
Optimal multifrequency weighting for CMB lensing

Noah Sailer,1, 2, ∗ Emmanuel Schaan,2, 1 Simone Ferraro,2, 1 Omar Darwish,3 and Blake Sherwin3, 4

1Berkeley Center for Cosmological Physics, Department of Physics,
University of California, Berkeley, CA 94720, USA

2Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
3Department of Applied Mathematics and Theoretical Physics,

University of Cambridge, Wilberforce Road, Cambridge CB3 OWA, UK
4Kavli Institute for Cosmology Cambridge, Madingley Road, Cambridge CB3 0HA, UK

Extragalactic foregrounds in Cosmic Microwave Background (CMB) temperature maps lead to
significant biases in CMB lensing reconstruction if not properly accounted for. Combinations of
multifrequency data have been used to minimize the overall map variance (internal linear combi-
nation, or ILC), or specifically null a given foreground, but these are not tailored to CMB lensing.
In this paper, we derive an optimal multifrequency combination to jointly minimize CMB lensing
noise and bias. We focus on the standard lensing quadratic estimator, as well as the “shear-only”
and source-hardened estimators, whose responses to foregrounds differ. We show that an optimal
multifrequency combination is a compromise between the ILC and joint deprojection, which nulls
the thermal Sunyaev-Zel’dovich (tSZ) and Cosmic Infrared Background (CIB) contributions. In
particular, for a Simons Observatory-like experiment with `max,T = 3000, we find that profile hard-
ening alone (with the standard ILC) reduces the bias to the lensing power amplitude by 40%, at
a 20% cost in noise, while the bias to the cross-correlation with a LSST-like sample is reduced by
nearly an order of magnitude at a 10% noise cost, relative to the standard quadratic estimator.
With a small amount of joint deprojection the bias to the profile hardened estimator can be further
reduced to less than half the statistical uncertainty on the respective amplitudes, at a 20% and 5%
noise cost for the auto- and cross-correlation respectively, relative to the profile hardened estimator
with the standard ILC weights. Finally, we explore possible improvements with more aggressive
masking and varying `max,T .

I. INTRODUCTION

CMB lensing [1–3] allows us to reconstruct the pro-
jected mass distribution all the way to the surface of
last scattering, enabling cosmological inference (e.g. neu-
trino masses, dark matter and dark energy) using a very
well-understood source redshift and redshift weighting.
Extragalactic foregrounds, which are correlated with the
lensing potential, are likely to be one of the main limit-
ing factors [4–10] in temperature-based CMB lensing re-
construction, producing significant biases to the standard
minimum variance quadratic estimator (QE, [11]), which
in turn bias both the reconstructed lensing power spec-
trum and the cross-correlations with tracers of the large-
scale structure. In this paper we consider two techniques
to mitigate these biases: geometric-based methods that
distinguish lensing from foregrounds through their dif-
ferent spatial symmetries (shear-only reconstruction [8]
and bias-hardening [5, 10]), and multifrequency based
methods that exploit the different frequency scaling of
the CMB and extragalactic foregrounds [6, 12]. In par-
ticular, we explore the lensing-optimized linear combina-
tions of frequency maps to minimize a combination of bias
and noise, for the standard QE, as well as for shear and
bias-hardened estimators. Another promising method to
control foreground biases to CMB lensing is the gradient-
cleaned [6] or symmetrized estimator [13, 14]. We explore
these methods in a companion paper [15]. The remainder
of the paper is organized as follows: in §II we introduce
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the standard, shear-only, and bias-hardened quadratic es-
timators; in §III we review multifrequency methods for
noise and bias mitigation; in §IV (V) we outline the cal-
culation of the noise (bias) of a general quadratic estima-
tor; in §VI we combine geometric- and frequency-based
techniques to minimize a combination of lensing noise and
bias; we conclude in §VII.

II. CMB LENSING QUADRATIC ESTIMATORS

In the presence of a foreground s`, the observed tem-
perature covariance receives off-diagonal contributions
from lensing and the foreground1 (see Eqs. 3-7 in [10]):

〈T`TL−`〉 = fκ`,L−`κL + fs`,L−`sL (1)

to lowest order in κ and s. The standard quadratic esti-
mator (QE, [11]) neglects the foreground term and seeks
the minimum variance solution for κL in Eq. (1). By
neglecting the foreground contribution, it can lead to a
biased answer [8, 10].

On small scales where the foreground contributions are
large, they are well approximated by a collection of un-
clustered halos or galaxies with azimuthally-symmetric
profiles. In this regime, the shear-only κ estimator, which
is insensitive to such isotropic terms has been shown to
significantly reduce all foreground-induced biases [8].

