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Abstract: We study the dense nuclear matter within the holographic Sakai-Sugimoto

model. The nuclear matter is described via instantons in bulk, whose size has the new

temperature dependency. Then, properties of nuclear matter have been studied for

different temperatures. For example, free energy and baryon density are examined for

different temperature values. Also, nuclear matter properties, like the speed of sound

and connection of nuclear matter and quark matter, are discussed. As we have increased

the temperature, the phase transition value has been changed from baryon to quark,

which is non-physical. Also, we can see continuity between the baryonic and quark

phases. Speed of sound at the low chemical potential in the presence of temperature

is different, but when the potential increases, the effect of temperature on the speed of

sound will remain unchanged. In the phase diagram, for significant chemical potential,

chiral symmetry is restored and provides all things that we have the realistic model.
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1 Introduction

Calculations in quantum chromodynamics (QCD) for the matter at low temperature

and considerable chemical potential are complicated. Two important examples of mat-

ter in this regime are nuclear matter inside compact stars (including neutrons and

protons in the simplest combinations with possible Cooper pairing), and deconfined

matter (including three-flavor quarks). An important property of compact stars is

their rich phase diagram where differs them from ordinary matter in the condensed

matter systems. They include both nuclear and deconfined matters. However, study-

ing both phases in one field theory model is very difficult. Also, these systems are

strongly coupled, and study of them with conventional lattice QCD models is challeng-

ing, see [1] for recent progress and the other models like Nambu-Jona-Lasinio (NJL)

[2] and quark-meson [3] have problems, they can be beneficial to get some insight into

quark matter. Still, they usually do not include nuclear matter.

The original version of gauge/string correspondence is N = 4 supersymmetric Yang-

Mills theory for dual field theory and type IIB string theory for gravity. This exciting

method is helps study strongly coupled gauge theory, especially for zero or small baryon
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chemical potential. Important studies include application to the heavy-ion collision.

In this paper, we use Sakai-Sugimoto (SS) model and study QCD properties. Already,

the full spectrum of the top-down D4-D8 brane system of Sakai-Sugimoto model cal-

culated by Ref. [4]. We can account for a single model for nuclear and quark matter,

where the parameters of the model are the ’t Hooft coupling λ, the Kaluza-Klein mass

MKK , and the asymptotic separations of D8 and D̄8 branes which denoted by L. In

this model, fundamental chiral fermions have been introduced through Nf D8 and D̄8

branes. These are in the background of Nc D4 branes [5], Nc and Nf are respectively

numbers of color and flavor. Although, these are another works where Sakai-Sugimoto

considered, so effect of chemical potential on the nuclear force by using the string the-

ory already studied by Ref. [6].

We now work in the Nc >> Nf limit, that this limit caused to neglect effects of flavor

branes on the background geometry, and also we consider the chiral limit when D8

and D̄8 branes are not connected. however, you can see Ref. [7] for discussing non-

zero quark mass. Baryons are studied as D4-branes wrapped around the 4-sphere of

the background geometry in the Sakai-Sugimoto model [8], here, this is the same to

instanton with the non-zero topological charge on the connected flavor branes of the

model [9], baryonic matter at first, non-zero density, and temperature was considered

in a point-like approximation of the instantons on the flavor branes [10]. The instanton

has been further developed including finite-size effects [11]. It has been studied by Ref.

[12], but here we extend [13] and consider a new profile for instanton which depends

on the temperature. Indeed, the temperature dependence was already studied in Ref.

[12] where the numerical analysis was only carried out in the zero temperature regime.

Now, we would like to do numerical analysis of the finite temperature.

We are working in the decomapctified limit of the SS model[14–16] and this is the limit

where the asymptotic separation of D8 branes (L) is small compared to the compact-

ified radius of the extra dimension. In another word, this limit have been provided

by fixing L and choosing a very large radius. Since a large radius corresponds to a

very small Kaluza-Klein mass, the critical temperature for deconfinement goes to zero

in this limit then this limit is suitable for studying the phase transitions, which now

depends on the baryon chemical potential and temperature.

The holographic description of quark matter in this setup is giving by disconnected

flavor branes. In Ref. [13], it was shown that nuclear and quark matter could be con-

tinuously transformed into each other when we have considered the interaction between

instantons at zero temperature. Our work is an extension of Ref. [17], by accounting

for the interactions of the instantons in bulk. It has been done by using the exact two-

instanton solution in flat space, which is a special case of the general Atiyah-Drinfeld-

Hitchin-Manin (ADHM) construction [10], and which has been discussed previously
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in the context of the SS model [18] to study the nucleon-nucleon interaction [19, 20].

