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Abstract

The Flying Sidekick Traveling Salesman Problem (FSTSP) considers a delivery system composed

by a truck and a drone. The drone launches from the truck with a single package to deliver to a

customer. Each drone must return to the truck to recharge batteries, pick up another package, and

launch again to a new customer location. This work proposes a novel Mixed Integer Programming

(MIP) formulation and a heuristic approach to address the problem. The proposed MIP formulation

yields better linear relaxation bounds than previously proposed formulations for all instances, and

was capable of optimally solving several unsolved instances from the literature. A hybrid heuristic

based on the General Variable Neighborhood Search metaheuristic combining Tabu Search concepts

is employed to obtain high-quality solutions for large-size instances. The efficiency of the algorithm

was evaluated on 1415 benchmark instances from the literature, and over 80% of the best known

solutions were improved.
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1. Introduction

Unmanned Aerial Vehicles (UAVs), generally known as drones, have recently shown a lot of

potential in a wide range of civil purposes. In the last years, with the quickly evolving of drone

technology, these vehicles and their applications have been attracting the attention of both the

academic literature and large transportation companies (Mercer, 2018).

Drones are employed within many applications in different fields. They are no longer limited

to military use, and different businesses are now investing in these devices for faster and more

responsive customer service. One of the most important purposes for these unmanned vehicles lies
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in disaster management, rescue operations and health-care. Drones can operate in dangerous envi-

ronments that are inaccessible to humans. Another potential use concerns law enforcement, given

these devices have the innate ability to hover around locations without drawing much attention

from people. Thus, surveillance and public safety are also prominent applications of drones. Drone

delivery is another important and innovative application of drones, one which has become par-

ticularly relevant with the social distancing requirements due to the Covid-19 pandemic (Guillot,

2020; Douglas, 2020). The potential of drone delivery is vast both concerning operational cost and

customer service efficiency. However, these aerial vehicles are not a replacement for the traditional

delivery trucks, due to their low payload capacity and short flying range. Drones can, however, be

a useful complementary feature to the delivery process since they are not limited by road networks.

The applications of unmanned vehicles spread far beyond the preceding examples. For a complete

survey on drone applications and insights into emerging modeling approaches, the reader is referred

to Otto et al. (2018).

This paper focuses on a groundbreaking delivery modality including drones considered within

the Flying Sidekick Traveling Salesman Problem (FSTSP), first introduced by Chase and Chu

(2015). The FSTSP is a generalization of the Traveling Salesman Problem (TSP), one of the most

well known and studied problems in operational research. While the classical TSP consists in

finding an optimal route for one vehicle to deliver goods to a set of customers (Figure 1a), the

FSTSP consists in finding optimal routes for both a drone and one traditional delivery vehicle to

perform goods distribution (Figure 1b). In Figure 1, circular nodes indicate customers served by

the truck while triangular nodes represent those served by the drone. Dashed and continuous lines

indicate a drone trip and a truck tour, respectively. The delivery truck departs from the depot

carrying a drone and all customer parcels. As the driver performs deliveries, the drone is launched

from the truck, carrying the parcel for an individual customer. While the drone is on a trip, no

intervention from the delivery driver is required. After delivering the parcel, the drone returns

to the truck in a new customer location. One of the advantages associated with the truck-drone

delivery system is the efficiency enhancing, as the drone capability to reach to more customers

increases once it is launched from the truck closer to the customer delivery location.

The contribution of this paper is twofold. A Mixed Integer Programming (MIP) formulation

is proposed for the problem, one capable of solving several unsolved instances from the literature,

and a heuristic to find high-quality solutions is developed to approach larger instances. Both the

MIP model and the proposed heuristic were designed to tackle the two variants of drone delivery

problems addressed by Chase and Chu (2015) and Agatz et al. (2018). The heuristic improved

the best-known solution of 1138 instances from the literature (80.4% of the total). These results

show the improvements that may occur in the total delivery time when using specific neighborhood

structures of the problem within the local search. The results also indicate that combining truck
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(a) TSP – the truck visits all customers. (b) FSTSP approach, with assignment of customers to drone or
truck.

Figure 1: Customer deliveries are made by either a traditional delivery truck or via drone.

and drone for last-mile parcel delivery results in huge improvements in delivery time over truck

tours for the instances considered.

In summary, this work presents both exact and heuristic approaches for the FSTSP, resulting

in improvements over the best known bounds and solutions for a vast number of problem instances

from the literature.

This manuscript is organized as follows. Section 2 details the problem. Section 3 presents a

few drone applications and a literature overview concerning the FSTSP. A novel MIP formulation

for the problem is proposed in Section 4. The heuristic algorithm developed is introduced and

described in Section 5. Section 6 presents the computational experiments and, finally, Section 7

summarizes the conclusions.

2. Problem description

The Flying Sidekick Traveling Salesman Problem (FSTPS) presented by Chase and Chu (2015)

can be described as follows. Let G = (V,A) be an undirected graph with |V | = n+1 nodes. Node

v0 ∈ V represents the depot, where drone and truck must depart from and return to exactly

once. The two vehicles (drone and truck) may depart and return from the depot either in tandem

or independently. While traveling in tandem, the drone is transported by the truck to conserve

battery. Every other node v ∈ V \{v0} represents a customer that must be visited exactly once.

Some customers must be served by the truck due to the travel time being superior to drone

endurance, while others may be server by either the truck or the drone.

The vehicles do not necessarily follow the same distance metric. The truck is limited to the

road network, while the drone can use a different network to travel between customers.
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During the delivery, the drone may make multiple trips, each composed of three locations. The

trip begins at the launch node, which can be either the depot or a customer location. Before

launch, the setup time sL is required for the drone to have its battery changed and the parcel

loaded. The second node in a trip is the delivery node, which represents a customer serviced by

the drone. The final or return node is the location where the drone is collected. This node may

be either the depot or a location visited by the truck. An additional setup time sR is required

for the return node since the drone must be recovered. We consider that whenever the drone is

launched, the package will be successfully delivered and the drone will return to the truck or the

depot without any issue, and within the drone’s flight endurance limit. If the drone trip ends at

the depot, the drone cannot be re-launched.

The drone can only be recovered at a different position than the launch location in the truck

route. Therefore, the drone must not be launched multiple times from the same location. The

drone may visit only one customer per trip. The truck may serve other customers in between

launch and return locations, while the drone is serving a customer. Moreover, either of the two

vehicles may have to wait for the other one depending on their arrival times at the return node.

The waiting time must not exceed the drone’s battery power. Regarding vehicle capacity, the drone

can carry and deliver only one parcel per trip, while no limit is imposed on the truck’s capacity.

The FSTSP objective is to minimize the time required to complete all deliveries and return

both vehicles to the depot.

3. Related Literature

This section provides a literature review of the potential benefit of pilotless technology. This

review first presents a few promising drone applications. Next, it aims at distinguishing the different

approaches and delivery problem with drones.

Delivery applications have recently received considerable media attention, mainly because of

the prospect of door-to-door express deliveries at low-cost. With this new concept, delivery times

and costs could be significantly reduced. Because of the overwhelming amount of announcement in

drone research by the industry, the literature has been growing significantly. Hereafter, we present

some approaches that address the FSTSP and similar problems.

Chase and Chu (2015) proposed a mixed integer linear programming formulation for two delivery-

by-drone problems in which the delivery is performed by truck and drone. In the Parallel Drone

Scheduling Traveling Salesman Problem (PDSTSP) the drone attends customers within flight range

of the depot while the truck attends the remaining. The operations occur independently, i.e., while

the truck follows a TSP route the drones fly to the customers and back to the depot multiple

times. In the other problem, the truck and drone work collaboratively (Flying Sidekick Traveling

Salesman Problem - FSTSP). The authors implemented a simple and effective heuristic approach
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for both problems. A similar work is the one by Bouman et al. (2018). They addressed an exact

solution approach for the TSP-D based on dynamic programming that can solve problems up to

16 customers. This number of customers is larger than the mathematical programming approaches

presented in the literature thus far. Ponza (2016) based his dissertation on the FSTSP proposed by

Chase and Chu (2015). He proposed a slightly different mathematical formulation to the problem

and presented an analysis of several heuristics that could be used to resolve the problem. Moreover,

he introduced a new set of instances to the literature.

Dell’Amico et al. (2020) approached the PDTSP proposing a MILP model and several matheuris-

tics. The authors experiment with the algorithms on the benchmark instances introduced by

Saleu et al. (2018) and Chase and Chu (2015). The computational study validates that the pro-

posed algorithms produce competitive results in terms of both efficiency and effectiveness mainly

on small and medium-size instances.

Wang et al. (2017) study the Vehicle Routing Problem with Drones (VRPD) from a worst-case

point of view. The paper describes several theorems formulation for the vehicle routing problem

with drones and represents bounds on maximal savings to the companies. Poikonen et al. (2017)

expand the description of the theorems comparing different drone configurations in the delivery

process to determine the maximum benefit. For example, the trade-off between speed and the

number of drones, i.e., they compare what is better, a more substantial number of slower drones

or a smaller number of faster drones.

While the works above aim to minimize the time required to complete the tour, in Ha et al.

