eq.(18), when we assume
fluctuations around the vacuum value, this equation of motion is modified
by the fluctuations.

The Eq.(18) has a similar form of the fluctuations EoM in flat spacetime
[10], except for the covariant derivatives, the coupling to the Ricci tensor
and the varying VEV. It is worthwhile to mention some interesting features
of the fluctuations EoM in general curved spacetimes, before we focus on the
specific braneworld scenario. For instance, assuming that the background
spacetime geometry is a vacuum, the Ricci tensor vanishes identically, i.e.,
RMN = 0. Thus, the third term in Eq.(18) vanishes not only in Minkowsky
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spacetime but also in any background spacetime vacuum. For a vacuum
maximally symmetric spacetime, RMN = R

3 gMN , and thus the third term
in Eq.(18) provides a mass term for the fluctuation field χM .

Unlike the flat spacetime, which allows us to define a constant back-
ground VEV, ∂MbN = 0, the curvature constrains the bM VEV. In fact,
assuming a covariant constant bM , i.e., DMbN = 0, leads to the constrain
bMRM

NPQ = 0. This constrain means that the curvature vanishes in the
direction of the background vector.If we adopt a less restrictive VEV defini-
tion, by assuming that the VEV norm b2 = gMN bMbN is constant, the VEV
satisfies

(DN bM )bM = 0. (19)

Since the VEV defines a preferred direction in spacetime, we can decom-
pose χM into transverse AM and longitudinal β modes with respect to bM
[10]

χM = AM + βb̂M , (20)

where by defining the projection operators P
||
MN = bM bN

bAbA
and P⊥

MN = gMN−
bM bN
bAbA

, we have AM = P⊥
MNχN and βb̂M = P

||
MNχN . As result, we have to

AMbM ≈ 0 and b̂M b̂M = ∓1, where b̂M = bM√
b2
. Using the decomposition

[20], the smooth quadratic potential term becomes

V ≈ 4λ[(b̂AbA)β]
2 (21)

i.e., V (X) 6= 0, therefore the β is the longitudinal mode. Before this lin-
earized bumblebee current, we have Eq. (15) the linearized conservation law

DM (βbM ) ≈ 0. (22)

Using the decomposition (20) and the conditions b2 constant, (22) and
AMbM = 0, the equation of motion for the longitudinal mode β is given
by

(�β)(b̂M bM )− [RN
M b̂NbM − (�b̂M )bM + 4λ(b̂M bM )(bN bN )]β ≈

(DN bMN )bM + bM [DM (DNAN )] +RT
MAT bM + 2(DNAM )(DNbM )

+AM (DNDN bM ), (23)

while the transversal mode AM is governed by

�AN −DNDMAM −RM
NAM ≈ [4λ(bM b̂M )bN −RM

N b̂M ]β

+ �(βb̂N ) +DM bNM . (24)
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Unlike in the Minkowski spacetime [10], in a general spacetime it is not
possible to decouple the longitudinal and transverse modes. This is due
to the curved spacetime nature, which leads to a varying VEV and new
couplings between the fluctuations and the curvature tensor.

Since AdS5 is a maximally symmetric spacetime, RMN = R
DgMN , and

thus, the term RN
MANbM in Eq.(23) vanishes. For gMN = (l/z)2ηMN

and bM = (l/z)b̃M , where b̃M is a constant, we notice that the last two
terms in (23) also vanish. Eq.(18) also simplifies, for the Ricci coupling
term in Eq.(18) leads to the non-massive terms RMNbMbN = R

(D)b
2 and

RMNAM bN = 0.

3. The KS model on a cosmological background

Since the curvature strongly couples the longitudinal and transverse
modes, let us consider the propagation of the bumblebee fluctuations on
a rather symmetric spacetime. Thus, consider a 3-brane geometry described
by the homogeneous and isotropic Friedmann-Robertson-Walker metric (FRW)

ds2brane = −dt2 + a(t)2
[

(dx1)2 + (dx2)2 + (dx3)2
]

, (25)

where a(t) is the scale factor.

3.1. Spacelike vev

Consider a spacelike VEV in the conformal coordinates with only a non-
vanishing fifth component in the form

bM = (0,~0, b̃ (l/z)), (26)

where b̃ is a constant that arises from the constant norm condition (2). The
VEV choice in (26) has a vanishing field strength, i.e., bMN = 0. In addition,
this VEV choice constrains the transverse mode AM to the 3-brane, i.e.,
A4 = 0.