As we shall see, the instanton interactions are crucial for this observation. There are

various other, in some aspects complementary, approximations to many-baryon phases

in the Sakai-Sugimoto model, see for instance Refs. [20, 21]. One of them is based on

a homogeneous ansatz for the gauge fields in the bulk [22], which is expected to yield

a better approximation for large densities, which is less transparent from a physical

point of view because it is not built from single instantons.

This paper is organized as follows: In section 2, we introduce DBI and CS actions, sec-

tion 3 including deformation parameters and depending on the temperature. In section

4, we explained results like a phase diagram, connecting two phases and the speed of

sound. Finally, in section 5, we give a conclusion and summary of results.

2 Geometry

Our calculation has been started with the following Dirac-Born-Infeld and Chern-

Simons action,

S = SDBI + SCS, (2.1)

where SDBI is given as

SDBI = 2T8V4

∫ 1/T

0

dτ

∫
d3X

∫ ∞
uc

du e−Φ
√

det(g + 2πα′F), (2.2)

where α′ is related to string length `s via α′ = `2
s, T8 = 1

(2π)8`9s
is D8-brane tension,

V4 = 8π2

3
is the volume of the 4-sphere. One should notice that uc is the location

of the tip of the connected flavor branes D8 and D̄8. The dilaton field is given via

eΦ = gs
(
U
R

) 3
4 , where R is the curvature radius and gs is the string coupling. Also,

u =
U

MKKR3
, (2.3)

is holographic coordinate which is dimensionless quantity. The integral is taken over

the position space, imaginary time τ with the temperature T and over the holographic

coordinate u, also g is the induced metric on the flavor branes. The detailed form of

its induced metric g on the D8 brane, abelian and non-abelian field strengths can be

found in Ref. [13]. Also,

Fµν = F̂µν + Fµν , Fµν = F a
µνσa, (2.4)

with the Pauli matrices σa and µ, ν = 0, 1, 2, 3, u. In our ansatz, the only non-zero

abelian field strength is F̂0u and non-abelian field strengths are Fiu, and Fij. All other
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field strengths are set to zero.

By using the mentioned ansatz, the CS contribution is given by,

SCS =
Nc

4π2

∫ 1/T

0

dτ

∫
d3X

∫ ∞
Uc

duÂ0Tr[FijFkU ]εijk. (2.5)

Therefore, we can obtain

L = u5/2
√

(1 + u3fTx′24 − â′20 + g1)(1 + g2)− â0nIq(u), (2.6)

where the prime denotes derivative with respect to u and nI represent the instanton

density per flavor . Also, fT = 1 − u3
T/u

3 with uT = ( 4πT
3MKK

)2. The instanton density

is given by nI , and â0 is denoted the abelian gauge field with boundary condition so

â0(∞) = µ. Also the embedding function of the flavor branes has been shown by x4(u)

so the boundary conditions are x4(uc) = 0 and x4(∞) = LMKK/2. The functions g1,

g2 and q in Ref. [13] are defined by the following relations

g1 ≡
fTnI
3γ

∂z

∂u
q(u), g2 ≡

γnI
3u3

∂u

∂z
q(u), (2.7)

where u = (u3
c + ucz

2)1/3 shows the relation between z and u, also

q(u) = 2
∂z

∂u
D(z), D(z) = (1− p)D0(z) +

p

2
Dint(d, z), (2.8)

where the function D(z) is instanton profile on the flavor branes which is depends on

the lattice parameter p. So, the solution for the single instanton is given by

D0(z) =
3ρ4

4(ρ2 + z2)5/2
, (2.9)

where ρ is the width in the holographic direction. We can control the interaction

between the instantons of this model by introducing the instanton interaction as

Dint(z) =
3
√

2ρ8

4

h1S1 + h2S2

(a2 + b)5/2b2
. (2.10)

This result has been derived by Ref. [13] from ADHM approach, all parameters,

h1, S1, h2, S2, a and b are defined in the appendix A. We have also introduced d as

the overlap parameter

d =
γ

ρ
(
6π4r

λ2nI
),

where γ is a deformation parameter. It is interpreted as a distance between two instan-

tons that normalized by twice their spatial width; when d → 0, then instantons will
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overlap.

