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On optimality of barrier dividend control under endogenous regime

switching with application to Chapter 11 bankruptcy

Wenyuan Wang∗ Xiang Yu† Xiaowen Zhou‡

Abstract

Motivated by recent developments in risk management based on the U.S. bankruptcy code,
we revisit the De Finetti’s optimal dividend problem by incorporating the reorganization pro-
cess and regulator’s intervention documented in Chapter 11 bankruptcy. The resulting surplus
process, bearing financial stress towards the more subtle concept of bankruptcy, corresponds to
a non-standard spectrally negative Lévy process with endogenous regime switching. Some ex-
plicit expressions of the expected present values under a barrier strategy, new to the literature,
are established in terms of scale functions. With the help of these expressions, when the tail of
the Lévy measure is log-convex, the optimal dividend control is shown to be of the barrier type
and the associated optimal barrier can be identified using scale functions of spectrally negative
Lévy processes. Some financial implications are also discussed in an illustrative example.

Keywords: Spectrally negative Lévy process, Chapter 11 bankruptcy, De Finetti’s optimal divi-
dend, barrier strategy, Parisian ruin with exponential delay, scale functions
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1 Introduction

De Finetti’s dividend optimization has always been an important topic in corporate finance and
insurance, which effectively signals the financial health and stability of companies. This type of
risk management by maximizing the expected present value (PV for short) of dividend payments
has stimulated fruitful research in stochastic singular control and impulse control under various
risk models. Some pioneering work can be found in De Finetti (1957), Gerber (1969), Shreve et al.
(1984), Jeanblanc and Shiryaev (1995) among others. A spectrally negative Lévy process, refer-
ring to a Lévy process with purely downward jumps, has been popular in insurance applications
with its capability of describing the surplus process that diffuses by collecting the premiums and
jumps downside by claim payments. Some early works based on spectrally negative Lévy processes
can be found in Avram et al. (2007), Kyprianou and Palmowski (2007), Renaud and Zhou (2007),
Loeffen (2008) and Loeffen (2009b). In particular, Avram et al. (2007), Loeffen (2008) and Loeffen
(2009b) prove that the optimal dividend control is of the barrier type by using the fluctuation
theory of spectrally negative Lévy processes and the dynamic programming approach. For some
comprehensive surveys on developments in optimal dividends and related methodology, we refer
to Albrecher and Thonhauser (2009), Avanzi (2009) and references therein. Recently, more new
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variations on optimal dividend problems have emerged by considering different risk models and
control constraints, such as Bayraktar et al. (2013), Bayraktar et al. (2014), Cheung and Wong
(2017), Pérez et al. (2018), Renaud (2019), Avanzi et al. (2020), Cheng et al. (2020), De Angelis
(2020), Noba et al. (2020), Jin et al. (2021), Avanzi et al. (2021), Noba (2021), just to name a few.

On the other hand, the consideration of the liquidation process (Chapter 7 bankruptcy) and
the reorganization process (Chapter 11 bankruptcy) in risk assessment and management based on
the U.S. bankruptcy code has attracted more attention in past decades. As an important early
contribution along this direction, Broadie et al. (2007) study Chapters 7 and 11 bankruptcy by
proposing a three-barrier model of a firm whose capital structure contains risky debt, and address
the problem of optimal debt and equity values. Within a similar framework of Broadie et al. (2007),
Li et al. (2014) establish an explicit formula for the probability of liquidation when the surplus
process follows a general time-homogeneous diffusion process. To fully capture some features in
Chapters 7 and 11 bankruptcy, Li et al. (2020) recently introduce a piecewise time-homogeneous
diffusion surplus process embedded with three barriers a, b and c (a < b < c) to model the surplus
of the insurance company. The liquidation barrier a: once the surplus process down-crosses this
barrier, the company ceases all operations and is liquidated due to its inability to cover its debts.
The reorganization barrier b: once the surplus process down-crosses this barrier, an exponential
clock starts that gives an amount of time until one up-crosses the barrier c. Moreover, the insurer’s
state becomes insolvent whose businesses will be reorganized subject to the regulator’s intervention.
The safety barrier c: an insurer whose surplus stays at or above this barrier is financially healthy.
To reflect the influence by reoganization and the regulator’s intervention, the dynamics of the
surplus process switches between two different time-homogeneous diffusion processes. Other notable
studies in risk management featuring Chapters 7 and 11 bankruptcy can be found in Paseka (2003),
Broadie and Kaya (2007), Dai et al. (2013), Corbae and D’Erasmo (2017), etc.

As a first attempt to study the De Finetti’s optimal dividend problem to integrate Chapter
11 bankruptcy, we assume that a = −∞ and leave the more complicated model encoding both
Chapters 7 and 11 bankruptcy (i.e., a > −∞) as future research. We model the risk surplus
process by a spectrally negative Lévy process with endogenous regime switching activated by a
reorganization barrier b and a solvency barrier c (b < c). Thanks to the spatial homogeneity
of of Lévy processes, it is assumed without loss of generality that b = 0, which simplifies the
presentation of some main results. The resulting risk surplus process is mathematically close to a
spectrally negative Lévy process with regime switching if we classify the solvency and insolvency
states as regime states. Nevertheless, our new risk surplus process differs substantially from the
Markov additive models in the aspect that our endogenous regime switching is triggered when
the controlled surplus process crosses some prescribed barriers in certain ways; see our detailed
construction in Definition 2.1. Meanwhile, our model allows jumps to capture some large shocks
(for example, lump sums of claims) in the cash flow of the insurer’s surplus level, which gives rise to
some new mathematical challenges. Another key feature in Chapter 11 is its bankruptcy time that
is defined as the first instance when the amount of time that the risk process continuously stays in
the insolvency state exceeds an exponential grace time. This type of bankruptcy time is also called
Parisian ruin with exponential delay motivated by the Parisian option, see Chesney et al. (1997).
For optimal dividend control with Parisian ruin and spectrally negative Lévy processes, we refer to
Renaud (2019). As explained in Palmowski et al. (2020), the Parisian ruin with exponential delay
is closely related to Poisson observation. Some recent results and applications on Lévy processes
with Poisson observations can be found in Albrecher et al. (2016), Albrecher and Ivanovs (2017),
Palmowski et al. (2020) and references therein.

With both endogenous regime switching and the Parisian ruin time, it is an open problem that
whether the optimal dividend control is still of the barrier type. We conjecture that the optimality
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of a barrier strategy still holds and perform the “guess-and-verify” procedure. We first introduce
an indicator state process to capture the switching between solvency and insolvency states, leading
to a pair of coupled PVs of dividend payments. By employing the fluctuation theory of spectrally
negative Lévy processes and some perturbation arguments, we obtain some novel explicit formulas
of expected PVs under a barrier strategy in terms of scale functions. Assuming that the tail
of the Lévy measure is log-convex, we contribute the rigorous verification of the optimal barrier
strategy using the HJB variational inequality and some delicate computations on generators and
slope conditions with the aid of the expected PVs of dividend payments. Unlike the implicit fixed
point barrier in Noba et al. (2020), the optimal barrier in our model, depending on the solvency
barrier c, can be characterized analytically; see its definition in (3.1) and one illustrative example
in Section 4.

The rest of the paper is organized as follows. Section 2 introduces the De Finetti’s optimal
singular dividend control under Chapter 11 bankruptcy, in which some explicit formulas are derived
for the expected PVs under a barrier dividend strategy. Section 3 constructs the candidate optimal
barrier using scale functions of spectrally negative Lévy processes and verifies its optimality with
the assistance of the HJB variational inequality and previous formulas of expected PVs of the
barrier dividend. An illustrative example is presented in Section 4 and some financial implications
are discussed.

2 De Finetti’s Optimal Dividend under Chapter 11 Bankruptcy

2.1 Problem formulation

Write (Ω,F ,F,P) for an underlying filtered probability space, where F = (Ft)t≥0 stands for the

natural filtration generated by two spectrally negative Lévy processes X(t) and X̃(t) and satis-
fies the usual conditions of right-continuity and completeness (see Exercise 8.10 in Chapter 8 of
Kyprianou (2014)). Let us consider the singular dividend control D = (D(t))t≥0, which is a non-
decreasing and left-continuous F-adapted process representing the cumulative dividends paid out
by the company up to the Chapter 11 bankruptcy time. To account for changes in risk processes
under regulator’s intervention documented in Chapter 11, we introduce an auxiliary state process
I(t), depending on the control, as an indicator process of solvency and insolvency states. We adopt
X(t) and X̃(t) to model the underlying risk processes without and with regulator’s interventions.
To construct the surplus process U(t), if the insurer is in the solvency state at time t ≥ 0 (i.e.,
I(t) = 0), the surplus process U(t) is governed by a spectrally negative Lévy process X(t) deducted
by total dividends that are only paid when the surplus level is at or above the safty barrier c > 0.
At the instant when the surplus process U(t) down-crosses the level b = 0, the state of the insurer
switches to insolvency and the underlying risk process X(t) switches to another spectrally negative
Lévy process X̃(t). On the other hand, if the insurer is in the insolvent state at time t ≥ 0 (i.e.,
I(t) = 1), the surplus process follows the dynamics of the spectrally negative Lévy process X̃(t).
At the instant when the surplus process U(t) up-crosses the safety barrier c > 0, the state of the
insurer switches to solvency state and the underlying risk process switches back to the process X(t).
It is assumed for mathematical tractability that the dividend is only paid when the surplus level
is at least at the safety barrier c > 0, which is also consistent with the real life situation that the
regulator immediately notifies the insurer when the surplus level falls below the safety barrier.

We can summarize the previous piecewise construction of the surplus process U under a singular
dividend strategy in the next definition.
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Definition 2.1 (The surplus process U). Let D = (D(t))t≥0 be a non-decreasing left-continuous
F-adapted process, with its non-decreasing and continuous part CD(t) and △D(t) := D(t+)−D(t)
for t ≥ 0. Recalling c > 0 and starting at time T0 := 0, let U(0) := X(0) ∈ (0,∞) if I(0) = 0 and
U(0) := X̃(0) ∈ (−∞, c) if I(0) = 1. The process (U, I) can be constructed as follows:

(a) Suppose that the process (U, I) has been defined on [0, Tn] for some n ≥ 0 with Tn <∞.

• If I (Tn) = 0, we define Un+1 = (Un+1(t))t≥0 with Un+1(0) = U (Tn) according to the SDE

dUn+1(t) = dX(Tn + t)− 1{Un+1(t)−c≥△D(t)} dD(t), t ≥ 0, (2.1)

and update time Tn+1 := Tn + inf{t ≥ 0; Un+1(t) < 0}. We then define the process (U, I)
on (Tn, Tn+1] by




(U (Tn + t) , I (Tn + t)) := (Un+1(t), 0) , t ∈ (0, Tn+1 − Tn) ,

(U (Tn+1) , I (Tn+1)) := (Un+1 (Tn+1 − Tn) , 1) .

