
Optimization Based Collision Avoidance for Multi-Agent Dynamical
Systems in Goal Reaching Task

Adarsh Patnaik1 and Ashish Ranjan Hota2

Abstract— This work presents a distributed MPC-based ap-
proach to solving the problem of multi-agent point-to-point
transition with optimization-based collision avoidance. The
problem is formulated motivated by the work on collision
avoidance for multi-agent systems and dynamic obstacles. With
modifications to the formulation, the problem is converted into
a distributed problem with a separable objective and coupled
constraints. The problem is divided into local sub-problems
and solved using Alternating Directions Method of Multipliers
(ADMM) applied on an augmented local lagrangian objective.
This work aims to understand the multi-agent point-to-point
transition problem as an extension of optimization-based colli-
sion avoidance and analyze the aspects of computational times,
reliability, and optimality of the solution obtained.

I. INTRODUCTION

Trajectory optimization for robotics is a very common
problem which has seen several advancements over time.
From providing simple hand designed trajectories, to graph
based search methods and random sampling methods, and
finally the use of high level analytical and numerical op-
timization methods for optimizing state space trajectories.
With the availability of computational resources, Model
Predictive Control (MPC) has been recently used for online
trajectory optimization. With the use of MPC, the extensive
knowledge of the dynamics of various robots can now be
used to perform model based optimization. This expands
to a variety of systems with linear, non-linear and hybrid
dynamics where MPC can be used to optimize trajectories
in real time with robust constraint satisfaction.

Recently, MPC has also been used for multi-agent systems
with the introduction of distributed MPC approach. One of
the key challenges associated with trajectory optimization
for multi-agent systems is efficient cooperation among the
agents to maximize a global objective while satisfying local
constraints like collision avoidance with other agents. This
problem is hard to solve due to the non-convex objectives
and constraints associated with it and due to scalability issues
with higher number of agents. We consider the problem of a
swarm of agents modelled as point masses with the objective
of point to point transitions for each of the agent. This
problem has a local objective for each of the agents while it
also needs to satisfy global constraints like collision avoid-
ance dependant on the dynamics of other agents. Several
formulations and optimization methods have been discussed
for similar problems. We model the problem with linearly

1Department of Mechanical Engineering, Indian Institute of Technology
Kharagpur

2Department of Electrical Engineering, Indian Institute of Technology
Kharagpur

separable objective and global coupled collision avoidance
constraints and use distributed MPC for solving the global
problem in a distributed fashion.

Distributed MPC based approaches aim to use consensus
based distributed optimization algorithms that can help to
divide the large complex problem in smaller sub-problems
which can be handled by each agent separately. Optimization
methods like Alternating Direction Method of Multipliers
(ADMM) have been used to solve the distributed MPC
problem and have proved to be computationally efficient
for real time operations. In this work, we solve the multi-
agent point to point transition problem using an ADMM
based distributed MPC algorithm. The key contributions of
this work is are (1) An extension of the optimization based
collision avoidance constraints to multi-agent systems, (2)
Formulation of a distributed optimization problem for multi-
agent point to point transitions, and (3) an ADMM based
distributed MPC approach to solve the given optimization
problem.

We first discuss the problem formulation in the section
III. Within the problem formulation, we first look at the
system dynamics considered for our problem. Next we
discuss the single agent objective and the obstacle avoidance
constraints for each of the agent. Using this information
we formulate the global optimization problem with linearly
separable objective and coupled constraints. Next we present
the formulation of the global problem in a distributed form
and the distributed optimization method used to solve the
problem. Section V discusses the details of the practical
implementation and experiments conducted to show the
effectiveness of the method and the analysis of the results in
simulation. We finally discuss the conclusions and the future
work in Section VI.

