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Abstract

This note is devoted to the splitting algorithm proposed by Davis and Yin in 2017
for computing a zero of the sum of three maximally monotone operators, with one
of them being cocoercive. We provide a direct proof that guarantees its convergence
when the stepsizes are smaller than four times the cocoercivity constant, thus doubling
the size of the interval established by Davis and Yin. As a by-product, the same
conclusion applies to the forward-backward splitting algorithm. Further, we use the
notion of “strengthening” of a set-valued operator to derive a new splitting algorithm
for computing the resolvent of the sum. Last but not least, we provide some numerical
experiments illustrating the importance of appropriately choosing the stepsize and
relaxation parameters of the algorithms.
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1 Introduction

When a problem has certain structure, it is normally useful to take advantage of it. Follow-
ing the divide-and-conquer paradigm, splitting algorithms iteratively solve simpler prob-
lems which are defined by separately using some parts of the original problem. A particular
subfamily are projection methods (see, e.g., [10, Chapter 5]), which can be used to find
a common point in the intersection of sets, based on projections of points defined in the
iterations into each of the sets. These methods are usually variations of classical itera-
tive schemes for finding fixed points of certain type of nonexpansive operators. Monotone
operator theory [7] permits to generalize these algorithms to tackle the far more general
problem of finding a zero of the sum of maximally monotone operators by using their
resolvents instead of the projectors (see Definitions 2.2 and 2.4).

There are many different splitting algorithms for computing a zero of the sum of two
maximally monotone operators (see, e.g., [7, Chapter 26]). Theoretically, one can always
transform any splitting algorithm for computing zeros of the sum of two operators into a
splitting algorithm for computing zeros of the sum of finitely many operators (see, e.g., [7,
Proposition 26.4]), thanks to Pierra’s product space reformulation [26]. Nevertheless,
numerical experience shows that this theoretical trick usually slows down the resulting
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algorithm (see, e.g., [1, Section 6.1]), especially when the number of operators is large
(see, e.g., [2, Section 4] and [8, Section 5]). To alleviate this problem, various schemes
requiring one space less in the product space have been recently proposed [9, 14, 23].

Only recently, three-operator splitting algorithms have been developed [18, 21, 27, 28,
29]. This note is devoted to one of them, which was introduced by Damek Davis and Wotao
Yin in [18], and is commonly referred as Davis–Yin splitting algorithm. The algorithm is
designed for solving the problem

find x such that 0 ∈ (A+B + T )(x), (1)

where all three operators involved are maximally monotone and act on a Hilbert space,
and T is also cocoercive (see Definition 2.1). Davis and Yin defined the operator

DYγ := JγB ◦ (2JγA − Id−γT ◦ JγA) + Id−JγA, (2)

where JγA and JγB denote the corresponding resolvents, and proved thatDYγ is α-averaged

for α = 2β
4β−γ when γ ∈ ]0, 2β[, where β > 0 is the cocoercivity constant of T . Then, they

defined their splitting algorithm through the standard Krasnosel’skĭi–Mann iteration

xk+1 = (1− λk)xk + λkDYγ(xk), k = 0, 1, 2, . . . , (3)

with λk ∈ ]0, 1/α[ satisfying the assumptions of [7, Proposition 5.16], from which its conver-
gence to a fixed point x of DYγ follows. Further, the shadow sequence (JγA(xk))k∈N weakly
converges to a solution to (1), and convergence is strong under additional assumptions.
Three well-known splitting algorithms can be obtained as a particular instance of Davis–
Yin’s, namely the Douglas–Rachford [22] (when T = 0), the forward-backward [22, 25]
(when A = 0) and the backward-forward [3] (when B = 0).

In this note we provide a direct proof of the convergence of the iterative method (3)
without relying on the averagedness of the operator DYγ (see Theorem 3.3). Our proof
has two key advantages: (i) it permits to simplify the assumptions on the relaxation
parameters, and (ii) it allows to choose the stepsize γ in ]0, 4β[ instead of ]0, 2β[. Observe
that the operator DYγ does not need to be averaged when γ > 2β (for instance, take
A = B = 0, T the identity, and apply DYγ to the points x = 1 and z = −1). As
a by-product, this shows that the stepsize in the forward-backward and the backward-
forward algorithms can be also chosen in ]0, 4β[. In addition, we derive in Theorem 3.6
a strengthened version of Davis–Yin splitting algorithm which permits computing the
resolvent of A+B + T .

Right before submitting this manuscript, we learnt about the recent preprint [17].
Using the notion of conically averaged operators introduced in [5], the authors prove
in [17, Corollary 4.2] that the operator (1− λ) Id +λDYγ is 2λβ/(4β − γ)-averaged when
γ ∈ ]0, 4β[, from which the convergence of (3) for a fixed λk = λ follows.

As a simple motivating example of the importance of the algorithm parameters, con-
sider the problem of finding the minimum norm point in the intersection of two balls A
and B in the Euclidean space whose intersection has nonempty interior. The problem can
be solved with Davis–Yin splitting algorithm, taking A and B as the normal cones to the
respective balls, and T as the identity mapping. Since the resolvents of the normal cones
are the projectors (see Example 2), which we denote by PA and PB, the iterative scheme
is given by

xk+1 = xk − λkPA(xk) + λkPB ((2− γ)PA(xk)− xk) , k = 0, 1, 2, . . . ,

2



x0

=1.5

= 2.5

s

x0

s

=
1.

5

=
2.