• Otherwise, if I (Tn) = 1, we define Ũn+1 by

Ũn+1(t) := U (Tn) + X̃ (Tn + t)− X̃ (Tn) , t ≥ 0, (2.2)

and update time Tn+1 := Tn + inf{t ≥ 0; Ũ(t) ≥ c}. We then define the process (U, I) on
(Tn, Tn+1] by





(U (Tn + t) , I (Tn + t)) := (Ũn+1 (t) , 1), t ∈ (0, Tn+1 − Tn) ,

(U (Tn+1) , I (Tn+1)) := (Ũn+1 (Tn+1 − Tn) , 0) = (c, 0).

(b) Suppose that the process (U, I) has been defined on [0, Tn] for some n ≥ 0 with Tn = ∞, we update
Tn+1 = ∞.
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safety barrier c

t
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3t
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T
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reorganization barrier b = 0

The dividend is paid The dividend is paid

The dividend is paid

Figure 1: A sample path of the surplus process U(t) for t ∈ [0, 4]: On the interval [0, T1], the surplus level is in

solvency state with I(t) = 0 and U(t) is generated by the risk process X(t) and the dividend is paid during [0, t1); on

the interval (T1, T2], the surplus level is in insolvency state with I(t) = 1 and U(t) is generated by the risk process

X̃(t); on the interval (T2, 4], the surplus process switches back to solvency state again and the dividend is paid during

(T2, t2] and [t3, 4].
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Note that the one-dimensional process U is not a Markov process in general, but the two-
dimensional process (U, I) is Markovian. Write Px,i and Ex,i for the law of (U, I) such that U(0) = x
and I(0) = i.

Remark 2.1 One can check that Tn → ∞ almost surely as n→ ∞. In fact, by the proof of Theorem
3.1 in Albrecher et al. (2016), we recall the Laplace transform identity associated to one-sided exit
problem that

Ex

[
e−qτ̃

+
z
]
= exp(Φ̃q(x− z)), x ≤ z, (2.3)

where τ̃+z and Φ̃q are defined in the same manner as τ+z and Φq (of which the definitions are given

in Section 2.2) but with the underlying process X replaced as X̃. Using (2.3) one can get

Ec,0

[
e−qT21{T2<∞}

]
= Ec,0

[
e−qT11{T1<∞}EU(T1),1

[
e−qT11{T1<∞}

]]

= Ec,0

[
e−qT11{T1<∞}EU(T1)

[
e−qτ̃

+
c

]]

= Ec,0

[
e−qT11{T1<∞}e

Φ̃q(U(T1)−c)
]

≤ e−Φ̃qc. (2.4)

where U(T1) ≤ 0 is used in the above inequality. Then, by (2.4), one can obtain that

Ex,0

[
e−qT2n

]
= Ex,0

[
e−qT2(n−1)1{T2(n−1)<∞}

×Ex,0

[
e−q(T2n−T2(n−1))1{T2n−T2(n−1)<∞}

∣∣∣FT2(n−1)

]]

= Ex,0

[
e−qT2(n−1)1{T2(n−1)<∞}

]
Ec,0

[
e−qT21{T2<∞}

]

= Ex,0

[
e−qT21{T2<∞}

] [
Ec,0

[
e−qT21{T2<∞}

]]n−1

≤ e−(n−1)Φ̃qc → 0, as n→ ∞. (2.5)

Therefore, it holds that lim
n→∞

Tn = ∞ Px,0-a.s. because Tn is increasing in n. Similarly, one can also deduce

that lim
n→∞

Tn = ∞ Px,1-a.s.

By Remark 2.1, one concludes that the process U in Definition 2.1 is well-defined given that
the stochastic differential equation (2.1) admits a unique strong solution for each n ≥ 0.

Definition 2.2 A non-decreasing and left-continuous F-adapted process D is said to be an admis-
sible dividend strategy if the stochastic differential equation (2.1) admits a unique strong solution
for each n ≥ 0. Let D denote the set of all admissible dividend strategies.

Similar to the Parisian ruin with exponential delay (see Renaud (2019)), we now give the
definition of Chapter 11 bankruptcy time. Put κ := inf{k ≥ 1 : Tk + ekλ < Tk+1, I(Tk) = 1}, with
the convention that inf ∅ = ∞. The Chapter 11 bankruptcy time is defined by

TD := (Tκ + eκλ) · 1{κ<∞} + (+∞) · 1{κ=∞}, (2.6)

where {ekλ}k≥1, defined on (Ω,F ,P), is a sequence of independent and exponentially distributed
random variables with parameter λ, representing the sequence of grace time periods granted by the
regulator. It is assumed that {ekλ}k≥1 is independent of X and X̃.
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Recall that Px,0 is the probability law of (U, I) with initial value (U(0), I(0)) = (x, 0) for x ∈
(0,∞), Px,1 is the probability law of (U, I) with initial value (U(0), I(0)) = (x, 1) for x ∈ (−∞, c),
and Ex,0 (resp, Ex,1) is the expectation operator under Px,0 (resp, Px,1). Given an admissible
dividend strategy D ∈ D, we consider two expected PVs of dividend payments defined by

VD(x) := Ex,0

[ ∫ TD

0

e−qt1{U(t)≥c} dCD(t) + 1{U(t+)≥c} d
( ∑

0≤s≤t

△D(t)
)]
, x > 0, (2.7)

ṼD(x) := Ex,1

[ ∫ TD

0

e−qt1{U(t+)≥c} dD(t)

]
, x < c. (2.8)

In this paper, we want to find the optimal dividend strategy D∗ to attain the maximum of the
value function that

VD∗(x) = sup
D∈D

VD(x) for x > 0 and ṼD∗(x) = sup
D∈D

ṼD(x) for x < c. (2.9)

2.2 Preliminaries on spectrally negative Lévy processes

We conjecture that the optimal dividend control in problem (2.9) is still of the barrier type and
we aim to first express the expected PVs (2.7) and (2.8) under a barrier dividend strategy using
scale functions of spectrally negative Lévy processes. To this end, we present here a brief review of
some preliminary results on fluctuation identities for spectrally negative Lévy processes (see more
details in Kyprianou (2014)). Let X = (X(t))t≥0 be a spectrally negative Lévy process defined on
the filtered probability space (Ω,F,P) with the natural filtration F := (Ft)t≥0. To exclude trivial
cases, it is assumed that X has no monotone paths. We denote by Px the probability law given
X(0) = x, and by Ex the associated expectation. For ease of notation, we write P and E in place of
P0 and E0 respectively. The Laplace transform of a spectrally negative Lévy process X is defined
by E

(
eθX(t)

)
= etψ(θ), for all θ ≥ 0, where

ψ(θ) = γθ +
1

2
σ2θ2 +

∫ ∞

0
(e−θz − 1 + θz1(0,1](z))υ(dz),

for γ ∈ (−∞,∞) and σ ≥ 0, and the σ-finite Lévy measure υ of X on (0,∞) satisfies that∫∞
0 (1 ∧ z2)υ(dz) < ∞. As the Laplace exponent ψ is strictly convex and limθ→∞ ψ(θ) = ∞, there
exists a right inverse of ψ defined by Φq := sup{θ ≥ 0 : ψ(θ) = q}.

We next introduce some scale functions of X. For q ≥ 0, the scale functionWq : [0,∞) → [0,∞)
is defined as the unique strictly increasing and continuous function on [0,∞) with Laplace transform∫∞
0 e−θxWq(x)dx = 1

ψ(θ)−q , θ > Φq. For technical convenience, we extend the domain of Wq(x) to

the whole real line by setting Wq(x) = 0 for x < 0. Moreover, the scale functions Zq(x, θ) and
Zq(x) are defined by

Zq(x, θ) := eθx
(
1− (ψ(θ)− q)

∫ x

0
e−θwWq(w)dw

)
, x ≥ 0, q ≥ 0, θ ≥ 0, (2.10)

with Zq(x, θ) = eθx on (−∞, 0), and Zq(x) := Zq(x, 0) with Zq(x) ≡ 1 on (−∞, 0). We shall write
W :=W0 and Z := Z0 for simplicity. It is well known that

lim
x→∞

W ′
q(x)/Wq(x) = Φq, lim

y→∞
Wq(x+ y)/Wq(y) = eΦqx. (2.11)

Note that the scale function Wq has right-hand and left-hand derivatives on (0,∞). When X
has bounded variation and the Lévy measure has no atoms or X has unbounded variation, Wq
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is continuously differentiable on (0,∞). By Theorems 3.10 and 3.12 in Kuznetsov et al. (2012),
Wq is twice continuously differentiable on (0,∞) when X has a nontrivial Gaussian component or
is n + 1 times continuously differentiable on (0,∞) when X has paths of bounded variation and
the tail of the Lévy measure (i.e., υ(x,∞)) is n times continuously differentiable on (0,∞) and
has a density that is dominated in order by |x|−1−α in the neighbourhood of 0 for some α > 0.
By Theorem 2 of Loeffen (2009a), Wq is in C∞(0,∞) when the Lévy measure has a completely
monotone density. We refer to Kuznetsov et al. (2012), Kyprianou (2014), Chan et al. (2011) and
Loeffen (2008) for more details on the regularity of scale functions.

For any x ∈ R and ϑ ≥ 0, there exists a probability measure Pϑx obtained from the well-

known exponential change of measure for a spectrally negative Lévy process such that Pϑ
x

Px

∣∣
Ft

=

eϑ(X(t)−x)−ψ(ϑ)t. Under Pϑx, X remains a spectrally negative Lévy process with its Laplace exponent
ψϑ and the scale function W ϑ

q that: for ϑ ≥ 0 and q + ψ(ϑ) ≥ 0,

ψϑ(θ) = ψ(ϑ + θ)− ψ(ϑ) and W ϑ
q (x) = e−ϑxWq+ψ(ϑ)(x). (2.12)

In addition, denote by W ϑ the 0-scale function for X under Pϑx. For more detailed properties
concerning the exponential change of measure, we refer to Chapter 3 of Kyprianou (2014).

With the convention that inf ∅ = ∞, the following notations of first passage times of the level
z ∈ (−∞,∞) by the process X will be frequently used:

τ+z := inf{t ≥ 0 : X(t) > z} and τ−z := inf{t ≥ 0 : X(t) < z}.

To model the underlying risk process when the regulator intervenes, let us also introduce another
spectrally negative Lévy process, denoted by X̃ = {X̃(t); t ≥ 0} with (γ̃, σ̃, υ̃), ψ̃ and Φ̃q represent-
ing its associated Lévy triplet, the Laplace exponent and the right inverse of Laplace exponent,

respectively. Let N (resp., Ñ), N(resp., Ñ), and B (resp., B̃) be, respectively, the Poisson random
measure, the compensated Poisson random measure, and the Brownian motion of X (resp., X̃).

2.3 Expected PVs of dividends with a barrier strategy

To verify the optimality of a specific barrier strategy, we first consider the expected PVs of divi-
dend payments in (2.7) and (2.8) under a barrier strategy with a barrier d. The construction of
the piecewise underlying process (Ud, Id) follows Definition 2.1 by employing the barrier strategy.
In particular, in item (a) of Definition 2.1, the unique strong solution to the SDE (2.1) can be
constructed path by path that:

• If Id(Tn) = 0, put
Xn+1(t) := Ud(Tn) +X(t+ Tn)−X(Tn), t ≥ 0,

and define the process Ud over (Tn, Tn+1] as the process Xn+1 reflected from above at the level
d, i.e.

