
1

Estimation of road traffic state at a multi-lanes
controlled junction
Cyril Nguyen Van Phu∗ and Nadir Farhi

COSYS-GRETTIA, Univ Gustave Eiffel, IFSTTAR, F-77454 Marne-la-Vallée, France
∗ corresponding author

Abstract—We present in this paper a method for the estimation
of traffic state at road junctions controlled with traffic lights.
We assume mixed traffic where a proportion of vehicles are
equipped with communication resources. The estimation of road
traffic state uses information given by communicating vehicles.
The method we propose is built upon a previously published
method which was applied to estimate the traffic in the case
where roads are composed of two lanes. In this paper, we consider
the case where roads are composed of three lanes and we show
that this solution can address the general case, where roads are
composed of any number of lanes. We assume the geometry of
the road junction is known, as well as its connections between
incoming and outgoing lanes and roads. Using the location data
provided by the communicating vehicles, first, we estimate some
primary parameters including the penetration ratio of the probe
vehicles, as well as the arrival rates of vehicles (equipped and
non-equipped) per lane by introducing the assignment onto the
lanes. Second, we give estimations of the queue length of the 3-
lanes road, without and with the additional information provided
by the location of the communicating vehicles in the queue.
We illustrate and discuss the proposed model with numerical
simulations.

Index Terms—Intelligent transportation systems, Road trans-
portation, Queuing systems.

I. INTRODUCTION AND STATE OF THE ART

A. Introduction

Limited capacities of roads and junctions, combined with
traffic demand, determine the road traffic conditions exper-
imented by the users in daily life. Road traffic can then
be modeled by shared resources systems such as queuing
systems, as it has been done for example in [1], where the
max pressure algorithm adapted to road traffic is presented. In
order to improve road traffic conditions experimented by the
users, there is the possibility to control road traffic by guiding
the users in the network, or by controlling the traffic lights
to reduce the delays. However, controlling the road traffic
needs an information on the state of the traffic. In particular,
concerning the road traffic state we are interested in the queue
lengths at the junctions.

Nowadays, road traffic can be probed from the inside
with communicating vehicles equipped with localization ca-
pabilities. A probe vehicle is a vehicle which uses wireless
communication to send information to another vehicle (vehicle
to vehicle V2V), the infrastructure (vehicle to infrastructure
V2I) or to any other device (V2X). The data provided by
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these mobile sensors are quite different in their nature from the
data provided by fixed sensors. With probe vehicles, we get
data concerning individual sample vehicles trajectories, rather
than global information on traffic state at a fixed location.
This difference in the nature of the information furnished,
raises the opportunity to develop new methods for queue
length estimation. For example, in [2] a stochastic method
has been proposed to evaluate road traffic parameters like the
queue lengths with probe vehicles. In [3], we have presented
a method to estimate road traffic state at controlled junctions
for the two-lanes roads which extended the method in [2].

In the present paper, we aim at generalizing the method
published in [3] to roads composed of any number of lanes.
This includes estimating road traffic primary parameters such
as the penetration ratio of equipped vehicles, the arrival rate
of vehicles and the queue lengths per lane at the junction. We
manage to do these estimations by introducing the assignment
of vehicles onto the lanes.

The outline of the paper is as follows : after the intro-
duction I-A, we give a brief state of the art concerning the
estimation of road traffic in subsection I-B. In section II we
introduce the problem and the notations used in the paper
as well as the main estimation model. In subsection II-A we
introduce the assignment onto the lanes in order to balance
the queues as much as possible and derive primary parameters
such as the penetration ratio of equipped vehicles, the arrival
rate of vehicles per lane, the total arrival rate of vehicles, the
probability distribution of the queue lengths per lane. In sub-
section II-B, we give three different probability distributions
for the queue lengths on a three lanes road. By computing the
expectations for these probability distributions we estimate the
queue lengths at the traffic light. The method presented in the
present paper is general for any number of lanes. We show in
section II-C that the estimation of the queue lengths of three
lanes roads is sufficient to address the general n-lanes roads
case. In section III, we perform some numerical simulations
that we have conducted with Omnet++ [4], a discrete event
simulator, and analyze the results. We conclude in section IV.