5

Figure 1: Behavior of Davis–Yin splitting algorithm for two starting points x0 and x̃0
and two stepsize parameters γ, with λk = 0.99(2− γ/2). The solution s is obtained after
projecting the fixed point onto A.

and (PA(xk))k∈N converges to the minimum norm point in A∩B (the normal cone sum rule
holds). Both the relaxation parameter λk and the stepsize γ have a big influence on the
behavior of the algorithm, as shown in Figure 1. In this example, since the cocoercivity
constant β is equal to 1, [18, Theorem 2.1] guarantees the convergence when the parameter
γ is taken in ]0, 2[, while Theorem 3.3 allows to take γ ∈ ]0, 4[. When the Davis–Yin
splitting algorithm is applied to the same problem with different starting points x0, it can
behave very differently depending on the parameters, as shown in Figures 1 and 2.
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Figure 2: Number of iterations needed until the shadow sequence gets sufficiently close to
the solution s (precisely, ‖PA(xk)− s‖ < 10−10) for different values of γ and λk = λ, with
starting points x0 (left) and x̃0 (right) shown in Figure 1.

In general, larger stepsizes are commonly believed to be associated with faster conver-
gence of algorithms, but this is not always the case, particularly when an algorithm has
several parameters. It is important to have in mind that the relaxation parameter λk of
the Davis–Yin splitting algorithm is upper bounded by 2 − γ

2β and that its value has an
important effect. If γ ∈ ]0, 2β[, overrelaxed steps (i.e., λk > 1) are allowed in (3), while
only underrelaxed steps can be taken when γ ≥ 2β. The fact that both the stepsize and
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the relaxation parameters are important is especially apparent when one considers the
particular case of A = B = 0 and T = ∇f for a differentiable function f whose gradient
is Lipschitz continuous with constant L = 1

β . In this case, the iteration (3) reduces to the
gradient descent scheme:

xk+1 = xk − γλk∇f(xk), k = 0, 1, 2, . . . . (4)

We observe in (4) that the stepsize of the algorithm is actually γλk, so the upper bound
2− γ

2β on the relaxation parameters λk entails γλk < 2β = 2
L , as expected.

Finally, it is important to recall that in practical applications only a lower bound of
the best cocoercivity constant β is usually known, and this can affect the performance of
the algorithms. For instance, consider again the application of the Davis–Yin algorithm
with starting point x̃0 shown on the right in Figure 2 and imagine that we underestimate
β to β̂ = 0.65 < 1 = β. Then, we observe in Figure 3 how the choice of a stepsize
parameter γ ∈ ]0, 2β̂[ excludes better values like γ̂ ∈ ]2β̂, 4β̂[. A typical choice for the
parameters of the forward-backward algorithm is γ = (2 − ε)β and λk = 1, for a small
ε > 0 (see, e.g., [13]). This example shows that, when only an estimate β̂ of the best value
of β is known, it can be worth testing the performance of the algorithm with parameters
γ = (2 + ε)β̂ and λk = 1− ε (i.e., with underrelaxation).
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Figure 3: Repetition of the experiment shown on the right of Figure 2. When only an
approximate value β̂ of the cocoercivity constant is known, choosing the stepsize γ ∈ ]0, 2β̂[
(shaded area) can exclude better choices like γ̂.

The remainder of this paper is structured as follows. In Section 2 we recall some
preliminary notions and results. In Section 3 we provide an alternative proof of convergence
of the Davis–Yin splitting algorithm and derive its strengthened version for computing the
resolvent of the sum. In Section 4 we include some illustrative numerical experiments. We
finish with some conclusions in Section 5.

2 Preliminaries

Throughout this paper, H is a real Hilbert space equipped with inner product 〈·, ·〉 and
induced norm ‖ · ‖. We abbreviate norm convergence of sequences in H with → and we
use ⇀ for weak convergence.
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A set-valued operator is a mapping A : H ⇒ H that assigns to each point in H a
subset of H, i.e., A(x) ⊆ H for all x ∈ H. In the case when A always maps to singletons,
i.e., A(x) = {u} for all x ∈ H, A is said to be a single-valued mapping and is denoted by
A : H → H. In an abuse of notation, we may write A(x) = u when A(x) = {u}. The
domain, the range, the graph, the set of fixed points and the set of zeros of A, are denoted,
respectively, by domA, ranA, graA, FixA and zerA; i.e.,

domA := {x ∈ H : A(x) 6= ∅} , ranA := {u ∈ H : ∃x ∈ H : u ∈ A(x)} ,
graA := {(x, u) ∈ H ×H : u ∈ A(x)} , FixA := {x ∈ H : x ∈ A(x)} ,

and zerA := {x ∈ H : 0 ∈ A(x)} .

The inverse operator of A, denoted by A−1, is defined through x ∈ A−1(u) ⇐⇒ u ∈ A(x).
The identity operator is denoted by Id.

Definition 2.1. We say that an operator T : H → H is

(i) L-Lipschitz continuous for L > 0 if

‖T (x)− T (y)‖ ≤ L‖x− y‖ ∀x, y ∈ H;

(ii) β-cocoercive for β > 0 if

〈x− y, T (x)− T (y)〉 ≥ β‖T (x)− T (y)‖2 ∀x, y ∈ H.

Note that, by the Cauchy–Schwarz inequality, any β-cocoercive mapping is 1
β -Lipschitz

continuous. When the operator is the gradient of a convex function, the Baillon–Haddad
theorem states that both notions are equivalent, see [4, Corolaire 10].

Definition 2.2. Let A : H⇒ H be a set-valued operator.

(i) A is said to be η-monotone for η ∈ R if

〈x− y, u− v〉 ≥ η‖x− y‖2 ∀(x, u), (y, v) ∈ graA.

Furthermore, an η-monotone operator A is said to be maximally η-monotone if there
exists no η-monotone operator B : H⇒ H such that graB properly contains graA.

(ii) A is said to be uniformly monotone with modulus φ : R+ → [0,+∞[ if φ is increasing,
vanishes only at 0, and

〈x− y, u− v〉 ≥ φ(‖x− y‖) ∀(x, u), (y, v) ∈ graA.

An operator is monotone (in the classical sense) if it is 0-monotone and it is η-strongly
monotone (in the classical sense) if it is η-monotone for η > 0, in which case it is uniformly
monotone with modulus φ(t) = ηt2, for t ∈ R+.