II. RELATED WORK

Trajectory optimization for multi-agent systems is a grow-
ing field of research attracting a lot of attention due to
the significant applications of multi-agent systems of robots.
The work related to the field spans across different problem
statements and applications. Considerable work has been
done on trajectory optimization for aerial robotic swarms
in different scenarios. Works like [1], [2] focus on for-
mation control and multi-agent path following tasks which
are becoming increasingly popular. Several work like [3],
[4] consider the problem of transporting heavy suspended
payloads using a swarm of aerial robots which combines
the use of geometric control and distributed optimal control.
Various exploration and target searching applications also

ar
X

iv
:2

10
8.

01
32

0v
1

 [
cs

.R
O

]
 3

 A
ug

 2
02

1

have considerable works like [2], [5]. A variety of distributed
methods [6], [7] based on Alternating Direction Method of
Multipliers (ADMM) and mixed integer programs have also
come up on how to optimize such optimization problems.

Optimization based collision avoidance strategies require
to incorporate the condition into a trajectory optimization
problem like MPC. Several work [8]–[10] try to get rid of the
non-convexity by modelling obstacles as repulsive potentials
like gaussian and augmenting it to the objective function to
penalize getting close to obstacles but such methods can lead
to local optima and infeasible solutions a large number of
times. Recent works model the obstacle collision condition
as constraints [11]. This helps to bring formal guarantees
for collision avoidance at the cost of difficult optimization.
The obstacles are generally modelled as convex polyhe-
drons or ellipsoids in order to mathematically formulate
the constraints. Optimization methods like mixed integer
programming [12] and non linear programming [13], [14]
are used to solve the optimization problems with collision
avoidance constraints.

Several works focus on solving the multi-agent problem
in a distributed fashion. The collision constraints between
agents can be handled easily in such methods [15], [16]
and the computational load reduces. Works like [17], [18]
introduce guaranteed collision avoidance for different type of
dynamic systems at the cost of conservativeness. Distributed
MPC based methods have also been used in multi-agent tra-
jectory optimization [6], [19], [20] for a range of problems.
[21], [22] discuss the use of distributed MPC for the point
to point transition problem along with obstacle avoidance.

III. PROBLEM FORMULATION

In this section we discuss the various aspects of the
problem in hand and the adopted solution method along
with certain caveats supplementing the current solution. We
first have a look at the system and environment descriptions
followed by the optimization objectives for each of the agent.
We also look at the various constraint handling methods for
the obstacle avoidance criterion. Further, we formulate the
problem in a multi-agent scenario with global communica-
tion. Then we discuss the distributed formulation and the
Alternating Direction Method of Multipliers (ADMM) used
to solve the given distributed problem. Next, we discuss
some implementation details required to efficiently solve the
problem.

A. System Dynamics

Within this work, we take into consideration two different
set of systems for validating our solution methods. We
consider a simple differential drive robot satisfying non holo-
nomic constraints and navigating in a 2D environment with
area constraint. Next, we consider a quadrotor aerial drone
navigating in a 3D environment with volume constraint. Var-
ious complex dynamics model can be used to analyze these
systems but for the simplicity of the problem, we model these
systems using a double integrator in 2D and 3D respectively.
We assume the availability of a position controller in both

cases such that providing either accelerations as inputs or
position points as the trajectory can work on the real robot.

ṡ = A.s+B.u (1)

where for s = [x,y,vx,vy] and u = [ax,ay]

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 (2a)

B =


0 0
0 0
1 0
0 1

 (2b)

and for s = [x,y,z,vx,vy,vz] and u = [ax,ay,az]

A =


0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (3a)

B =


0 0 0
0 0 0
0 0 0
1 0 0
0 1 0
0 0 1

 (3b)

We discretize the double integrator dynamics for our work
using the first order Euler discretization in order to get the
following system dynamics equations.

sk+1 =Ak.sk +Bkuk (4a)
Ak =A.∆t + In (4b)
Bk =B.∆t (4c)

where [A,B] are the respective continuous time matrices
and In is the order n identity matrix for n = {2,3}

B. Single Agent Objective

We consider the problem of point to point transition
for a single agent. Starting from an initial state, the goal
of the agent is to reach the specified goal state sg while
avoiding other agents and any obstacles. We use a weighted
quadratic cost term to formulate the objective. We also add
a regularization term to limit the actuator values.