B. State of the art

1) Road traffic estimation with fixed sensors (historical
approaches): Historically, the estimation of road traffic state
was done using sensors placed at fixed locations, such as
magnetic loops, piezoelectric sensors or video cameras [5].
Among these approaches with fixed sensors, some estimations
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of the queue length and of the delay of vehicles at a traffic
light have been given in [6] [7] [8] [9] [10]. These papers
give analytic formulations for the under-saturated and over-
saturated (i.e. when the arrival flow exceeds the intersection
capacity) cases. Among the input-output class of methods, we
also cite [11] where a probabilistic model for the estimation
of queue lengths at signalized junctions, which can capture
spillback and gridlock phenomena, is presented. In 2009, the
authors of [12] take advantage of shockwave traffic theory,
combined with fixed detector and signal timings data input, in
order to estimate queue lengths.

2) Road traffic estimation with probe vehicles: In this
paragraph, we give an overview of the methods that have been
developed upon the information given by these new mobile
sensors, namely, probe vehicles. In [13], the authors provide
a timely survey on traffic information collection and state
estimation methods published in the last decade, which use the
data provided by connected and automated vehicles (CAVs).
They classify the different traffic observation methods which
use CAVs data by distinguishing between deterministic and
stochastic approaches. We use here the same outline.

Among the deterministic approaches, we cite [14] where
the authors expose a method to estimate queue lengths with
probe vehicles as the single source of information. Position
and instantaneous speed of probe vehicles are the input data
of their method. The latter relaxes some common assumptions
made in the literature, such as the knowledge of signal timings
or arrival process distribution. The shockwave theory based on
first order traffic models is the key model used in their queue
length estimation method. In [15], Ban and al. use intersection
travel times in order to estimate queue lengths and delays at
junctions. These intersection travel times are measured when
probe vehicles cross virtual trip lines (VTL), located upstream
and downstream relatively to the intersection. The benefits of
using intersection travel times are : respect the privacy of the
users, the flexibility in defining the virtual trip lines (as they are
virtual locations), and the pliancy which enables other sensor
inputs such as Bluetooth Mac address matching, and other
travel times collection systems.

Among the stochastic approaches, the authors of [16] define
a vehicle index as “the position of vehicles in the departure
process of the cycle”. That paper has proposed a method for
estimating these vehicle indices which are described as a basic
and primordial information that can be provided by probe
vehicles. For example, knowing the index of a vehicle gives its
position in the queue. With the intent of solving some privacy
issues, their method relies only on intersection travel times as
input data. They derive the intersection travel times from the
arrival time and departure time of probe vehicles into virtual
areas (Virtual Trip Lines, VTL) respectively upstream and
downstream the intersection. They model the arrival process
as a time-dependent Poisson process; and use a log-normal
distribution to model the departure headways for every vehicle
index. In this framework, the authors use a Bayesian Network
in order to estimate vehicle indices.

Vehicle indices are some basic information that can be used
as input data for estimating queue length at junctions. Indeed
in 2014, Hao and al. [17] have naturally pursued their work

on vehicle indices with the estimation of queue lengths at
intersections. Using as input data the intersection travel times
and the vehicle indices, as determined in their former 2013
paper, they estimate queue lengths using a stochastic model
based on Bayes theorem.

In 2009, Comert and Cetin [18] have proposed a method
for the estimation of queue length using the data provided by
probe vehicles. They have assumed that probe vehicles indices
are available as input data. Assuming that the probability
distribution of the queue length is given, they compute a con-
ditional probability distribution of the queue length, knowing
the locations of the probe vehicles in the queue. They show
that for the 1-lane case, the location of the last probe vehicle in
the queue is the only one needed. The authors of [18] have also
derived the variance of the estimator. Furthermore, numerical
analysis are performed, where the arrival processes models and
arrival processes intensities are varied. This work “appears to
be the first attempt to formulate the problem of estimating the
queue length from probe vehicle data.”