The linearized Lagrangian for this spacelike VEV is given by

eL̃KS ≈ −1

4
eFMNFMN − 1

2
e(∂Mβ)(∂Mβ)(b̂N b̂N ) +

1

2
e(∂Mβ)(∂Nβ)(b̂M b̂N )

− eFMN (∂Mβ)b̂N − 2eλ(βb̂M bM )2

≈ −1

4
eFMNFMN − 1

2
e(∂µβ)(∂

µβ) + b̂4(∂4Aµ)(∂
µβ)− 2eλb̃2β2. (27)
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As we can see, the only term responsible for the coupling between the lon-
gitudinal and transverse mode is b̂4(∂4Aµ)(∂

µβ).
In order to analyse the coupling between the modes, as well as their

dependence on the extra dimensions, let us perform the Kaluza-Klein (KK)
decomposition. For the transverse mode, let us search for solutions of the
form Aµ(x, z) = Ãµ(x)Γ(z). From Eq. (24), the brane dependence of the
transverse mode Ãµ satisfies

1√−g4
∂µ(

√
−g4g

µα
4 gνλ4 F̃αλ) = m2Ãν , (28)

whereas the extra dimension dependence is governed by

Γ′′ − 1

z
Γ′ +m2Γ = 0, (29)

where F̃αλ = ∂αÃλ − ∂λÃα and the m is a constant called KK mass. This
constant can be arbitrarily small and it runs in the range −∞ < m < ∞
. The solution of Eq. (29) are the Bessel functions of the first and second
kind, respectively, given by Γ(z) = Γ1zJ1(mz) + Γ2zY1(mz), where Γ1,2 are
constants. Thus, likewise the gauge vector field, the bumblebee transverse
mode acquires a mass due to the dimensional reduction. For the massless
mode, i.e., m2 = 0, the Eq. (29) leads to a solution Γ(z) = Γ0+

c1
2 z

2, which

grows with z., whereas Ãµ satisfies DµF̃
µν = 0.

Note that the corresponding term b̂4(∂4Aµ)(∂
µβ) of the action does not

appear in EoM neither in (28) nor in (29). This follows from the AMbM = 0
condition. We can see this better by choosing N = ν in Eq.(24). Note that
all terms on the right side are zero. This coupling term will appear in the
EoM of the longitudinal mode, as we will see below.

For the longitudinal mode, by assuming the KK decomposition β(x, z) =
β̃(x)Υ(z), the Eq.(23) simplifies into
[

D4D
4Υ+

(

4

l2
+ b̂4�b̂4

)

Υ

]

β̃ +

[

DµD
µβ̃ + 4λb̃2β̃

]

Υ = b̂4D
4DµA

µ. (30)

Considering the conservation law Eq.(22) for the spacelike case, we find that

b̃β̃

(l/z)5
∂4

(

(l/z)4Υ

)

= 0, (31)

i.e, the solution is given by Υ(z) = Υ0 (z/l)
4, where Υ0 is a constant. Sub-

stituting Υ(z) in the equation above, we find that

DµD
µβ̃ + 4λb̃2β̃ = Υ0(l/z)

3∂4ΓDµÃ
µ (32)
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Note that the first term of Eq.(30), which carries the dependency with the
extra dimension, vanishes due to Eq.(31). Moreover the KK mass of the
transverse mode couples Ãµ to β̃. For massless transverse mode, m2 = 0,
and considering that field Γ vanishes at infinity, i.e., Γ = Γ0 = const. , the
transverse and longitudinal modes decouple, hence the U(1) symmetry is
recovered. Another important point that we need to emphasize from Eq.(32)
is that due to the current conservation law (31), the longitudinal mode in
the spacelike case did not generate Kaluza-Klein towers. An analysis of KK
towers in presence of Lorentz-violating aether fields in space-time with extra
dimensions was done in Ref.[30]

Likewise the gauge vector field that is not normalized in the effective
action in (1+3)-dimensions (RS-II), the bumblebee transverse fluctuations
also diverges in action. This similarity is due to the fact that the two models
share the same kinetic term, FMNFMN . The kinetic term in action for the
zero mode solution is Sk ∽ Γ2

0

´

dz(l/z)
´

d4x
√−gF̃αλF̃

αλ, where Γ0 is a
constant. Indeed, if the warp factor is factorized out of the effective action,
one obtains non-normalizable solutions from the equations of motion to the
gauge field.