C(s,u) =
k=N−1

∑
k=0

c(s(k),u(k))+V (s(N))

s = [s(0),s(1).....s(N)],u = [u(0),u(1).....u(N−1)]

(5)

where

c(s,u) =(s− sg)
T .Q.(s− sg)+uT .R.u (6a)

V (s) =(s− sg)
T .Q f .(s− sg) (6b)

The value function V (s) is initially considered to be the
normal quadratic value function similar to the discrete time

(a) Estimation of dist(s,O) (b) Estimation of pen(s,O)

Fig. 1: Schematic of the dist(., .) and pen(., .) values

LQR problem. The use of the value function here is to
prevent the solution from diverging away from the global
objective and acts as a heuristic for the global optimization
problem. Pre-computed heuristics for the value function can
also be incorporated within the method to improve overall
performance.

C. Obstacle Avoidance Constraint

1) Obstacle Modelling: In this work, we model the ob-
stacles as convex compact sets O. We represent the obstacle
space as

O= {s ∈ Rn : G.s≤ g} (7)

where G ∈ Rlxn, g ∈ Rl . Any polyhedral obstacle can be
represented in the form shown above. As discussed in [23],
this formulation is generalized for a convex pointed cone
with non empty interior. For our work, we consider a second
order cone and hence the general formulation converts to the
common ≤ term.

For obstacle avoidance we need to ensure the following
non differentiable constraint to satisfy

s∩O= φ (8)

where s is the position of the agent. This constraint is
reformulated as given in [23] to preserve continuity and
differentiability.

2) Signed Distance Method: The signed distance method
is a common method for obstacle avoidance. The sign of the
signed distance function provides the indication of whether
we have a collision with an obstacle. The signed distance
function is defined as follows.

sd f (s,O) = dist(s,O)− pen(s,O) (9)

where

dist(s,O) :=min
t
{||t|| : (s+ t)∩O 6= φ} (10a)

pen(s,O) :=min
t
{||t|| : (s+ t)∩O= φ} (10b)

Here dist(s,O) gives us the minimum distance from the
polyhedron when the point is outside and pen(s,O) gives
the minimum distance from the polyhedron when the point

is inside as shown in Fig. 1. For preventing collision with the
obstacle, the sd f (s,O)≥ 0. But as the sd f (., .) is the result
of an optimization problem, it leads to a bilevel optimization
problem with the result of one constraining the other which
is difficult to solve. So it needs to be reformulated before it
can be included in the optimization problem.

3) Collision Avoidance Reformulation: As discussed in
[23], two different formulations for the collision avoidance
constraint are provided by modelling the agent as point mass
and the obstacle as discussed above. We discuss both the
formulations ahead. The first formulation ensures that the
distance between the obstacle and the agent is greater than
a minimum threshold.

dist(s,O)≥ dmin

⇐⇒∃λ ≥ 0 : (Gs−g)T
λ ≥ dmin, ||GT

λ ||2 ≤ 1
(11)

Here λ acts as a certificate for collision avoidance. Using
this the optimal control problem for a single agent can be
written as

min
s,u,λ

k=N−1

∑
k=0

c(s(k),u(k))+V (s(N))

s.t. s(k+1) = Ak.s(k)+Bk.u(k)

(Gs(k)−g)T .λk ≥ 0

||GT
λk||2 ≤ 1,λk ≥ 0

(12)

The second formulation gives a less conservative approach
to model the collision avoidance constraint. It is based on the
logic of keeping the penetration depth of the agent inside the
obstacle space less than a maximum threshold.

pen(s,O)≤ pmax

⇐⇒∃λ ≥ 0 : (g−Gs)T
λ ≤ pmax, ||GT

λ ||2 = 1
(13)