In the above equations, we have parameters p and r that all information about lattice

structures are carried by them. For example, cubic, a body-centered cubic and a face-

centered cubic crystal we have (p, r) = (6, 1), (8, 3
√

3/4) and (12,
√

2) respectively. For

non-interacting approximation, we consider p = 0.

We have checked for other lattice configurations and saw that the results do not depend

significantly on the lattice configurations, then we present our results only for cubic

lattice p = 12, r =
√

2.

3 Deformed instantons and thermodynamic quantities

The main novelty of this paper is to study the new temperature dependency of the

instantons shape. We introduced instantons in our configuration setup. In the shape of

instanton, ρ is the width in the holographic direction while ρ/γ is the spatial width; as

a result γ is a deformation parameter that characterizes the deviation of the instanton

from SO(4) symmetry. For the single instanton at large t’Hooft coupling, the leading-

order expression has been considered for deconfined geometry [12]:

(Fiz)
2
(1) =

12(ρ/γ)4

γ2[x2 + (z/γ)2 + (ρ/γ)2]4
, (3.1)

where the subscript ”(1)” indicated the single-instanton solution, also x2 = x2
1 +x2

2 +x2
3

and z indicates the holographic coordinate where zε[−∞,∞]. Moreover, parameters ρ

and γ that described the shape of the instanton are given by the following expressions,

ρ =
ρ0u

3/4
c√
λ

[
fT (uc)

βT (uc)

]1/4√
αT (uc),

γ =
3γ0u

3/2
c

2

√
αT (uc). (3.2)

Also

αT (uc) ≡ 1− 5u3
T

8u3
c

,

βT (uc) ≡ 1− u3
T

8u3
c

− 5u6
T

16u6
c

. (3.3)

At zero temperature we have fT (uc) = αT (uc) = βT (uc) = 1. Also ρ0 and γ0 are

free parameters which have been introduced in Refs. [12] and [17]. Our purpose is
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temperature chemical potential number density constituent mass

MKKt λ0MKKµ
NfNcM

3
KKλ

2
0

6π2
n λ0MKKMq

Table 1. The physical, dimensional quantities from their dimensionless quantities t, µ, n,Mq,

in the paper, we use capital letter for dimensionful and small letter for dimensionless; for

example: T = Mkkt.

to investigate how important thermodynamic properties of the given system, such as

the phase diagram, change. In Table 1, as well as Ref. [23], we have obtained the

physical dimensionful quantities from their dimensionless counterparts t, µ, nI ,M . We

have abbreviated λ0 = λ
4π

and MKK is Kaluza-Klein mass.

Here, we present the main equations and formulas for computing thermodynamic

quantities of the system. In next section we will use these equations to find these

quantities by numeric techniques.

• Free energy

The main quantity is the free energy of the system, one finds it as

Ω =

∫ ∞
uc

duL, (3.4)

which is yields the following expression

Ω =

∫ ∞
uc

du

(
u5/2η(u) +

`

2
k − µnI

)
, (3.5)

where

η(u) =
√

1 + g1

√
1 + g2 −

k2

u8fT
+

(nIQ)2

u5
, (3.6)

where k is an integration constant.

To minimize the free energy, Ω with respect to free parameters, at given T and µ,

we calculate ∂Ω
∂k

= ∂Ω
∂nI

= ∂Ω
∂uc

= 0. Therefore, one finds the three main stationarity

equations as

`

2
=

∫ ∞
uc

du x′4 , (3.7a)
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µnI =

∫ ∞
uc

du u5/2

[
g1ζ
−1 + g2ζ

2q

(
q − d

3

∂q

∂d

)
+
ζn2

IQ

u5

(
Q− d

3

∂Q

∂d

)]
,(3.7b)

st = 2u7/2
c +

∫ ∞
uc

du u5/2

{
7− ζ

[
7(1 + g2) + 2

(nIQ)2

u5
+

k2

u8fT

]
+

g1ζ
−1 + g2ζ

2q

(
5q− 3d

2

∂q

∂d
+
ρ

2

∂q

∂ρ

)
− ζn2

IQ

u5

(
3d

2

∂Q

∂d
− ρ

2

∂Q

∂ρ

)}
(3.7c)

and

Q(u) =

∫ u

uc

dvq(v) (3.8)