(2018) the objective is to minimize the total operational cost of a drone-truck delivery system.

They proposed a MILP formulation to the problem and a heuristic called TPS-LS, both inspired

on the work of Chase and Chu (2015). Furthermore, a GRASP heuristic was presented. The

results showed that GRASP provides better solution quality while TPS-LS deliver a lower solution

quality, yet very quickly.

Another approach for the drone-truck system is the one presented in Jeong et al. (2019). They

considered two practical issues to evaluate the problem, the effect of parcel weight on drone energy

consumption and restricted flying areas. Their sensitivity analysis shows that the increase in

package weight and no-fly zones reduce the efficient use of drones as it limits their flight range,

especially when the two factors are combined.

The FSTSP proposed by Gonzalez-R et al. (2020) allows the truck to wait for the drone where

it was launched. The drone also can perform multiple visits per launch. The authors considered

drone energy, i.e., the battery is changed between drone trips and it is considered fully charged after

the swap. An iterative greedy search heuristic combined with simulated annealing was proposed.

de Freitas and Penna (2020) introduces new instances based on the TSPLIB and compares

the HGVNS (General Variable Neighborhood Search) result with instances found in the literature
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(Agatz et al., 2018; Ponza, 2016). In this work, we complement the heuristics by using a list, based

on the Tabu Search, to avoid cycling in the neighborhoods. Here, we also propose a MILP to solve

the FSTSP in the instances proposed in (Chase and Chu, 2015; Ponza, 2016).

The multiple flying sidekicks traveling salesman problem (mFSTSP) introduced by Chase and Ritwik

(2020) considers a delivery truck operating in coordination with a fleet of drones. The drones are

launched from the truck to deliver a single package, then return to the truck where it can be

loaded again. They employed a three-phased (I. initial truck assignments, II.create drone routes,

III.combining phase I and II) heuristic solution to approach the problem. The heuristic result anal-

ysis revealed that drones with high-speed and long-range offer greater benefits in larger geographic

regions, where customers are distributed over a larger area.

Ferrandez et al. (2016) introduced a truck-drone delivery system where multiples drones travel

per truck. They investigated the time and energy associated with a truck-drone delivery network

compared to a standalone truck or drone delivery. Besides, they proposed a k-means and a genetic

algorithm to determine the optimal number of launch locations and drones per truck. Following

the multiple drones per truck approach, Karak and Abdelghany (2019) presents a mathematical

formulation and solution methodology for the hybrid vehicle-drone routing problem (HVDRP)

for pick-up and delivery services. The problem is formulated as a mixed-integer program, which

minimizes the vehicle and drone routing cost to serve all customers. The formulation captures

the vehicle-drone routing interactions during the drone dispatching and collection processes and

accounts for drone operation constraints related to flight range and load carrying capacity limi-

tations. A novel solution methodology is developed which extends the classic Clarke and Wright

algorithm (HCWH) to solve the HVDRP. The performance of the developed heuristic is bench-

marked against two other heuristics, namely, the vehicle-driven routing heuristic (VDH) and the

drone-driven routing heuristic (DDH). A set of experiments are conducted to evaluate the perfor-

mance of the developed heuristics. While the VDH and the DDH focus on optimizing the cost of

one mode only, the HCWH is shown to outperform these two heuristics in terms of minimizing the

cost of the entire multi-modal network. The network operation cost is shown to be minimum when

the used drones are balanced in terms of their flight range and load carrying capacity.

Schermer et al. (2019); Wang et al. (2017); Poikonen et al. (2017); Ulmer and Thomas (2018);

Pugliese and Guerriero (2017) tackled the Vehicle Routing Problem with Drones (VRPD). In

Schermer et al. (2019), they formulated the VRPD as a Mixed Integer Linear Program (MILP),

and introduced several sets of valid inequalities aiming to improve the performance of solvers. To

address large instances, they presented a matheuristic approach that exploits the problem struc-

ture of the VRPD. The authors proposed the Drone Assignment and Scheduling Problem (DASP)

defined as minimization problem that given an existing routing of trucks, looks for an optimal

assignment and schedule of drones such that the makespan is minimized.
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Contrasting with the others approaches, Song et al. (2018) addressed a delivery problem where

drones serve all customers. The authors described the Unmanned Aerial Vehicle Routing Problem

(UAVRP) presenting new features to drone delivery problem: capacity and time window. Multiple

drones, package weight impacting the vehicle battery life and customers demand to be satisfied are

also considered. Service stations are strategically positioned to respect the endurance of drones and

minimize delivery time. In these stations vehicles can be recharged and reload; thus, the drones

can serve customers persistently. Computation experiments evaluated a heuristic and a mixed

integer linear programming (MILP) formulation. While the MILP formulation could not solve

large-scale problems, the heuristic successfully derives optimal or near-optimal solutions for them

in a short time. Concerning drone-only delivery (Dorling et al., 2017) presented in their work an

energy consumption model for multirotor drones and provided a linear approximation for it. They

proposed the Drone Delivery Problem (DDP) which seeks to minimize cost (MC-DDP) or delivery

time (MT-DDP) while considering battery weight, payload weight, and drone reuse. They proposed

a MILP implementation and a Simulated Annealing (SA) to solve practical scenarios with hundreds

of locations. Comparing the approaches, the SA implementation consistently finds near-optimal

solutions to problems with eight or fewer locations. The heuristic behavior in larger instances with

125 to 500 customers showed consistent results. Arenzana et al. (2020) work presented a strategic

framework to quantify the efficiency of hospital operations. They introduced a MILP to design

drone delivery network for hospital deliveries. The problem minimizes drone travelling time, battery

consumption levels, vehicle investment, and infrastructure costs. The trajectories designed between

hospitals conform to the latest air traffic management regulations. They presented a case study

based in London. The paper shows that drones present numerous advantages in comparison with

traditional road transport. With operational costs averaging 30% depending on drone model and

operational parameters, such as vehicle range and payload size, the drone-based model increases

service reliability (lower variability in travel time) and overcomes initial investment.

Table 1 summarises the related work mentioned in this section. Column Problem class defines

the problem approached in the paper. #Drones and #Trucks describe, respectively, the number

of drones and trucks considered in the problem. Column Same L/R indicates the node where the

drone is launched is necessarily equal from the node it returns. Same net describes if the network

the vehicles travel are the same. Then, there are three columns describing drones: 1) whether

energy consumption is evaluated (Endurance), 2) whether capacity is considered (Capacity), 3)

whether drone can perform multiple visits (Drone multiple visits). Column Sync indicates if trucks

and drones perform a coordinated operation. Finally, the last column reports the works that

studied the problem.
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Table 1: Summary of the main features of FSTSP contributions in the literature.

Problem Same Same Drone Related
class #Drones #Trucks L/R net Endurance Capacity multiple Sync Work

visits

FSTSP 1 1 × × × × × X

Chase and Chu (2015)
Ponza (2016)

Ha et al. (2018)
de Freitas and Penna (2020)

FSTSP 1 1 × × × × X X Gonzalez-R et al. (2020)

PDSTSP n 1 × × × × × ×
Chase and Chu (2015)

Dell’Amico et al. (2020)

TSP-D 1 1 X X × × × X
Bouman et al. (2018)

Agatz et al. (2018)

VRPD n m × X × × × X

Wang et al. (2017)
Poikonen et al. (2017)
Schermer et al. (2019)

Ulmer and Thomas (2018)
Pugliese and Guerriero (2017)

VRPDR n m X × X X × X Dayarian et al. (2020)

VRPDR 1 1 × × X X × X Dayarian et al. (2020)

DDP n 0 X - X X × - Dorling et al. (2017)

UAVRP n 0 X - X X X - Song et al. (2018)

FSTSP-ECNZ 1 1 X × X X × X Jeong et al. (2019)

mFSTSP n 1 × × × X × X Chase and Ritwik (2020)

HVDRP n 1 X X × X X X Karak and Abdelghany (2019)

STRPD n 1 X × × X X X Moshref-Javadi et al. (2020)
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4. Formulation

This section proposes a compact Mixed Integer Programming (MIP) formulation for the FSTSP.

As with the problem description in Section 2, a graph G = (V,A) is considered to represent the

problem. Table 2 presents the notation employed throughout the formulation. Note in this table

that L is the set of possible moments for the truck to visit a customer. It is defined such that

L = {0, . . . , n}, where n is the number of customers. This set contains indices used to select the

order in which the customers are visited. The customers’ visiting order is crucial to synchronize

the truck and the drone.

Table 2: Sets and input data utilized within the formulation

V vertex set including the depot and the n customers, V = {v0, . . . , vn}
V ′ vertex set excluding the depot, V ′ = V \{v0}
A arc set
D set of possible drone paths (i, k, j) formed by two arcs, (i, k) and (k, j)

that respects the drone’s maximum endurance
L set of possible moments for truck visits, L = {0, . . . , n}

e drone flight endurance time
sL setup time for launching the drone
sR setup time for returning the drone
τi,j time required by the truck to traverse arc (i, j)
τDi,k,j time required by the drone to traverse arcs (i, k) and (k, j)

M upper bound for the time required by the truck to visit all customers

The formulation considers three variable sets:

tℓ : variable that defines the total travel time until moment ℓ;

xℓi,j : binary variable equal to 1 if the truck traverses arc (i, j) at moment ℓ, and 0 otherwise;

yℓ,ℓ
′

i,k,j : binary variable equal to 1 if the drone traverses arcs (i, k) and (k, j), launching from vertex

i at moment ℓ and returning to the truck in vertex j at moment ℓ′ > ℓ, and 0 otherwise.

