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Abstract

In this letter, the open string is quantized in a time dependent black hole background. The

geometry is defined through an adiabatic approximation of the Vaydia metric. The worldsheet

two-point function is derived and it is shown to have the same type of singularity as the flat

space one. However, the equal times two-point function depends on the particular Cauchy surface

where the worldsheet fields are defined. Finite temperature effects are incorporated through the

Liouville-von Neumann approach to non equilibrium thermodynamics.
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I. INTRODUCTION

An outstanding challenge of high energy physics involves the consistent incorporation

of quantum phenomena in non trivial gravitational backgrounds, particularly in geometries

that do not have timelike Killing vectors. The quantization of fields in non trivial geometries

has taught us a lot about the quantum field theory itself and the same should happen in first

quantized string theory. From the pioneering work of Vega, Medrano and Sanchez in [1] to

the recent works in the AdS/CFT context [2], the quantization of the string in non trivial

backgrounds has shown results of great interest for high energy physics, in particular for

a better understanding of the string sigma model. Regarding time dependent backgrounds

with singularities, progress was made using time dependent plane wave backgrounds [3–

5], where it was studied string mode creation, time dependent entropy production and the

behaviour of the string at the cosmological singularities. In [6] it was studied a model that

admits a pre-Big Bang phase scenario and it was argued that the string passes through

the null singular point. In [7] it was shown that the left/right entanglement entropy of the

Green-Schwarz superstring is finite in the cosmological singularity of the background and

hence it is a good measure to explore string theory near singularities. In addition, it was

shown that the time dependent left/right closed string entropy has an equilibrium point

close to the singularity and, actually at the singularity, it is equal to the thermodynamic

entropy of an open string. Concerning black hole backgrounds, we would like to highlight

the work of [2], where the open string is quantized in a BTZ black hole background. In this

model, the bosonic string is hanging from the boundary of the AdS space and dipping into

the horizon. So, the end of the string at the boundary undergoes a random motion because

of the Hawking radiation of the transverse fluctuation modes, and it is identified with an

external particle in the CFT boundary exhibiting Brownian motion.

Despite all the progress that has been made in singular time dependent plane wave back-

grounds and the rich time dependent sigma model that comes from this type of background,

these geometries have timelike Killing vectors. In the present work, we are going to inves-

tigate a more involved situation: here, the open string is quantized in a time dependent

BTZ black hole, which is achieved from an adiabatic approximation of the Vaydia geome-

try. By considering only small fluctuations of the worldsheet field, only quadratic terms in

the Nambu-Goto action are taken into account. Using this approximation, the open string’s
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equation of motion is resolved in the limit
rh
l
<< 1, where rh is the horizon position at t = 0

and l is the AdS radius. In this limit the canonical quantization is carried out for worldsheet

fields localized in a particular Cauchy surface. The boundary conditions are chosen in such

a way that an end of the open string is attached to a brane that coincides with the position

of the horizon at t = 0. So, at t = 0, we have a scenario similar to the one of [2].

In the model studied in [2], the other end of the string is placed on the boundary of the

AdS, requiring a regularization in the definition of the string’s mass. Here we use a more

standard parametrization of the fundamental string in such a way that the spatial coordinate

σ belongs to the interval σ ∈ [ρh, ρh + 1], where ρh is the dimesionless horizon position. We

have the following picture: at t = 0, the open string is hanging between the horizon ρh and

a brane located at ρh+1; as time goes by, the horizon grows adiabatically so that the string

is hanging between points inside and outside the horizon. In this process, we are not taking

into account the interaction of the string with the thermal gas of closed strings of the black

hole background. This can be done because, for the background used here, the dilaton is

constant, so the string coupling constant can be kept small throughout the process.

An important ingredient to use string’s perturbative techniques is the two-point function.