Ud(Tn + t) := Xn+1(t)− (Xn+1(t)− d) ∨ 0, t ≥ 0,

where Xn+1(t) = sup0≤s≤tXn+1(s) denotes the running maximum process of Xn+1. Therefore,
we have that D 6= ∅.

We shall consider two auxiliary moments of PVs of dividend payments that

Vn(x) := Ex,0

[ ∫ Td

0
e−qtdDd(t)

]n
and Ṽn(x) := Ex,1

[ ∫ Td

0
e−qtdDd(t)

]n
, (2.13)
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where n ≥ 1, and

Dd(t) :=
∞∑

n=1

[(
Xn (Tn ∧ t− Tn−1)− d

)
∨ 0
]
1{Tn−1≤t}1{Id(Tn−1)=0}, t ≥ 0, (2.14)

representing total dividends paid on [0, t], and we denote Td := TDd
. Let U∞ be the process Ud

with its dividend barrier d = ∞, i.e., U∞(t) := Ud(t)|d=∞, t ≥ 0, and no dividends are paid from
U∞. Denote by ζ±z (U∞) and T , respectively, the first up(down)-crossing times of level z and the
Chapter 11 bankruptcy time for U∞, i.e.

ζ±z (U∞) := inf{t ≥ 0;U∞(t) ≥ (<)z} and T := Td|d=∞ , (2.15)

and we write ζ±z := ζ±z (U∞) for simplicity.

We now introduce a key auxiliary function ℓ
(q,λ)
c (x) on (−∞,∞) defined by

ℓ(q,λ)c (x) :=Wq(x)(1 − e−Φ̃q+λcZq(c, Φ̃q+λ)) + e−Φ̃q+λcWq(c)Zq(x, Φ̃q+λ). (2.16)

Note that ℓ
(q,λ)
c essentially plays the role of the scale function in future computations for our non-

standard spectrally negative Lévy processes.
The next result gives some characterizations of two-sided exit problems for U∞.

Lemma 2.1 We have that

Ex,0

[
e−qζ

+
z 1{ζ+z <T}

]
= ℓ(q,λ)c (x)/ℓ(q,λ)c (z), 0 < x < z, c ≤ z, (2.17)

Ex,1

[
e−qζ

+
z 1{ζ+z <T}

]
= eΦ̃q+λ(x−c)Wq(c)/ℓ

(q,λ)
c (z), x < c ≤ z. (2.18)

Proof. Let f(x) := Ex,0

[
e−qζ

+
z ; ζ+z < T

]
. From Section 2 of Albrecher et al. (2016), one can get

the following well-known Laplace transform identities associated to two-sided exit problems that

Ex

[
e−qτ

+
z 1{τ+z <τ−0 }

]
=Wq(x)/Wq(z), x ≤ z, (2.19)

Ex

[
e−qτ

−
0 +θX(τ−0 )1{τ−0 <τ

+
z }

]
= Zq(x, θ)− Zq(z, θ)Wq(x)/Wq(z), x ≤ z. (2.20)

Then, by (2.3), (2.19) and (2.20), it is straightforward to check that

f(x) = Ex,0

[
e−qζ+

z 1{ζ+
z <ζ

−
0 }

]
+ Ex,0

[
e−qζ

−
0 1{ζ−

0 <ζ
+
z }EX(ζ−

0 ),1

[
e−qζ+

c 1{ζ+
c <eλ}

]
f(c)

]

= Ex

[
e−qτ+

z 1{τ+
z <τ

−
0 }

]
+ Ex

[
e−qτ

−
0 1{τ−

0 <τ
+
z }EX(τ−

0 )

[
e−(q+λ)τ̃+

c
]]
f(c)

= Ex

[
e−qτ+

z 1{τ+
z <τ

−
0 }

]
+ Ex

[
e−qτ

−
0 1{τ−

0 <τ
+
z }e

Φ̃q+λ(X(τ−
0 )−c)

]
f(c)

=Wq(x)/Wq(z) + e−Φ̃q+λc
[
Zq(x, Φ̃q+λ)−Wq(x)Zq(z, Φ̃q+λ)/Wq(z)

]
f(c), (2.21)

where τ̃+z and Φ̃q are defined in the same manner of τ+z and Φq (of which the definitions are given in Section

2.2) but with the underlying process X replaced by X̃. In view of the expression in (2.16), plugging x = c

back into (2.21) yields that f(c) =
Wq(c)

ℓ
(q,λ)
c (z)

, which combined with (2.21) implies the desired result (2.17). In

addition, the identity (2.18) follows easily from (2.3), (2.17) as well as the facts that

Ex,1

[
e−qζ+

z 1{ζ+
z <T}

]
= Ex,1

[
e−qζ+

c 1{ζ+
c <eλ}

]
Ec,0

[
e−qζ+

z 1{ζ+
z <T}

]
, x < c ≤ z,

and ℓ
(q,λ)
c (c) =Wq(c).
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Remark 2.2 It follows from (2.17) that the function ℓ
(q,λ)
c (x) is increasing on (0,∞). Indeed, due

to the fact that U has no positive jumps, we have Px,0

(
ζ+y > 0

)
= 1 for y > x. As a result, it holds

that

ℓ(q,λ)c (x)/ℓ(q,λ)c (y) = Ex,0[e
−qζ+y 1{ζ+y <T}] < 1 ⇒ ℓ(q,λ)c (x) < ℓ(q,λ)c (y), c ≤ x < y.

In addition, we have the desired result that

ℓ(q,λ)c (x)/ℓ(q,λ)c (z) = Ex,0[e
−qζ+z 1{ζ+z <T}] ≤ Ey,0[e

−qζ+z 1{ζ+z <T}] = ℓ(q,λ)c (y)/ℓ(q,λ)c (z)

⇒ ℓ(q,λ)c (x) ≤ ℓ(q,λ)c (y), 0 < x < y < c < z.

Recall that the n-th moments of PV of dividends paid until Chapter 11 bankruptcy time are
defined in (2.13) and (2.14). The next result gives important recursive formulas on moments of PVs
of dividends. In particular, the expected PVs under a barrier strategy can be explicitly expressed
in terms of scale functions; see similar results in Renaud and Zhou (2007) for standard spectrally
negative Lévy processes.

Proposition 2.1 The n-th moment of PV of dividend payments until Chapter 11 bankruptcy time
with the initial surplus x = d admits the explicit form that

Vn(d) = n!
n∏

k=1

ℓ(kq,λ)c (d)/ℓ(kq,λ)′c (d). (2.22)

Moreover, for arbitrary x, we obtain recursive equations that

Vn(x) =
ℓ
(nq,λ)
c (x)

ℓ
(nq,λ)
c (d)

Vn(d)1(0,d](x) +
n∑

k=0

(
n

k

)
(x− d)k Vn−k(d)1(d,∞)(x), (2.23)

Ṽn(x) = eΦ̃nq+λ(x−c)Wnq(c)Vn(d)/ℓ
(nq,λ)
c (d), x ∈ (−∞, c) . (2.24)

As a consequence, the expected PVs of dividend payments satisfy

V1(x) = ℓ(q,λ)c (x)/ℓ(q,λ)′c (d)1(0,d](x) +
[
ℓ(q,λ)c (d)/ℓ(q,λ)′c (d) + x− d

]
1(d,∞)(x), (2.25)

Ṽ1(x) = eΦ̃q+λ(x−c)Wq(c)/ℓ
(q,λ)′
c (d), x ∈ (−∞, c) . (2.26)

Proof. In view of ζ+d+ε defined in (2.15), we claim that, for any positive integer n ≥ 1, the next
two equations hold that

Ed,0

[[∫ ζ+d+ε

0
e−qsDd(s)ds

]n
1{ζ+d+ε<Td}

]
= o (ε) , (2.27)

Ed,0

[[∫ Td

0
e−qsdDd(s)

]n
1{Td<ζ+d+ε}

]
= o (ε) . (2.28)

In fact, U∞

(
ζ+d+ε

)
= d + ε implies Dd(s) ≤ ε for all s ∈ [0, ζ+d+ε]. Hence, due to Td ≤ T almost

surely, the left hand side of (2.27) is less than

εnEd,0
[[ ∫ ζ+d+ε

0
e−qsds

]n
1{ζ+d+ε<T}

]

≤
[
εn/qn

][
Ed,0

[
1{ζ+d+ε<T}

]
− Ed,0

[
e−qζ

+
d+ε1{ζ+d+ε<T}

]]
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=
[
εn/qn

][
ℓ(0,λ)c (d)/ℓ(0,λ)c (d+ ε)− ℓ(q,λ)c (d)/ℓ(q,λ)c (d+ ε)

]
= o (ε) , n ≥ 1,

which gives (2.27). In view of integration by parts and the fact that ζ−ε ≤ ζ−0 (Ud) ≤ Td almost
surely on {Td < ζ+d+ε}, the left hand side of (2.28) can be rewritten as

Ed,0

[[
e−qTdDd(Td) + q

∫ Td

0
e−qsDd(s)ds

]n
1{Td<ζ+d+ε}

]

≤Ed,0

[[
εe−qTd + ε

∫ Td

0
qe−qsds

]n
1{ζ−ε <ζ+d+ε}

]

=εn
[
Z(d− ε)− Z(d)W (d− ε)/W (d)

]
= o(ε), n ≥ 1,

which verifies (2.28). It follows from (2.28) that

Vk (d) = Ed,0

[[ ∫ Td

0
e−qtdDd(t)

]k
1{ζ+d+ε<Td}

]
+ o(ε), k ≥ 1.

Using the strong Markov property and the Binomial Theorem, we can rewrite the first term on the
right hand side of the above equation as

k∑

i=0

(
k

i

)
Vk−i(d)Ed,0

[[ ∫ ζ
+
d+ε

0

e−qsdDd(s)
]i
e−(k−i)qζ+

d+ε1{ζ+
d+ε<Td}

]

=

k∑

i=0

(
k

i

)
Vk−i(d)

i∑

j=0

(
i

j

)
εjEd,0

[
e−q(k−i+j)ζ+

d+εqi−j
[ ∫ ζ+

d+ε

0

e−qsDd(s)ds
]i−j

1{ζ+
d+ε<Td}

]
. (2.29)

Thanks to (2.27), (2.28) and the fact that Td ≤ T almost surely, it is sufficient to only consider
the sum with j = i = 1 or j = i = 0 in (2.29) to get

Vk (d) =Vk (d)Ed,0

[
e−kqζ

+
d+ε1{ζ+

d+ε<Td}

]
+ kVk−1 (d)Ed,0

[
εe−kqζ

+
d+ε1{ζ+

d+ε<Td}

]
+ o (ε)

≤
(
Vk(d) + kεVk−1(d)

)
Ed,0

[
e−kqζ

+
d+ε1{ζ+

d+ε<T}

]
+ o (ε)

= (Vk(d) + kεVk−1(d)) ℓ
(kq,λ)
c (d)/ℓ(kq,λ)c (d+ ε) + o(ε),

which can be rearranged to

kVk−1(d) ℓ
(kq,λ)
c (d) ≥ Vk(d)

(
ℓ(kq,λ)c (d+ ε)− ℓ(kq,λ)c (d)

)
/ε+ o(ε). (2.30)

Letting ε→ 0 in (2.30), we get that

kVk−1(d) ≥Vk(d) ℓ
(kq,λ)′
c (d)/ℓ(kq,λ)c (d). (2.31)

It remains to show that the reverse inequality of (2.31) also holds. To this end, we consider the
scenario that dividends are postponed until the level d + ε is attained by the surplus process, at
which instant a lump sum of amount ε is paid as dividend and the dividend is again paid according
to the barrier level d afterwards. Due to the discounting, the aforementioned dividend payment
yields a k-th moment of the discounted dividends being less than that of the barrier dividend
strategy with the barrier d. As a result, it holds that

Vk(d) ≥Ed,0

[
e−kqζ

+
d+ε1{ζ+d+ε<T}

] k∑

i=0

(
k

i

)
εi Vk−i(d)
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=
[
Vk(d) + kεVk−1(d)

]
ℓ(kq,λ)c (d)/ℓ(kq,λ)c (d+ ε) + o(ε),

which leads to the reverse inequality in (2.31) after taking the limit and rearranging the terms.
Hence, Vk(d) satisfies the recursive formula in (2.22).