At first sight, the number of variables may seem prohibitively significant. However, in prac-

tice, this number can be considerably reduced by filtering variable sets x and y to consider only

feasible connections, meaning only (i, j) ∈ A and (i, k, j) ∈ D should be considered. Moreover,

despite requiring more variables, the formulation here proposed is stronger than those proposed

by Chase and Chu (2015) and Ponza (2016), yielding better linear relaxation lower bounds for all

instances considered (computational results are presented in Section 6).

The formulation is presented by Equations (1)–(15). To simplify the notation and reduce

the constraints length, we assume xℓi,j = 0 for all (i, j) /∈ A and, analogously, yℓ,ℓ
′

i,k,j = 0 for all

9



(i, k, j) /∈ D and all nonexistent moment pairs (ℓ, ℓ′) with ℓ ≥ ℓ′. Note that such variables are not

generated by our implementation, whose source code is available online1.

min. tn+1 (1)

s.t.
∑

j∈V

x0v0,j =
∑

j∈V

∑

ℓ∈L\{0}

xℓj,v0 = 1 (2)

∑

j∈V

∑

ℓ∈L

xℓi,j =
∑

j∈V

∑

ℓ∈L

xℓj,i ≤ 1 ∀i ∈ V (3)

∑

j∈V

xℓ−1
j,k =

∑

j∈V

xℓk,j ∀k ∈ V ′, ℓ ∈ L\{0} (4)

∑

(i,j)∈A

xℓi,j ≤ 1 ∀ℓ ∈ L (5)

∑

(i,k,j)∈D

ℓ
∑

l=0

n
∑

l′=ℓ+1

yl,l
′

i,k,j ≤ 1 ∀ℓ ∈ L (6)

∑

j∈V

∑

ℓ∈L

xℓk,j +
∑

i∈V

∑

j∈V

∑

ℓ∈L

∑

ℓ′∈L

yℓ,ℓ
′

i,k,j = 1 ∀k ∈ V ′ (7)

∑

k∈V ′

∑

j∈V

∑

ℓ′∈L

yℓ,ℓ
′

i,k,j ≤
∑

j∈V

xℓi,j ∀i ∈ V, ℓ ∈ L (8)

∑

i∈V

∑

k∈V ′

∑

ℓ∈L

yℓ,ℓ
′

i,k,j ≤
∑

i∈V

xℓ
′−1
i,j ∀j ∈ V, ℓ′ ∈ L (9)

tℓ
′

− tℓ ≤ e+M



1−
∑

(i,k,j)∈D

yℓ,ℓ
′

i,k,j



 ∀ℓ ∈ L\{0}, ℓ′ ∈ L : ℓ′ > ℓ (10)

tℓ ≥ tℓ−1 +
∑

(i,j)∈A

τi,jx
ℓ′−1
i,j +

∑

(i,k,j)∈D,
ℓ>1

n
∑

l′=ℓ

sLyℓ−1,l′

i,k,j +
∑

(i,k,j)∈D

ℓ−1
∑

l=1

sRyl,ℓi,k,j

∀ℓ ∈ L\{0} ∪ {n+ 1} (11)

tℓ
′

≥ tℓ +
∑

(i,k,j)∈D

(

sL + τDi,k,j + sR
)

yℓ,ℓ
′

i,k,j ∀ℓ′ ∈ L\{0}, ℓ ∈ L : ℓ < ℓ′ (12)

t0 = 0 (13)

xℓi,j ∈ {0, 1} ∀(i, j) ∈ A, ℓ ∈ L (14)

yℓ,ℓ
′

i,k,j ∈ {0, 1} ∀(i, j, k) ∈ D, ℓ ∈ L, ℓ′ ∈ L : ℓ′ > ℓ (15)

The objective function presented by Equation (1) minimizes the total time to visit all customers,

given by the sum of the truck’s traveling time and all required setup times to launch and collect the

1The formulation’s implementation is available at http://www.github.com/tuliotoffolo/fstsp
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drone. Constraints (2) ensure the truck leaves the depot at moment zero and returns to it at the

tour’s end. Constraints (3) limit the number of truck visits to any customer to one. Constraints

(4) are flow preservation constraints which force the truck to leave a customer at the subsequent

moment of its visit. Constraints (5) limit the number of arcs traversed at each moment to at most

one. Constraints (6) prohibit launching the drone more than once in overlapping time windows

(given by l and l′) and therefore assert the drone is not launched when it is not with the truck. Note

that l and l′ are used to cover all time windows, including moment ℓ. Constraints (7) guarantee

every customer is visited exactly once, either by the truck or by the drone. Constraints (8) and (9)

synchronize the truck’s position with the drone’s launch and return, respectively. Constraints (10)

certify the drone’s endurance is respected. Note that these constraints employ a ‘Big M ’, which

disables the constraint whenever the drone is not launched. The value of M is set to an upper

bound2 on the time at which both the drone and the truck return to the depot. Also, the truck’s

travel time is not considered for endurance when the drone launches from the depot (when ℓ = 0).

Constraints (11) update the travel time until moment ℓ considering the truck’s route. Eventual

setup times sL and sR of launching and returning the drone, respectively, are taken into account.

Similarly, Constraints (12) ensure the travel time until moment ℓ includes the time traveled by the

drone and eventual setup times sL and sR. Therefore, time tℓ of any moment ℓ > 0 considers the

travel time of both truck and drone, including whichever is larger. Constraint (13) sets the total

travel time at the first moment to zero and, finally, Constraints (14) and (15) declare the binary

nature of variables x and y.

5. The Hybrid Heuristic

The proposed heuristic algorithm, named Hybrid Tabu General Variable Neighborhood Search

(HTGVNS), is a hybrid metaheuristic that combines the exact solution of a TSP solver and the

exploration capabilities of systematical neighborhood changes. The HTGVNS employs the Route

First Cluster Second approach of Beasley (1983) in which first a TSP is solved and then clusters

are created by assigning customers to the drone.

The following sections detail the heuristic approach. First Section 5.1 introduces the different

neighborhood structures used within the algorithm. Then, Section 5.2 formally introduces the

proposed heuristic.

5.1. Neighborhood structures

Several neighborhood structures were developed to explore the search space of the FSTSP, based

on different moves. When a move is applied on a reference solution S, a neighbor solution S′ is

2The upper bound was obtained by a simple Nearest Neighbor constructive heuristic, and its value is available as
part of Ponza (2016) instances.
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obtained. A neighborhood structure N consists of all possible applications of a move. Considering

a reference solution S, this results in a set of neighbor solutions N(S), which is hereinafter referred

to as neighborhood.

The neighborhood structures considered are based mostly on classical TSP moves, with some

of them relying on specificities of the problem. The solution space is visited applying the Best

Improvement (BI) (Hansen et al., 2016) approach, which exhaustively explores a neighborhood

and returns the solution with the lowest objective value, i.e., the best neighbor.

Only feasible solutions are accepted within the proposed algorithm, meaning that infeasible

neighbors are discarded. Note that to be feasible a route (i, k, j) must respect the drone battery’s

life, i.e. τDi,k,j ≤ e. Similarly, the drone battery power must endure until the truck arrival at the

return node. Sub-routes are considered to avoid a drone launch before a return, as illustrated

by Figure 2, where each rectangle represents a sub-route. In Figure 2a, drone customers can be

assigned only to sub-routes 1 and 3. A launch must not occur in sub-route 2 since a drone trip is

already associated with this sub-route. It is important to note that for every new drone trip, the

truck route splits into one more sub-route. Therefore, new launches can only occur in sub-routes

not associated with a drone. Figure 2b describes the split of sub-route 3 as the result of a new

drone trip.

(a) Example with one subroute. (b) Example with two subroute.

Figure 2: Customer deliveries are made by either a traditional delivery truck or via drone.

The reader is directed to de Freitas and Penna (2020) for more details on the neighborhood

structures considered here, which are divided into two categories: intra-route and inter-route,

detailed next.

5.1.1. Intra-route neighborhood structures

The intra-route neighborhood structures considered are based on classical TSP moves.

i. Swap(1,1): It swaps one customer in the solution with another one.

ii. Swap(2,1): It swaps two consecutive customers in the solution with another one.

iii. Swap(2,2): It swaps two consecutive customers in the solution with other two consecutive

ones.
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iv. 2-opt: This move is the classical 2-opt move proposed by Croes (1958). Two edges are

removed, and then, the two paths created are reconnected in the only possible way to keep a

valid tour.

v. Reinsertion: This move consists of removing a customer from its current position and rein-

serting it in another one.

vi. Or-opt2: This move consists of removing two consecutive customers from their current posi-

tion and reinserting them in another one.