1 T` = TCMB
` + s`, where TCMB

` is the lensed primary CMB, and
the average is taken over realizations of the unlensed CMB at
fixed κL and sL.
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Bias-hardening [5, 10, 16] seeks to measure the fore-
ground contribution directly and “subtract off” the bias
to the lensing convergence κL. Since both κL and sL
produce off-diagonal covariances, the standard quadratic
estimators for κ and s are biased [5, 10]:(

〈κ̂L〉
〈ŝL〉

)
=

(
1 Nκ

LRL

Ns
LRL 1

)(
κL
sL

)
(2)

where the responseRL is defined in [10]. A simple matrix
inversion leads to unbiased estimates of the lensing and
foreground:(

κ̂BH
L

ŝBH
L

)
=

(
1 Nκ

LRL

Ns
LRL 1

)−1(
κ̂L
ŝL

)
. (3)

We assume that the foreground s can be approximated
by a collection of sources with identical profiles u` [10].
Explicitly, we assume s` =

∑
i sie

i`·xiu`, where si (xi)
is the amplitude (position) of the i’th source. In this
work we consider either hardening against point sources
[5, 10, 16] (point source hardening, or PSH), where the
profile is taken to be a delta function (u` = 1), or against
a tSZ-like profile [10] (profile hardening, or PH), where
the profile is taken to be the square root of the tSZ power
spectrum at 150 GHz.

III. INTERNAL LINEAR COMBINATION (ILC)
METHODS

Let (T`)i denote the observed map in the i-th frequency
channel. We assume that T` can be written in the form:

T` = 1TCMB
` + n` +

∑
s

Ass`, (4)

where 1 = (1, 1, · · · , 1)T and TCMB
` is the lensed CMB.

The “noise” n` receives contributions from the detectors’
thermal fluctuations, the atmosphere, and galactic dust.
The extragalactic foregrounds s` include tSZ, kSZ, CIB,
and radio point sources. In Eq. (4) we assume that each
map has been calibrated to have unit response to the
lensed CMB. The lensed CMB in each frequency channel
is thus determined by a single template TCMB

` . Similarly,
we assume that each foreground s follows a single spa-
tial template s`, up to a frequency dependence As. Our
normalized linear estimator for the lensed CMB takes the
form T̂` = wT

` T` for some weights w`, which we are free
to choose subject to the constraint wT

` 1 = 1. The noise

of the estimator T̂` is

Ctot
` = wT

` C`w`, (5)

where (2π)2δD0 C` = 〈T`T
T
−`〉 is the covariance matrix of

the maps T`.
In this work we consider a Simons Observatory-like ex-

periment, which will observe the CMB in six frequency
channels: 27, 39, 93, 145, 225, and 280 GHz. We follow
[17] in modeling the detector noise and atmospheric con-
tributions to C`, assuming the “goal” noise levels. The

theory power spectra and SEDs for the galactic dust and
extragalactic foregrounds are taken from [18].

Before deriving the optimal linear combination for
CMB lensing, we start by reviewing the case of the stan-
dard ILC and deprojection. These two limiting cases,
commonly used in CMB data analysis, correspond to
two extremes. The standard ILC focuses only on the
total map noise, without trying to reduce any specific
foreground bias, whereas deprojection completely nulls a
given foreground (in so far as its frequency dependence
is known exactly), regardless of the noise penalty. As we
show below, our CMB lensing-optimized ILC is a com-
promise between these two extremes.

A. Standard ILC

The standard harmonic ILC is defined to minimize the
total map variance from noise and foregrounds. Mini-
mizing Ctot

` subject to the constraint wT
` 1 = 1 can be

achieved by introducing a Lagrange multiplier λ` and
minimizing the Lagrangian:

L [w`, λ`] ≡ Ctot
` + λ`

(
1−wT

` 1
)
. (6)

Setting ∂L/∂w` = 0 forces w` ∝ C−1
` 1. The normaliza-

tion is fixed by the constraint wT
` 1 = 1, from which we

recover the standard result [19, 20]:

wILC
` =

C−1
` 1

1TC−1
` 1

. (7)

While the ILC minimizes the total power spectrum of
the combined map, there is no guarantee that the power
spectrum of individual foreround components will be re-
duced, so long that the foregrounds are a subdominant
source of power. Even if the foreground power spectra
are reduced, the ILC it is not designed to reduce the bis-
pectrum or trispectrum of the foregrounds, which in turn
source the biases to lensing. Thus it is possible for a
foreground to have a subdominant power spectrum, but
a dominant bispectrum or trispectrum, in which case the
ILC does nothing to suppress the resulting bias.