This formulation allows the signed distance function to
be negative as well and hence provides less conservative
results but the constraint ||GT λ ||2 = 1 adds non-convexity
to the problem which leads to additional computational load
and accurate initial guesses to be solved optimally. Using
this minimum penetration reformulation, the optimal control
problem can be written as,

min
s,u,λ ,α

k=N−1

∑
k=0

c(s(k),u(k))+κ.αk +V (s(N))

s.t. s(k+1) = Ak.s(k)+Bk.u(k)

(Gs(k)−g)T .λk ≥−αk

||GT
λk||2 = 1,λk ≥ 0,αk ≥ 0

(14)

where αk denotes the slack variable which must be very
close to zero and should only become active when collision
cannot be avoided and a minimum penetration trajectory is
to be obtained. We use both the formulations to experiment
between computational load and feasibility for different
scenarios for our work.

D. Distributed Formulation

In this section we formulate the problem for the multi-
agent system and discuss the objective and constraints asso-
ciated with the global problem for the entire swarm.

1) Global Objective: The global objective is formulated
in such a way that it is separable and can be solved in a
distributed fashion. Taking the single agent objectives from
section III-B, we use a simple summation of each of the
single agent objectives to form the global objective.

C =
m=M

∑
m=0

C(s(m),u(m)) (15)

where C(., .) and s(m),u(m) are taken from Equation 5 for
the mth agent. We observe that this objective is separable
and can be solved in a distributed fashion with each agent
solving it’s own local objective.

Fig. 2: Schematic of Modelling Agents as Cubic Obstacles

2) Modelling Agents As Dynamic Obstacles: For a dis-
tributed algorithm for a multi-agent system, each agent solves
a finite time optimal control problem independently of the
other agents. Exploiting this nature of the method, we model
each agent as a cube around the spatial position of the agent
as shown in Fig 2. This cube gives the obstacle space as
discussed before in the single agent case. This can be written
mathematically as

s̃(m)−∆≤ s̃≤ s̃(m)+∆ (16)

where s̃ means the spatial position vector, ∆ is the threshold
distance, and m∈ {0,1, ...M}. For 2D system this can be also
written as 

1 0
0 1
−1 0
0 −1

(s̃− s̃(m))≤ ∆ (17)

and similar representation can be made in 3D as well. Now
using the reformulation technique discussed before, we can
formulate the obstacle collision avoidance between agents.
For each agent, every other agent behaves as an obstacle cube

represented by the equation 16. Using this we can formulate
the obstacle collision avoidance for the ith agent as

(
1 0
0 1
−1 0
0 −1

(s̃(i)(k)− s̃(j)(k))−∆

)T

λ
j

k ≥−α
j

k (18a)

∣∣∣∣∣
∣∣∣∣∣


1 0
0 1
−1 0
0 −1

λ
j

k

∣∣∣∣∣
∣∣∣∣∣
2

= 1 (18b)

where j = {1,2,3...M}, j 6= i and k ∈ {1,2, ...N}. Hence for
each agent i, there would be M−1 agents acting as obstacles
which can be formulated as M−1 obstacle constraints similar
to the above equation. We see that this formulation leads to a
coupled constraint between neighbouring agents which is not
separable. We intend to solve these problems with consensus
based algorithm for distributed optimization.

3) Distributed Optimal Control Problem: Having formu-
lated the global objective and constraints, we can now write
down a distributed problem with each agent solving the
following finite time optimal control problem

min
s,u,λ ,α

k=N−1

∑
k=0

c(s(k),u(k))+κ.αk +V (s(N))

s.t. s(k+1) = Ak.s(k)+Bk.u(k)(
1 0
0 1
−1 0
0 −1

(s̃(i)(k)− s̃(j)(k))−∆

)T

λ
j

k ≥−α
j

k

∣∣∣∣∣
∣∣∣∣∣


1 0
0 1
−1 0
0 −1

λ
j

k

∣∣∣∣∣
∣∣∣∣∣
2

= 1

j ∈ {1,2,3...M}, j 6= i,k ∈ {1,2,3...N}
(19)

where the objective depends only on the state of the agent
but there is a presence of a coupling constraint between
neighbouring states.