5.1.2. Inter-route Neighborhood structures

The inter-route neighborhood structures are based on moves which envision solution improve-

ment by exploring the problem characteristics.

i. Shift(1,0): This move consists of removing one truck customer and subsequently inserting

it into the drone route. This move requires a cubic time, O(c2c′) where c is the number of

truck customers and c′ is the number of eligible customers not currently assigned to the drone.

This complexity time refers to three nested loops where the first defines the launch node i,

subsequently, the delivery node j and, lately, the return node k. This candidate trip must not

exceed drone endurance. The pair of nodes i and k are not necessarily adjacent, but i must

precede k. The selected combination of 〈i, j, k〉 is the one that presents the more considerable

decreasing cost of the truck route within the removal of customer j.

(a) Original route. (b) Insertion of a new drone trip.

Figure 3: Swap truck drone customer move.

ii. Swap(1,1): This swap move consists of simply swapping two customers in the solution. One

customer belongs to the truck and the other to the drone route. The complexity is O(c′c) where

c′ and c are the number of drone and truck customers, respectively. This complexity is due to

the necessity of comparing all drone nodes with every truck customer to find a combination at

least as good as the previous or has a lower objective value. The swap is only performed if the

drone endurance is not violated, i.e., the new drone trip can be completed before the drone

runs out of battery power and the truck sub-route does not exceed the drone flight limit.

iii. Swap(0,1): This move is used to shake the current solution by turning a drone customer into

a truck customer. A customer is removed from the drone route and inserted into the truck

route in a position that generates the least impact on the solution quality. This move may
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(a) Original route. (b) Swap of two customers.

Figure 4: Swap truck drone customer move.

increase the objective value, as it adds another customer to the truck route. However, if the

truck waiting time is larger than the drone trip, a decrease in the objective value may occur.

This move requires combining drone customers with every position of the truck route to get

the customer position that produces the smallest impact on the solution quality. Therefore,

the time complexity of performing this move is O(c′c) where c′ and c are the number of drone

and truck customers, respectively.

(a) Original route. (b) Remove drone customer 2 then reinsert it in the truck route.

Figure 5: Remove drone customer move.

5.2. HTGVNS Algorithm

The proposed algorithm first builds an optimal TSP route by employing the exact approach

from Applegate et al. (2016). This results in a truck route with all customers, including eligible

drone customers, which is used to build an initial solution to the FSTSP. This procedure, presented

by Algorithm 1, requires two arguments: (i) an initial TSP solution S and (ii) the eligible drone

customers C ′. The algorithm iterates over the eligible drone customers until no improvement

occurs. For each customer, j ∈ C ′ the cost of removing it from the truck’s route is computed

(line 5). It is also verified for each subroute if it is associated with a drone trip (line 6). For

example, in Figure 2a Subroute 1 is not associated with a drone trip while Subroute 2 is. If the

subroute is paired with a drone, an attempt is made to insert customer j into the truck’s route

between adjacent nodes i and k (line 8). Otherwise, the cost of serving customer j by drone is

computed (line 10). Each pair of nodes (i, k) such that i precedes k in a given subroute that is

not currently connected with the drone is investigated. The goal is to compute the travel time

associated with the drone trip launching from node i, visiting node j, and finally returning to the

truck at node k.
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Algorithm 1: CreateInitialSolution

Input : Eligible drone customer C′ and optimal TSP solution S
1 truckSubRoutes← {S}
2 stop ← false
3 while stop = false do

4 forall j ∈ C′ do

5 savings← calculate the savings of removing customer j from the truck's route
6 forall subroute ∈ truckSubRoutes do

7 if subroute is paired with drone then

8 cost truck ← calculate the cost of relocating customer j in the truck's route
9 else

10 cost drone← calculate the cost of serving customer j with the drone

11 savings truck ← savings− cost truck
12 savings drone← savings− cost drone
13 if savings truck < savings drone then

14 update solution S by moving customer j to the drone's route
15 else if savings truck > savings drone then

16 update solution S route by relocating customer j in the truck's route
17 else

18 stop ← true

19 return S

The proposed algorithm is a General Variable Neighborhood Search (GVNS), which consists of

Variable Neighborhood Search (VNS) using Variable Neighborhood Descent (VND) as local search.

Hansen et al. (2010) introduced the GVNS metaheuristic that relies upon a local search followed by

perturbations to escape from local optima. Furthermore, to avoid cycling, it was adopted a tabu list

likely in Tabu Search (Glover and Laguna, 1998) to forbid solutions that possess some attributes

of recently explored solutions, especially between insertion and removal of drone customers. For

example, in Figure 2a customer 4 was just added to the drone route as a drone customer. Thus, it

must not return to the truck route for the next |TL| iterations, where TL is the tabu list.

The Randomized Variable Neighborhood Descent (RVND) is an adaptation of the classic VND

heuristic in which the neighborhood’s selecting order is randomized. The VND is a heuristic

described in Hansen et al. (2016) and further discussed by Souza et al. (2010) and Penna et al.

(2013), who showed that the randomized procedure often outperforms the deterministic approach.

The RVND procedure developed for the FSTSP is presented in Algorithm 2. The algorithm begins

by filling the neighborhood structure list N (line 1) and initializing solutions S∗ and S′ (line 2).

Next, variable k is initialized (line 3), representing the current number of neighborhoods analyzed.

The main loop (line 4) first randomly selects a neighborhood structure (lines 5 – 8). This structure

can be chosen from two different sets, N or N \ NTL. The first set is selected if the current solution

S′ is not in tabu list TL. Otherwise, the second set is selected. Afterwards, a new neighboring
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solution is generated (line 9). If this solution is at least as good as the previous or has a lower

objective value than the considered entry is accepted, the counter k is reset to 1 and list N is

shuffled (lines 10 – 13). Otherwise, the value of k is increased (lines 14 – 15). Once the maximum

number of neighbors is reached, the best solution produced is returned (line 16).

Algorithm 2: Randomized Variable Neighborhood Descent

Input: Solution S, tabu list TL, tabu neighborhood structures NTL

1 Initialize and shuffle the list N of neighborhood structures;
2 S∗ ← S′ ← S
3 k ← 1
4 while k ≤ |N | do
5 if S′ ∈ TL then

6 N ← random neighborhood structure from N \ NTL

7 else

8 N ← neighborhood structure N (k)

9 S′ ← best neighbor solution in N(S)
10 if f(S′) < f(S∗) then
11 S∗ ← S′

12 k ← 1
13 shuffle N

14 else

15 k ← k + 1

16 return S∗

The combination of RVND and GVNS is presented in Algorithm 3. Three arguments are

required: (i) an initial solution S, (ii) the maximum number of interactions and (iii) static tabu

neighborhood list NTL.

Algorithm 3 begins by initializing solution S∗, counter k, perturbation level ρ and tabu list TL

(lines 1 – 4). The main loop (line 5) first generates a random neighbor solution S from neighborhood

N (k) (line 6). If neighborhood N (k) is in NTL, then solution S is inserted in tabu list TL (lines 7 –

8). Afterwards, the RVND algorithm is called (line 9). If the solution produced by RVND is better

than the current best solution, the best solution is updated (lines 10 – 11). Note that counter k and

perturbation level ρ are reset only if S is an improving solution over S∗ (lines 12 – 13). Otherwise,

the value of k is incremented (lines 14 – 15). Afterwards, the perturbation is executed (lines 16 –

17), which corresponds to applying neighborhood N (9) (see subsection 5.1) ρ times to the current

solution. Next, the perturbation level ρ is increased (line 18) and the loop repeated. Variable ρ is

reset when it equals ρmax. Once the main loop reaches its stopping criterion, the best solution is

returned (line 19).

16



Algorithm 3: General Variable Neighborhood Search

Input: Initial solution S, maximum interaction kmax, maximum perturbation level ρmax and
static tabu neighborhood list NTL

1 S∗ ← S
2 k ← 1
3 ρ← 0
4 TL← ∅
5 while k ≤ kmax do

6 S ← random neighbor solution in N (k)(S)

7 if N (k) ∈ NTL then

8 insert S in list TL

9 S ← RVND(S, TL, NTL)
10 if f(S) < f(S∗) then
11 S∗ ← S
12 k ← 1
13 ρ ← 0

14 else

15 k ← k + 1

16 for i = 0 to ρ do

17 S ← random neighbor solution in N (9)(S)

18 ρ ← (ρ mod ρmax + 1)

19 return S∗

6. Experimental Analysis

In this section we present experimental results and analysis of the proposed exact and heuristic

approaches. The MIP formulations were modeled using the Python-MIP package and solved using

the commercial solver Gurobi 9.0 with the default configuration, while the heuristic algorithm was

coded in C++ and compiled with G++ 5.3.1. All experiments were executed on Intel Core i7

3.60GHz computers with 16GB of RAM running Ubuntu Linux 16.04.

First, Section 6.1 presents and analyses the results obtained by the proposed MIP formulation

considering the instances from Chase and Chu (2015) and Ponza (2016). Next, Section 6.2 discusses

HTGVNS results for different benchmarks from the literature. Section 6.2.1 considers the instances

proposed by Ponza (2016), Section 6.2.2 considers those by Agatz et al. (2018) and, finally, the set

introduced by de Freitas and Penna (2020) is considered in Section 6.2.3.