B. Deprojection

In certain applications, one may need to null a specific
foreground. For instance, tSZ measurements (y-maps and
stacks) are contaminated by thermal dust emission, if un-
accounted for. In this context, one may use constrained
ILC maps with CIB deprojection [21, 22]. As shown in
Fig. 1, one can deproject one or several foregrounds to
remove the corresponding biases, at the cost of increas-
ing the temperature map noise. Deprojection amounts
to choosing the weights w` to have zero response to fore-
ground s: wT

` As = 0. Minimizing the map noise subject
to this additional constraint leads to minimizing

L [w`, λ`, σ`] ≡Ctot
` + λ`

(
1−wT

` 1
)
− σ`wT

` As. (8)
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Setting ∂L/∂w` = 0 forces w` ∝ C−1
` (1 + σ`As/λ`).

Enforcing the constraint wT
` As = 0 fixes the coefficient:

σ`/λ` = − 1TC−1
` As

AT
s C
−1
` As

. (9)

Finally, wT
` 1 = 1 fixes the normalization. This technique

can be trivially extended to simultaneously deproject
more than one foreground (wT

` Asi = 0 for i = 1, · · · , n)
by introducing additional Lagrange multipliers.

IV. RECONSTRUCTION NOISE

A general quadratic estimator κ̂L of the lensing con-
vergence κL takes the form

κ̂L[T, T ′] = NL

∫
d2`

(2π)2
F`,L−`T`T

′
L−` (10)

where NL is some normalization, chosen so that the esti-
mator has unit response to the signal 〈κ̂L〉 = κL + bias,
and F`,L−` are the weights, which are in principle ar-
bitrary. In this work, both maps T and T ′ have unit
response to the CMB, such that the normalization is

N−1
L =

∫
d2`

(2π)2
F`,L−`f

κ
`,L−`. (11)

This estimator applied to the map T̂` has noise

NL[w] = 〈κ̂L[T̂ , T̂ ]κ̂−L[T̂ , T̂ ]〉
/

(2π)2δD0

= 2N2
L

∫
d2`

(2π)2
F 2
`,L−`C

tot
` Ctot

|L−`|
(12)

for L > 0. In going from the first to second line of
Eq. (12), we have only kept the disconnected contribu-
tions to the auto-correlation, as is customary in lensing
noise N (0) calculations. We also assumed that F is sym-
metric and even in both of its arguments.

Note that both the normalization NL and the weights
F`,L−` could in principle depend on the weights w`. In
this analysis, the spatial weights F`,L−` depend on the
map noise Ctot

` , which in turn depend on the frequency
weights w`. In App. B, we show that the ILC is the
frequency combination which minimizes the lensing noise,
for all the estimators we consider here. The top panel of
Fig. 2 shows the lensing noise for the standard QE for
various frequency combinations, with `max,T = 3000.

A. Lensing amplitude noise

The lensing amplitude Alens is defined to be the ra-
tio of the measured convergence auto-spectrum to the
truth, with fiducial value 1. An estimator for the lens-
ing amplitude can be easily constructed for each mode
L: Âlens,L = ĈκL/C

κ
L, where ĈκL denotes the measured
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Figure 1. The top panel shows the temperature power spec-
trum for different multifrequency combinations, compared to
the noiseless lensed CMB (black curve). Compared to the
minimum-variance combination (ILC, red), the deprojection
of tSZ (orange) comes at a larger cost in noise than that of
CIB (green). Jointly deprojecting tSZ and CIB (blue) causes
a more than ten-fold noise increase at ` ∼ 3000, where most of
the lensing information resides. We note that the significant
increase in power at large scales from joint or tSZ deprojec-
tion is primarily due to a large increase in atmospheric noise.
The middle and bottom panels show the tSZ and CIB power
spectra, respectively, compared to the single-frequency case
(150 GHz). For tSZ (middle), the standard ILC and the CIB
deprojection cause a significant increase. For CIB (bottom),
the ILC very effectively reduces the power; however, the tSZ-
deprojection enhances it by more than an order of magnitude.

convergence auto-spectrum. Given a range of modes, the
minimum variance estimator takes the form

Âlens =

(∫
d2L

(2π)2

ĈκL
CκL

(CκL)2

σ2
L

)/(∫
d2L

(2π)2

(CκL)2

σ2
L

)
,

(13)
where σ2

L = 2(CκL +Nκ
L)2. This is simply an inverse vari-

ance weighting of the estimators for each Fourier mode.
Here we simply aim to minimize the lensing noise:

σ2
Alens

=
1

4πfsky

(∫
d2L

(2π)2

(CκL)2

σ2
L

)−1

(14)