In 2013, Comert [19] derives queue length, last probe
location and queue joining times probability distributions, with
or without overflow queue (residual queue at the end of the
red time). Mean and variance for the queue length estimators
are given. It has been shown that the estimators depend on
probe proportion, red duration and arrival process properties.

In 2016, Comert [2] goes a step further by studying the cases
with unknown probe proportions and unknown arrival rates.
He gives analytical formulations for these primary parameters
(proportions of probe vehicles and arrival rate), as well as
various queue length estimators with or without overflow
queue. Derivation of the estimation errors are also given,
and numerical analysis performed with VISSIM microscopic
simulator have been presented.

In 2017, Zheng and Liu [20] estimated traffic volumes for
low penetration ratio of equipped vehicles. The method pro-
posed uses as input data “vehicle trajectories approaching to
an intersection as well as traffic signal status”. The trajectories
of equipped vehicles are used to detect if a probe vehicle
has stopped at the traffic light and its stopping position. With
these information, the arrival rate is estimated and bounds for
this arrival rate are given. Zheng and Liu have used for their
estimation a time dependent Poisson arrival process and the
Expectation Maximization (EM) algorithm. They have tested
their method with data sets from an experiment where around
2800 probe vehicles were deployed in the city of Ann Arbor,
and from data provided by commercial navigation service in
China. Finally, machine learning methods have also been used
in order to predict traffic flow; for example, Lv and al. [21]
used a data driven machine learning method : the stacked
autoencoders model is combined with the data provided by
15000 individual detectors deployed across California in order
to predict traffic conditions.

In the present paper, we generalize the method presented
in [3] which estimates road traffic state at controlled junctions
for the two-lanes roads, to the case where roads are composed
of any number of lanes. These methods are based on an
existing work published in [2].



3

II. ROAD TRAFFIC STATE ESTIMATION

The notations we use in the present paper are described
in TABLE I; see also Fig. 1. We consider a road junction
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Fig. 1: Vehicles queue at a controlled junction, in a three-lanes
incoming road.

composed of a number of incoming roads, one of them having
three lanes, and d outgoing roads of any number of lanes,
controlled by a traffic light. The vehicles come from an origin
lane i ∈ O = {i; i = ia, ib, ic} (where ia, ib, ic denote
the three origin lanes) of the 3-lanes incoming road; and go
to a destination road j ∈ D := {j; j = 1..d}. We label
the incoming vehicles by index k ∈ N∗ without taking into
account their arrival order. Then, we introduce the two families
Ok and Dk, k ∈ N∗ of random variables. Ok takes its values
in O, such that Ok = i if vehicle k comes from origin lane
i. Dk takes its values in D, such that Dk = j if vehicle k
goes to destination road j. We assume that the probability
that a vehicle k comes from incoming lane i ∈ O and goes
to outgoing road j, is the same for all the vehicles k ∈ N∗.
Hence, we introduce the family of boolean random variables
Wij , i ∈ O, j ∈ D such that Wij = 1 if a vehicle k comes
from the origin lane Ok = i and goes to destination road
Dk = j; and 0 otherwise. We will denote wij := P (Wij = 1),
and W := (wij)i∈O;j∈D the matrix with three lines and d
columns which represents the vehicles assignment from the
incoming lanes to the outgoing roads, and the assignment
weight given to each couple (incoming lane, destination road).

A. Primary parameters

In this section, we determine the penetration ratio p of
equipped vehicles, the total arrival rate λ of vehicles, the
matrix W , and the arrival rates λi per incoming lane.