6.1. Formulation Results

The proposed formulation models the problem addressed by Ponza (2016). This problem consid-

ers, however, slightly different constraints than those considered by Chase and Chu (2015). There

are two points of attention:

1. in the problem described by Chase and Chu (2015), the truck’s travel time between the
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drone’s launch and return can be longer than the drone endurance; the drone can therefore

run out of battery while waiting for the truck;

2. Chase and Chu (2015) do not consider the setup time for launching the drone as part of

the drone’s flying time, and it does not count for the total completion time or the battery’s

endurance, even when the drone leaves from the depot.

Formulation (1)–(15) can be adapted to obtain results comparable with those by Chase and Chu

(2015) by removing Constraints (10) and altering Constraints (11) and (12).

The formulation given by (1)–(15) has a total of O(|V |5) variables. However, as aforementioned,

the number of variables generated is proportional to the sizes of sets A and D (see Section 6.1),

which are generally much smaller in practice than |V |2 and |V |3, respectively. Table 3 presents

the average number of generated variables (#Vars) and constraints (#Constrs) for the instances

considered. Note how the formulation’s dimensions depend heavily upon the endurance of the

drone (e). This is expected since a smaller endurance enables reducing set D’s size. It is also

noteworthy how the number of variables actually within the model is not prohibitive for small

instances.

Table 4 presents the results obtained by the altered formulation considering the instances from

Chase and Chu (2015) with e = 20 and e = 40. For compactness, we refer to Chase and Chu (2015)

as M&C (2015), to instance 20140810T123437 as A, 20140810T123440 as B and 20140810T123443

as C. Column LB0 presents the value of the linear relaxation, column Sol. presents the solution

value and column Time reports the total execution runtime in seconds. Note that a ⊛ is included

next to column Sol. whenever the solution is proven optimal by the solver using the indicated

formulation. Note also that a runtime limit of 1800 seconds was imposed and that we omitted

column LB0 for the formulation proposed by Chase and Chu (2015), since it obtained value zero

for all instances.

The proposed formulation resulted in proven optimal solutions for all instances considering

Table 4, taking 61 seconds on average. This result is quite remarkable since with the formulation

Table 3: Average number of variables and constraints per instance-set and endurance value

Instance set #nodes e
This work Ponza (2016) Chase and Chu (2015)

#Vars #Constrs #Vars #Constrs #Vars #Constrs

Ponza (2016) 5 1,440 658 158 116 68 - -
Ponza (2016) 6 1,440 1,023 212 144 547 - -
Ponza (2016) 7 1,440 1,893 274 196 790 - -
Ponza (2016) 8 1,440 4,411 344 281 1,125 - -
Ponza (2016) 9 1,440 4,161 422 295 1,439 - -
Ponza (2016) 10 1,440 9,208 508 422 1,941 - -

Chase and Chu (2015) 10 1,200 31,758 453 - - 867 2,840
Chase and Chu (2015) 10 2,400 41,273 453 - - 867 2,840
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proposed by Chase and Chu (2015) the solver was incapable of providing any proven optimal

solution within the runtime limit.

Table 5 presents the results obtained by Formulation (1)–(15) without alterations considering

Ponza (2016)’s smaller instances containing from 5 to 10 customers. No formulation was capable of

solving larger instances with 50, 100, 150 and 200 customers. For these instances, the formulations

presented by Ponza (2016) did not obtain any feasible solution and the formulation we propose

could not be executed due to memory limitations. It is thus by no means a coincidence that these

Table 4: Formulation results for Chase and Chu (2015) instances

e = 20 e = 40

Inst. M&C (2015) This Work M&C (2015) This Work

Sol. Time LB0 Sol. Time Sol. Time LB0 Sol. Time

A-v1 56.47 1800.15 38.78 ⊛ 56.47 10.73 52.10 1800.15 31.93 ⊛ 50.57 1305.59
A-v2 53.21 1800.15 36.05 ⊛ 53.21 10.07 47.31 1800.15 27.82 ⊛ 47.31 671.41
A-v3 53.69 1800.18 37.48 ⊛ 53.69 10.71 53.69 1800.18 30.89 ⊛ 53.69 925.35
A-v4 67.46 1800.15 51.77 ⊛ 67.46 7.30 66.49 1800.15 43.66 ⊛ 66.49 675.25
A-v5 50.55 1800.22 30.67 ⊛ 50.55 455.30 45.84 1800.22 30.67 ⊛ 44.84 764.31
A-v6 47.60 1800.23 27.69 ⊛ 47.31 330.01 47.60 1800.23 27.68 ⊛ 43.60 569.86
A-v7 51.89 1800.24 30.85 ⊛ 48.58 69.80 46.62 1800.24 30.84 ⊛ 46.62 491.20
A-v8 64.69 1800.23 43.60 ⊛ 61.38 56.82 59.78 1800.23 43.58 ⊛ 59.42 677.58
A-v9 45.98 1800.25 30.62 ⊛ 42.42 92.00 42.42 1800.25 30.62 ⊛ 42.42 211.23
A-v10 43.09 1800.28 27.60 ⊛ 41.73 100.72 41.73 1800.28 27.60 ⊛ 41.73 157.21
A-v11 48.21 1800.25 30.81 ⊛ 42.90 19.26 42.90 1800.25 30.81 ⊛ 42.90 142.32
A-v12 61.57 1800.27 43.54 ⊛ 55.70 28.37 55.70 1800.27 43.54 ⊛ 55.70 102.14

B -v1 49.43 1800.15 28.23 ⊛ 49.43 26.08 48.72 1800.15 28.22 ⊛ 46.89 543.02
B -v2 50.71 1800.15 28.22 ⊛ 50.71 20.48 46.42 1800.15 28.20 ⊛ 46.42 137.92
B -v3 56.10 1800.17 35.00 ⊛ 56.10 21.50 53.93 1800.17 34.99 ⊛ 53.93 575.93
B -v4 69.90 1800.14 49.00 ⊛ 69.90 19.42 68.40 1800.14 47.76 ⊛ 68.40 640.12
B -v5 45.36 1800.22 28.17 ⊛ 43.53 44.28 46.59 1800.22 28.17 ⊛ 43.53 101.52
B -v6 44.08 1800.22 27.93 ⊛ 43.95 40.88 44.08 1800.22 27.93 ⊛ 43.81 69.44
B -v7 51.92 1800.22 34.94 ⊛ 49.42 43.36 49.20 1800.22 34.94 ⊛ 49.20 86.90
B -v8 65.62 1800.22 47.74 ⊛ 62.22 39.82 62.27 1800.22 47.74 ⊛ 62.00 38.63
B -v9 44.25 1800.27 28.15 ⊛ 42.53 62.33 44.25 1800.27 28.15 ⊛ 42.53 36.83
B -v10 43.08 1800.27 27.81 ⊛ 43.08 60.98 43.08 1800.27 27.81 ⊛ 43.08 43.33
B -v11 49.20 1800.27 34.93 ⊛ 49.20 35.41 49.20 1800.27 34.93 ⊛ 49.20 71.60
B -v12 62.00 1800.27 47.73 ⊛ 62.00 54.01 62.00 1800.27 47.73 ⊛ 62.00 46.88

C -v1 69.59 1800.16 54.27 ⊛ 69.59 4.07 57.25 1800.16 31.29 ⊛ 55.49 1062.18
C -v2 72.15 1800.14 58.45 ⊛ 72.15 4.92 58.05 1800.14 36.29 ⊛ 58.05 920.71
C -v3 77.34 1800.13 65.44 ⊛ 77.34 1.90 69.17 1800.13 49.20 ⊛ 68.43 436.34
C -v4 90.14 1800.16 78.59 ⊛ 90.14 3.26 82.70 1800.16 62.13 ⊛ 82.70 384.01
C -v5 63.25 1800.22 33.55 ⊛ 53.05 32.20 53.45 1800.22 30.92 ⊛ 51.93 1801.24
C -v6 64.70 1800.24 36.81 ⊛ 55.21 61.71 52.33 1800.24 36.29 ⊛ 52.33 488.63
C -v7 67.77 1800.21 51.37 ⊛ 64.41 34.90 60.74 1800.21 49.09 ⊛ 60.74 86.58
C -v8 83.70 1800.20 64.35 ⊛ 77.21 32.95 74.69 1800.20 61.89 ⊛ 72.97 61.09
C -v9 59.32 1800.23 30.92 ⊛ 45.93 170.79 47.25 1800.23 30.92 ⊛ 45.93 261.44
C -v10 61.24 1800.23 36.29 ⊛ 46.93 32.20 48.87 1800.23 36.29 ⊛ 46.93 48.91
C -v11 67.43 1800.23 49.09 ⊛ 56.40 19.65 56.40 1800.23 49.09 ⊛ 56.40 23.48
C -v12 83.70 1800.22 61.89 ⊛ 69.20 9.25 69.20 1800.22 61.89 ⊛ 69.20 16.04
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large instances have only been addressed with heuristic approaches so far. Therefore, we developed

the HTGVNS to tackle the large instances found in the literature.