• Entropy density

By switching on the temperature in the system, the dimensionless entropy density

is denoted by, s, which is entropy of the system. First, we give the derivation of

it from the free energy, one knows that Ω = Ω(uc, k, nI , ρ, γ, d) then,

s = −∂Ω

∂t
= − ∂Ω

∂uc

∂uc
∂t
− ∂Ω

∂k

∂k

∂t
− ∂Ω

∂nI

∂nI
∂t
− ∂Ω

∂ρ

∂ρ

∂t
− ∂Ω

∂γ

∂γ

∂t
− ∂Ω

∂d

∂d

∂t
− ∂Ω

∂t
. (3.9)

The first three terms are zero because of stationary point, also we have,

∂Ω

∂ρ
=

∫ ∞
uc

du u5/2

(
1

2q
(g1ζ

−1 + g2ζ)
∂q

∂ρ
+
n2
I

u5
Q
∂Q

∂ρ
ζ

)
, (3.10)

∂Ω

∂γ
=

∫ ∞
uc

du u5/2

(
1

2q
(g1ξ

−1 + g2ζ)
∂q

∂γ
+
n2
I

u5
Q
∂Q

∂γ
ζ +

1

2
(
g1ζ
−1 + g2ζ

γ
)

)
, (3.11)

and
∂Ω

∂d
=

∫ ∞
uc

du u5/2

(
1

2q
(g1ζ

−1 + g2ζ)
∂q

∂d
+
n2
I

u5
Q
∂Q

∂d
ζ

)
. (3.12)

Moreover,
∂Ω

∂t
=

3u3
T

t

∫ ∞
uc

du√
ufT

(
g1ζ
−1 +

k2

u8fT
ζ

)
. (3.13)

Finally, one can obtain,

s =

∫ ∞
uc

du

[
3u3

T

t

1√
ufT

(g1ζ
−1 +

k2

u8fT
ζ) + u5/2X

]
, (3.14)

where we defined

X ≡
(

1

2q
(g1ζ

−1 + g2ζ)
dq

dρ
+
n2
I

u5
Q
dQ

dρ
ζ

)
dρ

dt

+
1

2
(
g1ξ
−1 + g2ζ

γ
)
dγ

dt
+ (

g1ζ
−1 + g2ζ

2q

dq

dd
+
n2
I

u5
Q
dQ

dd
ξ)
dd

dt
, (3.15)
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t≃0.1

0.245 0.250 0.255 0.260 0.265 0.270 0.275
0.00
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0.05

μ

n
I t≃0.141
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0.00

0.01

0.02

0.03

0.04

0.05

0.06

μ

n
I

Figure 1. Deconfined geometry at nonzero temperature, baryon density nI with respect to

µ for amount of small and large temperature. Instanton width ρ0 = 4.3497 and instanton

deformation γ0 = 3.7569 and ’t Hooft coupling λ = 15.061, this data is when we consider the

interaction term and lattice structure is fcc.

and

ζ =

√
1 + g1√

1 + g2 − k2

u8fT
+ (nIQ)2

u5

. (3.16)

We use (3.16) for deriving our results with or without the interaction between

the instantons, except for calculating the thermal baryon mass.

• Baryon density

Because of numeric approach for solving the main equations, we should check our

results carefully. For this reason we calculate the number density of instantons

or baryon density, nI from the following equation

nI = −∂Ωbaryon

∂µ
, (3.17)

where Ω is the baryonic free energy and µ is chemical potential. We do this

calculation one time to make sure that our results match together, in Fig. 1,

we show results for small temperatures t ' 0.05, 0.07, 0.08, 0.1 and large tem-

perature t ' 0.141, 0.143, 0.145, 0.147 and choice of parameters ρ0 = 4.3497 and

γ0 = 3.7569,λ = 15.061. Of course, this diagram can be drawn for other pa-

rameters, but, if we change the parameters ρ andγ the type of transition will be

different, in some regions we will have a second-order phase transition. For ex-

ample, at the temperature of t = 0.1 and ρ = 1.5 and γ = 2 the phase transition

from the meson to the quark is second order, generally for ρ = 1.5 in the area of