Definition 2.3. We say that an operator T : H → H is demiregular at x ∈ H if for all
sequences (xk)k∈N with xk ⇀ x and T (xk)→ T (x), we have xk → x.

The resolvent operator, whose definition is given next, is one of the main building
blocks of splitting algorithms.

Definition 2.4. Given an operator A : H ⇒ H, the resolvent of A with parameter γ > 0
is the operator JγA : H⇒ H defined by JγA := (Id +γA)−1.

5



The following result is a consequence of Minty’s theorem [24].

Proposition 2.5 (Resolvents of η-monotone operators). Let A : H ⇒ H be η-monotone
and let γ > 0 such that 1 + γη > 0. Then

(i) JγA is single-valued,

(ii) dom JγA = H if and only if A is maximally η-monotone.

Proof. See [15, Proposition 3.4].

Example 1. Let f : H →] −∞,+∞] be a proper, lower semicontinuous (lsc) and convex
function. Then, the subdifferential of f , which is the operator ∂f : H⇒ H defined as

∂f(x) = {u ∈ H : f(x) + 〈u, y − x〉 ≤ f(y), ∀y ∈ H},

is a maximally monotone operator. Furthermore, it holds that Jγ∂f = proxγf : H ⇒ H,
where proxγf is the proximity operator of f (with parameter γ) defined at x ∈ H by

proxγf (x) := argmin
u∈H

(
f(u) +

1

2γ
‖x− u‖2

)
,

see, e.g., [7, Theorem 20.25 & Example 23.3]. Some functions are prox-friendly, which
means that their proximity operator is easy to compute, see [11] for various examples.
This is the case for the `1-norm, whose proximity operator is the result of applying the
soft thresholding function:

proxγ‖·‖1(x) = sign(x)� [|x| − γ]+,

where � denotes element-wise product and [ · ]+ and | · | are applied element-wise. That
is, its i-th component is given by

proxγ‖·‖1(x)i =


xi + γ, if xi < −γ,
0, if |xi| ≤ γ,
xi − γ, if xi > γ,

for i = 1, 2, . . . , n. ♦

Example 2. Given a nonempty set C ⊆ H, the indicator function of C, ιC : H → ]−∞,∞],
is defined as

ιC(x) :=

{
0, if x ∈ C;
+∞, if x /∈ C.

When C is a convex set, ιC is a convex function whose subdifferential becomes the normal
cone to C, NC : H → H, given by

∂ιC(x) = NC(x) :=

{
{u ∈ H : 〈u, c− x〉 ≤ 0, ∀c ∈ C}, if x ∈ C,
∅, otherwise.

When C is nonempty, closed and convex, the normal cone NC is maximally monotone.
Furthermore, JNC = PC , where PC : H → H denotes the projector onto C, which is
defined at x ∈ H by

PC(x) := argmin
c∈C

‖x− c‖,

see, e.g., [7, Example 20.26 & Example 23.4]. ♦
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Fejér monotonicity is a key property in fixed point theory (see, e.g, [7, Chapter 5]).
It will allow us to derive weak convergence of the sequence generated by the Davis–Yin
splitting algorithm.

Definition 2.6. Let C be a nonempty subset of H and let (xn)n∈N be a sequence in H.
Then (xn)n∈N is Fejér monotone with respect to C if for all x ∈ C

‖xn+1 − x‖ ≤ ‖xn − x‖ ∀n ∈ N.

Proposition 2.7. Let C be a nonempty subset of H and let (xn)n∈N be a sequence in H.
Suppose that (xn)n∈N is Fejér monotone with respect to C and that every weak sequential
cluster point of (xn)n∈N belongs to C. Then (xn)n∈N converges weakly to a point in C.

Proof. See [7, Theorem 5.5].

3 Davis–Yin splitting algorithm

Let A,B : H⇒ H be two maximally monotone operators and let T : H → H be cocoercive.
Consider the problem

find x ∈ H such that 0 ∈ (A+B + T )(x).

The following lemma characterizes the set of zeros of the latter sum of operators in terms
of the set

Ωγ :=
{
x ∈ H : JγA(x) = JγB

(
2JγA(x)− x− γT (JγA(x))

)}
, (5)

with γ > 0, and shows that Ωγ = FixDYγ , where

FixDYγ = {u+ γy : u ∈ zer(A+B + T ), y ∈ (−B(u)− T (u)) ∩A(u)} , (6)

as shown in [18, Lemma 2.2].

Lemma 3.1. For every γ > 0, it holds

zer(A+B + T ) = JγA(Ωγ).

In particular, zer (A+B + T ) 6= ∅ ⇐⇒ Ωγ 6= ∅. Further, Ωγ = FixDYγ.

Proof. Observe that

u ∈ zer (A+B + T )⇔ −γT (u) ∈ (γA+ γB)(u)

⇔ (∃x ∈ H) x− u ∈ γA(u), u− x− γT (u) ∈ γB(u)

⇔ (∃x ∈ H) u = JγA(x), 2u− x− γT (u) ∈ (Id +γB)(u)

⇔ (∃x ∈ H) u = JγA(x), u = JγB(2u− x− γT (u)),

from where the first claim follows. Further, we have

x ∈ Ωγ ⇔ (∃u ∈ zer (A+B + T )) u = JγA(x), u = JγB(2u− x− γT (u))

⇔ (∃u ∈ zer (A+B + T )) x− u ∈ γA(u), x− u ∈ (−γB(u)− γT (u))

⇔ (∃u ∈ zer (A+B + T ) , ∃y ∈ (−B(u)− T (u)) ∩A(u)), x = u+ γy,

and thus, Ωγ = FixDYγ , by (6).
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Using a technique similar to the one employed in [1, Theorem 8], we can provide a direct
proof of the convergence of Davis–Yin splitting algorithm with the additional advantages of
both allowing a larger stepsize and having a simpler condition on the relaxation parameters
than [18, Theorem 2.1]. The proof makes use of the following technical lemma.