The formulations proposed by Ponza (2016) also obtained linear relaxation lower bounds of

value zero for all instances, and so we omitted column LB0. It is clear that the formulations

previously proposed in the literature are outperformed by the one we propose, which was capable

of producing significantly better lower bounds and by consequence proven optimal solutions for all

small instances, which are represented by a ⊛ in the table.

6.2. HTGVNS Results

In this section, solutions provided by HTGVNS for different benchmarks and the parameters

of the heuristic are detailed.

Table 5: Formulation results for Ponza (2016) instances

Instance Ponza (2016) This Work

Sol. Time LB0 Sol. Time

Instance 005.1 4456.83 0.13 3851.22 ⊛4456.83 0.38
Instance 005.2 3507.07 0.12 1984.71 ⊛3507.07 0.07
Instance 005.3 3275.69 0.14 2979.03 ⊛3275.69 0.12
Instance 005.4 5312.47 0.09 3423.66 ⊛5312.47 0.07
Instance 005.5 5510.17 0.10 5021.23 ⊛5510.17 0.05

Instance 006.1 7080.94 0.25 6064.16 ⊛7080.94 0.08
Instance 006.2 6147.96 0.32 5713.98 ⊛6147.96 0.23
Instance 006.3 6835.16 0.23 5878.56 ⊛6835.16 0.08
Instance 006.4 4402.08 0.32 3424.12 ⊛4402.08 0.41
Instance 006.5 5392.08 0.38 4031.53 ⊛5392.08 0.34

Instance 007.1 5533.85 3.31 3606.98 ⊛5533.85 0.48
Instance 007.2 5342.68 1.79 3258.57 ⊛5342.68 0.96
Instance 007.3 7725.89 1.07 6293.13 ⊛7725.89 0.21
Instance 007.4 7610.38 1.39 6284.05 ⊛7610.38 0.16
Instance 007.5 7010.99 2.10 6211.52 ⊛7010.99 0.27

Instance 008.1 6709.02 5.90 4764.75 ⊛6709.02 1.26
Instance 008.2 6587.18 10.08 4916.63 ⊛6587.18 2.06
Instance 008.3 5780.12 14.68 4133.14 ⊛5780.12 3.00
Instance 008.4 6505.12 8.91 3694.07 ⊛6505.12 1.76
Instance 008.5 5953.51 15.72 4748.36 ⊛5953.51 2.48

Instance 009.1 7338.77 189.38 5773.50 ⊛7338.77 2.95
Instance 009.2 6204.63 129.12 4073.60 ⊛6204.63 3.30
Instance 009.3 7698.14 87.45 3995.14 ⊛7698.14 5.16
Instance 009.4 6817.72 79.71 4281.48 ⊛6817.72 3.69
Instance 009.5 7802.67 115.02 5253.94 ⊛7802.67 4.85

Instance 010.1 5986.71 1800.15 4502.21 ⊛5986.71 50.82
Instance 010.2 6394.39 1800.15 5141.80 ⊛6394.39 15.81
Instance 010.3 6310.60 1800.15 3204.10 ⊛6310.60 21.94
Instance 010.4 8377.92 752.87 7186.84 ⊛8377.92 3.58
Instance 010.5 8934.41 1800.15 5662.50 ⊛8934.41 10.56
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The HTGVNS tabu list size |TL| and perturbation level ρmax were manually tuned. After

a significant number of experiments considering different values for the parameters, ρmax was

defined as
⌈

n× 1
10

⌉

, with n being the number of customers. Two sets were selected based on

their performance to be the tabu list size: |TL| = 2 for instances with up to 20 customers and

|TL| = 7 for instances with more than 20 customers. The solutions are kept in the tabu list until

|TL| moves involving the drone are performed. The problem-specific input parameters, such as

drone endurance, service time and vehicles speed, are defined individually for each instance set (see

Sections 6.2.1 – 6.2.3).

From all the neighborhood structures implemented, the most effective ones for all set of in-

stances were Shift(1,0) and Swap(1,1) intra-route, which improved the solution by 78% and 43%

of the times they were considered, respectively. The reinsertion moves, Reinsertion and Or-opt2,

presented the worst performance when analyzed individually.

The tables presented hereafter employ the following notation. Column Inst. indicates the

instance name, and BKS describes the best-known solution reported in the literature. Columns

Sol., Gap and T ime indicate, the best solution value, the gap between the best solution found by

HTGVNS and BKS and the computational time in seconds, respectively. Finally, columns Sol.

and Gap present the average solution cost of ten runs and the gap between the average solution

cost of HTGVNS and the BKS.

HTGVNS uses the optimal TSP solution to create the initial FSTSP solution. The TSP

solution is obtained using Concorde solver (Applegate et al., 2016) version 3.12.19 configured with

CPLEX 12.6.3. Concorde is capable of finding the optimal solution without considerably increasing

HTGVNS computational time. The computational experiments show that Concorde TSP Solver

uses less than 7% of HTGVNS total time.

6.2.1. Results for Ponza’s benchmark set

Ponza (2016) generated 50 instances that can be separated into two sets. A small set contains

between 5 to 10 customers, which results can be checked in , and a larger one including instances

with 50, 100, 200 customers. Five instances were generated for each number of customers.

Ponza (2016) found the optimal solution to the smaller instance set by running the Mixed

Integer Linear Programming (MILP) presented in his work. We achieved the optimal value in all

instances by running HTGVNS ten times for each instance size. Concorde was not able to find a

solution to some instances; therefore, we used the Cheapest Insertion (CI) heuristic to obtain the

initial solution for every test problem. For the larger instances, the initial solution was obtained

with Concorde solver. The results are presented in Table 6. The first column indicates the number

of customers followed by a complement to keep track of the number of instances per customer.

The HTGVNS algorithm was able to improve the solution quality up to 15% when compared to

Ponza (2016) and 6% compared to de Freitas and Penna (2020). Ponza (2016) implemented a
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Table 6: HTGVNS results for Ponza (2016) instances.

SA HGVNS HTGVNS
Ponza (2016) F&P (2020)

BKS Sol. Time Sol. Sol. Time Sol. Gap Sol. Gap Time

050.1 11506.50 12518.93 213.87 11506.50 11857.02 4.39 11506.50 0.00 11979.39 4.11 6.98
050.2 10964.30 12475.14 208.36 10964.30 11049.21 4.41 10964.30 0.00 10984.98 0.19 5.38
050.3 11336.40 12664.65 191.04 11336.40 11336.40 4.03 11094.83 -2.13 11132.43 -1.80 5.14
050.4 10856.40 12908.18 184.85 10856.40 11929.50 5.02 10525.92 -3.04 10692.38 -1.51 5.98
050.5 10486.30 12164.83 189.86 10486.30 11034.30 4.52 10399.02 -0.83 10401.25 -0.81 4.35
100.1 15618.00 17974.85 267.42 15618.00 15623.84 11.94 15618.00 0.00 15832.94 1.38 15.49
100.2 14899.20 17342.18 272.35 14899.20 15127.50 9.43 14309.33 -3.96 14319.02 -3.89 14.76
100.3 14524.50 17181.88 265.45 14524.50 16074.42 10.93 14283.50 -1.66 14301.39 -1.54 14.30
100.4 15947.30 18538.03 266.75 15947.30 15947.30 10.34 15598.33 -2.19 15604.28 -2.15 13.67
150.5 14948.50 17407.43 312.77 14948.50 15479.22 9.94 14948.50 0.00 15048.43 0.67 17.29
150.1 19828.10 22823.38 365.04 19828.10 20069.32 20.84 19828.10 0.00 20042.43 1.08 18.84
150.2 20949.30 22549.55 383.72 20949.30 21390.32 25.05 20949.30 0.00 21132.30 0.87 27.44
150.3 22633.30 23114.14 379.99 22633.30 23108.49 29.97 22309.39 -1.43 22619.39 -0.06 21.39
150.4 20400.70 22651.00 382.67 20400.70 23390.90 25.39 20198.38 -0.99 20248.43 -0.75 27.20
150.5 22435.52 22807.41 384.69 22435.52 23032.05 31.84 22435.52 0.00 22798.66 1.62 26.78
200.1 25648.33 26991.21 456.74 25648.33 25983.49 30.44 25648.33 0.00 25700.32 0.20 34.83
200.2 27632.40 27848.14 452.88 27632.40 27985.35 71.39 25765.21 -6.76 25803.29 -6.62 51.39
200.3 26498.33 27143.78 510.11 26498.33 26837.33 70.38 25093.38 -5.30 25193.48 -4.92 57.98
200.4 28247.92 28503.18 517.44 28247.92 28463.95 87.98 26993.38 -4.44 27003.98 -4.40 73.83
200.5 24987.56 27875.87 515.30 24987.56 26357.49 69.38 24987.56 0.00 25204.44 0.87 53.08

Avg. Gap and Time 336.07 26.88 -1.64 -0.87 24.81

Simulated Annealing (SA) which the average of ten runs are presented in column Sol for Ponza

(2016). Moreover, the computational time concerning Ponza (2016) is the average of all executions

for each instance. Therefore, both heuristics has a similar run time.