0.8 ≤ γ ≤ 3 at t = 0.1 we have a second-order phase transition.
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In the lower temperature at large chemical potential, we have a second turning

point and then, we have unstable phase. The features that our selected param-

eters have, by considering MKK = 3185MeV
π

and ` = 1, is that with properties of

nuclear mater have been fitted such as baryon mass, binding energy, saturation

density and incompressibility. As it is clear in the left panel, there is a turning

point where shows the first order baryon onset for all temperatures, the calcu-

lation that leads to this Fig. 1 was first presented in Ref. [23] for t = 0 and

we recapitulate it for t 6= 0, as the figure shows, the geometry of the plot does

not change when the temperature is taken into account. Only small amounts are

changed. For the small chemical potential for temperatures t ≤ 0.1, baryonic

phase is preferred. But in the right panel, we plotted nI with respect to µ for

large temperatures, for largest temperature, there is not turning point and prob-

ably we have second order phase transition. But these solutions are not stable

and chirally symmetry phase is preferred.

4 Results

4.1 Phase diagram

In this section, we use equations for baryonic, quark and mesonic free energy and study

the phase diagram of the system on the plane of temperature and chemical potential.

We assume that the baryons have the size and also the dimensions of the baryon are

temperature dependent, and the interaction between the baryons is considered.

At first, we shall explain the three phases:

• Mesonic phase

In this phase, D8 and D̄8 branes connected at u = u0 and x′4(u0) = ∞, also in

this phase boundary condition is:

x4(u0) = 0, a′0(u0) = 0, a0(∞) = µ, (4.1)

and number density nI = 0, so the finite temperature result of free energy for

mesonic case become:

Ωmesonic =

∫ ∞
u0

du
u13/2

√
fT (u)√

u8fT (u)− u8
0fT (u0)

. (4.2)

• Quark phase

In chirally restored phase, flavor branes are not connected, in this phase we have
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mesonic

chirally symmetric

0.0 0.1 0.2 0.3 0.4
0.00

0.05

0.10

0.15

μ

T

Figure 2. Phase diagram that separate confined and deconfined phase in the plane of di-

mensionless temperature T and chemical potential µ.

x′4 = 0 and the boundary conditions:

a0(uT ) = 0, a0(∞) = µ, (4.3)

and free energy becomes,

Ωquark =

∫ ∞
uT

du
u5√
u5 + n2

I

. (4.4)

In the above relation, nI is as a function of µ and T , so one can obtain,

0 = µ−
n

2/5
I Γ( 3

10
)Γ(5

5
)

√
π

+ uT 2F1

[
1

5
,
1

2
,
6

5
,−u

5
T

n2
I

]
, (4.5)

but also, you can see detail of mesonic and quark matter phases in appendix B

of Ref. [23].

• Baryonic phase

We discussed this phase in the last section and we introduced (3.5) for free energy

of baryonic phase.

First, we explain how can calculate the phase transition lines in Fig. 2 and Fig.

3. We have solved equations (3.7) and also the condition that they have the same

free energies (which means the transition between two phases happens when Ωbaryon =

Ωquark for baryon-quark phase transition line and Ωmeson = Ωquark for the meson-quark

phase transition line). We have to calculate the initial value at temperature t = 0 also
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you can see the relation between capital letter T and small letter t in table 1. That is,

find the free energy of quark, baryon and meson, and then by equating the free energy,

find the starting points at temperature t = 0.

In Fig. 2, we show plot of the phase diagram that separates the mesonic phase from

the quark, and the red line is the phase transition line from mesonic to quark. As the

same as [24] we work in chiral limit that means quark mass is zero and µ(t = 0) = 0.44

is first order phase transition from meson to quark. However, in Ref. [7] they have

investigated a case where quark mass is non-zero. In this case the value of the phase

transition is dependent to a parameter that related to quark mass.

In Fig. 3 we study the phase diagram in the presence of Baryons and using (3.2), i.e the

case where the parameters ρ and γ are temperature dependent. One should notice that

these parameters were also dependent on the t’Hooft coupling constant λ. In Fig. 3, we

show the phase diagram for different lattice structure, we fix ρ0 = 4.3497, λ = 15.061,

γ0 = 3.7569 and MKK = 3185/π. These parameters are fitted to saturation density,

vacuum mass of the nucleon, binding energy and incompressibility. By changing lattice

structure, The chemical potential also changes significantly where the baryonic matter

changes to the quark phase (µc), which is in agreement with the result of Ref. [17].

We find phase transition value by calculating free energy for baryonic and quark cases,

when they are equal a first order phase transition happens at this value µ.