Minimizing σAlens
is equivalent to maximizing the integral

in Eq. (14), which has a strictly positive integrand. Thus
maximizing the integral is equivalent to maximizing the
integrand for each L, which in turn is equivalent to min-
imizing σ2

L, or Nκ
L. Therefore the weights that minimize
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Figure 2. As illustrated in the top panel, the standard ILC
is the linear combination of multifrequency maps which mini-
mizes the lensing noise, for the standard QE and all the other
estimators considered in this paper. As expected from Fig. 1,
deprojecting CIB (green) comes at almost no cost in lensing
noise, whereas deprojecting tSZ (yellow) multiplies the noise
by ∼ 2. Despite causing a more than ten-fold increase in
temperature noise, joint deprojection only causes a four-fold
increase in lensing noise. This can be understood by count-
ing the number of signal-dominated temperature modes. The
bottom panel shows the fractional bias to the CMB lensing
auto-spectrum for the various frequency combinations. The
gray boxes denote the bandpower errors for the standard ILC.
For the ILC, the bias is largely dominated by the enhanced
tSZ signal. While the joint deprojection successfully nulls all
biases, simply deprojecting tSZ or CIB does not.

the noise of the lensing amplitude σAlens
are equivalent

to the weights that minimize the lensing reconstruction
noise Nκ

L, which is given by the standard ILC.

V. BIAS TO LENSING RECONSTRUCTION
FROM SIMULATIONS

A. Method

To estimate the non-Gaussian lensing biases from ex-
tragalactic foregrounds, we follow the procedure in [8, 10].
We ignore the lensed-foreground bias, due to the fact that
the foregrounds are emitted at cosmological distances and
are themselves lensed [23]. The non-Gaussian foreground
bias to the lensing auto-spectrum can be decomposed into

a primary, secondary and trispectrum terms [4, 5, 7, 8]:

〈QQ〉 = 〈κCMBκCMB〉︸ ︷︷ ︸
lensing signal

+ 2〈Q[TCMB, TCMB]Q[s, s]〉︸ ︷︷ ︸
Primary bispectrum bias

+ 4〈Q[TCMB, s]Q[TCMB, s]〉︸ ︷︷ ︸
Secondary bispectrum bias

+ 〈Q[s, s]Q[s, s]〉︸ ︷︷ ︸
Trispectrum bias

,

(15)
where Q[T, T ′] represents any (symmetric) quadratic es-
timator evaluated on the maps T and T ′. For the cross-
correlation of CMB lensing with an external tracer g of
the mass (e.g., galaxies or galaxy lensing), only the pri-
mary bispectrum bias appears:

〈gQ〉 = 〈gκCMB〉︸ ︷︷ ︸
lensing signal

+ 〈gQ[s, s]〉︸ ︷︷ ︸
bispectrum bias

. (16)

In both cases, the bispectrum biases (primary and sec-
ondary) appear because the foregrounds are simultane-
ously non-Gaussian and correlated with the true CMB
lensing signal. The trispectrum bias in auto-correlation
is present for any non-Gaussian foreground, regardless of
any potential correlation with CMB lensing.

In what follows, we estimate each of these bias terms
separately for the total contribution from extragalactic
foregrounds (tSZ + CIB + kSZ + radio PS). We apply
the method presented in [8] identically. This uses the
non-Gaussian foreground simulations of [24] at 150 GHz,
which are then rescaled to any other frequency, given the
expected SED of each component from [18], as imple-
mented in MicroCoSM2. We choose the tracer g to be a
LSST-like sample constructed from reweighting the sim-
ulated halos, as in [8, 10], to obtain the correct redshift
distribution and linear bias.

In all cases, the foreground maps from [24] are masked
before the lensing reconstruction. The mask is obtained
by detecting the individual point sources with flux density
higher than 5 mJy in the 150 GHz map using a matched
filter, and masking the foreground map with a 3 arcmin
radius disks around each source. We then add the un-
masked lensed CMB map to the foreground map. This
simulates the effect of inpainting, or source template sub-
traction, as expected for SO. We also explore a more ag-
gressive masking strategy in App. D, which could reduce
the bias to the profile hardened estimator by as much
as 30%, provided that the effects of the mean field pro-
duced by this more aggressive mask are kept under con-
trol. Masking the point sources may also mask the high
κ peaks, which would bias the signal low [25, 26], but in-
painting or template subtraction should circumvent this
problem.

Another important method for avoiding foreground
contamination is to discard the highest multipoles in the
input temperature map. Unless otherwise indicated, we
assume that only modes with ` ≤ `max,T = 3000 are in-
cluded. In App. E, we explore the sensitivity of our results
to this choice.