6.2.2. Results for Agatz benchmark set

A variant of the FSTSP is the Traveling Salesman Problem with Drones (TSP-D) introduced

by Agatz et al. (2018). While, the FSTSP defines endurance (e) and service time (sL and sR),

the TSP-D negligence these variable (e = ∞, sL = sR = 0), therefore, the drone can visit all

customers. Furthermore, a drone trip can start and end at the same node (launch = return). The

truck waits for the drone at the launch node or visits other customers then returns to the launch

node. According to the authors, this strategy is beneficial, considering the truck can visit a node

for either serve a customer, or supply the drone with another parcel. The authors proposed an

enormous number of instances to the problem. In Bouman et al. (2015) it is explained how they are

generated. They are divided into three sets, uniform, single-center and double-center distribution.

The parameter α defines the ratio of drone speed to truck speed in an instance. Variable α = 1

determines that the vehicles travel with the same speed, when α = 2 the drone travels two times

faster than the truck. Lastly, for α = 3, the drone speed is three times as fast as the truck.
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Table 7: HTGVNS results for Agatz et al. (2018) instances with uniform distribution

LS HGVNS HTGVNS
(Agatz et al., 2018) (de Freitas and Penna, 2020)

n BKS Sol. Gap. Time Sol. Gap. Time Sol. Gap. Time

α
=

1

10 286.82 286.82 0.00 0.00 289.82 1.05 0.14 289.82 1.05 0.15
20 365.38 365.38 0.00 0.00 368.54 0.86 0.11 365.38 0.00 0.11
50 550.38 550.38 0.00 0.90 559.20 1.60 3.71 551.49 0.20 3.53
75 624.32 645.55 3.40 3.20 624.32 0.00 16.30 624.26 -0.01 16.30
100 698.42 729.44 4.44 10.00 698.42 0.00 53.50 696.15 -0.33 53.75
175 905.32 940.35 3.87 98.00 905.32 0.00 55.91 903.89 -0.16 57.14
250 1113.96 1113.96 0.00 410.10 1135.32 1.92 185.19 1078.00 -3.23 185.19

Average 1.67 74.60 0.78 44.98 -0.35 45.17

α
=

2

10 231.29 231.29 0.00 0.00 233.20 0.83 0.13 228.00 -1.42 0.13
20 293.59 293.59 0.00 0.00 293.60 0.00 0.85 293.60 0.00 0.85
50 420.80 428.63 1.86 1.20 420.80 0.00 2.30 420.80 0.00 2.32
75 490.43 495.90 1.12 6.20 490.43 0.00 10.93 459.71 -6.26 10.95
100 553.43 572.53 3.45 18.40 553.43 0.00 37.77 553.43 0.00 37.85
175 704.53 722.83 2.60 177.20 704.53 0.00 39.28 704.53 0.00 40.65
250 824.42 854.34 3.63 746.90 824.42 0.00 191.48 824.42 0.00 191.48

Average 1.81 135.70 0.12 40.39 -1.10 40.60

α
=

3

10 210.42 210.42 0.00 0.00 215.88 2.59 0.13 211.49 0.51 0.14
20 266.12 266.12 0.00 0.00 274.20 3.04 1.15 267.03 0.34 1.15
50 389.80 391.96 0.55 1.60 389.80 0.00 2.19 377.28 -3.21 2.18
75 447.64 453.30 1.26 8.00 447.64 0.00 10.95 443.30 -0.97 11.05
100 510.20 530.53 3.98 25.67 510.20 0.00 37.26 510.20 0.00 37.13
175 655.20 665.72 1.61 259.30 655.20 0.00 41.49 655.20 0.00 41.26
250 758.32 785.86 3.63 1080.40 758.32 0.00 189.43 758.32 0.00 189.43

Average 1.58 196.42 0.80 40.37 -0.48 40.34

Tables 7 – 9 are broken down into scenarios stratified by the value of α. The results presented

by these tables were collected by running the available code of the author’s repository3. It reflects

the average of 10 runs for each instance size. As parameters, we adopted the same configuration

employed in HTGVNS to obtain a comparable result. The TSP initial solution was obtained by the

TSP solver Concorde. The four neighborhood structures available were applied: 2-point move (2p)

that swaps two nodes in the truck route, 2-opt move where two edges are removed and replaced

with two new edges and the 1-point-move (1p) move where a node in the truck route is relocated

to a new position. Finally, the last neighborhood combines all the previous moves.

According to the tables, it is possible to notice that although the HTGVNS could not improve

the average solution of α = 3 for double-center distribution this set achieved the best improvement

compared to the others distributions and values of α. Concerning computational time, the different

distribution of customers does not affect runtime; however, when the vehicles present the same

speed runtime increases. Agatz et al. (2018) exact partitioning algorithm outperforms HGVNS

computational time for instances up to 100 customers. The scenario changes when the number of

3https://github.com/pcbouman-eur/Drones-TSP
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customers increases as HTGVNS presents a runtime much smaller than the LS.

Figure 6, 7, and 8 show boxplot graphics within the solution value of 10 runs of HGVNS

and HTGVNS. For each distribution (uniform, single-center, and double-center) exist one boxplot

representing the instance size (10, 20, 50, 75, 100, 175, 250) of a certain α value. The thick line

corresponds to the median, i.e., half of the values are below this line, divided into two quartiles,

and the other half is above this line, dived into two quartiles. The crosses in the graph correspond

to the outliers, values that present a considerable distance from the others. The plots show the

tendency of the medium size instance in all distributions have a smaller gap between the minimal

and maximum values. It is possible to notice that HTGVNS found better gaps than HGVNS;

however, in some instances the gap is still considerable. Therefore, the algorithm still has a lot to

be improved.

Figure 6: Results for Agatz et al. (2018) instances with uniform distribution; left boxplots represent HGVNS results
while right boxplots present HTGVNS results.

(a) α = 1 (b) α = 2

(b) α = 3
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Table 8: Results running HTGVNS in Agatz et al. (2018) with single-center distribution

LS HGVNS HTGVNS
(Agatz et al., 2018) (de Freitas and Penna, 2020)

n BKS Sol. Gap. Time Sol. Gap. Time Sol. Gap. Time

α
=

1

10 364.92 379.29 3.94 0.00 364.92 0.00 0.14 360.85 -1.11 0.14
20 529.15 529.15 0.00 0.00 553.53 4.61 1.12 537.24 1.67 1.14
50 763.28 763.28 0.00 0.30 784.32 2.76 3.93 756.20 -0.93 3.72
75 978.32 1017.04 3.96 2.80 978.32 0.00 15.32 978.32 0.00 15.50
100 1193.95 1203.42 0.79 8.50 1193.95 0.00 55.62 1193.95 0.00 56.64
175 1629.32 1631.31 0.12 73.70 1629.32 0.00 53.34 1629.32 0.00 53.55
250 1813.54 1857.16 2.41 358.40 1813.54 0.00 249.92 1813.54 0.00 229.92

Average 1.60 63.39 1.05 54.20 -0.68 51.51

α
=

2

10 278.22 278.22 0.00 0.00 291.36 4.72 0.14 276.95 -0.46 0.14
20 364.08 384.87 5.71 0.00 364.08 0.00 1.04 363.46 -0.17 1.04
50 554.58 554.58 0.00 1.00 593.54 7.03 2.23 553.53 -0.19 2.24
75 741.38 741.38 0.00 126.00 754.43 1.76 11.18 730.43 -1.48 43.36
100 891.28 891.28 0.00 5.30 900.12 0.99 38.23 908.29 1.91 11.36
175 1183.43 1208.94 2.16 15.70 1183.43 0.00 43.06 1183.12 -0.03 38.23
250 1294.43 1396.24 7.87 136.40 1294.43 0.00 197.12 1290.38 -0.31 143.06

Average 2.25 40.63 2.07 41.86 -0.10 34.20

α
=

3

10 238.20 238.20 0.00 0.00 242.20 1.68 0.13 237.43 -0.32 0.13
20 315.27 315.27 0.00 0.00 319.80 1.44 0.86 310.67 -1.46 0.92
50 474.82 474.82 0.00 1.00 493.43 3.92 2.19 478.32 0.74 2.26
75 638.20 639.67 0.23 7.30 638.20 0.00 11.39 638.48 0.04 11.41
100 777.25 777.25 0.00 20.80 804.43 3.50 37.74 798.54 2.74 38.40
175 998.53 1067.54 6.91 211.60 998.53 0.00 41.20 990.42 -0.81 41.19
250 1224.43 1232.56 0.66 883.80 1224.43 0.00 198.72 1224.13 -0.02 198.72

Average 1.02 160.64 1.41 41.75 0.03 41.86
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Figure 7: Results for Agatz et al. (2018) instances with single-center distribution; left boxplots represent HGVNS
results while right boxplots present HTGVNS results.