Finally, recalling that dividend payments are delayed until the first time when the surplus
process up-crosses the barrier level d, we can derive by Markov property that (2.23) and (2.24)
hold. As a direct result, the expected PVs under a barrier strategy satisfy the explicit expressions
(2.25) and (2.26).

3 Optimal Barrier and Verification of the Optimality

For fixed 0 < c <∞, with the convention sup ∅ = −∞, let us define a candidate optimal barrier

d∗ := sup{d ≥ c : ℓ(q,λ)′c (x) ≥ ℓ(q,λ)′c (d) for all x ≥ c}, (3.1)

which is the largest value at which the function d 7→ ℓ
(q,λ)′
c (d) on [c,∞) attains its minimum. It

is conjectured that the barrier strategy with barrier level d∗ in (3.1) solves the problem (2.9). We
first present the next two lemmas as preparations.

Lemma 3.1 Suppose that g1 and g2 are continuous on [a1, a2], g1 has both right-hand and left-
hand derivatives on (a1, a2), g2 is continuously differentiable on (a1, a2) with g2(a2) 6= g2(a1) and
g′2(x) > 0 for x ∈ (a1, a2). Then there exists ζ ∈ (a1, a2) that

min{g′−1 (ζ), g′+1 (ζ)}

g′2(ζ)
≤
g1(a2)− g1(a1)

g2(a2)− g2(a1)
≤

max{g′−1 (ζ), g′+1 (ζ)}

g′2(ζ)
,

where g′−1 and g′+1 denote the right-hand and left-hand derivative of g1, respectively.

Proof. The proof is standard and hence omitted.
Recall that a function f defined on (0,∞) is log-convex if the function log f is convex on (0,∞),

and that the log-convexity implies convexity.

Lemma 3.2 Suppose thatW ′
q(x) is log-convex. Then [W ′

q]
′+(x)/W ′

q(x) ↑ Φq and [W ′
q]
′−(x)/W ′

q(x) ↑
Φq as x ↑ ∞.

Proof. By its convexity, W ′
q(x) has right-hand and left-hand derivatives over (0,∞) with

[
W ′
q

]′±
(x)

being non-decreasing, and

W ′
q(x) =W ′

q(x0) +

∫ x

x0

[W ′
q]
′±(y) dy, x ∈ [x0,∞), x0 ∈ (0,∞), (3.2)

which together with limx→∞Wq(x) = ∞ and (2.11) implies the existence of a positive x0 such that
[W ′

q]
′±(x) > 0 for all x ≥ x0. The log-convexity of W ′

q(x) on (0,∞) implies that [W ′
q]
′±(x)/W ′

q(x)
is non-decreasing on (0,∞). It follows, together with the fact that W ′

q(x) is differentiable on (0,∞)
except for countably many points, that [W ′

q]
′−(x)/W ′

q(x) ≤ [W ′
q]
′+(y)/W ′

q(y) ≤ [W ′
q]
′−(z)/W ′

q(z)
for 0 < x < y < z. This inequality and the fact that [W ′

q]
′±(x) > 0 for large x lead to

lim
x→∞

[W ′
q]
′−(x)/W ′

q(x) = lim
x→∞

[W ′
q]
′+(x)/W ′

q(x) ∈ (0,∞]. (3.3)

Define two functions F (x) := 1
Wq(1/x)

and G(x) := 1
W ′

q(1/x)
for x ∈ (0,∞). In addition, let F (0) =

lim
x↓0

F (x) = 0 and G(0) = lim
x↓0

G(x) = 0. Then F (x) is continuous over [0, 1], differentiable over
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(0, 1), strictly increasing, and F ′(x) > 0 for all x > 0. Moreover, G(x) is continuous over [0, 1], and
has right-hand and left-hand derivatives on (0, 1). By (2.11), Lemma 3.1 and (3.3), we have that

1

Φq
= lim

x↓0

G(x)

F (x)
= lim

x↓0

G(x) −G(0)

F (x) − F (0)

≥ lim
x↓0

min{G′−(ζ), G′+(ζ)}

F ′(ζ)
= lim

x↓0

min{[W ′
q]
′+(1/ζ), [W ′

q ]
′−(1/ζ)}

W ′
q(1/ζ)

[
Wq(1/ζ)

W ′
q(1/ζ)

]2

=Φ−2
q lim

x→∞
[W ′

q]
′±(x)/W ′

q(x),

as well as the reverse inequality. This, together with the non-decreasing property of [W ′
q]
′±(x)/W ′

q(x),
implies the desired result.

The following Lemma 3.3 gives the monotonicity of the function d 7→ ℓ
(q,λ)′
c (d) on [d∗,∞), which

plays an important role in solving our new dividend control problem under Chapter 11 bankruptcy.
Before presenting this result, we recall that the tail of the Lévy measure υ refers to the function
x 7→ υ(x,∞) for x ∈ (0,∞).

Lemma 3.3 If the tail of the Lévy measure υ is log-convex, then the function d 7→ ℓ
(q,λ)′
c (d) for

d ∈ [c,∞) is increasing on [d∗,∞).

Proof. It follows from (2.16) that

ℓ(q,λ)′c (d) =W ′
q(d)[ψ(Φ̃q+λ)− q]

∫ c

0
e−Φ̃q+λwWq(w)dw + e−Φ̃q+λcWq(c)Z

′
q(d, Φ̃q+λ).

We consider the following cases separately.

(i) ψ(Φ̃q+λ)− q > 0 (or, equivalently, Φ̃q+λ > Φq).

By Theorem 1.2 of Loeffen and Renaud (2010), the function W ′
q(x) is log-convex over (0,∞)

when the tail of the Lévy measure is log-convex. In view that Φ̃q+λ > Φq, and properties of
scale functions in Section 2 of Albrecher et al. (2016) or Section 3.1 of Renaud (2019), one
has

Z ′
q(x, Φ̃q+λ) = [ψ(Φ̃q+λ)− q]

∫ ∞

0
e−Φ̃q+λyW ′

q(x+ y)dy, x ≥ 0,

From Exercise 9 in Section 2.2 of Constantin (2010) (see also Artin (1964)), it follows that
the function x 7→ Z ′

q(x, Φ̃q+λ) is log-convex. Using Exercise 4 in Section 2.1 of Constantin

(2010), one deduces that the function ℓ
(q,λ)′
c (d) is log-convex on its domain [c,∞), and hence

ℓ
(q,λ)′
c (d) is convex on [c,∞) as log-convexity implies convexity. This result and the definition

of d∗ can guarantee that ℓ
(q,λ)′
c (d) is non-decreasing in d on [d∗,∞), as desired.

(ii) ψ(Φ̃q+λ)− q < 0.

Using (2.10) of Zq(x, Φ̃q+λ), the function ℓ
(q,λ)′
c (d) can be rewritten as

ℓ(q,λ)′c (d) =W ′
q(d)

(
ψ(Φ̃q+λ)− q

) ∫ c

0
e−Φ̃q+λwWq(w)dw

+ Φ̃q+λWq(c)e
Φ̃q+λ(d−c)

[
1−

(
ψ(Φ̃q+λ)− q

) ∫ d

0
e−Φ̃q+λwWq(w)dw

]

− [ψ(Φ̃q+λ)− q]e−Φ̃q+λcWq(c)Wq(d). (3.4)
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Taking right-hand and left-hand derivatives on both sides of (3.4) with respect to d gives that

[ℓ(q,λ)′c ]′±(d) = Φ̃q+λ ℓ
(q,λ)′
c (d)−

(
ψ(Φ̃q+λ)− q

)
W ′
q(d)

[
Wq(0)

+

∫ c

0
e−Φ̃q+λwW ′

q(w)dw −

∫ c

0
e−Φ̃q+λwWq(w)dw [W ′

q]
′±(d)/W ′

q(d)
]
. (3.5)

In addition, by (2.12) and integration by parts, it is also straightforward to verify that

Wq(0) +

∫ c

0
e−Φ̃q+λwW ′

q(w)dw − Φq

∫ c

0
e−Φ̃q+λwWq(w)dw

≥[Φq − Φ̃q+λ]
[e−Φ̃q+λcWq(c)

Φq − Φ̃q+λ
−WΦq(c)

∫ c

0
e−Φ̃q+λweΦqwdw

]

=WΦq(c) > 0, Φ̃q+λ < Φq. (3.6)

Hence, in view of (3.5), (3.6), as well as the facts of [W ′
q]
′±(d)/W ′

q(d) ↑ Φq as d ↑ ∞ (see,

Lemma 3.2) and ℓ
(q,λ)′
c (d) ≥ 0 on [c,∞) (see, Remark 2.2), we deduce that ℓ

(q,λ)′
c (d) is strictly

increasing on [c,∞). It follows that d∗ = c and ℓ
(q,λ)′
c (d) is strictly increasing in d on [d∗,∞).

(iii) ψ(Φ̃q+λ)− q = 0.

Using (3.4) again, we derive that ℓ
(q,λ)′
c (d) = Φ̃q+λe

−Φ̃q+λcWq(c)e
Φ̃q+λd, which is strictly in-

creasing on [c,∞).

Putting all the pieces together, we conclude that d∗ ≥ c and the function d 7→ ℓ
(q,λ)′
c (d) is

increasing on [d∗,∞) in the case ψ(Φ̃q+λ) − q > 0; and d∗ = c and the function d 7→ ℓ
(q,λ)′
c (d) is

increasing on [d∗,∞) in the case ψ(Φ̃q+λ)− q ≤ 0.

Remark 3.1 It is important to note that, in Lemma 3.3 and subsequent Lemmas 3.4 and 3.6,
and Theorems 3.1 and 3.2, the log-convexity assumption is imposed only on the Lévy measure υ of
the spectrally negative Lévy process X (rather than on that of the spectrally negative Lévy process

X̃). This is because the function ℓ
(q,λ)
c (x), which turns out to be the elementary object of study

throughout this paper, depends on X̃ only through the single parameter Φ̃q+λ, which allows us to
use the log-convexity results from the literature to prove Lemma 3.3. For further discussions, see
the up-coming Remark 3.2.