In order to localize the gauge field, the authors of [31] introduced a scalar
field called dilaton π(z) which couples to the kinetic term of Aµ field and
leads to the localization. We can achieve a brane localized massless trans-
verse mode by considering that the parameter α introduced in Eq.(1) de-

pends on the extra dimension as α = e−
ζπ(z)

2 , where ζ is a dimensionless dila-
ton coupling depending on the details of the underlying theory. Therefore
the normalization of the transverse field is dictated by the dynamics of the

dilaton field in the following way S⊥ = −1
4Γ

2
0

´

e−
ζπ(z)

2 (l/z)dz
´

d4x
√−g4F̃

µν F̃µν

. And finally, we have that the longitudinal field also has its normalization
controlled by π(z), since the longitudinal part of the action with m = 0 is

given by S‖ = −1
2

´

e−
ζπ(z)

2 (z/l)5dz
´

d4x
√−g4∂µβ̃∂

µβ̃.
Finally, we can explore the effects of the brane cosmological expansion

on the dynamics of the massive mode. Assuming that β̃ = β̃(t) in m2 = 0,
the Eq.(32) leads to

¨̃
β + 3H

˙̃
β + 4λb̃2β̃ ≈ 0, (33)

where the dot is the derivative with respect to time and H = ȧ(t)
a(t) is the

Hubble factor. We can see again that the terms of the kinetic part of β
that depend on z cancel out with the mass terms due to the constraint
(22). Note also that the cosmological expansion produces a dissipative term
proportional to 3H. For an accelerated de Sitter phase, i.e., a(t) ∝ eH0t, the
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solution of equation (33) is given by

β̃ = β0e
− 1

2

(

3H0+
√

9H2
0−16λb̃2

)

t

(34)

where β0 and H0 are constants. Assuming H0 ≈ 1016GeV (inflation era),
the longitudinal mode decays in a damping time ∆t ≈ 10−16(GeV )−1, cor-
responding to a cosmic time 10−38 seconds. For m2

β = λb̃2 ∼ H2
0 , the

longitudinal mode has the same order as the GUT scale and it decays ex-
ponentially in time. For m2

β << H2
0 , β decays exponentially. On the other

hand, for m2
β > 9

16H
2
0 the massive mode exhibits a damped oscillation with

frequency ωβ =
√

16m2
β − 9H2

0 .

3.2. Timelike vev

Now let us consider a timelike VEV on the 3-brane, i.e.,

bM = (b(l/z),~0, 0), (35)

where b is a constant. This VEV configuration has a vanishing VEV field
stregth, bMN 6= 0. The transverse mode satisfies A0 ≈ 0.

The linearized Lagrangian for this timelike VEV is given by

eL̃KS ≈ −1
4eF

MNFMN − 1
4eb

MN bMN − 1
2e(∂iβ)(∂

iβ)− 1
2e(∂4β)(∂

4β)

+e(∂4b0)(∂
0A4)− e(∂4b0)(∂4(βb̂

0)) + e(∂0AN )(∂Nβ)b̂0 − 2eλb
2
β2.(36)

The term −1
4eb

MNbMN will act as a source for the transverse mode, as we
will see later.

We adopt a KK decomposition for the modes in order to decouple them.
Assuming that β = β̃(x1, x2, x3)̟(t)Υ(z), the Eq. (23) leads to

−
[

1

(l/z)2a3
∂0(a

3 ˙̟ )−
(

4

l2
− 3ä

a(l/z)2
+ b̂0�b̂0

)

̟

]

(l/z)2

̟
+

1

β̃
∂i∂iβ̃

+
1

(l/z)3Υ
∂4[(l/z)

3Υ′] + 4λb
2
(l/z)2 =

(l/z)2

β̟̃Υ

(

b̂0D0DNAN + (DN b0N )b̂0

)

.