To this end, it is necessary to carry out the mode summation for the string two-point function

and present it in terms of analytic functions. It is shown here that the singularity’s structure

of worldsheet two-point function at zero temperature is quite similar to the one calculated

for a flat space. However, owing to the fact that there is no timelike Killing vector at

the induced worldsheet metric, the equal times two-point function depends on time, which

means that it depends on the Cauchy surface where the worldsheet fields are defined. As the

induced worldsheet geometry is the same as that for the time dependent BTZ black hole,

the worldsheet fields are thermally excited. Nevertheless, because of the time dependence

of the background, we need a non equilibrium approach to take into account the thermal

effects. We use the Liouville-von Neumann (LvN) approach [8–10], which states that one

can study the evolution of non equilibrium systems with respect to invariants of the system

that satisfy the LvN equation. By choosing as invariant the thermal density matrix defined

at t = 0 (when the system is in equilibrium with the Hawking radiation), we show that the

thermal non equilibrium two-point function can be written in terms of Theta and Q-Gamma

functions.
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II. THE GEOMETRY

The simplest example of a time dependent black hole which is explored in string theory,

mainly in the context of AdS/CFT, is the Vaidya geometry [11–14]. It represents the collapse

of an idealized radiating star black hole and it has a time dependent horizon defining a time

dependent temperature, as it has been shown by several methods [15]. TheD+1 dimensional

Vaidya-AdS spacetime is given in Poincaré coordinates as

ds2 = −
(

r2 − m(v)

rD−2

)

dv2 + 2ldvdr +
r2

l2

D−1
∑

i=1

dx2
i , (1)

where v is the light-cone time and l is the AdS radius. This geometry accommodates two

kinds of surface of particular interest: the apparent horizon rah = 2m and the event horizon

reh [16]. The role played by the apparent horizon in AdS/CFT correspondence can be

studied, for example, in [13]. Following [17, 18], the event horizon satisfies the null surface

condition

1− 2m(v)

reh
− 2

dreh
dv

= 0 , (2)

which yields

reh =
2m(v)

1− ṙeh
, (3)

where ṙeh =
dreh
dv

. The corresponding radiation temperature is given by

T =
1− ṙeh
8πm(v)

=
1

reh
. (4)

It should be emphasized that, as the location of the event horizon depends on v, the shape

of the black hole, as well as the radiation temperature, changes with time. Note that, for
ṙeh
m(v)

≈ 0, the system resembles a BTZ black hole with time dependent temperature. More

precisely, this can be confirmed using the coordinate transformation

v =
t

l
+

l

2
√
m

ln
r −√

m

r +
√
m
. (5)

For m(v) constant, this transformation leads the metric to a BTZ black hole in Poincaré

coordinates [19]. By making the approximation
ṁ

m
≈ 0 in the coordinate transformation

(5), the 3-dimensional Vaidya spacetime becomes
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ds2 = −(r2 −m(t))

l2
dt2 +

l2

r2 −m(t)
dr2 +

r2

l2
dx2, (6)

which is the BTZ black hole with a time dependent horizon rh(t) = m(t). In [20] it is

shown that this kind of time dependent black hole results in singular behaviour of curvature

invariants at the horizon. However, as we are going to show, the singularities are proportional

to [ṁ(t)]2, which is zero in the adiabatic approximation.

Let’s calculate Christoffel’s symbols. Non-null components are

Γt
tt = −1

2

ṁ

r2 −m
= −Γr

rt

Γt
tr =

r

r2 −m
= −Γr

rr

Γr
tt =

r(r2 −m)

l4
= −Γr

xx

Γt
rr =

1

2

l4ṁ

(r2 −m)3
, Γx

xr =
1

r
(7)

So, the Riemann tensor components are

Rrr = − 2

r2 −m
−
(

ṁ

m

)2
2l4

m2(1− r2

m
)4

− l4m̈

2(r2 −m)3

Rtt = 2
r2 −m

l4
−
(

ṁ

m

)2
1

(1− r2

m
)2

− 1

2

m̈

r2 −m

Rtr = −1

2

(

ṁ

m

)

1

r(1− r2

m
)

Rxx = −2
r2

l4
(8)

Note that, if we assume a linear model (m̈ = 0), the Riemann tensor can be written as

Rµν(r, t) = −2
gµν(r, t)

l2
+

ṁ

m
Aµν(r, t) +

(

ṁ

m

)2

Cµν(r, t); µ, ν = t, r, x (9)

where the components of the matrices Aµν and Cµν can be read from equation (8) and

gµν(r, t) are defined in (6). It is easy to see now that, in the adiabatic approximation limit