E. ADMM Based Distributed Optimization

In this section we discuss the Alternating Direction
Method of Multipliers (ADMM) for solving the Distributed
MPC problem. The detailed proof and properties of the
ADMM based Distributed MPC method can be found in [24]

1) System Description and Notations: We first discuss the
system description along with the notations that we use for
the method. The ADMM approach that we follow requires
each agent of the network to store a local copy of the
optimization variables associated with other agents in the
network. Hence the optimization vector for agent i is defined

as

vi = [si,ui] =
(
[si

j,u
i
j]
)

j∈M (20a)

si
j = [si

j(0),s
i
j(1),s

i
j(2)...s

i
j(N)] (20b)

ui
j = [ui

j(0),u
i
j(1),u

i
j(2)...u

i
j(N−1)] (20c)

where [si
j,ui

j] denotes the local copy of the optimization vari-
able (states and actions over the horizon) of agent j for the
agent i. M denotes the set containing the index of all agents
in the network. Augmenting the local optimization variable
with copies of the optimization variable of other agent allows
us to completely decompose the global problem into sub-
problems for each agent and hence solve the problem in a
distributed fashion.

2) Consensus Constraint: After having divided the prob-
lem into sup-problems, we need to ensure that the values of
the local copies and the global optimization variables match
each other. In order to achieve this, a consensus constraint
is introduced for each of the agent.

vi− v̄i = 0 (21)

Here v̄i is defined as the network average variable which
stores the average of all local copies of the optimization
variables across different agents.

v̄i = (v̄ j) j∈M (22)

v̄i =
1
M ∑

j∈M
v̄ j

i (23)

The values of v̄ j
i are obtained after the optimization pro-

cedure for agent j. Once the optimization procedure is
completed for each of the agent, the resulting optimization
variables are averaged to update the network average variable
v̄i for each of the agent. The ADMM algorithm therefore
iteratively alternates between local agent optimization and
global averaging until consensus is achieved.

3) Augmented Lagrangian Formulation: For the ADMM
algorithm, the local optimization problem as discussed in
Section III-D.3 has to be modified. We have to formulate a
augmented lagrangian objective that takes into consideration
the consensus constraint and penalizes values too far away
from the network average. The augmented objective can now
be written as

L (vi, v̄i,γ i) =
k=N−1

∑
k=0

C(vi
i(k))+ γ

iT (vi− v̄i)+
ρ

2
||(vi− v̄i||22

(24)
where C(.) is as defined as in section III-B. γ i denotes the
Lagrange multiplier for agent i and ρ denotes the parameter
that penalizes deviation from network average. Now at each
iteration, we optimize the augmented lagrangian objective to

obtain the local solution vector.

vi+ = argmin
vi

L (vi, v̄i,γ i)

vi = [si,ui] =
(
[si

j,u
i
j]
)

j∈M

s.t. si
j(k+1) = Ak.si

i(k)+Bk.ui
i(k)(

1 0
0 1
−1 0
0 −1

(s̃i
i(k)− s̃i

j(k))−∆

)T

λ
i
k ≥−α

i
k

∣∣∣∣∣
∣∣∣∣∣


1 0
0 1
−1 0
0 −1

λ
i
k

∣∣∣∣∣
∣∣∣∣∣
2

= 1

j ∈ {1,2,3...M}, j 6= i,k ∈ {1,2,3...N}

(25)

The optimal solution of the above problem is then transmitted
to other agents in order to form the network average for the
next iteration.

4) ADMM Algorithm: The overall ADMM algorithm can
now be written including the multiplier update step as shown
in Algorithm 1.