2 https://github.com/EmmanuelSchaan/MicroCoSM

https://github.com/EmmanuelSchaan/MicroCoSM
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Figure 3. Left: The total |bias| and noise on the lensing amplitude Alens for the various ILC combinations. The biases for the
standard QE are shown in blue, Shear in red, the Point Source Hardened estimator in green, and the Profile Hardened estimator
in purple. Right: The same as the left panel, but for the amplitude Across of the cross-correlation with the mock LSST sample.
Circles denote the minimum variance (MV) ILC, squares (triangles) denote CIB (tSZ) deprojection, while diamonds denote the
simultaneous deprojection of both the CIB and tSZ. The lines connecting MV ILC to either CIB, tSZ or joint deprojection
follow Eq. (19), with step sizes ∆t = 0.2. Throughout we sum over 20 < L < 1000 when calculating the bias and noise for either
Alens or Across, and take fsky = 0.4.

B. Lensing amplitude bias

The bias to the lensing amplitude Alens is given by

bias (Alens) =

∫
d2LCκL bias (CκL) /σ2

L∫
d2L (CκL)2/σ2

L

, (17)

where the bias to the lensing auto-correlation is the sum
of the primary, secondary and trispectrum terms, as de-
fined in Eq. (15). Analogous expressions for the noise
and bias of the amplitude Across of the cross-correlation
of CMB lensing with an external tracer g may be ob-
tained by substituting CκL with CκgL and setting σ2

L =
(CκL +Nκ

` )(CgL +Ng
L) + (CκgL )2 in Eqs. (14) and (17).

We note that cancellations could potentially occur in
Eq. (17) between the biases at different lensing multi-
poles. In App. A we explore how our optimal ILC weights
change if we replace bias(CκL) with |bias(CκL)| in the ex-
pression above, which removes these cancellations.

VI. MINIMIZING LENSING BIAS AND NOISE

In this section we piece together the preceding results
and show that an optimal multifrequency linear combina-
tion for minimizing a combination of noise and bias (for
both Alens and Across) lies between the standard ILC and
joint deprojection.

A. Method

Ideally, one would solve for the scale and frequency-
dependent weights w` which minimize some function L
of the variance and bias of Alens (or Across). A reasonable
choice for L is:

L[w`] = σ2(Alens) + f2
b bias2(Alens), (18)

where fb is a tuning parameter for favoring either noise
(fb = 0) or bias (fb → ∞). In practice, however, solving
for w` via a brute force minimization of L is computa-
tionally intractable. The problem can be greatly simpli-
fied with a few well-motivated approximations; however,
these turn out not to be accurate enough for our purposes
(see App. C). We circumvent this issue with the following
ansantz:

w`(t) = tX` + (1− t)wILC
` , (19)

which smoothly connects the standard ILC to some

form of deprojection (X` = wCIB deproj.
` , wtSZ deproj.

` , or

wjoint deproj.
` ), and reduces the dimensionality of the pa-

rameter space from 5×(# of `-bins) to 1. In what follows
we compute the bias and noise for each estimator along
the line segment t ∈ [0, 1], in steps of ∆t = 0.2. The
optimal value of t could in principle be found through
minimizing Eq. (18) for fixed fb. However, the value of fb
is arbitrarily chosen to reduce the bias to some desirable
level, which can just as well be accomplished by choosing
t to be the smallest value such that bias(Alens)/σ(Alens)
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is below some desirable cutoff. This is similar in spirit to
the approach taken in deriving the partially constrained
ILC [27]. However, our cutoff is implemented directly at
the bias level, while the cutoff in [27] is implemented at
the foreground power level.

B. Results

Our results are summarized in Fig. 3, where we plot the
bias vs noise for each estimator as we vary the weights
w` between the standard ILC and some form of deprojec-
tion X`, following the prescription of Eq. (19). We first
note that deprojecting a single foreground (tSZ or CIB)
often boosts the overall bias. As shown in bottom two
panels Fig. 1, deprojecting tSZ significantly boosts the
CIB power spectrum (and vise versa), increasing the over-
all bias for both the auto and cross-correlation in many
cases.

We find that hardening against a tSZ-like profile out-
performs the remaining estimators for any bias/noise cut-
off3, both in auto- and cross-correlation. Profile harden-
ing at ILC (t = 0, purple circles in Fig. 3) reduces the
bias to the lensing amplitude by 40%, at a 20% cost in
noise, while the bias to the cross-correlation is reduced by
nearly an order of magnitude at a 10% noise cost, relative
to the standard quadratic estimator at ILC (blue circles
in Fig. 3).