1) Estimation model for the penetration ratio p: We will
now estimate the penetration ratio p of probe vehicles. In [3],
we have introduced the ratio κ = minµi/maxµi and demon-
strated that for the two lanes case and under the conditions of
taking respectively the maximum and minimum queue lengths
measurements as : lp+1/p−1, κ(lp+1/p−1), our estimator
p̂ =

Xp/(1+κ)−1
m−1 is unbiased. However, these two queue

lengths estimations are not given usually as measurements
and we can not take κ as an average value because it will
introduce some bias. This is why we propose another estimator
for the penetration ratio p of probe vehicles which can be
applied more easily in real life situations. The number of
probe vehicles in an incoming road n is denoted by Xp(n).
Hence, the total number of probe vehicles in the queues of all

Name Definition
R the total red time in one cycle
ra(t), rb(t), rc(t) the time since the beginning of the red

phase for respectively lane ia, ib, or ic
(it is 0 if we are not in red phase at
time t), 0 ≤ ra(t), rb(t), rc(t) ≤ R.

λa, λb, λc the average arrival rate in vehi-
cles/second respectively on lane ia, ib
and ic.

λ = λa + λb + λc the total arrival rate for the incoming
link in vehicles/second.

X(t) the number of vehicles queuing on all
the lanes, of the considered link at
time t.

Xp(t) the number of communicating vehicles
queuing on all the lanes of the consid-
ered link at time t.

Y (t) the number of vehicles (queuing and
not queuing) of the considered link at
time t.

Yp(t) the number of communicating vehicles
(queuing and not queuing) on all the
lanes of the considered link at time t.

p, 0 ≤ p ≤ 1 the penetration ratio of probe vehicles.
A, B, C the number of vehicles in the queue at

time t and respectively lane ia, ib, or
ic. In this paper, A, B, C are assumed
to be random variables.

(Ap, âp), (Bp, b̂p), (Cp, ĉp) the number of probe vehicles in the
queue, and its estimate, at time t and
respectively at lane ia, ib, or ic. In this
paper, Ap, Bp, Cp are assumed to be
random variables.

M the location (in number of vehicles) of
the last probe in the queue, namely the
last connected vehicle, at time t. M is
assumed to be a random variable, taking
value m.

L the incoming lane ia, ib, or ic, of the
last connected vehicle, at time t. L is
assumed to be a random variable.

Ok Ok = i if a vehicle k is located on
an incoming lane i = ia, ib, ic. Ok is
considered a random variable.

Dk Dk = j if a vehicle k is located on
an outgoing road j = 1, 2, .., d. Dk is
considered a random variable.

Wij Wij is a random variable. Wij = 1 if
a vehicle k comes from the origin lane
i and goes to a destination road j, such
that Ok = i and Dk = j; Wij = 0
otherwise. We have the following nota-
tion : P (Wij = 1) = wij .

W = (wij)i=ia,ib,ic;j=1..d W is the matrix with three lines and d
columns which represents the vehicles
assignment from the incoming lanes to
the outgoing roads.

qsat the saturation rate (exit rate) of roads
outgoing from the junction

tk,je the exit time of the junction of a probe
vehicle k on an outgoing road j

π(k, µi) = µki e
−µi/k! the Poisson probability mass function

of parameter µi

TABLE I: Notations
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incoming roads is
∑
nXp(n) where the index n of the sum

represents an incoming road. We denote tk,je the exit time of a
probe vehicle k on an outgoing road j during the green time.
Considering one outgoing road j, we can say that the last probe
vehicle going out to this road is located at qsat×maxk{tk,je }
position (in number of vehicles) where qsat is the saturation
rate (exit rate) of vehicles per unit of time. If we consider the
vehicles waiting in the queue, we can virtually rearrange their
order such that they are placed in the order they are going out
of the junction. We notice that changing the order of vehicles
does not change their total number. We write the following
formula for the estimation of p where the index of the sum
n represents an incoming road and the index of the sum j
represents an outgoing road.

p̂ =

∑
nXp(n)

qsat
∑
j maxk{tk,je }

(1)

We notice that the numerator of equation (1) is computed
during the red time and the denominator during the green time.