Lemma 3.2. Let A,B : H ⇒ H be two maximally monotone operators and T : H → H.
Let x, x̂ ∈ H and γ > 0, and set u := JγA(x), û := JγA(x̂), v := JγB(2u− x− γT (u)) and
v̂ := JγB(2û− x̂− γT (û)). Then, it holds

0 ≤ 〈x− x̂, (u− v)− (û− v̂)〉 − ‖(u− v)− (û− v̂)‖2 − γ〈T (u)− T (û), v − v̂〉. (7)

Further, if A (respectively B) is uniformly monotone with modulus φ, then (7) holds with
0 replaced by γφ(‖u− û‖) (respectively γφ(‖v − v̂‖)).

Proof. Since x− u ∈ γA(u) and x̂− û ∈ γA(û), monotonicity of γA yields

0 ≤ 〈(x− u)− (x̂− û), u− û〉. (8)

Likewise, since 2u−x−γT (u)−v ∈ γB(v) and 2û− x̂−γT (û)− v̂ ∈ γB(v̂), monotonicity
of γB implies

0 ≤ 〈(2u− x− γT (u)− v)− (2û− x̂− γT (û)− v̂), v − v̂〉
= 〈(v̂ − û)− (v − u), v − v̂〉 − 〈(x− u)− (x̂− û), v − v̂〉 − γ〈T (u)− T (û), v − v̂〉.

(9)

Summing together (8) and (9), we obtain

0 ≤ 〈(x− u)− (x̂− û), (u− v)− (û− v̂)〉+ 〈(v̂ − û)− (v − u), v − v̂〉 − γ〈T (u)− T (û), v − v̂〉
= 〈x− x̂, (u− v)− (û− v̂)〉 − ‖(u− v)− (û− v̂)‖2 − γ〈T (u)− T (û), v − v̂〉,

which proves (7). The last assertion easily follows from the definition of uniform mono-
tonicity.

Theorem 3.3 (Davis–Yin splitting). Let A,B : H⇒ H be two maximally monotone oper-
ators and T : H → H be a β-cocoercive operator, with β > 0, such that zer (A+B + T ) 6=
∅. Set a stepsize γ ∈ ]0, 4β[ and consider a sequence of relaxation parameters (λk)k∈N in

]0, 2− γ/(2β)] such that
∑

k∈N λk

(
2− γ

2β − λk
)

= +∞. Given some initial point x0 ∈ H,

consider the sequences defined by
uk = JγA(xk)

vk = JγB(2uk − xk − γT (uk))

xk+1 = xk + λk(vk − uk).
(10)

Then, the sequence (xk)k∈N is Fejér monotone with respect to the set Ωγ given in (5).
Moreover, the following assertions hold:

(i) xk ⇀ x̄ ∈ Ωγ, uk ⇀ ū, vk ⇀ ū, vk − uk → 0 and T (uk)→ T (ū) with

ū = JγA(x̄) = JγB(2ū− x̄− γT (ū)) ∈ zer (A+B + T ) .

Further, T (zer(A+B + T )) = {T (ū)}.

(ii) If either A or B is uniformly monotone on every bounded subset of its domain, or T
is demiregular at every point in zer (A+B + T ), then (uk)k∈N and (vk)k∈N converge
strongly to ū ∈ zer (A+B + T ).
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Proof. Define the sequences

(∀k ∈ N) zk := γT (uk) and wk := vk − uk

and note the following relations that (10) yields

(uk, xk − uk) ∈ gra γA and (vk, 2uk − xk − zk − vk) ∈ gra γB. (11)

Pick any x ∈ Ωγ and denote u := JγA(x). By definition of Ωγ , we have u = JγB(2u−
x − γT (u)). Applying Lemma 3.2 to x and x̂ := xk, observing that û = uk, v = u and
v̂ = vk, yields

0 ≤ 〈x− xk, wk〉 − ‖wk‖2 − γ〈T (u)− T (uk), u− vk〉. (12)

The first two terms in (12) multiplied by 2λk can be expressed as

2λk
(
〈x− xk, wk〉 − ‖wk‖2

)
= 2〈x− xk, xk+1 − xk〉 − 2λk‖wk‖2

= ‖xk − x‖2 − ‖xk+1 − x‖2 + λk(λk − 2)‖wk‖2.

Now, using the β-cocoercivity of T , the last term in (12) can be expressed as

−γ〈T (u)− T (uk), u− vk〉 = −γ〈T (u)− T (uk), u− uk〉+ γ〈T (u)− T (uk), wk〉
≤ −βγ‖T (u)− T (uk)‖2 + γ〈T (u)− T (uk), wk〉.

(13)

Using Cauchy–Schwarz and Young’s inequalities, the last term in (13) can be estimated
as

γ〈T (u)− T (uk), wk〉 ≤ βγ‖T (u)− T (uk)‖2 +
γ

4β
‖wk‖2. (14)

Combining (12)-(14), we have

‖xk+1 − x‖2 + λk(2− λk)‖wk‖2 ≤ ‖xk − x‖2 +
2γλk
4β
‖wk‖2.

As a result, we reach the expression

‖xk+1 − x‖2 + λk

(
2− γ

2β
− λk

)
‖wk‖2 ≤ ‖xk − x‖2. (15)

Since λk ≤ 2− γ/(2β), equation (15) implies that (xk)k∈N is Fejér monotone with respect
to Ωγ and thus, bounded. Since resolvents are nonexpansive and T is 1

β -Lipschitz contin-
uous (by Cauchy–Schwarz), it follows that (uk)k∈N, (zk)k∈N and (vk)k∈N are bounded.