For all estimators, comfortably reducing the bias below
σ(Alens)/2 (or σ(Across)/2) requires partially deproject-
ing both the tSZ and CIB. We find that the noise cost for
partial joint deprojection is much more significant for the
auto-correlation than for the cross-correlation. In par-
ticular, for the profile hardened estimator, reducing the
bias below σ/2 via partial joint deprojection corresponds
to t ∼ 0.2, resulting in a 20% and 5% noise penalty for the
auto- and cross-correlation respectively, relative to profile
hardening at ILC4. Further improvements can be made
by pushing to a higher `max,T and moving closer to depro-
jection (higher t), or through a more aggressive masking
scheme, as discussed in Apps. E and D respectively.

VII. CONCLUSIONS

CMB lensing is quickly becoming one of the most pow-
erful cosmological tools. Percent level measurements from
the next generation of experiments require excellent con-
trol of extragalactic foregrounds, especially from temper-
ature anisotropies. Traditional analyses have used mul-

tifrequency foreground reduction methods when possi-
ble. Here we combined geometric methods with multi-
frequency information to optimize the lensing reconstruc-
tion. In doing so, we maximize the amount of information
that can be extracted and the robustness of the measure-
ment, while minimizing the potential biases. We also note
that any multifrequency linear combination alone will not
reduce the bias from kSZ, since it preserves the black-
body nature of the CMB. While kSZ bias can be signifi-
cant [7], it is quite effectively reduced by the shear-only or
bias hardened estimators [8, 10]. Moreover, direct mea-
surement of kSZ by combining low-redshift galaxy cat-
alogs together with high-resolution CMB maps [28] can
potentially provide templates for subtraction at the map
level. We find that the standard ILC can lead to signif-
icant biases, which can be partially mitigated with ge-
ometric methods such as profile hardening, which alone
can reduce the bias by 40% (in auto-correlation) or al-
most an order of magnitude (in cross-correlation) with
minimal (10 − 20%) increase in noise. The bias can
be further reduced to any desirable bias/noise cutoff via
partial joint deprojection of the tSZ and CIB, with the
auto-correlation suffering a higher relative noise penalty
(factor of ∼ 4) than the cross-correlation. We find that
deprojection of tSZ or CIB alone do not reduce the bi-
ases, due to an enhancement in the component that is
not deprojected. Finally, we have explored possible im-
provements with more aggressive masking (App. D) and
varying `max,T (App. E).

While here we have focused on temperature reconstruc-
tion, similar bias hardening techniques should be appli-
cable to extragalactic foregrounds in polarization as well,
where the biases are expected to be less severe. We leave
a full exploration of this to future work.
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Appendix A: Cancellations

As mentioned in §V, the definition of bias(Alens) permits undesirable cancellations in biases across lensing multipoles.
A simple method for avoiding these cancellations is to replace bias(CκL) with |bias(CκL)| in Eq. (17). Fig. 4 shows how
our results change with this substitution. In particular for the profile hardened estimator, we find that one has to
deproject out to t ∼ 0.4 (as opposed to t ∼ 0.2) in order to achieve bias/noise < 1/2.

In addition to the aforementioned cancellations, for any given foreground, the primary, secondary and trispectrum
terms may also cancel separately due to the linear combination of frequencies. While the distinction of primary,
secondary and trispectrum terms is somewhat arbitrary, this cancellation relies on the relative sizes of the foreground
bispectrum and trispectrum to be correct in the simulation used. Additionally, at any lensing multipole, the lensing
biases from two distinct foregrounds may have different signs and partially cancel. While one can in principle take
advantage of these cancellations, doing so relies on the simulations having the correct relative amplitude of each
foreground, including their correlations. We will explore the sensitivity of our optimized ILC to these results in a
future work, which will more realistically include polarization, in addition to temperature data.

Appendix B: Proof that ILC minimizes the lensing noise for all QEs

In this Appendix, we show that the linear combination of frequency maps which minimizes the lensing noise is the
standard ILC, for all the estimators we consider. Specifically, we show the following: if the spatial weights Fκ`,L−` of

the estimator κ̂ depend on the frequency weights w` only through the map noise Ctot
` , then the frequency weights w`

that extremize NL[w] are the ILC weights. To minimize the noise subject to the constraint wT
` 1 = 1 we set

δNL[w]

δw`
= 4N2

LF
2
`,L−`

[
Ctot
` + Ctot

|L−`|

]
C`w` + 4N2

L

∫
d2`′

(2π)2
F`′,L−`′

δF`′,L−`′

δw`
Ctot
`′ C

tot
|L−`′|

− 2NLNL[w]