2) Estimation model for the total arrival rate λ: We also
propose to estimate λ as follows :

λ̂ =
Yp(R)− Yp(0)

pR
(2)

Yp represents the number of probe vehicles on the considered
incoming road and R is the total red time.

3) Estimation model for the matrix W: The matrix W is
used to calibrate the assignment model, by equilibrating the
queue lengths among the three lanes ia, ib, ic. The first step
is to determine the matrix W . The probability that a vehicle
k is coming from lane i is equal to wi =

∑
j wij . We have

0 ≤ wi ≤ 1 and
∑
i wi = 1. The objective is to find the

optimal assignment matrix W which equilibrates the ratios of
inflows over the three lanes of the incoming road. The ideal
case is :

∀i,
∑
j

wij = 1/3 (3)

Therefore, in order to equilibrate the inflows over the
three incoming lanes we propose to minimize the differ-
ence (

∑
j wij − 1/3) for all i = 1, 2, 3. We denote

W̄ := (w11, ..., w1d, w21, ..., w2d, w31, ..., w3d) and v =
(1/3, 1/3, 1/3). We denote λ̄j the proportion of the arrival
rate λ of vehicles going to the outgoing road j. The w̃ij = 0
represent the information given by the topology of the road
junction, specifically the incoming lanes and outgoing roads
which are not connected. We have the following constraints :∑

ij

wij = 1 (4)∑
i

wij = ρj := λ̄j/λ, ∀j (5)

w̃ij = 0 (6)
0 ≤ wij ≤ 1 (7)

We note that, since the turn ratios ρj are fixed such that∑
j ρj = 1, then the constraint (4) is automatically satisfied.

The constraints (5) and (6) are linear. We can write them as
follows :

ĀW̄ = b̄ (8)

where

Ā =

(
Id Id Id

B

)
,

and b̄ = (ρ1, ..., ρd, 0, ..., 0), with Id the d×d identity matrix,
and B the matrix satisfying BW̄ = w̃.

For the criterion, we define the 3×(3d) matrix L such that :

(w1, w2, w3) =

∑
j

w1j ,
∑
j

w2j ,
∑
j

w3j

 = LW̄ . (9)

We write the following objective function :

min
W̄

(LW̄ − v)′(LW̄ − v) (10)

This can be written as :

min
W̄

W̄ ′QW̄ − 2(v′L)W̄ (11)

where Q = L′L. Finally, the minimization problem can be
written as :

min
W̄

W̄ ′QW̄ − 2(v′L)W̄

ĀW̄ = b̄ (12)
0 ≤ wij ≤ 1

The problem (12) is convex since the criterion is quadratic
and the constraints are linear. Therefore, first order conditions
of optimization are necessary and sufficient to solve this
problem. Practically, we use an off-the-shelf optimization
library provided with Octave software [22] in order to solve
this problem and derive W̄ (and then the matrix W ), given
the turn ratios as input.

4) Estimation of the arrival rates per lane λi: The arrival
rates λi per incoming lane i in one cycle are given as follows :

λi = λ
∑
j

wij = λwi (13)

(λi)i=ia,ib,ic represents the arrival rate of vehicles in the
queue, respectively on lane i = ia, ib, ic. This will enable us
to determine the probability distribution of queue lengths per
lane in Proposition 1.

B. Traffic state estimation for roads composed of three lanes

In this section, we propose three probability distributions
for the queue lengths. We will use the expectation of these
probability distributions as estimators. Proposition 1 gives the
probability distribution without the information given by the
probe vehicles but using the matrix W, especially the arrival
rates per lane λi. Proposition 2 will refine Proposition 1 by
adding the information given by the probe vehicles. It is an
extension of a previously published result [3]. In Proposition 3,
we use the estimation of probe vehicles per lane to give another
estimator.
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We denote µi the stock of vehicles waiting in the queue of
lane i at time t :

µi = λiri(t)

We denote π(k, µi) the Poisson probability mass function of
parameter µi.