Based on phase diagram, we will find that the least phase transition value at t = 0 is

µ(t = 0) ∝ 40 for fcc lattice structure, according to table 1, Kaluza-Klein mass, critical

chemical potential is µ(t = 0) ∝ 40000 MeV. These values are not within the range

of the chemical potential of the neutron star, 300 < µ < 500 [25] so if we want to

be included in the neutron star range should be adjusted so, fortunately, these values

depend on the model parameters according to the phase diagram can be changed by

ρ0 and γ0 or λ and lattice structure found. Of course, these changes in the model have

caused that, contrary to the diagram in Fig. 1 of the paper [23], in the large chemicals

potential and low temperature, chiral symmetry has been restored, in which case the

physical principles have been observed.

Table 2 is the chiral phase transitions value (µph) for both fixed temperature t = 0.058

and different ’t Hooft coupling (λ). According the AdS/QCD dictionary we have λ =

g2Nc, so one find that the chiral phase transition is expected to occur at moderate,

not asymptotically large density. It means that the model may be invalid in the large

chemical potential.
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ρ0 = γ0 = λ = fitting parameter

cubic

chirally symmetric

baryonic

mesonic

0 10 20 30 40
0.00

0.05

0.10

0.15

μ

T

chirally symmetric

ρ0=γ0=λ=fitting parameter

fcc

baryonic

mesonic

0 10 20 30 40
0.00

0.05

0.10

0.15

μ

T

Figure 3. Phase diagram for different lattice structures cubic and fcc. λ, ρ and γ are

fitting parameters. It is in the deconfined geometry when considering baryon and Interaction

between them.

λ µph
10 46.6

18 39.7

40 36.3

50 35.2

Table 2. We show chiral phase transition value for different lambada in interaction case.

4.2 Connecting nuclear matter with quark matter at finite temperature

In Ref. [13], the relationship between nuclear matter and quark matter was investi-

gated at zero temperature. In this section, we examine this state in the presence of

temperature.

Three curves [d(µ), uc(µ), nI(µ)] have described the solutions of the free energy and we

have a route that would have existed from the baryonic phase into the chirally symme-

try phase when chemical potential is not monotonic.

In Fig. 4, we represent the all numerical solutions. We have plotted nI (right panel)

and uc (left panel). We haven’t plotted k because of this variable have a qualitatively

identical manner like uc. We have used a double-logarithmic plots to make full im-

portant features of the solutions visible. We see that large chemical potential, nI and

uc become multi-valued in the baryonic phase and particular interpretation for this

behavior is a first order baryon onset.

We had similar plots in Ref. [13] except that there were solutions to the small chemical

potential in the plots, and it was because of the analytical solutions we found at these

points, but when the temperature is taken into account, these results is not at small
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Figure 4. Location of the tip of the connected flavor branes uc (left panel) dimensionless

baryon density nI (right panel) as a function of the dimensionless chemical potential µ at

nonzero temperature.

chemical potential. Of course, these solutions will be unstable due to the fact that the

mesonic phase has a smaller free energy then the mesonic phase is preferred.

In the First row of Fig. 5, we have the pressure p = −Ω for the baryonic phase (black

curve) that divided by the pressure of quark phase for non-zero temperature t ≈ 0.024

and t ≈ 0.086. After baryon onset with considering interaction case, we can see turning

point.

The preferred state for a given chemical potential is the one with the largest value of

P/pquark. Red dot in the First row of Fig. 5 have been shown the transition between

baryonic to quark phase.

In the second row of Fig. 5, we show cartoon plots of Ω with respect to µ that red

curve related to the solutions of equation (3.5) and show baryonic state. But, blue

curve is quark phase. Critical chemical potential is point that two curves cross each

other and have been existed transition between baryonic to quark phase. In t = 0.024,

chemical potential for first order phase transition is around 39/`2 but in t = 0.086, this

point is unphysical because of upper branch in baryonic matter is unstable because,

it has the largest free energy of all solutions. By consideration of nucleon mass, they

are placed at nonzero chemical potential, so upper branch in second row of Fig. 5

should not be confused with ordinary nuclear matter where the density is reduced as

we approach the origin. From a certain temperature onwards for chosen parameter,

the transition point from baryonic state to quark becomes unphysical because in real

QCD at high temperatures we have only quark matter.