∫
d2`′

(2π)2

δF`′,L−`′

δw`
fκ`′,L−`′

= λ`,L1,

(B1)
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Figure 4. The same as Fig. 3, but with |bias(CκL)| replacing bias(CκL) in Eq. (17), and similarly for the cross-correlation with
the mock LSST sample.

where λ`,L is some Lagrange multiplier. If the spatial weights Fκ`,L−` only depend on frequency weights w` through

Ctot
` and Ctot

|L−`|, then

δFκ`′,L−`′

δw`
=
∂Fκ`′,L−`′

∂Ctot
`′

δCtot
`′

δw`
+
∂Fκ`′,L−`′

∂Ctot
|L−`′|

δCtot
|L−`′|

δw`

= (2π)2
∂Fκ`,L−`
∂Ctot

`

[
δD`−`′ + δD`−L+`′

]
C`w`

≡ A`,`′,LC`w`

(B2)

where A`,`′,L is some scalar function. Plugging this in to our equation for δNL[w]/δw` gives

δNL[w]

δw`
= B`,LC`w` = λ`,L1 (B3)

for some scalar function B`,L. Solving this equation for w` gives w` = λ`,LC
−1
` 1/B`,L. The Lagrange multiplier is

chosen so the weights sum to unity, which yields the standard ILC weights, given by Eq. (7).
Note that the standard QE, bias-hardened and shear estimators have respective weights:

Fκ`,L−` =
fκ`,L−`

2Ctot
` Ctot

|L−`|
, Fκ

BH

`,L−` =
fκ`,L−` −Nκ

LRLfs`,L−`
2Ctot

` Ctot
|L−`|

, F shear
`,L−` = cos(2θL,`−L/2)

C0
`

2(Ctot
` )2

d lnC0
`

d ln `
, (B4)

which only depend on w` through Ctot
` . Thus their noises are minimized by the ILC weights.

Appendix C: Attempts at numerically minimizing the loss functions: approximations

Finding the temperature weights which minimize the desired combination of lensing noise and bias is a difficult
problem. Indeed, the space of parameters to optimize is large, since the temperature weights are free functions of
scale and frequency. For each choice of temperature weights, one needs to perform multiple lensing reconstructions on
the foreground simulations to estimate the primary, secondary and trispectrum biases. This step is computationally
expensive. This needs to be repeated for each choice of estimator (QE, shear, PSH, PH), and at each step when
exploring the space of temperature weights. Below, we describe approximations which dramatically simplify the
problem, and point out their inaccuracies.
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One may assume that each foreground is determined by a single spatial template, whose amplitude is rescaled at
each frequency (Approximation 1). This approximation is exact for the CMB and for the tSZ, ignoring relativistic
corrections. It is also excellent for the CIB, whose maps at different frequencies are highly correlated [29, 30].

To simplify further, we note that most of the CMB lensing signal to noise comes from temperature multipoles around
` = 3000. As a result, most of the foreground biases also comes from these multipoles. At these multipoles, the ILC
weights are slowly varying. We may therefore neglect the scale dependence of the ILC weights wILC, and look for
scale-independent optimal weights w (Approximation 2). This approximation dramatically reduces the dimensionality
of the minimization problem, making it much more tractable. In this approximation, the primary Ps0,L, secondary

Ss0,L and trispectrum T s0,L biases to Alens only need to be computed at one frequency (e.g., 150 GHz). They can then
simply be rescaled to any other frequency. Furthermore, because the temperature weights are scale-independent, the
bispectrum and trispectrum biases only need to be computed from simulations once. They can then be rescaled for
any new choice of temperature weights. In short, approximations 1 and 2 allow us to compute the foreground biases
from simulation only once, rather than having to do it for every frequency and for every choice of weights w`.

Finally, we expect the optimal multifrequency combination will be close to the standard ILC. We indeed show this to
be true for the profile hardened estimator when exploring part of the parameter space, going from ILC to some form of
deprojection. This motivates us to Taylor expand the noise about the ILC weights to second order in ε (Approximation
3): w = wILC

`=3000 + ε. This approximation dramatically speeds up the noise computation during the optimization step,
and accurately predicts the variance and bias of Alens except at 27 GHz. A simple method for getting around this is
to set the 27 GHz weight to zero, in which case the Taylor expansion agrees with the true noise to the subpercent level
for the ε’s relevant for achieving bias/noise ∼ 1/2.

In this simplified case, the scaling of the foreground biases with the frequency weights is simply:

bias(CκL)[w] =
∑
s

[
Ps0,L + Ss0,L

](As ·w
As,150

)2

+
∑
s

T s0,L
(
As ·w
As,150

)4

(C1)

where As,150 is the scale-factor for the 150 GHz channel. In practice, this expression can be easily generalized to
include the lensing bias from correlated foregrounds, e.g., CIB and tSZ. In summary, we are thus looking for a handful
of parameters (εν)ν=1...5, which minimize the sum of squared variance and squared bias on Alens.