π(k, µi) =
µki e
−µi

k!
,∀i

Under the assumption of an arrival process of vehicles repre-
sented by a Poisson process of rate λ = λa + λb + λc, we
have the following proposition :

Proposition 1.
P (A = a,B = b, C = c) = π(a, µa)π(b, µb)π(c, µc)

Proof. The Poisson process of rate λ is subdivided into
three independent Poisson processes of rate λa, λb, λc with
probability respectively λa/λ, λb/λ, λc/λ. By subdividing the
main Poisson process of parameter λ with these probabilities,
we get three Poisson processes of parameter λ(λi/λ) = λi
for each lane i. Furthermore, the three Poisson processes are
independent. Concerning the subdividing of a Poisson process,
we cite reference [23]. Because of the stationary increment
property of a Poisson process, the expected number of vehicles
queuing on lane i at time ri(t) is λiri(t) = µi.

Knowing the location of the last probe vehicle into the
queue and the total number of probe vehicles in the queue,
we can refine the estimation of the queue lengths :

Proposition 2.
If m ≤ max(a, b, c) and xp ≤ a+ b+ c, then :

P (A = a,B = b, C = c|M = m,Xp = xp) =

σa,b,c(1− p)a+b+cP (A = a,B = b, C = c)∑
j,k,l≥0
subject to

m≤max(j,k,l)
xp≤j+k+l

σj,k,l(1− p)j+k+lP (A = j, B = k,C = l)
.

Otherwise,
P (A = a,B = b, C = c|M = m,Xp = xp) = 0.
where we define :

σj,k,l :=

(
m− 1 + min(m, j, k, l) + mid(j, k, l)

xp − 1

)
and mid(j, k, l) := (j + k + l)−min(j, k, l)−max(j, k, l)

Proof. The proof given in [3] for the Proposition 2 can be
directly applied to our present case, with minor changes.

We now propose to compute the estimation of the queues
by adding the information of matrix W which summarizes the
knowledge of the destinations of the probe vehicles at the road
junction. Hence, we propose to compute for lane ia

pA(a) = P (A = a|M = m,Ap = âp)

given the estimated number Ap = âp of probe vehicles on
lane ia and the location of the last probe in the queues. First,

we will give estimations of the number of probe vehicles per
lane Ap = âp in order to compute pA(a). We have :

Ap =
∑
k

1ak ,

where

1ak :=

{
1 if vehicle k comes from lane ia
0 otherwise

Then,

E(Ap) =
∑
k

E(1ak)

=
∑
k

P (Ok = ia)

=
∑
k,j

P (Ok = ia|Dk = j)P (Dk = j)

where Dk is observed. Then, P (Dk = jk) = 1 for the vehicle
k after it has crossed the junction and has gone through an
outgoing road jk and P (Dk = j) = 0 otherwise, for j 6= jk.

We have :

E(Ap) =
∑
k

P (Ok = ia|Dk = jk) (14)

E(Bp) =
∑
k

P (Ok = ib|Dk = jk)

E(Cp) =
∑
k

P (Ok = ic|Dk = jk)

We propose to estimate the number of probe vehicles on lanes
ia, ib, ic by respectively : âp = [E(Ap)], b̂p = [E(Bp)], ĉp =
[E(Cp)], where [x] denotes rounding x to the nearest integer.

Now we propose to compute pA(a) the queue length prob-
ability distribution on lane ia with the information provided
by the estimation of probe vehicles on lane ia (âp) and the
location of the last probe vehicle on all the lanes (m). The
following proposition is also true for the other lanes by just
inverting the lane ia with ib or ic.