Define an operator A on the functional space D by

Af(x) := γf ′(x) +
σ2

2
f ′′(x) +

∫ ∞

0

[
f(x− z)− f(x) + f ′(x)z1{z≤1}

]
υ(dz), (3.7)

for x ∈ R and f ∈ D. When σ ∈ (0,∞), D is the set of twice differentiable functions such that the
integral on the right hand side of (3.7) is finite; when σ = 0, D is the set of differentiable functions
such that the integral on the right hand side of (3.7) is finite. Let Ã be the operator similar to A
where the Lévy triplet (γ, σ, υ) of X is replaced by (γ̃, σ̃, υ̃) of X̃ .

For fixed y ∈ [c,∞), we extend the definitions of V1(x) and Ṽ1(x) with d = y in (2.25) and

(2.26) and denote by Vy(x) and Ṽy(x) the extended functions that

Vy(x) :=
eΦ̃q+λ(x−c)Wq(c)1{x≤0}

ℓ
(q,λ)′
c (y)

+
ℓ
(q,λ)
c (x)1{0<x≤y}

ℓ
(q,λ)′
c (y)

+
[ ℓ(q,λ)c (y)

ℓ
(q,λ)′
c (y)

+ x− y
]
1{x>y}, (3.8)
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Ṽy(x) :=
eΦ̃q+λ(x−c)Wq(c)1{x≤c}

ℓ
(q,λ)′
c (y)

+
ℓ
(q,λ)
c (x)1{c<x≤y}

ℓ
(q,λ)′
c (y)

+
[ ℓ(q,λ)c (y)

ℓ
(q,λ)′
c (y)

+ x− y
]
1{x>y}. (3.9)

If the tail of the Lévy measure υ is log-convex, Wq(x) ∈ C1(0,∞) and Zq(x, Φ̃q+λ) ∈ C2(0,∞), and

hence by (3.8), Vy(x) is non-negative and Vy(x) ∈ C2(−∞, 0) ∩ C1(0,∞) ∩ C2(y,∞). By (3.9), Ṽy
is non-negative, increasing and twice continuously differentiable over (−∞, c).

Lemma 3.4 Suppose that the tail of the Lévy measure υ is log-convex. The integral in (3.7) with
f = Vy is finite for all x ∈ (0,∞) and is continuous for x ∈ (0, y).

Proof. We follow an argument similar to that of Lemma 4.1 in Kyprianou et al. (2010). For
x ∈ (0, y), by (2.16) and (3.8), the integral in (3.7) with f = Vy can be decomposed as

1− e−Φ̃q+λcZq(c, Φ̃q+λ)

ℓ
(q,λ)′
c (y)

[ ∫ (y−x)∧x
2 ∧1

0

[
Wq(x− z)−Wq(x) + zW ′

q(x)
]
υ(dz)

+

∫ x

(y−x)∧x
2 ∧1

[
Wq(x− z)−Wq(x) + zW ′

q(x)1{z≤1}

]
υ(dz)

]

+
e−Φ̃q+λcWq(c)

ℓ
(q,λ)′
c (y)

[∫ (y−x)∧x
2 ∧1

0

[Zq(x− z, Φ̃q+λ)− Zq(x, Φ̃q+λ) + zZ ′
q(x, Φ̃q+λ)]υ(dz)

+

∫ x

(y−x)∧x
2 ∧1

[
Zq(x− z, Φ̃q+λ)− Zq(x, Φ̃q+λ) + zZ ′

q(x, Φ̃q+λ)1{z≤1}

]
υ(dz)

]

+
1

ℓ
(q,λ)′
c (y)

∫ ∞

x

[
eΦ̃q+λ(x−z−c)Wq(c)− ℓ(q,λ)c (x) + zℓ(q,λ)′c (x)1{z≤1}

]
υ(dz). (3.10)

When the tail of the Lévy measure is log-convex, W ′
q(x) is continuous and log-convex on (0,∞). It

follows that (3.2) holds and Zq(x, Φ̃q+λ) ∈ C2(0,∞). As a result, by mean value theorem, we can
obtain five upper bounds for the five integrands in (3.10). Combining these bounds and the fact
of
∫∞
0 (1 ∧ z2)υ(dz) < ∞, we get that all five integrals in (3.10) are finite. Using the dominated

convergence theorem and the same upper bounds, one can further conclude that all five integrals
in (3.10) are continuous in x ∈ (0, y). In addition, it is straightforward to show that the integral is
finite for x ∈ [y,∞), which completes the proof.

The next result gives the PDE characterization of the optimal value function.

Theorem 3.1 (Verification Theorem) Suppose that the tail of the Lévy measure υ is log-convex.
Assume that Vy and Ṽy are non-decreasing functions such that





(A− q)Vy(x) ≤ 0, x ∈ (0,∞) ,

(Ã − q − λ)Ṽy(x) ≤ 0, x ∈ (−∞, c) ,

V ′
y(x) ≥ 1, x ∈ (c,∞) .

(3.11)

Then, we have Vy(x) ≥ VD(x) for x ∈ [0,∞), and Ṽy(x) ≥ ṼD(x) for x ∈ (−∞, c) for any admissible
singular dividend strategy D ∈ D.

Proof. Recall from Remark 2.1 that Tn ↑ ∞ almost surely under both Px,0 and Px,1 as n ↑ ∞. For
a given dividend strategy D ∈ D and the resulting surplus process U given by Definition 2.1, we
denote (CD(t))t≥0 the continuous part of (D(t))t≥0. Let ζn := inf{t ≥ 0; |U(t)| ≥ n} for n ≥ 1, it
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holds that ζn ↑ ∞ a.s. as n → ∞. In addition, U(t−) is bounded in the compact set [−n, n] for
t < ζn. We define

S := ∪k≥0,I(Tk)=0 [Tk,Tk+1) , S := ∪k≥0,I(Tk)=1 [Tk,Tk+1) , J(t) := qt+ λ

∫ t

0
1
S
(s) ds,

G(U, I,S,S)(s) := (A− q)Vy(U(s))1S(s) + (Ã − q − λ)Ṽy(U(s))1
S
(s),

where S (resp., S) represents the union of all solvency (resp., insolvency) time intervals. Note that
Vy(x) = Ṽy(x) for all x ∈ (−∞, 0) ∪ {c} and that Vy(0) = Ṽy(0) when X has paths of unbounded
variation. It follows that

• if I(0) = 0, for i ≥ 1 such that T2i−2 < ∞, define ζ
(2i−1)−
1/m := inf{t ≥ T2i−2;U(t) ≤ 1/m},

ξ
(2i−1)
1/m,m := inf{t ≥ 0;U2i−1(t) ≥ m or U2i−1(t) ≤ 1/m} where U2i−1 is defined in (2.1) with

n = 2i − 2, and ξ
(2i)
−m,c := inf{t ≥ 0; Ũ2i(t) ≥ c or Ũ2i(t) ≤ −m} where Ũ2i is defined in (2.2)

with n = 2i − 1. By the non-decreasing property of Vy and U(T2i−1) ≤ 0 < U(ζ
(2i−1)−
1/m −)

when T2i−1 <∞, we have
[
e−J(ζm)Vy (U(ζm))− Vy(x)

]
1[T2k,T2k+1)(ζm)

=1[T2k ,T2k+1)(ζm)
[
e−J(ζm)Vy (U(ζm))− e−J(T2k)Vy(U(T2k))

+
k∑

i=1

[
e−J(T2i)Ṽy(U(T2i))− e−J(T2i−1)Ṽy(U(T2i−1))

]

+

k∑

i=1

[
e−J(T2i−1)Vy(U(T2i−1))− e−J(T2i−2)Vy(U(T2i−2))

] ]

≤1[T2k ,T2k+1)(ζm)
[
e−J(ζm)Vy (U(ζm))− e−J(T2k)Vy(U(T2k))

+

k∑

i=1

[
e−J(T2i)Ṽy(U(T2i))− e−J(T2i−1)Ṽy(U(T2i−1))

]

+

k∑

i=1

[e
−J(ζ

(2i−1)−
1/m

−)
Vy(U(ζ

(2i−1)−
1/m −))− e−J(T2i−2)Vy(U(T2i−2))]

]
, (3.12)

and [
e−J(ζm)Ṽy (U(ζm))− Vy(x)

]
1[T2k+1,T2k+2)(ζm)

≤1[T2k+1,T2k+2)(ζm)
[
e−J(ζm)Ṽy(U(ζm))− e−J(T2k+1)Ṽy(U(T2k+1))

+
k+1∑

i=1

[
e
−J(ζ

(2i−1)−
1/m

−)
Vy(U(ζ

(2i−1)−
1/m

−))− e−J(T2i−2)Vy(U(T2i−2))

]

+

k∑

i=1

[
e−J(T2i)Ṽy(U(T2i))− e−J(T2i−1)Ṽy(U(T2i−1))

] ]
. (3.13)

• if I(0) = 1, for i ≥ 1 such that T2i−1 < ∞, define ζ
(2i)−
1/m := inf{t ≥ T2i−1;U(t) ≤ 1/m}. By

the non-decreasing property of Vy and U(T2i) ≤ 0 < U(ζ
(2i)−
1/m −) when T2i <∞, we have

[
e−J(ζm)Vy (U(ζm))− Ṽy(x)

]
1[T2k+1,T2k+2)(ζm)
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≤1[T2k+1,T2k+2)(ζm)
[
e−J(ζm)Vy (U(ζm))− e−J(T2k+1)Vy(U(T2k+1))

+

k∑

i=0

[
e−J(T2i+1)Ṽy(U(T2i+1))− e−J(T2i)Ṽy(U(T2i))

]

+

k∑

i=1

[
e
−J(ζ

(2i)−
1/m

−)
Vy(U(ζ

(2i)−
1/m −))− e−J(T2i−1)Vy(U(T2i−1))

] ]
, (3.14)

and
[
e−J(ζm)Ṽy (U(ζm))− Ṽy(x)

]
1[T2k,T2k+1)(ζm)

≤1[T2k ,T2k+1)(ζm)
[
e−J(ζm)Ṽy (U(ζm))− e−J(T2k)Ṽy(U(T2k))

+

k∑

i=1

[
e
−J(ζ

(2i)−
1/m

−)
Vy(U(ζ

(2i)−
1/m −))− e−J(T2i−1)Vy(U(T2i−1))

]

+
k∑

i=1

[
e−J(T2i−1)Ṽy(U(T2i−1))− e−J(T2i−2)Ṽy(U(T2i−2))

] ]
. (3.15)

By the proof of Lemma 3.3, ℓ
(q,λ)′
c (x) is either increasing over (0,∞) or is initially decreasing

and ultimately increasing over (0,∞), implying that Vy(x) can be written as the difference of two
convex functions. Therefore, one can apply the Meyer-Itô formula (see, Theorem 70 of Chap-

ter IV in Protter (2005)) to the processes
{
e−qtVy(U2i−1(t))

}
and {e−(q+λ)tṼy(Ũ2i(t))} (resp.,{

e−(q+λ)tṼy(Ũ2i−1(t))
}
and {e−qtVy(U2i(t))}) with Un+1(t) and Ũn+1(t) in Definition 2.1 for n =