(37)

If we consider the conservation law Eq.(22) for the timelike case, we found
that

bβ̃Υ

(l/z)a3
∂0

(

a3̟

)

= 0. (38)
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Thus, we have that ̟(t) = ̟0/a
3, where the ̟0 is a constant. Substituting

this solution in Eq.(37), we can see that the first term vanishes. Even so, the
modes are still tightly coupled. One possible setting for decoupling modes

is assuming that the right side of Eq.(37) is zero, i.e., D0DNAN = 3b
l2(l/z) .

Substituting this relation in Eq.(24), we find that the EoM for the transverse
mode is given by

DMFMN = jN , (39)

where

jN =

(

3b

l2(l/z)
,~0,

3bH(t)

l(l/z)2

)

. (40)

Thus, a source for transverse arises, since the VEV field strength bMN is
not vanish. Assuming that Aµ(x, z) = Ãµ(x)Γ(z) and A4 = 0 in Eq(39), we
find that

1√−g4
∂µ(

√
−g4g

µα
4 gij4 F̃αj) = m2Ãν (41)

and Γ(z) is given by Eq.(29). Again, we notice that the location of the AM

field in the brane with m2 = 0 occurs with the help of the dilaton field.
Furthermore, from Eq. (37) the EoM for the longitudinal mode are

∂i∂iβ̃ = −m̃2β̃ (42)

and

Υ′′ − 3

z
Υ′ +

(

4λb
2
(l/z)2 − m̃2

)

Υ = 0. (43)

For the massless longitudinal mode, i.e., m̃2 = 0, the solutions of the two

equations above are, respectively, Υ(z) = Υ0z
2(1±

√
1−λb

2
l2), where Υ0 is

a constant, and β̃ is solution of a Laplace’s equation. Let’s assume that

λb
2
l2 << 1, i.e., the LV mass is small, so that

√

1− λb
2
l2 ≈ 1 − λb

2
l2

2 and
that Υ vanishes at infinity, thus it is possible to find that

Υ(z) = Υ0z
−λb

2
l2 . (44)

Once we find solutions for massless mode of longitudinal field through
KK decomposition, we need to analyze the location of the fields in the brane

again. For the longitudinal field β, we have that S‖ = − l4Υ2
0

2

´

e−
ζπ(z)

2 z±2
√

1−λb
2
l2

(

´

∂iβ̃∂iβ̃
√−g4d

4x− 4(1±
√

1−λb
2
l2)2

z2

´

β̃2√−g4d
4x

)

dz.
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4. Final remarks and perspectives

We investigated how the curvature of spacetime modifies the fluctuations
of a self-interacting vector field that undergoes a spontaneous Lorentz sym-
metry breaking. By considering a spacelike extra dimension and a warped
geometry with a bulk cosmological constant, the bumblebee self-interaction
constant λ varies along the extra dimension.

Assuming a two parallel brane embedded in a AdS5 bulk (RS-I model),
the curved spacetime leads to an exponential suppression of the λ between
the branes. In the conformal coordinate (Poincaré patch), the bumblebee
VEV bM also decays with the extra dimension. Therefore, the AdS5 curva-
ture of RS-I model might explain the yet unobserved massive longitudinal
mode. The parameter α plays the role of a specific dilaton configuration. A
detailed analysis of a dilaton-bumblebee action and their respective Kaluza-
Klein (KK) states seems promising.

The curvature and the varying VEV turn the transverse NG AM and
longitudinal β modes highly coupled. Assuming the Kaluza-Klein decompo-
sition for the modes, we find a KK mass tower for the transverse mode. The
longitudinal mode only acquired a Lorentz violating mass, m2

β = λb2, for
the current conservation law prevents β to acquire KK masses. The brane
curvature due to the cosmological expansion leads to a dissipative term pro-
portional to the Hubble constant. For a De Sitter accelerated expansion,
the time decay is proportional to 1/H0. Thus, the cosmic expansion dilutes
the longitudinal mode leaving only the NG modes in late times.

For a timelike VEV, the longitudinal mode decouples from the NG modes
and it is not propagating, as in the Minkowski [9, 10]. In addition, assuming
a time-dependent amplitude, the massive mode decays with a−3. Therefore,
if the spontaneous violation of the Lorentz symmetry occurred in the early
universe, the inflationary period may have strongly suppressed the effects of
the longitudinal mode. This result suggests further analysis on the effects
of combined bumblebee, gravity and matter fluctuation effects in the early
universe.
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