However, we found approximations 2 and 3 not to be sufficiently accurate. Assuming the weights to be scale-
independent leads to a significant misestimation of the variance and bias of Alens, at the O(1) level.
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Figure 5. The same as Fig. 3, using the more agressive masking technique described in App. D. When calculating σ, we neglect
any differences in sky coverage due to more of the sky being masked (8% of the sky as opposed to 3% with the fiducial mask
used in the main text), as this is a negligible effect.
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Appendix D: Dependence of the lensing biases on the masking

We explore a more aggressive masking approach by running the matched filter at all the SO frequencies, masking
only the sources (using disks with a 2 arcmin radius) that are detected with 5σ significance, and using the union of
the masks at each frequency. This allows us to find much more IR (radio) sources, which are brighter at higher (lower)
frequencies. In an analysis on real data, this may make it more delicate to estimate the normalization and mean field
of the lensing estimators [31], which has not been taken into account in our lensing biases calculations.

We note that in practice, masking changes the observed map covariance C`, which in turn will influence the form of
the ILC weights. For simplicity we have ignored this effect, and thus use the same ILC weights for the more aggressive
masking approach as we did in the main text, which are derived using the theory foreground spectra from [18].

The resulting biases from this masking technique are shown in Fig. 5. In cross-correlation, the aggressive masking
reduces the foreground bias for all estimators, as expected. In particular, at ILC (t = 0) the biases to the cross-
correlation for PH, Shear, PSH, and QE are reduced by ∼ 30%, 40%, 10%, and 60% respectively, relative to the biases
calculated using the single mask at 150 GHz. In auto-correlation, the biases for PH, Shear and PSH are similarly
reduced using the more aggressive masking technique. However, the bias to the QE at ILC increases by 50%. This can
be understood as follows. In auto-correlation, both the primary and trispectrum terms contribute to the foreground
bias. The aggressive masking reduces both, but reduces the trispectrum much more. For the QE, a “lucky” cancellation
allows the dominant negative primary bias (at low lensing-L) to cancel the dominant positive trispectrum bias (at
high lensing-L). By reducing the trispectrum term more than the primary term, the aggressive masking spoils this
cancellation, thus enhancing the QE bias in auto-correlation.

Appendix E: Dependence of the lensing biases on `max,T

In this section we explore how our results change with `max,T . As shown in Fig. 6, we still find that profile
hardening outperforms the remaining estimators for any bias/noise cutoff and for any `max,T . We also find that small
improvements are possible by pushing to a higher `max,T with more joint deprojection. For the auto-correlation, the
bias to the profile hardened estimator can be reduced below half of the statistical uncertainty at a 30% noise penalty
by choosing `max,T = 4000 and t ∼ 0.4 (as opposed to a 50% penalty with `max,T = 3000 and t ∼ 0.2), relative to the
standard QE at ILC with `max,T = 3000. For the cross-correlation, the noise penalty for achieving bias/noise < 1/2
with the profile hardened estimator can be reduced from 15% to 10% by similarly increasing `max,T and t.

We note that for sufficiently high t, the biases and noises become roughly insensitive to the value of `max,T . This
is due to the map noise blowing up at high-` as the weights are pushed to joint deprojection, as shown in Fig. 1.
This in turn down-weights high-` modes and acts as an effective cutoff with `max eff < `max,T . Instead of partial joint
deprojection (Eq. (19)), one could naively use the standard ILC weights and reduce `max,T to remove these high-`
modes, and hence the bias, in a potentially a more optimal way. However, in practice we find it more optimal to
use a high `max,T with joint deprojection than a lower `max,T with the standard ILC weights. This is illustrated in
Fig. 6, where we plot the bias and noise at ILC for `max,T = 1500, 2000, and 2500 (individual circles). While lowering
the `max,T decreases the bias (as expected), the noise cost for doing so is much larger than increasing t with a higher
`max,T (as illustrated by the three lines for each estimator).
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Figure 6. Noise vs bias for several `max,T ’s. For `max,T = 3000, 3500, and 4000 we plot the line going from the standard ILC
to joint deprojection, with the linestyle denoting the `max,T . For `max,T = 1500, 2000, and 2500 we plot the noise and bias at
the standard ILC for each estimator (denoted by the circles). Note that for `max,T = 1500, the Shear estimator’s noise is larger
than 10% (3%) for the auto- (cross-) correlation, extending beyond the domain of the plot.
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