F. Pre-computing initial guess

Due to the non-convexity of the problem, the computa-
tional load is relatively high for the solution. We try to
mitigate this by using pre-computed initial guess solutions as
guiding trajectories for the solver. At every timestep, we run
a sampling based motion planning scheme based on Rapidly
Exploring Random Trees (RRT) from the current state to the
goal state and pass the first N states as the initial guess to
the solver. This accelerates the optimization process and also
prevents locally minimum solutions in many cases.

IV. ALGORITHM

Algorithm 1 ADMM Algorithm

1: For each agent i:
2: γ i = 0, v̄i = 0
3: while Not Converged do
4: calculate vi+ from (25)
5: Average all local copies from (23)
6: Update network average variable v̄+i using (22)
7: γ i+ = γ i +ρ(vi+− v̄i+)

Algorithm 2 DMPC Algorithm

1: Initialize agents with current state and goal state
2: Initialize optimization parameters ρ,N,Q
3: while Goal not reached do
4: procedure RRT(s0,sg) . compute initial guess
5: For each agent i:
6: Solve for optimal trajectory using Algorithm 1 with

initial guess
7: Update current state s0 using consensus solution

(a) 2D Environment (b) 3D Environment

Fig. 3: Simulation Results

V. EXPERIMENTS AND RESULTS

A. Parameters

For the simulation study, we consider M = 4 agents to
validate the algorithm. For the distributed MPC problem, we
consider N = 10 as the horizon length with a discretization
time of ∆T = 0.1s. We vary the values of ∆ within a set of
admissible values ∆ ∈ {0.1,0.3,0.5}. The cost matrices as
discussed in section III-B are defined as Q = 0.1∗ I2n, R = In
and Q f = I2n ∀n ∈ {2,3} denoting the 2D and 3D system
respectively.

B. Simulation results

Fig. 4: Convergence of algorithm

We are able to validate the algorithm on a simulation
environment and the results shown in Fig. 3 suggest the
success of the algorithm in achieving collision avoidance and
goal reaching for each of the agent.

Fig. 5: Variation of performance with ∆

C. Variation with ∆

As observed in Fig. 5, the performance slightly deteri-
orates with an increase in the value of the parameter ∆

or the size of the cube around each agent. This is due to
the conservative solutions associated with high value of the
parameter. The effect of this parameter is more significant
in dense environments leading to in-feasibility issues with a
hard collision constraint formulation.

D. Hard vs Soft constraints

We observe that soft constraints provide slightly sub-
optimal solution as compared to the hard constraints as seen
in Fig. 5. This is because it finds a sub-optimal solution
which may not be feasible in the hard constraint formulation.
Soft constraints are essential in dense environments as a
conservative modelling of obstacles in tight spaces will lead
to frequent infeasible solutions. Soft constraint formulation
leads to elevated computational time as compared to hard
formulation because of the non-convex equality constraint.

E. Limitations and possible solutions

The current method has a relatively high computational
load because of the collision avoidance constraint being
solved at each time step. Incorporating an on-demand col-
lision avoidance strategy as discussed in [22] can help to
mitigate this for high frequency real time operations.

VI. CONCLUSIONS AND FUTURE WORK
In this work, we present an extension to the work on

optimization based collision avoidance for multi-agent point
to point transition tasks. We model the agents as convex
polyhedron obstacles and formulate the collision avoidance
constraint using a reformulation method discussed in op-
timization based collision avoidance literature. Using the
separable nature of the global objective, we are able to
formulate the problem in a distributed manner with sepa-
rable objective but coupled constraints among neighbouring
agents. We solve the given problem using a consensus based
ADMM algorithm.

We observe that the computational loads without code
optimization is relatively high and hence we experiment with
methods like online pre-computation of initial guess for the
solver. Such modifications provide several advantages like
lower computational times, high reliability and minimal de-
viation from optimal solution. We also observe the effects of
parameter changes and changes in the reformulation methods
on the nature of solution in terms of conservativeness, fea-
sibility and optimality. All these ablations help us conclude
on the usefulness of the method and the possibility of real-
time application of such distributed methods for multi-agent
robotic systems.