The disfavoring phase, at small chemical potential is quark phase compared to bary-

onic phase, therefore, in the second row of the Fig. 5, at first, red curve is favored

compared to the blue curve. Also, we can see the quark matter solution in all path and
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Figure 5. First row: The pressure of the baryonic phase normalized to the pressure of the

quark matter phase for non-zero temperature. First column is for t ≈ 0.024, and second

column is for t ≈ 0.086. Also, the red circle is critical chemical potential from baryonic to

quark. Second row: the cartoon plot of free energy as a function of µ for the baryonic phase.

ρ0 = 4.3497, γ0 = 3.7569, λ = 15.061 and lattice structure is fcc. Third row: geometry of D8

and D̄8 in the subspace (x4, u), black region indicate the location of the horizon.
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Figure 6. First row: left panel: location of the tip of the connected flavor branes uc as a

function of dimensionless baryon density nI for red curve is t 6= 0, and dashed black curve is

t = 0. Right panel: instanton distance over instanton width d as a function of µ for baryonic

phase for t = 0.024, 0.086 temperature. Second row: location of the tip of the connected

flavor branes uc as a function of dimensionless baryon density nI for interaction case (P 6= 0,

red curve) and non interaction case (P = 0, black curve).

infinitesimally small chemical potential because of we work in the chiral limit.

Considering all solutions of free energy, all branches from nuclear matter phase to quark

matter phase are continuously connected. It should be noted that solutions are not nec-

essarily stable.

In the third row of this figure, the geometry of the branes D8 and D̄8 have been shown

for two different temperature modes and exactly at the transition point (ie the red dot

in the first row). The black border has shown black hole in the bulk that this value

increases and decreases for different temperatures, and in t = 0, 024, D8 and D̄8 branes

are connected and uc is a maximum value , so this point does not reach the black hole,

but in t = 0.086 amount of uT increases until uT = uc these branes are melted in the

black hole, so the chiral symmetry is restored and we have a unstable baryonic phase.

In all figures, the axes labels have to be include suitable powers of `, i.e for nI is nI`
5,
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µ for µ`2, uc for uc`
2 and Ω for Ω`7 but overlap parameter d doesn’t scale with `.

The parameter set is for ρ0 = 4.3497, γ0 = 3.7569, λ = 15.061 that this parameter set

satisfy physical constraints Ref. [13], lattice structure for both row are face centered

cubic crystal that means we have p = 12 and r =
√

2.

The right panel of Fig. 6 shows instanton distance over instanton width d as a function

of µ for baryonic phase. The black curve is related to t = 0.086 and red one is related

to t = 0.024, and also left panel is the location of the tip of connected flavor branes uc
as a function of dimensionless baryon density nI for t = 0 and t 6= 0. For interaction

case p 6= 0, and for non-interacting case we have p = 0. The results show that we have

turning point for p 6= 0 and but for non-interacting (p = 0) case finished in the large

nI and numerics get increasingly complex and we do not see any turning point.

According to the dimensions of instanton, we expand them then we have

ρ ∝
1− 9u3T

16u3c

1− 1u3T
32u3c

ρ0,

and

γ ∝
3

2
γ0(1− 5u3

T

16u3
c

).

As it is known, instanton shape ρ and γ have explicit dependence on temperature with

uT parameter and they have implicit dependence through the dynamical value of uc.

Considering the temperature, the amount of ρ and γ decreases and as a result, the

dimensions of instanton under the space of (x1, x2) and (z, x1) changes and because

the temperature is always greater than zero, the dimensions of the instanton have a

non-zero width in the holographic direction and also a limited in the spatial direction.

4.3 Speed of sound

The speed of sound Cs is defined via the following equation,

C2
s =

∂P

∂ε
. (4.6)

Using P = −Ω and ε = Ω + µn + st, we plot C2
s for different values of temperature.