2i − 2 and 2i − 1 when I(0) = 0 (resp., I(0)=1) to expand the right hand sides of (3.12), (3.13),
(3.14) and (3.15), and sum them over k ≥ 0 to obtain that

e−J(ζm)Vy(U(ζm))1S(ζm) + e−J(ζm)Ṽy(U(ζm))1
S
(ζm)

− Vy(x)1{I(0)=0} − Ṽy(x)1{I(0)=1} ≤

∫ ζm

0−

e−J(s)G(U, I, Sm, S)(s−)ds

+

∫ ζm

0−

e−J(s)
[
σV ′

y(U(s−))1Sm(s)dB(s) + σ̃Ṽ ′
y(U(s−))1

S
(s)dB̃(s)

]

−

∫ ζm

0−

e−J(s)V ′
y(U(s))1Sm(s)1U(s+)≥cdCD(s)−

∑

s≤ζm

e−J(s)△D(s)1Sm(s)1U(s+)≥c

+
∑

s≤ζm

e−J(s)
[
Vy(U(s+))− Vy(U(s+) +△D(s)) +△D(s)

]
1Sm(s)1U(s+)≥c

−

∫ ζm

0−

∫ 1

0

e−J(s)
(
V ′
y(U(s−))1Sm(s)zN(ds, dz) + Ṽ ′

y(U(s−))1
S
(s)zÑ(ds, dz)

)

+

∫ ζm

0−

∫ ∞

0

e−J(s)[Vy(U(s−)− z)− Vy(U(s−)) + V ′
y(U(s−))z1z≤1]1Sm(s)N (ds, dz)

+

∫ ζm

0−

∫ ∞

0

e−J(s)[Ṽy(U(s−)− z)− Ṽy(U(s−)) + Ṽ ′
y(U(s−))z1z≤1]1S

(s)Ñ(ds, dz), (3.16)

for x ∈ (−∞,∞), where ∆D(s) = D(s+)−D(s), Sm = ∪i≥0[T2i, ζ
(2i+1)−
1/m ) ⊆ S when I(0) = 0, and

Sm = ∪i≥1[T2i−1, ζ
(2i)−
1/m ) ⊆ S when I(0) = 1. In light of the fact that V ′(x) ≥ 1 for all x ∈ [c,∞),

we have

[Vy(U(s+))− Vy(U(s+) +△D(s)) +△D(s)]1Sm(s)1{U(s+)≥c} ≤ 0. (3.17)
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Hence, by (3.11), (3.16), (3.17) and the facts that V ′
y(x) ≥ 1 for x ≥ c, U(t) > 0 for all t ∈ Sm as

well as U(t) < c for all t ∈ S, for x ∈ (−∞,∞), we have that

e−J(ζm)Vy (U(ζm)) 1S(ζm) + e−J(ζm)Ṽy (U(ζm))1
S
(ζm)− Vy(x)1{I(0)=0} − Ṽy(x)1{I(0)=1}

≤−
∑

s≤ζm

e−J(s)∆D(s)1Sm(s)1{U(s+)≥c} −

∫ ζm

0−

e−J(s)1Sm(s)1{U(s+)≥c}dCD(s)

+

∫ ζm

0−

e−J(s)
(
σV ′

y(U(s))1Sm(s) dB(s) + σ̃Ṽ ′
y(U(s))1

S
(s) dB̃(s)

)

−

∫ ζm

0−

∫ 1

0

e−J(s)
(
V ′
y(U(s−))1Sm(s)zN(ds, dz) + Ṽ ′

y(U(s−))1
S
(s)zÑ(ds, dz)

)

+

∫ ζm

0−

∫ ∞

0

e−J(s)
[
Vy(U(s−)− z)− Vy(U(s−)) + V ′

y(U(s−))z1z≤1

]
1Sm(s)N(ds, dz)

+

∫ ζm

0−

∫ ∞

0

e−J(s)
[
Ṽy(U(s−)− z)− Ṽy(U(s−)) + Ṽ ′

y(U(s−))z1z≤1

]
1
S
(s)Ñ(ds, dz). (3.18)

We claim that the stochastic integral

∫ ζm

0−

∫ 1

0
e−J(s)

(
V ′
y(U(s−))1Sm(s)zN (ds,dz) + Ṽ ′

y(U(s−))1
S
(s)zÑ (ds,dz)

)
,

has zero mean. Indeed, its expectation under Px,0 (the computation under Px,1 is similar and hence
omitted) can be expressed by

Ex,0

[ ∫ ζm

0−

∫ 1

0

e−J(s)[V ′
y(U(s−))1Sm(s)zN(ds, dz) + Ṽ ′

y(U(s−))1
S
(s)zÑ(ds, dz)]

]

=
∑

i≥0

Ex,0

[
1{T2i<ζm}Ex,0

[ ∫ ζm∧ζ
(2i+1)−

1/m

T2i

∫ 1

0

e−J(s)V ′
y(U(s−))zN(ds, dz)

∣∣∣FT2i

]]

+
∑

i≥0

Ex,0

[
1{T2i+1<ζm}Ex,0

[ ∫ ζm∧T2i+2

T2i+1

∫ 1

0

e−J(s)Ṽ ′
y(U(s−))zÑ(ds, dz)

∣∣∣FT2i+1

]]

=
∑

i≥0

Ex,0

[
e−J(T2i)1{T2i<ζm}Ex,0

[ ∫ ξ
(2i+1)

1/m,m

0

×

∫ 1

0

e−qsV ′
y(U2i+1(s−))zN(T2i + ds, dz)

∣∣∣FT2i

]]

+
∑

i≥0

Ex,0

[
e−J(T2i+1)1{T2i+1<ζm}Ex,0

[ ∫ ξ
(2i+2)
−m,c

0

×

∫ 1

0

e−(q+λ)sṼ ′
y(Ũ2i+2(s−))zÑ(T2i+1 + ds, dz)

∣∣∣FT2i+1

]]
, (3.19)

where the two inner conditional expectations on the right hand side of (3.19) equal to 0 because of
the Lévy-Itô decomposition theorem (see, Theorem 2.1 in Kyprianou (2014)) and three facts: (i)

V ′
y(U2i+1(s−)) is uniformly bounded as 1/m < U2i+1(s−) < m for all s < ξ

(2i+1)
1/m,m; (ii) Ṽ

′
y(Ũ2i+2(s−))

is uniformly bounded because −m < Ũ2i+2(s−) < c for all s < ξ
(2i+2)
−m,c ; and (iii) {X̃(T2i+1 + s) −

X̃(T2i+1); s ≥ 0} (resp., {X(T2i + s)−X(T2i); s ≥ 0}) is independent of FT2i+1 (resp., FT2i) as well

as Ñ(T2i+1 + s,dz) − Ñ(T2i+1,dz) (resp., N(T2i + s,dz) − N(T2i,dz)) inducing the compensated

Poisson random measure Ñ(T2i+1 +ds,dz) (resp., N(T2i +ds,dz)) is independent of FT2i+1 (resp.,
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FT2i). We also claim that the next two integrals

∫ ζm

0−

∫ ∞

0

e−J(s)
(
Vy(U(s−)− z)− Vy(U(s−)) + V ′

y(U(s−))z1z≤1

)
1Sm(s)N(ds, dz),

∫ ζm

0−

∫ ∞

0

e−J(s)
(
Ṽy(U(s−)− z)− Ṽy(U(s−)) + Ṽ ′

y(U(s−))z1z≤1

)
1
S
(s) Ñ(ds, dz),

have zero mean. Here, we only show that the expectation of the first stochastic integral under Px,0
is 0. In fact, similar to the arguments in handling (3.19), we have

Ex,0

[ ∫ ζm

0−

∫ ∞

0

e−J(s)[Vy(U(s−)− z)− Vy(U(s−)) + V ′
y(U(s−))z1z≤1]1Sm(s)N(ds, dz)

]

=
∑

i≥0

Ex,0

[
e−J(T2i)1{T2i<ζm}Ex,0

[ ∫ ξ
(2i+1)

1/m,m

0

∫ ∞

0

e−qs

×[Vy(U2i+1(s−)− z)− Vy(U2i+1(s−)) + V ′
y(U2i+1(s−))z1z≤1]N(T2i + ds, dz)

∣∣∣FT2i

]]

= 0,

where we have used Corollary 4.6 in Kyprianou (2014). To be precise, one key condition of Corollary
4.6 in Kyprianou (2014) is that the expected integral of the integrand in the above inner integral
with respect to the Lévy measure υ is finite, which is already verified in Lemma 3.4 thanks to the

fact 1/m < U2i+1(s−) < m for every s < ξ
(2i+1)
1/m,m. Other conditions of Corollary 4.6 in Kyprianou

(2014) including the process in the integrand of the above inner integral being left-continuous can
all be checked easily. Similarly, it holds that the integral

∫ ζm

0−
e−J(s)

(
σV ′

y(U(s−))1Sm(s)dB(s) + σ̃Ṽ ′
y(U(s−))1

S
(s)dB̃(s)

)
,

also has zero mean. Here, we only show the expectation of the above integral under Px,0 is 0.
Actually, we have

Ex,0

[ ∫ ζm

0−
e−J(s)

[
σV ′

y(U(s−))1Sm(s)dB(s) + σ̃Ṽ ′
y(U(s−))1

S
(s)dB̃(s)

]]

=
∑

i≥0

Ex,0

[
e−J(T2i)1{T2i<ζm}Ex,0

[ ∫ ξ
(2i+1)
1/m,m

0
σe−qsV ′

y(U2i+1(s−))

×dB(T2i + s)
∣∣∣FT2i

]]
+
∑

i≥0

Ex,0

[
e−J(T2i+1)1{T2i+1<ζm}Ex,0

[ ∫ ξ
(2i+2)
−m,c

0

×σ̃e−(q+λ)sṼ ′
y(Ũ2i+2(s−))dB̃(T2i+1 + s)

∣∣∣FT2i+1

]]
,

which is 0 due to the arguments on Page 146 in Karatzas and Shreve (1991), and the facts that
the integrands are uniformly bounded and B(T2i+ s)−B(T2i) (reps., B̃(T2i+1 + s)− B̃(T2i+1)) is a
standard Brownian motion independent of FT2i (resp., FT2i+1). Taking expectations on both sides

of (3.18) and recalling the no-negativity of Vy(x) and Ṽy(x), and 1Sm(s) ↑ 1S(s) a.s. as m ↑ ∞, we
have that

Vy(x)1{I(0)=0} + Ṽy(x)1{I(0)=1}

≥Ex,I(0)

[ ∫ ζm

0−
e−J(s)1Sm(s)1{U(s+)≥c}dCD(s)

]
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+ Ex,I(0)

[ ∑

s≤ζm

e−J(s)(D(s+)−D(s))1Sm(s)1{U(s+)≥c}

]

→Ex,I(0)

[ ∫ ∞

0−
e−J(s)1{U(s+)≥c}dCD(s)

]

+ Ex,I(0)

[ ∑

s<∞

e−J(s)(D(s+)−D(s))1{U(s+)≥c}

]

=Ex,I(0)

[ ∫ ∞

0−
e−J(s)1{U(s+)≥c} dD(s)

]

=VD(x)1{I(0)=0} + ṼD(x)1{I(0)=1}, x ∈ (−∞,∞), m→ ∞, t→ ∞, (3.20)

where the last equality follows by the Poisson method introduced in Li and Zhou (2014) and
the memory-less property of exponential random variables. To wit, we denote by (Ti)i≥1 the
successive arrival times of a Poisson processes with rate λ that are independent of the process

(X(t), X̃(t), U(t), I(t))t≥0 , and denote by F
X,X̃,U,I

the smallest sigma field generated by it. It holds

that

Ex,I(0)

[ ∫ ∞

0−

e−J(t)1{U(t+)≥c} dD(t)
]

=Ex,I(0)

[ ∫ ∞

0−

e−qt
E

[
1{((Ti)i≥1)∩ S∩ [0,t]=∅}

∣∣∣FX,X̃,U,I

]
1{U(t+)≥c} dD(t)

]

=Ex,I(0)

[
E

[ ∫ ∞

0−

e−qt1{TD>t}1{U(t+)≥c} dD(t)
∣∣∣FX,X̃,U,I

]]

=Ex,I(0)

[ ∫ TD

0−

e−qt1{U(t+)≥c} dD(t)
]

=VD(x)1{I(0)=0} + ṼD(x)1{I(0)=1}, x ∈ (−∞,∞).