( ṁ
m

→ 0), this solution can be used to construct a well defined string model. The one loop

worldsheet beta function’s equations, for a bosonic string propagating in a 3D background

with negative cosmological constant Λ = − 2
l2
, are
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Rµν + 2∇µ∇νφ− 1

4
HµλσHν

λσ = 0

∇µ(e−2φHµνρ) = 0

4∇2φ− 4(∇φ)2 +
4

l2
+R− 1

12
H2 = 0, (10)

where φ is the dilaton and Hµλα is the Kalb-Ramond field strength (H = dB). If we assume

that Rµν is given by equation (9) in the adiabatic limit, the equations (10) are solved by

φ = 0, Hµνρ =
2ǫµνρ
l

(11)

This is the same solution found in [21] for the usual time independent BTZ black hole. In

particular, in [22] it was shown that, for this kind of solution, the leading-order equations

remain exact to all orders in α′.

III. THE STRING ACTION

The model consists of an open string stretching between r = rh, the horizon position

at t = 0, and r = rc, which represents a D-brane position. In reference [2], rc is the AdS

boundary, and as rc → ∞, the string mass m must be regularized. In this work we are going

to take rc << l, where l is the AdS radius. This is a natural condition when it comes to

fundamental strings. In the background defined by equations (6) and (11), the string action

is written as

S = SNB + SB (12)

where the first term is the Nambu Goto action and SB is the coupling of the string with

the Kalb-Ramond field. For Hµνρ defined in (11), the only non zero component of the Bµν

field is Bxt =
r2

l
. We are going to use the static gauge, where the worldsheet coordinates

xa = (τ, σ) are identified with the spacetime coordinates t and r, and only the transversal

modes XI = XI(t, r) are dynamical. In this gauge, SB can be written as

SB = − 1

2πα′

∫

dtdrǫabBµν∂aX
µ∂bX

ν = − 1

πα′

∫

dtdr
r2

l
∂rX (13)
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It will become clear that this term will not contribute to the equations of motion in the

approximation we are using.

We focus now on the Nambu Goto action. For general planar D-dimensional AdS black

holes, the metric can always be written as follows

ds2 = gµνdx
µdxν = gabdx

adxb +GIJdX
IdXJ , (14)

where both gab and GIJ are independent of XI and xa = t, r. In the static gauge, the

Nambu-Goto action can be written as

SNG = − 1

2πα′

∫

dtdr
√

det γab , (15)

where the induced metric is γab = Gµν∂aX
µ∂bX

ν . The determinant can be written as

det(γab) =

∣

∣

∣

∣

∣

∣

Gµν
dXµ

dτ
dXν

dτ
Gµν

dXµ

dτ
dXν

dσ

Gµν
dXµ

dσ
dXν

dτ
Gµν

dXµ

dσ
dXν

dσ

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

gtt +Gxxẋ
2 Gxxẋx

′

Gxxx
′ẋ grr +Gxxx

′2

∣

∣

∣

∣

∣

∣

(16)

where

gtt = −(r2 −m(t))

l2
,

grr =
l2

r2 −m(t)
,

GXX =
r2

l2
, (17)

By expanding the Nambu-Goto action, we get a power series of ∂tX
I and ∂rX

I , which

produces worldsheet interactions. As we are going to study only small fluctuations of the

equilibrium value XI = 0, only quadratic terms in the action are considered. Since this

approximation implies the regime of small velocities |∂tXI | << 1, we are in fact taking

the non-relativistic limit. In the quadratic approximation, the Nambu-Goto action can be

written as

SNG ≈ − 1

2πα′

∫

drdt
√

g(r)gµν(r)GIJ(r)∂µX
I∂νX

J ,

≈ − 1

2πα′

∫

dtdr

(

r4

2l4
F (r, t)X ′2 − Ẋ2

F (r, t)

)

, (18)
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where

F (r, t) = 1− m(t)

r2
(19)

and g(r) = det gµν . In the second approximation equality we also dropped the constant term

that does not depend on X . The equation of motion is

−∂t

(

Ẋ

F (r, t)

)

+ ∂r

(

r4

l4
F (r, t)X

)