One of the key challenges not addressed by this work
is handling of uncertainty within the system. For multi-
agent systems and especially for aerial swarms, there are
a lot of uncertainties associated with the system. When
different UAVs come close together, the mutual interaction
between them induces certain uncertainty in the dynamic
model prediction. UAVs flying close to the ground also face
uncertainty due to the downwash effect. Various problems
involving aerial swarms also include suspended payloads to
the UAVs which create more deviation from model predic-
tions. All such uncertainties can be modelled as both random
and systemic uncertainties. As a future work, we aim to
model these uncertainties within the current formulation and
develop Distributed Stochastic MPC based methods to solve
the optimization problem robustly.

REFERENCES

[1] Y. Sung, A. K. Budhiraja, R. K. Williams, and P. Tokekar, “Distributed
simultaneous action and target assignment for multi-robot multi-
target tracking,” 2018 IEEE International Conference on Robotics and
Automation (ICRA), pp. 1–9, 2018.

[2] H. Bayram, N. Stefas, K. S. Engin, and V. Isler, “Tracking wildlife
with multiple uavs: System design, safety and field experiments,” 2017
International Symposium on Multi-Robot and Multi-Agent Systems
(MRS), pp. 97–103, 2017.

[3] S. Tang and V. Kumar, “Mixed integer quadratic program trajectory
generation for a quadrotor with a cable-suspended payload,” 2015
IEEE International Conference on Robotics and Automation (ICRA),
pp. 2216–2222, 2015.

[4] P. Foehn, D. Falanga, N. Kuppuswamy, R. Tedrake, and D. Scara-
muzza, “Fast trajectory optimization for agile quadrotor maneuvers
with a cable-suspended payload,” in Robotics: Science and Systems,
2017.

[5] S. Bandyopadhyay and S.-J. Chung, “Distributed bayesian filtering
using logarithmic opinion pool for dynamic sensor networks,” ArXiv,
vol. abs/1712.04062, 2018.

[6] R. V. Parys and G. Pipeleers, “Distributed model predictive forma-
tion control with inter-vehicle collision avoidance,” 2017 11th Asian
Control Conference (ASCC), pp. 2399–2404, 2017.

[7] S.-S. Park, Y. Min, J.-S. Ha, D.-H. Cho, and H. Choi, “A distributed
admm approach to non-myopic path planning for multi-target track-
ing,” IEEE Access, vol. 7, pp. 163 589–163 603, 2019.

[8] O. Khatib, “Real-time obstacle avoidance for manipulators and mo-
bile robots,” Proceedings. 1985 IEEE International Conference on
Robotics and Automation, vol. 2, pp. 500–505, 1985.

[9] M. Zucker, N. D. Ratliff, A. Dragan, M. Pivtoraiko, M. Klingensmith,
C. M. Dellin, J. Bagnell, and S. Srinivasa, “Chomp: Covariant hamil-
tonian optimization for motion planning,” The International Journal
of Robotics Research, vol. 32, pp. 1164 – 1193, 2013.

[10] L. Li, X. Long, and M. A. Gennert, “Birrtopt: A combined sampling
and optimizing motion planner for humanoid robots,” 2016 IEEE-RAS
16th International Conference on Humanoid Robots (Humanoids), pp.
469–476, 2016.

[11] J. Schulman, Y. Duan, J. Ho, A. X. Lee, I. Awwal, H. Bradlow, J. Pan,
S. Patil, K. Goldberg, and P. Abbeel, “Motion planning with sequential
convex optimization and convex collision checking,” The International
Journal of Robotics Research, vol. 33, pp. 1251 – 1270, 2014.

[12] L. Blackmore and B. Williams, “Optimal manipulator path planning
with obstacles using disjunctive programming,” 2006 American Con-
trol Conference, pp. 3 pp.–, 2006.