(a) α = 1 (b) α = 2

(b) α = 3
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Table 9: Results running HTGVNS in Agatz et al. (2018) with double-center distribution

LS HGVNS HTGVNS
(Agatz et al., 2018) (de Freitas and Penna, 2020)

n BKS Sol. Gap. Time Sol. Gap. Time Sol. Gap. Time

α
=

1

10 634.42 652.30 2.82 0.00 634.42 0.00 0.15 615.80 -2.93 0.09
20 754.81 776.32 2.85 0.00 754.81 0.00 1.39 733.88 -2.77 2.53
50 1149.84 1149.84 0.00 0.40 1203.09 4.63 4.34 1153.29 0.30 4.95
75 1430.96 1430.96 0.00 3.00 1494.57 4.45 19.39 1432.36 0.10 21.40
100 1556.52 1605.50 3.15 9.60 1556.52 0.00 66.39 1516.36 -2.58 65.30
175 2072.36 2155.85 4.03 88.30 2072.36 0.00 57.03 2030.44 -2.02 54.33
250 2523.00 2572.80 1.97 353.60 2523.00 0.00 260.98 2493.64 -1.16 273.44

Average 2.12 64.99 1.30 58.53 -1.58 60.29

α
=

2

10 490.64 490.64 0.00 0.00 510.09 3.96 0.13 487.24 -0.69 0.33
20 603.31 603.31 0.00 0.00 605.04 0.29 0.98 602.73 -0.10 1.42
50 850.31 864.21 1.63 1.00 850.31 0.00 2.24 811.08 -4.61 2.95
75 1075.12 1075.12 0.00 5.30 1123.61 4.51 11.61 1109.53 3.20 15.39
100 1199.09 1202.27 0.27 17.00 1199.09 0.00 38.22 1184.76 -1.20 43.49
175 1611.13 1611.13 0.00 149.70 1659.37 2.99 42.31 1589.44 -1.35 50.39
250 1862.44 1934.80 3.89 585.70 1862.44 0.00 193.17 1852.54 -0.53 249.39

Average 0.83 108.39 1.68 41.24 -0.75 51.91

α
=

3

10 435.38 435.38 0.00 0.00 439.60 0.97 0.13 435.53 0.03 0.93
20 567.49 567.49 0.00 0.00 586.74 3.39 0.99 573.94 1.14 1.44
50 746.93 760.25 1.78 1.20 746.93 0.00 2.14 715.23 -4.24 2.90
75 929.58 929.58 0.00 7.40 945.34 1.70 11.22 931.13 0.17 14.30
100 1058.80 1058.80 0.00 23.10 1202.64 13.59 37.86 1051.00 -0.74 40.43
175 1432.96 1432.96 0.00 212.90 1469.92 2.58 41.58 1439.44 0.45 48.33
250 1635.12 1706.79 4.38 862.00 1635.12 0.00 196.27 1710.56 4.61 285.03

Average 0.88 158.09 3.17 41.46 0.20 56.19
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Figure 8: Results for Agatz et al. (2018) instances with double-center distribution; left boxplots represent HGVNS
results while right boxplots present HTGVNS results.

(a) α = 1 (b) α = 2

(b) α = 3

6.2.3. Results for Freitas and Penna (2020) benchmark set

The latest FSTSP benchmark set used to test the HTGVNS performance is the one proposed by

de Freitas and Penna (2020). The authors introduced 25 FSTSP instances based on the TSPLIB

Symmetric Traveling Salesman Problem instances (Skorobohatyj, 1995). These instances follow the

FSTSP definition of Chase and Chu (2015). A different metric is considered to the vehicles travel

distance. This is a reasonable consideration since drones are not affected by congestion, and they

can fly in a straight line without considering the street network. On the other hand, trucks must

respect traffic sign regulation and follow street network. The Euclidean metric is used to describe

the drone travel distance, and the Manhattan metric is adopted to simulate the city block, thus,

determining the truck distance.

The eligible drone customers are randomly generated such that for every instance there are

between 80% and 90% serviceable customers. Service times sL and sR are unitary. Moreover, both

vehicles speed is 40 km/h, and the drone endurance is 40 minutes.

Table 10 provides the results obtained by HTGVNS. Note that column TSP Time indicates
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Table 10: HTGVNS results for de Freitas and Penna (2020) instances

HGVNS HTGVNS

Instance n Sol. Sol. Time Sol. Gap Sol. Gap TSP Time Time

berlin52 52 210.03 220.23 6.51 204.40 -2.68 209.31 -0.33 0.01 4.20
bier127 127 3456.80 3587.88 53.74 3359.51 -2.81 3401.24 -1.55 0.05 66.32
ch130 130 178.16 180.40 44.22 168.50 -5.42 190.38 6.78 0.09 59.03
d198 198 461.83 461.83 67.84 452.55 -2.01 469.83 1.73 0.15 51.33
eil51 51 13.45 13.68 11.59 11.74 -12.74 11.93 -11.11 0.02 7.31
eil76 76 16.35 16.68 27.16 15.29 -6.47 16.11 -1.44 0.02 30.93
kroA100 100 587.80 609.71 30.99 575.26 -2.13 591.32 0.58 0.04 38.94
kroA150 150 764.42 780.93 41.02 739.49 -3.26 758.44 -0.77 0.07 38.33
kroA200 200 870.65 873.99 46.84 827.60 -4.94 869.43 -0.14 0.31 44.39
kroB150 150 763.15 773.72 50.48 713.63 -6.49 744.35 -2.43 0.28 43.39
kroB200 200 835.43 838.40 32.88 815.97 -2.33 831.43 -0.48 0.94 63.40
kroC100 100 658.38 660.93 36.66 619.94 -5.84 639.42 -2.87 0.03 48.12
kroD100 100 606.45 652.34 40.21 570.98 -5.85 593.43 -2.00 0.06 54.80
kroE100 100 651.31 659.48 48.74 620.68 -4.70 639.32 -1.82 0.17 60.13
lin105 105 378.25 380.43 40.33 377.46 -0.21 382.55 1.13 0.06 61.32
pr107 107 1204.42 1224.35 32.56 1128.71 -6.29 1198.64 -0.47 0.02 52.40
pr124 124 1653.80 1996.62 25.67 1632.82 -1.27 1785.73 6.61 0.22 49.30
pr136 136 2642.00 2789.00 45.13 2595.17 -1.77 2639.32 -0.10 0.63 52.39
pr144 144 1666.25 1675.75 43.42 1666.25 0.00 1707.47 2.46 0.09 48.20
pr152 152 2114.04 2128.53 61.51 2082.03 -1.51 2187.58 3.45 0.22 70.33
rat99 99 37.15 37.33 35.41 33.93 -8.67 37.65 1.34 0.04 39.87
rat195 195 71.40 71.93 46.78 67.17 -5.92 69.42 -2.75 1.89 70.77
rd100 100 240.46 243.84 34.69 224.11 -6.80 236.42 -1.66 0.82 43.59
st70 70 20.50 21.00 3.86 17.14 -16.40 22.95 11.67 0.01 10.83

Average 37.58 -4.86 0.26 46.23

the runtime required to obtain the optimal TSP solution by Concorde. These results consider ten

HTGVNS executions for each instance available online4. Service time causes a large impact in

instances with short travel times because the truck may need to wait a long time for the drone.

Moreover, instances with customers disposed along a road are less impacted by the drone presence,

since customers would be on the truck’s way and it would be natural for the truck to visit them.

This behavior occurs in instance pr144 which prevents a significant improvement.

7. Conclusions

The Flying Sidekick Traveling Salesman Problem (FSTSP) concerns a Hamiltonian Cycle Prob-

lem (Karp, 1972) generalization which poses interesting characteristics of a new modality of parcel

distribution. The FSTSP seeks to coordinate a traditional delivery truck with a drone that may

be launched from the truck. The problem considers different vehicle speeds and drone endurance

to minimize the required time to serve all customers.

4The instances and their solutions are available at http://goal.ufop.br/fstsp/
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A Mixed Integer Programming formulation was proposed, solving multiple previously unsolved

instances with up to 10 customers. In addition to providing new optimal solutions, it also pro-

vided stronger bounds than those obtained from formulations previously proposed for the FSTSP

(Chase and Chu, 2015; Ponza, 2016). However, due to the NP-hard characteristic of the problem,

only small-scale instances could be solved. Therefore, a metaheuristic for finding good solutions for

large-sized instances of the FSTSP was introduced, called Hybrid Tabu General Variable Neigh-

borhood Search (HTGVNS). The HTGVNS algorithm initially constructs a solution by using a

TSP solver to build the truck tour. This solution is then improved by the meta-heuristic General

Variable Neighborhood Search (GVNS) mixed with a Tabu Search list to avoid cycling.

The solution approaches were validated through numerical analysis that indicates the poten-

tial of the truck-drone delivery system to improve the operation. The HTGVNS was evaluated

considering three benchmark sets. For the FSTSP sets, the algorithm improved all best-known

solutions. On average, these solutions were improved by 3.25%. For the TSP-D instances, the

heuristic improved or achieved the same result for 1109 instances.

Furthermore, the TSP-D, an FSTSP variant proposed by Agatz et al. (2018), was also studied.

The numerical analysis indicated that this delivery system might be more efficient by employing

drones traveling faster than trucks. For this benchmark set, the best solution found consider

instances in which the drone travels twice as fast as the truck, and the smallest improvements were

observed for instances where both vehicles present the same speed.
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