+
r

l
= 0 . (20)

where the last term comes from SB. Let’s define the dimensionless quantity

ρ =
r

rh
, G(ρ, t) = ρ2 −m(t) , (21)

In terms of ρ, the horizon position at t = 0 is located at ρ = 1 and the equation of motion

becomes

−r2h
l4

∂

∂ρ

[

ρ2G(ρ, t)X ′
]

+ ρ2
∂

∂t

[

Ẋ

G(ρ, t)

]

+
rh
l
ρ = 0 , (22)

where

Ẋ =
∂X

∂t
, X ′ =

∂X

∂ρ
. (23)

In the next section we are going to set the model for m(t) and find an appropriate approxi-

mation to solve the equation of motion.

IV. THE APPROXIMATION AND BOUNDARY CONDITION

A usual model concerning Vaidya black holes is m(t) = 1+tanh (at) so that, when t → 0,

the spacetime is a BTZ black hole with horizon rh, and the open string is in thermodynamic

equilibrium with Hawking radiation at temperature T0 =
rh
2πl2

. Then, the black hole expands

and the system reaches another equilibrium point at t → ∞ with Tf =
rh
πl2

. Note that, if we

take t → ∞, we also get an AdS spacetime. We are going to use a simplification and take

a linear model such that m(t) = 1 + at. In this model, the adiabatic approximation implies

a << 1. Actually, we are studying the adiabatic expansion of the black hole close to t = 0.
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Even for the simplest model m(t) = 1 + at, the equation of motion (23) does not have

analytical solution. However, as the string is stretched between ρ = ρc = 2 and ρ = 1

(the horizon position at t = 0), we can try to use the approximation
rhρ

l
<< 1 in order to

solve the equation of motion. Nevertheless, in this time dependent background we shouldn’t

expect to find a solution like X(ρ, t) = eiωtX(ρ) for some frequency ω. Based on the solution

of the equations of motion of the time independent BTZ model presented in [2], the following

solution is proposed

X = Y (ρ, t)

[

e
iρ l2ω

rh +Be
−iρ l2ω

rh

]

ρ
(24)

where ω has frequency dimension and B is a constant to be fixed by the boundary conditions.

We realize that for Y (ρ, t) = G(ρ, t)H(u), where u = (G2ω/a), we get the following equation

u2∂2
uH(u) + u∂uH(u) +

(

1

4
u2 − 1

4

)

H(u) +O
(rh
l

)

= 0 (25)

where O
(rh
l

)

represents higher orders in
rh
l
. The equation (25) is just the Bessel equation

of order 1/2 for H(u). At leading order in approximation
rh
l

<< 1, a solution of equation

(23) is

X(ρ, t) = A G(ρ, t)H1/2

(

G2ω

a

)

[eiπνρ +Be−iπνρ]

ρ
+ cc (26)

where H1/2

(

G2ω

a

)

is a Hankel function of order 1/2 and A is a normalization constant.

The dimensionless frequency ν and the dimensional one ω are related by the expression

ν =
l2ω

πrh
(27)

A. Boundary Condition

Now we are going to fix the constant B by imposing boundary conditions. The idea is to

have a fundamental string attached to two D-branes, where the position of the first D-brane

coincides with the position of the horizon at t = 0. In general the B constant implies that a

mode is reflected at ρ = ρc and falls back into the horizon with phase shift. Let us start this
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section discussing the possibility of imposing Neumann boundary conditions to the equation

of motion. By defining z =
G2ω

a
and using the following relations of Bessel functions

Hn(z) = Jn(z) + iYn(z) ,

J1/2(z) =

√

2

πz
sin z , J−1/2(z) =

√

2

πz
cos z ,

Yn+1/2(z) = (−1)n−1J−n−1/2(z) (28)

we get

∂X

∂ρ

∣

∣

∣

ρ=ρc
= 2i

ω

a
G(ρc, t)e

iz(ρc,t)
(

eiπρcν +Be−iπρcν
)

+eiz(ρc,t)
∂

∂ρ

[

eiπρν +Be−iπρν

ρ

]

ρ=ρc

+ cc (29)