Also, we change temperature by changing ut, we know that consider the baryonic phase

and the parameters ρ0 and γ0 are chosen in a way that is fitted by the nucleon mass

for parameters. Fig. 7 is a plot that shows the sound speed of the baryonic matter

with respect to chemical potential. The red line of Fig. 7 dawn for the case where

the temperature is equal to zero and the black line is represents the case where the

temperature is non-zero. We assume that in this figure, the parameters of the model
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Figure 7. Speed of sound as a function of chemical potential for different temperature t = 0

(red line) and t 6= 0 (black line), we fixed ρ0 ' 2.76 and γ0 ' 4.

are ρ0 ' 2.76 and γ0 = 4 and λ = 15.061. For the both cases that are considered, the

minimum temperature value is greater than zero, ie., ' 0.4. We know from causality

that the speed of sound must always have an upper limit of C2
s < 1 and also shows us

the thermodynamic stability that lower limit is C2
s > 0 from Ref. [26] it has been seen

that the conformal limit gives us the value of C2
s = 1

3
as can be seen from the plot, this

limit is not observed in the baryonic matter and we have the value of approximately

' 0.45. However, it should be noticed that the quark phase is not taken into account.

One of the features of this plot is that their minimum value is always greater than

zero, which shows thermodynamic stability. As can be seen from the figure, in both

temperatures is 0 < C2
s < 1, which indicates physical range. The speed of sound was

calculated for the other parameters of the model, ie, ρ0 ' 6.49, γ0 = 3, λ = 15.061 and

similar results were obtained. These parameters are matched based on the mass of the

baryon.

5 Summary

In this paper, we use the Sakai-Sugimoto holographic model. In this model, baryons

are described by the instantons in bulk. Shape of instantons are defined by parameters

ρ and ρ
γ
, ρ is the width in the holographic directions and ρ

γ
is spatial width. These

parameters are expressed to upset the symmetry SO(4). In this paper, what has

been done is that the parameters ρ and γ are considered temperature-dependent. The

temperature dependence is determined by the relations (3.2). This dependence causes

let sentences be added to the entropy quantity, and let the principal equations give us

other solutions under the influence of this dependence. According to these solutions, we

study the thermodynamics of some properties such as the phase diagram, the quantity
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of the connection between the baryon and quark phase, and the speed of sound. It is

observed that the effect of temperature on the parameters causes a change in the critical

chemical potential from baryonic to quark state. It slightly changes the speed of sound

in small chemical potentials. At some point, the speed of sound is not dependent on the

chemical potential. Also, consider the temperature, there is still a connection between

the baryon phase and the quark. In the references section, we also mentioned that the

mass of baryons at different temperatures has different values. Indeed, we don’t check

the chiral phase transition in the small ’t Hooft coupling, so it will be interesting issue

for the future work.
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A Interaction profile of parameter

We define parameters h1, S1, h2, S2, a and b of the equation (2.9) as follows,

h1 ≡ 2ρ10d6(4d4 + 7d2 − 2)2 + 2ρ8z2d2(4d2 − 1)2(4d6 + 12d4 + 7d2 − 2)

+ 2ρ6z4(96d10 + 116d8 − 91d6 − 14d4 + 11d2 − 1) + 4ρ4z6d2(26d6 − 8d4 − 23d2 + 5)

+ 8ρ2z8d4(2d2 − 3) + 4z10d4

h2 ≡ ρ8d4(4d4 + 7d2 − 2)2 + 2ρ6z2d2(32d8 + 76d6 + 15d4 − 17d2 + 2)

+ ρ4z4(92d8 + 144d6 + 5d4 − 18d2 + 2) + 8ρ2z6d2(9d4 + 8d2 − 2) + 28z8d4 ,

and

a ≡ z2 − ρ2(d2 − 1) , b ≡ ρ2[4d2(ρ2 + z2)− ρ2] , (A.1a)

S1 ≡

√
−a+

√
a2 + b

b
, S2 ≡

√
a+
√
a2 + b . (A.1b)

B Phase diagram for Non-interaction case

We study the phase diagram in the presence of baryons in this case where the parame-

ters ρ and γ are temperature dependent. One should notice that these parameters also

dependent on the t’Hooft coupling constant λ. In Fig. 8, we show the phase diagrams

for different parameters, we fix ρ0 = 1.5 and λ = 3 but change γ0 from 0.42 to 0.45.
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baryon and non-interaction case.

ρ0 γ0 λ µph
2 1 5 21.652

1.5 .42 3 9.616

1.5 .45 3 10.73

1 .42 3 10.19

Table 3. We show different phase transition value for different parameters and non-

interaction case.

Here, as [12], the chemical potential where the baryonic matter changes to the quark

phase, µc, increases significantly. We find µc by calculating free energy for baryonic and

quark case, when they are equal a first-order phase transition happens at µc, Also we

have define table 3, for different parameters, we have found different critical chemical

potential.
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