(i): The Fejér monotonicity of (xk)k∈N implies that the sequence (‖xk − x‖)k∈N is
nonincreasing and convergent. Telescoping (15), we obtain

∑
k∈N

λk

(
2− γ

2β
− λk

)
‖wk‖2 ≤ ‖x0 − x‖2,

which implies lim infk→∞ ‖wk‖ = 0, since
∑

k∈N λk

(
2− γ

2β − λk
)

= +∞. To prove that

wk → 0, it suffices to show that the sequence (‖wk‖)k∈N is nonincreasing. Applying
Lemma 3.2 with x := xk+1 and x̂ := xk yields

0 ≤ 〈xk+1 − xk, wk − wk+1〉 − ‖wk+1 − wk‖2 − γ〈T (uk+1)− T (uk), vk+1 − vk〉.

9



The first two terms multiplied by 2 can be expressed as

2〈λkwk, wk −wk+1〉 − 2‖wk+1 −wk‖2 = λ2k‖wk‖2 −‖wk+1 −wk‖2 −‖wk+1 −wk + λkwk‖2,

while the third term is equal to

−γ〈T (uk+1)− T (uk), vk+1 − vk〉
= −γ〈T (uk+1)− T (uk), wk+1 − wk〉 − γ〈T (uk+1)− T (uk), uk+1 − uk〉

≤ γβ‖T (uk+1)− T (uk)‖2 +
γ

4β
‖wk+1 − wk‖2 − γβ‖T (uk+1)− T (uk)‖2

=
γ

4β
‖wk+1 − wk‖2,

where we have used again Young’s inequality and the cocoercivity of T . Therefore, we
deduce

0 ≤ λ2k‖wk‖2 − ‖wk+1 − wk + λkwk‖2 +

(
γ

2β
− 1

)
‖wk+1 − wk‖2

= λ2k‖wk‖2 − λ2k‖wk‖2 + 2λk〈wk+1 − wk,−wk〉+

(
γ

2β
− 2

)
‖wk+1 − wk‖2

= λk‖wk‖2 − λk‖wk+1‖2 +

(
γ

2β
− 2 + λk

)
‖wk+1 − wk‖2,

that is,

λk‖wk+1‖2 ≤ λk‖wk‖2 −
(

2− γ

2β
− λk

)
‖wk+1 − wk‖2 ≤ λk‖wk‖2,

so (‖wk‖)k∈N is nonincreasing, since λk > 0. Hence, we have proved that wk → 0.
Let (x̄, ū, z̄) be a weak sequential cluster point of the bounded sequence (xk, uk, zk)k∈N.

Hence, there is a subsequence of (xkn , ukn , zkn)n∈N which is weakly convergent to (x̄, ū, z̄).
Now, consider the operator S : H3 ⇒ H3 given by

S :=

(γA)−1

(γT )−1

γB

+

 0 0 − Id
0 0 − Id
Id Id 0

 ,

which is maximally monotone, because it is the sum of a maximally monotone operator and
a skew-symmetric matrix (see, e.g., [7, Example 20.35 & Corollary 25.5(i)]). From (11), it
follows that ukn − vknukn − vkn

ukn − vkn

 ∈ S
xkn − uknzkn

vkn

 .

As the graph of a maximally monotone operator is sequentially closed in the weak-strong
topology (see, e.g., [7, Proposition 20.38]), taking the limit as n→∞ and observing that
xkn − ukn ⇀ x̄− ū and vkn ⇀ ū (since wkn = vkn − ukn → 0), we deduce that0

0
0

 ∈
(γA)−1

(γT )−1

γB

+

 0 0 − Id
0 0 − Id
Id Id 0

x̄− ūz̄
ū

 .

The latter inclusion is equivalent to

ū = JγA(x̄), z̄ = γT (ū) and ū = JγB(2ū− x̄− z̄), (16)

10



which implies x̄ ∈ Ωγ . Therefore, every weak sequential cluster point of (xk)k∈N is con-
tained in Ωγ , and Proposition 2.7 implies that (xk)k∈N is weakly convergent to a point
x̄ ∈ Ωγ . Then (16) shows that ū = JγA(x̄) and z̄ = γT (ū) are the unique cluster points of
(uk)k∈N and (zk)k∈N, respectively, and hence uk ⇀ ū, vk ⇀ ū and zk ⇀ z̄.

Moreover, since x was arbitrarily chosen in Ωγ , (12) and (13) also hold with u replaced
by ū and x replaced by x̄. From the resulting inequalities, we obtain

βγ‖T (ū)− T (uk)‖2 ≤〈x̄− xk, wk〉+ 〈uk − ū, wk〉
+ 〈ū− vk, wk〉+ γ〈T (ū)− T (uk), wk〉,

(17)

and thus T (uk)→ T (ū). Now, by Lemma 3.1, we know that ū ∈ zer (A+B + T ).
Finally, pick any ũ ∈ zer (A+B + T ). By Lemma 3.1, there is x̃ ∈ Ωγ such that

ũ = JγA(x̃). Setting x = x̃ at the beginning of the proof, (17) becomes

βγ‖T (ũ)− T (uk)‖2 ≤〈x̃− xk, wk〉+ 〈uk − ũ, wk〉+ 〈ũ− vk, wk〉+ γ〈T (ũ)− T (uk), wk〉.

Since xk ⇀ x̄, uk ⇀ ū, vk ⇀ ū, wk → 0 and T (uk) → T (ū), the inequality above implies
T (ū) = T (ũ). This proves that T (zer(A+B + T )) = {T (ū)}.

(ii): Assume first that A is uniformly monotone. Since the sequence (uk)k∈N is bounded,
the set {ū} ∪ {uk, k ≥ 0} ⊂ domA is bounded. Thus, using uniform monotonicity in
Lemma 3.2 with x := x̄ and x̂ := xk, we obtain the stronger inequality

γφ(‖ū− uk‖) ≤ 〈x̄− xk, wk〉 − ‖wk‖2 − γ〈T (ū)− T (uk), ū− vk〉,

which entails γφ(‖ū − uk‖) → 0. Since φ is increasing, we deduce that uk → ū, which
implies vk → ū. When B is uniformly monotone, the result similarly follows.