By (3.20) and the arbitrariness of D, we can conclude that Vy(x) ≥ sup
D∈D

VD(x) for all x ∈ (0,∞),

and Ṽy(x) ≥ sup
D∈D

ṼD(x) for all x ∈ (−∞, c).

By Theorem 3.1, to prove the optimality of the barrier dividend strategy with the barrier d∗

defined in (3.1), it only remains to verify that AVd∗(x)− qVd∗(x) ≤ 0 for almost every x ∈ (0,∞),
that ÃṼd∗(x) − (q + λ) Ṽd∗(x) ≤ 0 for almost every x ∈ (−∞, c), that V ′(x) ≥ 1 for almost every
x ∈ [c,∞), and that both Vd∗(x) and Ṽd∗(x) are non-decreasing.

Similar to the proof of Lemma 4.2 in Kyprianou et al. (2010) or a method in Section 5 of
Avram et al. (2015), we have the next result.

Lemma 3.5 Let d∗ and Vy(x) be defined in (3.1) and (3.8). For any y ∈ [d∗,∞) and any x ∈ (0, y),
we have that

AVy(x)− qVy(x) = 0. (3.21)

In particular, it holds that

AVd∗(x)− qVd∗(x) = 0, x ∈ (0, d∗) .

Proof. By Equation (5.1), Definition 5.1, as well as Corollary 5.9 in Avram et al. (2015), it follows

that (e−q(t∧τ
+
y ∧τ−0 )Wq(X(t ∧ τ+y ∧ τ−0 )))t≥0 and (e−q(t∧τ

+
y ∧τ−0 )Zq(X(t ∧ τ+y ∧ τ−0 ), Φ̃q+λ))t≥0 are two

martingales. Recall that ℓ
(q,λ)
c (x) is a linear combination ofWq(x) and Zq(x, Φ̃q+λ) (see (2.16)). As a
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result, for arbitrary (ν1, ν2) ⊆ (0, y), the stopped process {e−q(t∧τ
+
ν2

∧τ−ν1 )ℓ
(q,λ)
c (X(t∧τ+ν2∧τ

−
ν1)); t ≥ 0}

is a martingale. We claim that this martingale property implies (3.21). Indeed, Meyer-Itô formula
gives

e−q(t∧τ
+
ν2

∧τ−ν1 )ℓ(q,λ)c

(
X(t ∧ τ+ν2 ∧ τ

−
ν1)
)
− ℓ(q,λ)c (x)

=

∫ t∧τ+ν2∧τ
−
ν1

0−
e−qs(A− q)ℓ(q,λ)c (X(s−))ds

+

∫ t∧τ+ν2∧τ
−
ν1

0−
e−qsℓ(q,λ)′c (X(s−))

[
σdB(s)−

∫ 1

0
zN(ds,dz)

]

+

∫ t∧τ+ν2∧τ
−
ν1

0−

∫ ∞

0
e−qs

[
ℓ(q,λ)c (X(s−)− z)− ℓ(q,λ)c (X(s−))

+ ℓ(q,λ)′c (X(s−))z1(0,1](z)
]
N(ds,dz), t ≥ 0.

By Lemma 3.4, (A−q)ℓ
(q,λ)
c (x) is bounded on [ν1, ν2] and is continuous in x ∈ [ν1, ν2]. Hence, taking

expectations on both sides of the above equality and using the dominated convergence theorem by
sending t to +∞, we arrive at

0 =
1

q
Ex

[ ∫ ∞

0−
qe−qs(A− q)ℓ(q,λ)c (X(s)) 1{s<τ+ν2∧τ

−
ν1

}ds
]

=

∫ ν2

ν1

(A− q)ℓ(q,λ)c (ω)
1

q
Px

(
Xeq ∈ dω, eq < τ+ν2 ∧ τ

−
ν1

)
. (3.22)

Together with the arbitrariness of (ν1, ν2), the continuity of (A − q)ℓ
(q,λ)
c (x) in x ∈ [ν1, ν2], and

the fact that the q-potential measure 1
qPx

(
Xeq ∈ dω, eq < τ+ν2 ∧ τ

−
ν1

)
has a strictly positive resolvent

density on (ν1, ν2) (see the proof of Lemma 4.2 in Kyprianou et al. (2010)), the equality in (3.22)
implies the desired result (3.21) for x ∈ (0, y).

Moreover, we have the next auxiliary result.

Lemma 3.6 Suppose that the tail of the Lévy measure υ is log-convex. Let d∗ and Vy(x) be defined
in (3.1) and (3.8), respectively. We have that V ′

d∗(x) ≥ 1 for x ∈ [c,∞), and

AVd∗(x)− qVd∗(x) ≤ 0, x ∈ (d∗,∞). (3.23)

Proof. By the definitions of d∗ in (3.1) and Vd∗ in (3.8), it is straightforward to see that V ′
d∗(x) ≥ 1

for x ∈ [c,∞). It remains to prove (3.23). First, thanks to (3.8) and (3.21), it holds that, for
x ∈ (d∗,∞)

0 = lim
v↑x

[
AVx(v)− qVx(v)

]
= γ +

σ2

2

ℓ
(q,λ)′′
c (x)

ℓ
(q,λ)′
c (x)

+

∫ ∞

0

[ℓ(q,λ)c (x− z)

ℓ
(q,λ)′
c (x)

−
ℓ
(q,λ)
c (x)

ℓ
(q,λ)′
c (x)

+ z1(0,1)(z)
]
υ(dz)− q

ℓ
(q,λ)
c (x)

ℓ
(q,λ)′
c (x)

. (3.24)

On the other hand, using the definition (3.8) with y = d∗, we get that, for x ∈ (d∗,∞),

AVd∗(x)− qVd∗(x) =γ +

∫ ∞

x−d∗

[ℓ(q,λ)c (x− z)

ℓ
(q,λ)′
c (d∗)

−
ℓ
(q,λ)
c (d∗)

ℓ
(q,λ)′
c (d∗)
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− (x− d∗) + z1(0,1)(z)
]
υ(dz)

+

∫ x−d∗

0

(
−z + z1(0,1)(z)

)
υ(dz)− q

[ ℓ(q,λ)c (d∗)

ℓ
(q,λ)′
c (d∗)

+ (x− d∗)
]
. (3.25)

Lemma 3.3 gives that ℓ
(q,λ)′
c is increasing on [d∗,∞), which together with Remark 2.2 implies that

ℓ
(q,λ)′′
c (x)

ℓ
(q,λ)′
c (x)

≥ 0, x ∈ (d∗,∞) , (3.26)

when σ ∈ (0,∞). Here, note that if σ > 0, Wq(x) (hence, ℓ
(q,λ)
c (x)) is twice continuously differen-

tiable. By virtue of Lemma 3.3 and the mean value theorem, for x ∈ (d∗,∞), z ∈ (0, x− d∗], we
get that

[ℓ(q,λ)c (x− z)

ℓ
(q,λ)′
c (x)

−
ℓ
(q,λ)
c (x)

ℓ
(q,λ)′
c (x)

]
− (−z) = z

(
1−

ℓ
(q,λ)′
c (ω)

ℓ
(q,λ)′
c (x)

)
≥ 0, (3.27)

for some ω ∈ (x− z, x) ⊆ (d∗, x), and

[ℓ(q,λ)c (x− z)

ℓ
(q,λ)′
c (x)

−
ℓ
(q,λ)
c (x)

ℓ
(q,λ)′
c (x)

]
−
[ℓ(q,λ)c (x− z)

ℓ
(q,λ)′
c (d∗)

−
ℓ
(q,λ)
c (d∗)

ℓ
(q,λ)′
c (d∗)

− (x− d∗)
]

=ℓ(q,λ)c (x− z)
[ 1

ℓ
(q,λ)′
c (x)

−
1

ℓ
(q,λ)′
c (d∗)

]
+
ℓ
(q,λ)
c (d∗)

ℓ
(q,λ)′
c (d∗)

−
ℓ
(q,λ)
c (d∗) + ℓ

(q,λ)′
c (ω)(x− d∗)

ℓ
(q,λ)′
c (x)

+
(
x− d∗

)

=
[
ℓ(q,λ)c (d∗)− ℓ(q,λ)c (x− z)

][ 1

ℓ
(q,λ)′
c (d∗)

−
1

ℓ
(q,λ)′
c (x)

]

+
(
x− d∗

)[
1−

ℓ
(q,λ)′
c (ω)

ℓ
(q,λ)′
c (x)

]
≥ 0, x ∈ (d∗,∞), z ∈ (x− d∗,∞), (3.28)

for some ω ∈ (d∗, x), and

−
ℓ
(q,λ)
c (x)

ℓ
(q,λ)′
c (x)

−
[
−
ℓ
(q,λ)
c (d∗)

ℓ
(q,λ)′
c (d∗)

− (x− d∗)
]

=(x− d∗)
[
1−

ℓ
(q,λ)′
c (ω)

ℓ
(q,λ)′
c (x)

]
+
[ ℓ(q,λ)c (d∗)

ℓ
(q,λ)′
c (d∗)

−
ℓ
(q,λ)
c (d∗)

ℓ
(q,λ)′
c (x)

]
≥ 0, x ∈ (d∗,∞) , (3.29)

for some ω ∈ (d∗, x). From (3.26), (3.27), (3.28) and (3.29), it follows that the right hand side
of (3.25) is less than the right hand side of (3.24) with the latter being zero. Therefore, (3.23) is
verified for x ∈ (d∗,∞).

Lemma 3.7 Let d∗ and Ṽy(x) be defined in (3.1) and (3.9), respectively. For x ∈ (−∞, c), we
have that

ÃṼd∗(x)− (q + λ)Ṽd∗(x) = 0. (3.30)
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Proof. It follows from definition that Ṽd∗(x) =
e
Φ̃q+λ(x−c)

ℓ
(q,λ)′
c (d∗)

, x ∈ (−∞, c). Hence, we have that

ÃṼd∗(x)− (q + λ)Ṽd∗(x) =
eΦ̃q+λ(x−c)

ℓ
(q,λ)′
c (d∗)

[
γ̃Φ̃q+λ +

1

2
σ̃2Φ̃2

q+λ

+

∫

(0,∞)

(
e−Φ̃q+λz − 1 + Φ̃q+λz1(0,1)(z)

)
υ̃(dz)− (q + λ)

]

=
eΦ̃q+λ(x−c)

ℓ
(q,λ)′
c (d∗)

(
ψ̃
(
Φ̃q+λ

)
− q − λ

)
= 0, x ∈ (−∞, c) ,

which is the desired result (3.30).
We are ready to present and prove the main result of this section.