Proposition 3.
if ap ≥ 1,m ≥ 1, a ≥ ap, then pA(a) =(

λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
a
âp

)
+ λcS

m,âp
µc

(
a
âp

))
(1− p)aπ(a, µa)∑

n≥ap

(
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
n
âp

)
+ λcS

m,âp
µc

(
n
âp

))
(1− p)nπ(n, µa)

if ap = 0, then pA(a) =
(1− p)aπ(a, µa)∑
n≥0(1− p)nπ(n, µa)

if a < ap or m < ap, then pA(a) = 0

where we define :

Sm,νµ :=
∑

j≤k,k≥max(m,ν)

(
m− 1

j − 1

)
pj(1− p)k−jπ(k, µ)

Proof. By Bayes’ theorem, we have :

pA(a) =
P (A = a,M = m,Ap = âp)

P (M = m,Ap = âp)
(15)

The numerator can be written :
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P (A = a,M = m,Ap = âp) =

P (M = m|Ap = âp, A = a)P (A = a,Ap = âp) (16)

Bayes theorem implies that :

P (A = a,Ap = âp) = P (Ap = âp|A = a)P (A = a) (17)

So, we can write the second term of equation (16) as :

P (A = a,Ap = âp) =

(
a

âp

)
pâp(1− p)a−âpP (A = a) (18)

Concerning the first term of the product in equation (16), we
use the marginal distribution on the random variable L, and
we can write :

P (M = m|Ap = âp, A = a) =

P (M = m,L = ia|Ap = âp, A = a)+

P (M = m,L = ib|Ap = âp, A = a)+

P (M = m,L = ic|Ap = âp, A = a) (19)

Let us detail the first term of equation (19), in the case where
i = ia. Concerning P (M = m,L = ia|Ap = âp, A = a),
we recall the arguments given in [18] which are : “The
sample space for the experiment is the possible combinations
of choosing âp probe vehicles from a vehicles, which is equal
to
(
a
âp

)
. The number of elements in the event space is equal

to the number of possible placements of the remaining probe
vehicles, other than the one at position m, into the previous
slots since m is fixed.”, which is

(
m−1
âp−1

)
. As the last probe

should be on lane ia with probability λa/λ, we write :

P (M = m,L = ia|Ap = âp, A = a) =
λa
λ

(
m−1
âp−1

)(
a
âp

) (20)

In addition, we have :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a)

P (B ≥ max(m, âp)|M = m,L = ib, Ap = âp, A = a)
(21)

Since P (B ≥ max(m, âp)|M = m,L = ib, Ap = âp, A =
a) = 1, we write :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a) (22)

We also have :

P (M = m,B ≥ max(m, âp), L = ib) =

P (M = m,B ≥ max(m, âp), L = ib|Ap = âp, A = a)

P (Ap = âp, A = a|M = m,B ≥ max(m, âp), L = ib)

× P (Ap = âp, A = a) (23)

and because P (Ap = âp, A = a|M = m,B ≥
max(m, âp), L = ib) = P (Ap = âp, A = a) we can write :

P (M = m,L = ib|Ap = âp, A = a) =

P (M = m,B ≥ max(m, âp), L = ib) (24)

By computing the marginal distribution probability on Bp, we
have :

P (M = m,B ≥ max(m, âp), L = ib) =∑
bp,b≥max(m,âp)

P (M = m,L = ib|Bp = b̂p, B = b)×

P (Bp = b̂p, B = b) (25)

P (M = m,B ≥ max(m, âp), L = ib) =∑
bp≤b,b≥max(m,âp)

λb
λ

(m−1
b̂p−1

)(
b
b̂p

) ( b
b̂p

)
pb̂p(1− p)b−b̂pP (B = b)

(26)

P (M = m,B ≥ max(m, âp), L = ib) =∑
bp≤b,b≥max(m,âp)

λb
λ

(
m− 1

b̂p − 1

)
pb̂p(1− p)b−b̂pP (B = b)

(27)

We define the variable Sm,νµ :

Sm,νµ :=
∑

j≤k,k≥max(m,ν)