Owing to time dependence of the first term, we can see that the solution (26) does not

support a Neumann-type boundary condition. So we choose ρ ∈ [1, 2] and impose the

following Dirichlet boundary conditions

X(ρ, t)|ρ=1 = 0, X(ρ, t)|ρ=2 = 0 (30)

We find that B = −1 and the frequencies are discretized. Therefore, we have the following

picture: the two string ends are fixed and, at t = 0, one of then is fixed at the initial

horizon position; as time runs, the horizon adiabatically crosses the string and we have a

situation where the string connects the exterior and the interior of the black hole. Taking

into account the properties of Bessel functions (28), it is easy to see that the worldsheet

field is well-defined at the time dependent horizon (ρ = at).

V. QUANTIZATION

In this section, we proceed our analysis with the quantization of the string. The canonical

commutation relations for the theory (18) are given by

[X(r), X(r′)]Σ = 0, [X(r), nµ∂µX(r′)]Σ =
2iπα′

√
h

GXXδ(r − r′),

[nµ∂µX(r), nν∂νX(r′)]Σ = 0. (31)
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where Σ stands for a Cauchy surface in the xµ = t, r part of the spacetime (14), hij is

the metric on Σ induced from gµν , and nµ is the future-pointing unit normal to Σ. The

worldsheet field is written as

X(ρ, t) =
∞
∑

ν=1

1√
ν
[aνuν(ρ, t) + a†νu

∗
ν(ρ, t)] (32)

with the normalized solutions

uν(ρ, t) = i

√

πα′

rha
G(ρ, t)H1/2

(

G2ω

a

)

sin(πνρ)

ρ
(33)

and u∗
ν being the complex conjugate of uν. For functions f

I(x), gI(x) satisfying the equation

of motion, we can define the following inner product1

(f, g)Σ = −
(

i

2πα

∫

Σ

dρ
√
hnµGIJ(f

I∂µg
J∗ − ∂µf

I gJ∗
)

. (34)

and it is not difficult to show that the canonical commutation relations (31) are equivalent

to

[(f,X)Σ, (g,X)Σ]Σ = (f, g∗)Σ (35)

∀f, g satisfying the equation of motion (23).

As the non zero components of gµν and GIJ are given by (17), we can choose

nµ = ((−gtt)
−1/2, 0, 0), (36)

such that gµνu
µuν = −1. The induced metric on Σ from gµν is just

hρρ = gρρ (37)

given in equation (17). Hence, for this model, the inner product for uν(ρ, t) and u∗
ν(ρ, t) is,

up to normalization constants,

(uν , u
∗
ν′)Σ = i

∫

Σ

dρ cosπρ(ν − ν ′)W (t) (38)

1 It can be shown that this inner product is independent of the choice of Σ, just as the standard Klein–

Gordon inner product [23].
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where W (t) is the wronskian

W (t) =
ωG2(ρ, t)

a

[

H1/2(ρ, t)∂tH
∗
1/2(ρ, t)− ∂tH1/2(ρ, t)H

∗
1/2(ρ, t)

]

, (39)

and we are using the notation H1/2

(

G2ω

a

)

→ H1/2 (ρ, t). Note that the term G2(ρ, t)

comes from the induced metric and the unitary vector nµ. The inner product in equation

(38) seems time dependent, but using properties of the Hankel functions one can see that

[H1/2(ρ, t)∂tH
∗
1/2(ρ, t)− ∂tH1/2(ρ, t)H

∗
1/2(ρ, t) =

−ia

ωG2(ρ, t)
(40)

so

(uν, u
∗
ν′)Σ = δ(ν − ν ′) . (41)

Therefore, it is straightforward to realize that the condition (41) implies the canonical com-

mutation relations (31) and

[aν , a
†
ν′] = νδ(ν − ν ′), [aν , aν′ ] = 0 , [a†ν , a

†
ν′] = 0 . (42)

Once we have chosen the Cauchy surface Σ and the vector nµ, we can define the vacuum

associated to Σ:

aν |0〉Σ = 0 . (43)

Owing to the time dependence of the induced worldsheet, it is expected that there will be no

string mode conservation and the vacuum is not unique. Although we are not studying here

string mode creation, we are going to show in the next section that the equal times two-point

function will depend on time, which means that will depend on Σ and consequently on the

choice of the vacuum.