Finally, suppose that the demiregularity assumption holds. By (i), we know that
uk ⇀ ū and T (uk) → T (ū), so the demiregularity of T at ū implies that uk → ū. Since
vk − uk → 0, we also obtain that vk → ū.

Remark 1. (i) The stepsize γ in [18, Theorem 2.1] is assumed to be in ]0, 2βε[, with
ε ∈ ]0, 1[, while Theorem 3.3 allows to take stepsizes in the interval ]0, 4β[, which is twice
larger. Note that our assumption is required to guarantee that 2 − γ/(2β) > 0. The
relaxation parameters (λk)k∈N in [18, Theorem 2.1] must be taken in ]0, 2− ε[, while the
interval given in Theorem 3.3 is ]0, 2−γ/(2β)]. If γ ∈ ]0, 2βε[, we have 2−ε < 2−γ/(2β).
Thus, Theorem 3.3 additionally allows to take some of the relaxation parameters equal to

2− γ/(2β) (but not all of them, as we need
∑

k∈N λk

(
2− γ

2β − λk
)

= +∞, unless either

A or B is uniformly monotone). Finally, unlike [18, Theorem 2.1], we do not require the
assumption infk∈N λk > 0.

(ii) In Theorem 3.3(ii), even when
∑

k∈N λk

(
2− γ

2β − λk
)
< +∞, we have proved that the

sequence (uk)k∈N (respectively (vk)k∈N) is strongly convergent to ū when A (respectively
B) is uniformly monotone.
(iii) Observe that it is also possible to prove xk ⇀ x̄ ∈ Ωγ using the notion of conically
averaged operators recently introduced in [5], not only for a fixed relaxation parameter
λk = λ, as it was done in [17, Corollary 4.2]. Indeed, by [17, Theorem 4.1], the operator
DYγ in (2) is conically (2− γ/(2β))−1-averaged, so [5, Proposition 2.9] can be applied to
deduce the convergence of the Krasnosel’skĭi–Mann iteration (3) to a fixed point of DYγ ,
which belongs to Ωγ by Lemma 3.1. ♦

As a corollary, we obtain the following convergence result for the forward-backward
splitting algorithm that allows doubling the range of the stepsizes assumed in [7, Theo-
rem 26.14] (which is a particular case of [12, Proposition 4.4]). Although this wider range
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of the stepsizes has been shown before in [21, 19, 20], it has not yet become widely known
in the literature.

Corollary 3.4. Let B : H ⇒ H be a maximally monotone operator and T : H → H be
a β-cocoercive operator, with β > 0, such that zer (B + T ) 6= ∅. Set a stepsize γ ∈ ]0, 4β[
and consider a sequence of relaxation parameters (λk)k∈N in ]0, 2 − γ/(2β)] such that∑

k∈N λk

(
2− γ

2β − λk
)

= +∞. Given some initial point x0 ∈ H, consider the sequences

defined by {
yk = xk − γT (xk)

xk+1 = xk + λk(JγB(yk)− xk).

Then, the following assertions hold:

(i) (xk)k∈N converges weakly to a point x̄ ∈ zer (B + T ) and (T (xk))k∈N converges
strongly to the unique dual solution T (x̄).

(ii) If either B is uniformly monotone on every bounded subset of its domain, or T is
demiregular at every point in zer (B + T ), then (xk)k∈N converges strongly to x̄ ∈
zer (B + T ).

Proof. Apply Theorem 3.3 withA = 0. By Theorem 3.3(i), T (x)→ T (x̄) and T (zer (B + T )) =
{T (x̄)}, which is the solution to the dual problem, see [7, Proposition 26.1(iv)].

We conclude this section by deriving a splitting algorithm for computing the resolvent
of A + B + T . To this aim, we use the systematic framework developed in [1], based on
the notion of strengthening of an operator.

Definition 3.5. Let θ > 0, σ ∈ R and let w ∈ H. Given A : H ⇒ H, the (θ, σ)-

strengthening with inner perturbation w of A is the operator A
(θ,σ)
w : H⇒ H defined by

A(θ,σ)
w := A ◦ (θ Id−w) + σ Id .

Theorem 3.6 (Strengthened-Davis–Yin splitting). Let A,B : H ⇒ H be maximally αA-
monotone and αB-monotone operators, respectively, and let T : H → H be a β-cocoercive
and maximally αT -monotone operator, with β > 0. Let θ > 0, σA, σB ∈ R and σT ≥ 0 be
such that

σA + σB + σT > 0 and (θαA + σA, θαB + σB, θαT + σT ) ∈ R3
+ \ {03}. (18)

Let µ := (θ/β + σT )−1 and γ ∈ ]0, 4µ[. Consider a sequence of relaxation parame-

ters (λk)k∈N in ]0, 2 − γ/(2µ)] verifying
∑

k∈N λk

(
2− γ

2µ − λk
)

= +∞. Suppose q ∈

ran
(

Id + θ
σA+σB+σT

(A+B + T )
)

. Given any x0 ∈ H, consider the sequences
uk = J γθ

1+γσA
A

(
1

1 + γσA
(xk + γσAq)

)
vk = J γθ

1+γσB
B

(
1

1 + γσB
((2− γσT )uk − xk − θγT (uk) + γ(σB + σT )q)

)
xk+1 = xk + λk(vk − uk).

(19)

Then (uk)k∈N and (vk)k∈N are weakly convergent to J θ
σA+σB+σT

(A+B+T )(q), and (xk)k∈N is

weakly convergent to x̄, with

J γθ
1+γσA

A

(
1

1 + γσA
(x̄+ γσAq)

)
= J θ

σA+σB+σT
(A+B+T )(q).
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Further, if θαA + σA > 0 (respectively θBα + σB > 0) then the convergence of (uk)k∈N

(respectively (vk)k∈N) is strong, even when
∑

k∈N λk

(
2− γ

2µ − λk
)
< +∞.