[13] U. Rosolia, S. D. Bruyne, and A. Alleyne, “Autonomous vehicle
control: A nonconvex approach for obstacle avoidance,” IEEE Trans-
actions on Control Systems Technology, vol. 25, pp. 469–484, 2017.

[14] T. Naegeli, J. Alonso-Mora, A. Domahidi, D. Rus, and O. Hilliges,
“Real-time motion planning for aerial videography with real-time
with dynamic obstacle avoidance and viewpoint optimization,” IEEE
Robotics and Automation Letters, vol. 2, pp. 1696–1703, 2017.

[15] S. Bhattacharya, V. Kumar, and M. Likhachev, “Distributed optimiza-
tion with pairwise constraints and its application to multi-robot path
planning,” in Robotics: Science and Systems, 2010.

[16] H. Rezaee and F. Abdollahi, “A decentralized cooperative control
scheme with obstacle avoidance for a team of mobile robots,” IEEE
Transactions on Industrial Electronics, vol. 61, pp. 347–354, 2014.

[17] J. V. D. Berg, J. Snape, S. Guy, and D. Manocha, “Reciprocal
collision avoidance with acceleration-velocity obstacles,” 2011 IEEE
International Conference on Robotics and Automation, pp. 3475–3482,
2011.

[18] J. Alonso-Mora, A. Breitenmoser, M. Rufli, P. Beardsley, and R. Sieg-
wart, “Optimal reciprocal collision avoidance for multiple non-
holonomic robots,” in DARS, 2010.

[19] H. Sayyaadi and A. Soltani, “Decentralized polynomial trajectory
generation for flight formation of quadrotors,” Proceedings of the
Institution of Mechanical Engineers, Part K: Journal of Multi-body
Dynamics, vol. 231, pp. 690 – 707, 2017.

[20] D. Mellinger and V. Kumar, “Minimum snap trajectory generation
and control for quadrotors,” 2011 IEEE International Conference on
Robotics and Automation, pp. 2520–2525, 2011.

[21] C. E. Luis and A. P. Schoellig, “Trajectory generation for multiagent
point-to-point transitions via distributed model predictive control,”
IEEE Robotics and Automation Letters, vol. 4, pp. 375–382, 2019.

[22] C. E. Luis, M. Vukosavljev, and A. P. Schoellig, “Online trajectory
generation with distributed model predictive control for multi-robot
motion planning,” IEEE Robotics and Automation Letters, vol. 5, pp.
604–611, 2020.

[23] X. Zhang, A. Liniger, and F. Borrelli, “Optimization-based collision
avoidance,” ArXiv, vol. abs/1711.03449, 2017.

[24] R. Rostami, G. Costantini, and D. Görges, “Admm-based distributed
model predictive control: Primal and dual approaches,” 2017 IEEE
56th Annual Conference on Decision and Control (CDC), pp. 6598–
6603, 2017.

	I INTRODUCTION
	II RELATED WORK
	III PROBLEM FORMULATION
	III-A System Dynamics
	III-B Single Agent Objective
	III-C Obstacle Avoidance Constraint
	III-C.1 Obstacle Modelling
	III-C.2 Signed Distance Method
	III-C.3 Collision Avoidance Reformulation

	III-D Distributed Formulation
	III-D.1 Global Objective
	III-D.2 Modelling Agents As Dynamic Obstacles
	III-D.3 Distributed Optimal Control Problem

	III-E ADMM Based Distributed Optimization
	III-E.1 System Description and Notations
	III-E.2 Consensus Constraint
	III-E.3 Augmented Lagrangian Formulation
	III-E.4 ADMM Algorithm

	III-F Pre-computing initial guess

	IV ALGORITHM
	V EXPERIMENTS AND RESULTS
	V-A Parameters
	V-B Simulation results
	V-C Variation with
	V-D Hard vs Soft constraints
	V-E Limitations and possible solutions

	VI CONCLUSIONS AND FUTURE WORK
	References