VI. TWO-POINT FUNCTION

For metrics with timelike Killing vectors, the equal times worldsheet two-point function

does not depend on time. Let us show that this is not the case for the model studied in this
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article. Considering equations (32), (33) and (42), we are going to compute the two-point

function at equal times firstly at zero temperature limit, which is defined by

< 0|X(ρ, t)X(ρ′, t)|0 >=

=

∞
∑

ν=1

1√
ν

∞
∑

ξ=1

1√
ξ
< 0|[aνuν(ρ, t) + a†νu

∗
ν(ρ, t)][aξuξ(ρ, t) + a†ξu

∗
ξ(ρ, t)]|0 > . (44)

Here the vacuum is the one defined in (43) and the “equal times” means that ρ and ρ′

belongs to the same Cauchy surface Σ. After some manipulation of the expression given

above, we have

< 0|X(ρ, t)X(ρ′, t)|0 >=
πα′

4rha

∞
∑

ν=1

G(ρ, t)G(ρ′, t)

ρρ′
H1/2(z)H

∗
1/2(z

′)×

×[eiν(ρ−ρ′) − eiν(ρ+ρ′) − e−iν(ρ+ρ′) + e−iν(ρ−ρ′)] (45)

where z = G2ω/a. Using properties (28), we get

< 0|X(ρ, t)X(ρ′, t)|0 >=
α′l2

2r2h

1

ρρ′

∞
∑

ν=1

(eiνM − eiνN − eiνP + eiνQ)

ν
(46)

with the following definitions:

M = (ρ− ρ′)
[( rh

al2

)

(ρ+ ρ′)(ρ2 + ρ
′2 − 2m) + 1

]

N = (ρ+ ρ′)
[( rh

al2

)

(ρ− ρ′)(ρ2 + ρ
′2 − 2m) + 1

]

P = (ρ+ ρ′)
[( rh

al2

)

(ρ− ρ′)(ρ2 + ρ
′2 − 2m)− 1

]

Q = (ρ− ρ′)
[( rh

al2

)

(ρ+ ρ′)(ρ2 + ρ
′2 − 2m)− 1

]

(47)

Finally, after solving the sum, the expression (46) becomes

< 0|X(ρ, t)X(ρ′, t)|0 >= −α′l2

2r2h

1

ρρ′
ln[(1− eiM)(1− eiN)(1− eiP )(1− eiQ)] (48)

Note that, as ρ ≈ ρ′, the equal times two-point function has the same kind of singularity as

the flat space one. However, it is time dependent, which means that the behaviour of the

13



two-point function depends on worldsheet Σ surface which ρ and ρ′ belongs to. This is a

consequence of vacuum dependence on Σ.

Let us now move on to incorporate finite temperature effects. As it was shown in [24, 25],

near the horizon at t = 0 the worldsheet action is the same as that of a Klein–Gordon

field near a two-dimensional black hole. Then, the string modes are thermally excited,

presenting a black-body spectrum determined by the Hawking temperature. However, in

our time dependent model, we cannot naively construct a thermal density matrix defined

by (where H is the time dependent Hamiltonian of the system)

ρH =
1

Z
e−βH , (49)

just because this density matrix does not satisfy the quantum Liouville-von Neumann (LvN)

equation, and it is difficult to relate 1/β to the equilibrium temperature. Following the

references [8–10], one can study the evolution of non equilibrium systems with respect to

invariants of the system. By invariant one means an operator I defined on a Cauchy surface

Σ which satisfies the LvN equation, that is,
dI

dt
= 0. Given the invariant I, one can introduce

an analogue of the thermal density operator

ρI =
e−βI

Tre−βI
. (50)

that satisfies the LvN equation2 and Trρ̂I = 1. A convenient choice of invariant for the

system described here is I = H(t = 0) because it reduces to the standard choice in the case

of a time independent system, and just at t = 0 the system is at thermal equilibrium with

the BTZ Hawking temperature T0 = β−1 =
rh
2πl2

. Note that this is also consistent with the

adiabatic approximation provided that H(t) varies sufficiently slowly with time near t = 0.