Proof. Set x̂0 := 1
θ (x0 − q) and consider the sequences

ûk = J
γA

(θ,σA)
−q

(x̂k)

v̂k = J
γB

(θ,σB)
−q

(
2ûk − x̂k − γT

(θ,σT )
−q (ûk)

)
x̂k+1 = x̂k + λk(v̂k − ûk).

(20)

By (18) and [16, Proposition 2.1], the operators A
(θ,σA)
−q , B

(θ,σB)
−q and T

(θ,σT )
−q are max-

imally monotone, and by [1, Theorem 1(iii)], T
(θ,σT )
−q is µ-cocoercive. By assumption,

q ∈ ran
(

Id + θ
σA+σB+σT

(A+B + T )
)

, and thus (18) and [1, Proposition 3] imply that

zer
(
A

(θ,σA)
−q +B

(θ,σB)
−q + T

(θ,σT )
−q

)
=

{
1

θ

(
J θ
σA+σB+σT

(A+B+T )(q)− q
)}

. (21)

By Theorem 3.3(i), ûk ⇀ û and v̂k ⇀ û, with

û ∈ zer
(
A

(θ,σA)
−q +B

(θ,σB)
−q + T

(θ,σT )
−q

)
,

and x̂k ⇀ x̂, where x̂ satisfies

û = J
γA

(θ,σA)
−q

(x̂) ∈ zer
(
A

(θ,σA)
−q +B

(θ,σB)
−q + T

(θ,σT )
−q

)
. (22)

If θαA + σA > 0 (respectively θαB + σB > 0), then ûk → û (respectively v̂k → û) by

Theorem 3.3(ii), even if
∑

k∈N λk

(
2− γ

2µ − λk
)
< +∞. Thanks to [16, Proposition 2.1],

we may rewrite (20) as
θûk + q = J γθ

1+γσA
A

(
θ

1 + γσA
x̂k + q

)
θv̂k + q = J γθ

1+γσB
B

(
θ

1 + γσB
(2ûk − x̂k − γ (T (θûk + q) + σT ûk)) + q

)
Further, by (22), (21) and [16, Proposition 2.1],

J θ
σA+σB+σT

(A+B+T )(q) = θJ
γA

(θ,σA)
−q

(x̂) + q = J γθ
1+γσA

A

(
θ

1 + γσA
x̂+ q

)
.

The result follows by making the change of variables (xk, uk, vk) := (θx̂k+q, θûk+q, θv̂k+q)
for all k ∈ N and x̄ := θx̂+ q. The final assertion is a consequence of Remark 1(ii).

Remark 2. Another way of computing the resolvent with parameter µ > 0 of A+B+T at
q ∈ H is applying the Davis–Yin splitting algorithm to A, B and T̃ := 1

µ(Id−q)+T , where

T̃ is
(
β−1 + µ−1

)−1
-cocoercive, by [1, Theorem 1(iii)], and β is the cocoercivity constant

of T . Note that this is a particular instance covered by Theorem 3.6, taking σT = 1
µ ,

σA = σB = 0 and θ = 1. ♦
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4 Numerical experiments

In this section we provide some numerical examples of the algorithms developed in the
previous section. These experiments aim not to be exhaustive and only intend to show
the importance of appropriately choosing the stepsize and the relaxation parameters of
the algorithms.

4.1 A feasibility problem with hard and soft constraints

Let A,B,C ⊆ Rn be three closed and convex sets with nonempty intersection of the relative
interiors of A and B. Suppose A and B are hard constraints, which need to be satisfied,
and C is a third soft constraint, which does not necessarily need to be fulfilled, but whose
violation we want to reduce as much as possible. Imagine that, at the same time, we would
like to find a point in A ∩ B as close as possible to a point q ∈ Rn. This problem can be
written as

argmin
x∈A∩B

1

2
d2(x,C) +

ρ

2
‖x− q‖2, (23)

where d2(x,C) := ‖x − PC(x)‖2 and ρ > 0 is a regularization parameter specifying the
importance of remaining close to the point q. Problem (23) can be reformulated as

argmin
x∈Rn

ιA(x) + ιB(x) +
1

2
‖x− q‖2 +

1

2ρ
d2(x,C),

whose solution is given by prox(
ιA+ιB+

1
2ρ
d2(·,C)

)(q). The subdifferential sum rule (see,

e.g., [7, Corollary 16.50(v)]) guarantees the equality

prox(
ιA+ιB+

1
2ρ
d2(·,C)

)(q) = J(
∂ιA+∂ιB+∇

(
1
2ρ
d2(·,C)

))(q) = J(
NA+NB+

1
ρ
(Id−PC)

)(q),

and thus, solving (23) boils down to computing the resolvent at q of the sum of the three
maximally monotone operators A := NA, B := NB and T := 1

ρ (Id−PC), with T being
1
ρ -cocoercive (see, e.g., [7, Corollary 12.31]).

To illustrate on the problem (23) the behavior of the Davis–Yin algorithm and its
strengthened version derived in Theorem 3.6, we retake our simple introductory example
of two balls A and B centered at (−1.6,−0.75) and (−0.35, 0.12), with radii 0.55 and 1,
respectively. We chose these values to make the problem slightly challenging. We now
add a new third ball C with center (1,−1) and radius 0.5, the point q := (−1.75, 1.5) and
take ρ := 1. Observe that any combination of σA ≥ 0, σB ≥ 0 and σT ≥ 0 such that
θ := σA +σB +σT > 0 satisfies the hypotheses of Theorem 3.6. Although finding the best
values is beyond the scope of this work, for comparison, we tested the result of running the
algorithm (19) with (σA, σB, σT ) = (0, 0, 1/µ) (which corresponds to Davis–Yin splitting,
see Remark 2) and (σA, σB, σT ) = (0, 1, 1), using as starting point x0 := (0.7, 1.7). In
accordance with Theorem 3.6, the stepsize γ must be chosen so that γ

µ ∈ ]0, 4[, for µ =

((σA+σB+σT )ρ+σT )−1. In Figure 4 we have represented the iterates for λk = 0.99(2− γ
2µ)

and for two values of γ
µ , namely 1.5 (overrelaxation) and 2.5 (underrelaxation).