Theorem 3.2 Suppose that the tail of the Lévy measure υ is log-convex. If either ψ(Φ̃q+λ) ≥ q or
Wq(0+) = 0 (i.e., either σ > 0 or

∫
(0,1) zυ(dz) = ∞), then the barrier dividend strategy with d∗

defined in (3.1) is the optimal singular dividend control attaining the maximal value function under
the Chapter 11 bankruptcy.

Proof. It is straightforward to see that Ṽd∗(x) is non-decreasing on (−∞,∞) by (3.9). Moreover,
thanks to (3.8) and Remark 2.2, Vd∗(x) is increasing on (−∞,∞) if and only if Vd∗(0) < Vd∗(0+),
which holds if and only if ψ(Φ̃q+λ) ≥ q or Wq(0+) = 0 (i.e., X has paths of unbounded variation).
The conclusion of Theorem 3.2 is a direct consequence of Theorem 3.1 and Lemmas 3.5-3.7.

Remark 3.2 It is worth noting that the solution to our optimal control problem (2.9) relies only
on the log-convexity assumption on the Lévy measure of X (rather than on that of X̃). Indeed,

this is a natural consequence of the fact that the function ℓ
(q,λ)
c (x) defined by (2.16), and hence, the

candidate optimal value function Vd∗(x) and Ṽd∗(x) given by (3.1) and (3.8)-(3.9), all depend on
the Lévy triplet (γ̃, σ̃, υ̃) of X̃ only through the single parameter Φ̃q+λ. In particular, Ṽd∗(x) has
a very simple form such that the associated Hamilton-Jacobi-Bellman (HJB) equation in terms of
(γ̃, σ̃, υ̃) is readily satisfied; see, Lemma 3.7.

Remark 3.3 There is one scenario that Theorem 3.2 is not applicable, namely, the case when
Wq(0+) > 0 (i.e., σ = 0,

∫
(0,1) zυ(dz) <∞, and Wq(0+) = 1/(γ +

∫
(0,1) zυ(dz))) and ψ(Φ̃q+λ) < q

(i.e., X 6= X̃). Under this scenario, it will be unwise to set the safety barrier c to be positive.
Otherwise, the insurer would rather choose not to run the business. In fact, in this case, one can
verify that

lim
△t↓0

E
[
eΦ̃q+λ·X(t+△t)

]
− E

[
eΦ̃q+λ·X(t)

]

△t
< lim

△t↓0

E
[
eΦ̃q+λ·X̃(t+△t)

]
− E

[
eΦ̃q+λ·X̃(t)

]

△t
,

where the left (resp., right) hand side can be interpreted as the instant average amount of growth (in
the sense of exponential moments) of the surplus process at solvent (resp., insolvent) times. In view
of the above inequality, the insurer may prefer staying in the insolvent state to quickly accumulate
surplus instead of running the business in the solvency state with a slower surplus growth. To
resolve this dilemma and to reduce the long term costly interventions, the regulator may need to
set the safety barrier in the way that c ↓ 0 (suppose U is still well defined). The candidate optimal
barrier defined in (3.1) is reduced to

d∗ = sup{d ≥ 0 : Z ′
q(x, Φ̃q+λ) ≥ Z ′

q(d, Φ̃q+λ) for all x ≥ 0} = 0,
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where we have used by definition that

Z ′′
q (x, Φ̃q+λ) = Φ̃2

q+λZq(x, Φ̃q+λ)−
[
ψ(Φ̃q+λ)− q

][
Φ̃q+λWq(x) +W ′

q(x)
]
> 0, x ≥ 0.

In addition, the functions given by (3.8) and (3.9) with y = 0 is reduced as

V0(x) = Ṽ0(x) = x1{x≥0} +
1{x≥0} + eΦ̃q+λx1{x<0}

Φ̃q+λ − (ψ(Φ̃q+λ)− q)Wq(0+)
.

By arguments similar to those in Lemmas 3.6 and 3.7, it is easy to verify that (Ã−(q+λ))Ṽ0(x) = 0
for all x < 0 and (A − q)V0(x) ≤ 0 for all x > 0, implying that the barrier dividend strategy with
barrier level 0 is indeed the optimal dividend strategy. Therefore, ψ(Φ̃q+λ) < q and Wq(0+) > 0
leads to an extreme case that can be reasonably ruled out in the real life practice.

Remark 3.4 In the special case when X̃ ≡ X, we actually have ψ(Φ̃q+λ) = ψ(Φq+λ) = q + λ > q.

In fact, the optimal dividend problem with X ≡ X̃ and c = 0 has already been addressed by Renaud
(2019), and our Theorem 3.2 covers the result in Renaud (2019). By Theorem 3.2, the optimal
barrier level of the optimal dividend strategy is equal to

d∗ = sup{d ≥ c : ~(q,λ)′c (x) ≥ ~
(q,λ)′
c (d) for all x ≥ c},

where ~
(q,λ)
c (x) = λ

Wq(x)
Wq(c)

∫ c
0 e−Φq+λwWq(w)dw + e−Φq+λcZq(x,Φq+λ). Letting c ↓ 0, we can simplify

d∗ to

d∗ := sup{d ≥ 0 : Z ′
q(x,Φq+λ) ≥ Z ′

q(d,Φq+λ) for all x ≥ 0}, (3.31)

where we used the fact that limc↓0 ~
(q,λ)
c (x) = Zq(x,Φq+λ). Note that we may have d∗ > 0. Moreover,

the value functions under the barrier dividend strategy with the barrier d∗ given by (3.31) satisfy

Vd∗(x) = Ṽd∗(x) =
Zq(x,Φq+λ)

Z ′
q(d

∗,Φq+λ)
1{x≤d∗} +

[Zq(d∗,Φq+λ)
Z ′
q(d

∗,Φq+λ)
+ x− d∗

]
1{x>d∗}.

It is easy to verify that (A− (q+ λ))Ṽd∗(x) = 0 for all x < 0, (A− q)Vd∗(x) = 0 for all x ∈ (0, d∗),
and (A− q)Vd∗(x) ≤ 0 for all x > d∗ since Z ′

q(x,Φq+λ) is non-decreasing on [d∗,∞). It follows that
the barrier dividend strategy with d∗ given in (3.31) is indeed optimal, and therefore, Theorem 3.2
is consistent with the special case X̃ ≡ X and c = 0 studied in Renaud (2019).

4 An Illustrative Example

Theorem 3.2 shows that d∗ defined in (3.1) is indeed the optimal barrier under some mild condi-
tions. We now carry out explicit computations to identify d∗ in an example of Cramér-Lundberg
process X with exponential jump sizes, namely, a process X defined by a deterministic drift p (the
premium income) subtracting a compound Poisson process with jump intensity λ0 and exponen-
tially distributed jump sizes with mean 1/µ. Hence, the process X has paths of bounded variation.
In addition, the scale function of X reads as

Wq(x) = p−1(A+e
q+x −A−e

q−x),

where A± := (µ+q±)/(q+−q−) and q± := (q+λ0−µp±
√
(q + λ0 − µp)2 + 4pqµ)/2p (i.e., q+ > 0,

q− < 0). In particular, Wq(0+) = p−1 > 0.
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• For the first case ψ(Φ̃q+λ) > q, to derive the explicit expression of d∗, we note that this,
together with (2.16) and some tedious algebraic manipulation, yields that

ℓ(q,λ)c (x) = (ψ(Φ̃q+λ)− q)p−1(B+e
q+x/q+ −B−e

q−x/q−),

ℓ(q,λ)′c (x) = (ψ(Φ̃q+λ)− q)p−1(B+e
q+x −B−e

q−x),

where B± :=
p−1A±q±

[
µ+Φ̃q+λ−(µ+q∓)e

(q∓−Φ̃q+λ)c
]

(q+−Φ̃q+λ)(q−−Φ̃q+λ)
with B+ > 0 and B− < 0.

When ψ(Φ̃q+λ) > q, we obtain that the optimal barrier d∗ = c∨ (ln(B−q−/B+q+)/(q+− q−)).
On one hand, we remark that the model when d∗ > c, i.e. c < ln(B−q−/B+q+)/(q+ − q−),
is the case of interest from the practical point of view because the insurance company pays
dividend whenever it is in the solvency state and the surplus level is more than adequate to
attain a high barrier d∗ > c. On the other hand, the extreme case may happen that d∗ = c,
and the insurance company needs to pay dividend whenever the surplus comes back to the
solvency barrier c. Note that the switch to solvency state is triggered immediately when the
barrier c is hit, hence this extreme case does not change the fact the insurance company will
switch between solvency and insolvency states until Chapter 11 bankruptcy occurs. However,
the surplus level can never climb above a prescribed solvency level c, which not only gives
very low incentives for insurer to run the business, but may also cause the regulator more
frequent interventions. We can see that d∗ = c happens when the regulator is too conservative
and sets c too high (i.e. c ≥ ln(B−q−/B+q+)/(q+ − q−)). Consequently, from the regulator’s
perspective, one message to take from this example is that the regulator may monitor the
dividend barriers from all market participants to actively adjust the level of the safety barrier
c so that some unnecessary costs in long term and large scale interventions can be avoided.

• For the second case ψ(Φ̃q+λ) = q, it is easy to see that Zq(x, Φ̃q+λ) = eΦ̃q+λx. Hence, it holds
that

ℓ(q,λ)c (x) = e−Φ̃q+λcWq(c)e
Φ̃q+λx, ℓ(q,λ)′c (x) = Φ̃q+λe

−Φ̃q+λcWq(c)e
Φ̃q+λx.

It then follows that the optimal barrier d∗ = c.

• For the final case ψ(Φ̃q+λ) < q, it is straightforward to check that

ℓ(q,λ)c (x) = K+e
q+x/q+ −K−e

q−x/q− +K0e
Φ̃q+λx,

where K± = ψ(Φ̃q+λ)−q)B±/p and K0 =
[
1−

(ψ(Φ̃q+λ)−q)(µ+Φ̃q+λ)

p(q+−Φ̃q+λ)(q−−Φ̃q+λ)

][A+eq+c

p − A−eq−c

p

]
e−Φ̃q+λc.

Theorem 3.2 is not applicable to handle this case (recall that Wq(0+) > 0). However, by
Remark 3.3, this case corresponds to some extreme behavior that can be excluded in practice
because it occurs when X̃ under the regulator’s intervention grows upward even faster than
X on average so that both the safety barrier and the optimal dividend barrier will turn out
to be 0.
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their Applications, 131, 73-102.

Noba, K., Pérez, J. and Yu, X. (2020). On the bailout dividend problem for spectrally negative Markov

additive models. SIAM Journal on Control and Optimization, 58(2), 1049-1076.
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