At t = 0, the system is an open string attached between the BTZ horizon and a brane.

So, the invariant thermal density is the one described in [2], given by

ρI =
e−βH(0)

Tre−βH(0)
, H(0) =

∑

ω>0

ωa†ωaω. (51)

With this density matrix we can define thermal two-point function

2 The LvN approach was used in the context of string theory in [7] and [26].
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〈X(ρ, t)X(ρ′, t)〉β = Tr(ρIX(ρ, t)X(ρ′, t)) (52)

which can be written as

< |X(ρ, t)X(ρ′, t) >β = < 0|X(ρ, t)X(ρ′, t)|0 >

+ 2
α′l2

2r2h

1

ρρ′

∞
∑

ν=1

1

eβω − 1

(eiνM − eiνN − eiνP + eiνQ)

ν
(53)

As usual in real time finite temperature theories, the two-point function is written as a

sum of the zero temperature function and the finite temperature correction. Expressing the

bosonic distribution as a geometric series and using βω =
ν

2π
, we get

< |X(ρ, t)X(ρ′, t) >β=< 0|X(ρ, t)X(ρ′, t)|0 >

−α′l2

2r2h

1

ρρ′

∑

l=0

ln[(1− eiM− 1+l
2π )(1− eiN− 1+l

2π )(1− eiP− 1+l
2π )(1− eiQ− 1+l

2π )] (54)

The new series can be resolved in terms of theta (ϑ(q)) and q-Gamma functions (Γq(x)).

Defining

m(q) =

(

ϑ2(q)

ϑ3(q)

)4

K(q) =
π

2
ϑ3(q)

2

q = e−β, x = 1− i
y

2π
, (55)

and the function

F (x) =
∑

l=0

ln(1 + qx+l) = (1 + x) ln(1− q) +
1

24
ln

(

m(q)(1−m(q))4

16q

)

+
1

2
ln

(

2K(q)

π

)

− ln Γq(x) (56)

the finite temperature two-point function can be rewritten as

< |X(ρ, t)X(ρ′, t) >β = < 0|X(ρ, t)X(ρ′, t)|0 >

− α′l2

2r2h

1

ρρ′
[F (M) + F (N) + F (P ) + F (Q)] (57)
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where q-Gamma Γq(x) function is defined from the q-factorial (a; q)∞ =
∞
∏

k=1

(1−aqk), |q| < 1,

Γq(x) =
(q; q)∞(1− q)1−x

(qx; x)∞
, (58)

and the theta functions are defined by the usual product

ϑ2(q) = 2q1/8
∞
∏

n=1

(1− qn)(1 + q)2, ϑ3(q) = 2q1/8
∞
∏

n=1

(1− qn)(1 + qn+1/2)2 (59)

Using the relation

Γq(x) =
1− q

1− qx
Γq(x+ 1) , (60)

and ϑ-function properties, we can see that the short-distance behaviour of finite temperature

two-point function is the same as the zero temperature one, as usual in quantum field theory.

In particular, the only singular terms come from the zero temperature part.

VII. CONCLUSION

In this letter, the canonical quantization of the open string defined in a time dependent

BTZ black hole is carried on. The boundary conditions are such that the string is attached

between two branes, with the position of one of them coinciding with the position of the

horizon at t = 0. So, after t = 0, the endpoints of the open string connect points inside and

outside the horizon. This kind of configuration was studied in reference [27] for the Rindler

space, where its relation with the “stretched horizon” model was explored [28, 29].

Due to the temporal dependence of the induced metric, the vacuum depends on the

Cauchy surface (where the worldsheet fields are defined), orthogonal to a future-pointing

unit vector. This becomes clear when calculating equal times two-point function. Although

the short distance behaviour is the same as that observed in flat space, the equal times

two-point function is time dependent, which implies that it depends on the Cauchy surface.

As mentioned earlier, this is a consequence of the vacuum not being globally defined in the

worldsheet. As an application of this work, it would be important to investigate the scenario

studied in [2] and verify the effects of temporal dependence of the geometry on Brownian
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motion at the boundary of the AdS space. To this end, it will be necessary to solve the

equation of motion beyond the approximation
rh
l
<< 1.
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