In order to obtain the best combination of the stepsize and relaxation parameters,
we run the algorithms for every possible value of ( γµ , λ) on a grid with 4950 points in
]0, 4[×]0, 2[. The algorithms were stopped when the norm of the difference between the
shadow sequence PA(xk) and the solution to the problem was smaller than 10−8. The so-
lution, which is approximately equal to (−1.227559,−0.3452923), was computed in Maple
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Figure 4: Behavior of the iterates of the Davis–Yin (left) and the strengthened-Davis–
Yin (right) splitting algorithms for the problem (23) for two stepsize parameters γ and
λk = 0.99(2 − γ/(2µ)). Since σA = 0, the solution is obtained after projecting the fixed
point onto the set A.

by numerically solving the KKT conditions with high precision. A contour plot repre-
senting the number of iterations is shown in Figure 5. The minimum number of iter-
ations for Davis–Yin was 17 and it was attained at ( γµ , λ) = (3.11, 0.43), and for the

strengthened-Davis–Yin was 16 and it was reached at three pair of values of γ
µ and λ,

namely γ
µ = 2.34, λ ∈ {0.79, 0.81} and γ

µ = 2.39, λ = 0.79.
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Figure 5: Number of iterations needed until the shadow sequence is sufficiently close to
the solution s when the Davis–Yin (left) and the strengthened-Davis–Yin (right) splitting
algorithms are applied for different values of γ and λk = λ, with the experiment setting
shown in Figure 4.

4.2 Image recovery via `1 regularization

The restoration of blurred images using `1 regularization has become a standard appli-
cation in the literature to test the performance of forward-backward algorithms, see [6].
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This consists in solving a minimization problem of the form

argmin
x∈Rn

µ‖x‖1 +
1

2
‖Mx− b‖22, (24)

where M ∈ Rm×n, b ∈ Rm is the observed blurred image (the vectorization of the two-
dimensional matrix) and µ > 0 is a regularization parameter. Setting B = ∂ (µ‖ · ‖1)
and T = MT (Mx − b), this problem can be reformulated as finding a zero of the sum
B + T of two maximally monotone operators. Since T is Lipschitz continuous, we can
employ the forward-backward algorithm (i.e., Davis–Yin with A = 0), to solve (24). Note
that the proximity operator of the `1-norm is the well-known soft thresholding function
from Example 1. As pixel values must be in [0, 1], it is more realistic to solve instead the
problem

argmin
x∈[0,1]n

µ‖x‖1 +
1

2
‖Mx− b‖22,

Setting A = N[0,1]n and B and T as above, this problem can be solved without much
additional effort using the Davis–Yin splitting algorithm.

For our tests we replicated the wavelet-based restoration method in [6, Section 5.1.],
including the additional constraint x ∈ [0, 1]n. We also ran our experiments without this
constraint (applying thus forward-backward) and the results were basically the same, so we
do not include them for brevity. We employed as observed images the widely-used 256×256
pixels cameraman image and a picture of a symbol from the University of Alicante: the
sculpture “Dibuixar l’espai” (by Pepe Azoŕın), with a resolution of 600× 800 pixels. The
images, shown in Figure 6, were subjected to a Gaussian 9×9 blur with standard deviation
4, followed by an additive zero-mean Gaussian noise with standard deviation 10−3. We
chose M = RW , where R is the matrix representing the blur operator and W is the
inverse of the three stage Haar wavelet transform. The regularization parameter was
taken as µ = 2 · 10−5. The Lipschitz constant of T is the spectral radius of MTM , which
is equal to 1. Thus, T is 1-cocoercive and the stepsize in the Davis–Yin algorithm can be
chosen in the interval ]0, 4[. For values of (γ, λ) on a grid with 4950 points in ]0, 4[×]0, 2[,
we performed 200 iterations of the algorithm taking as initial image the observed blurred
image. Figure 7 shows the value of the objective function in the final iteration. We observe
a symmetry with respect to the diagonal. The lowest values of the objective function were
0.349 for the cameraman and 2.684 for the sculpture, and they were both attained at
(γ, λ) = (1.98, 0.99).

5 Conclusions

We have presented an alternative proof of convergence for the Davis–Yin splitting algo-
rithm without requiring the Davis–Yin operator (2) to be averaged. The proof was solely
based on monotone operator theory and has the additional advantage of allowing larger
stepsizes, up to four times the cocoercivity constant of the single-valued operator, doubling
thus the range of values allowed in [18]. As a consequence, the same conclusion applies to
the forward-backward splitting algorithm. We have also derived a strengthened version of
the algorithm for computing the resolvent of the sum, based on the framework developed
in [1]. The numerical experiments included show the importance of appropriately selecting
the stepsize and relaxation parameters. In most of our tests, the behavior of the algorithm
with respect to the parameters was symmetric, as the one shown in Figure 7. Selecting
the best parameters is not a simple task, but even so, it is clear that having more freedom
in the choice of the stepsize parameter can only be advantageous.
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Figure 6: Original (left), observed blurred (middle) and restored (right) images, showing
the cameraman at the top and the sculpture “Dibuixar l’espai” at the bottom. The Davis–
Yin algorithm was applied for 200 iterations with γ = 1.98 and λ = 0.99, using as starting
point the observed blurred image.

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

0.37

0.4

0.5

0.75
1

2
5

10
20

0.35

0.37

0.40

0.50

0.75

1.00

2.00

5.00

10.00

20.00

objective value

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

2.7

2.8

33.2

3.5
4

5
6

7

891020

30

2.68

2.80

3.20

4.00

6.00

8.00

10.00

30.00

objective value

Figure 7: Objective function value after 200 iterations of the forward-backward algorithm
applied to the cameraman (left) and the sculpture “Dibuixar l’espai” (right), for different
values of γ and λ, and taking as starting point the observed blurred image.
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