(
m− 1

j − 1

)
pj(1− p)k−jπ(k, µ)

Then, we can write :

P (M = m,B ≥ max(m, âp), L = ib) =
λb
λ
Sm,âpµb

(28)

Similarly,

P (M = m,C ≥ max(m, âp), L = ic) =
λc
λ
Sm,âpµc (29)

Finally,

P (M = m|Ap = âp, A = a) =

λa
λ

(
m−1
âp−1

)(
a
âp

) +
λbS

m,âp
µb

λ
+
λcS

m,âp
µc

λ
(30)

Hence, the numerator can be written as :

P (A = a,M = m,Ap = âp) =(
λa
λ

(
m−1
âp−1

)(
a
âp

) +
λbS

m,âp
µb

λ
+
λcS

m,âp
µc

λ

)
×(

a

âp

)
pâp(1− p)a−âpP (A = a) (31)

Using the marginal distribution, we can write that :

pA(a) =(
λa
λ

(m−1
âp−1)
( aâp)

+
λbS

m,âp
µb

λ +
λcS

m,âp
µc

λ

)(
a
âp

)
pâp(1− p)a−âpP (A = a)

∑
n≥ap

(
λa
λ

(m−1
âp−1)
( nâp)

+
λbS

m,âp
µb

λ +
λcS

m,âp
µc

λ

)(
n
âp

)
pâp(1− p)n−âpP (A = n)
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And this last equation allows us to conclude the proof.

pA(a) =(
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
a
âp

)
+ λcS

m,âp
µc

(
a
âp

))
(1− p)aπ(a, µa)∑

n≥ap

(
λa
(
m−1
âp−1

)
+ λbS

m,âp
µb

(
n
âp

)
+ λcS

m,âp
µc

(
n
âp

))
(1− p)nπ(n, µa)

C. Application to roads composed of any number of lanes

The method we have proposed for the three propositions can
be generalized easily to roads composed of an any number of
lanes. However, we give in this section insights into the n-lanes
roads case and we demonstrate that the 3-lanes roads case is
enough to address the general case. Indeed, with the accuracy
of the GPS localization system nowadays, we can assign a
vehicle with 95% probability within a radius of 7.8m, as it is
written in [24] : “the government commits to broadcasting the
GPS signal in space with a global average user range error
(URE) of ≤ 7.8m (25.6 ft.), with 95% probability.”.

As the standard lane width in the United States is 3.7m,
we can assign any vehicle located on a lane to a virtual
three lanes road. All the virtual roads composed of successive
three lanes are enumerated given the topology of the road
junction. The virtual roads can overlap such that a lane can
be in many virtual roads. The estimation of a queue length
for a lane which is present only in a single virtual 3-lanes
road is straightforward with the method we have exposed. For
the other lanes, which are represented in many virtual roads,
we will take the average of the estimation done in each of
the virtual roads. By taking the average of the queue length
estimations for a given lane, on the set of all the virtual roads,
we counterbalance the inaccuracy due to the estimation of
Ap = âp, Bp = b̂p, Cp = ĉp. Indeed, we recall that we have
chosen to take these variables as a function of the expected
values : âp = [E(Ap)], b̂p = [E(Bp)], ĉp = [E(Cp)].

III. NUMERICAL EXPERIMENTS

A. Estimation of the primary parameters

In this section we discuss the model with simulation
results. We have implemented the simulation model with
Omnet++ [4]. In the Omnet++ implementation, we represent
vehicles with packets which arrive as a Poisson arrival pro-
cess of rate λ. The packets (vehicles) are assigned to the
queue in accordance with matrix W and their destination,
and are extracted from each queue by a traffic light at a
given saturation rate during the green time. In [3], we have
developed an implementation within Veins framework [25]
which combines a road traffic simulator (SUMO [26]) and
a communication simulator (Omnet++). We used to com-
bine SUMO microscopic road traffic simulator to represent
the dynamics of the vehicles and Omnet++ to simulate the
communication between the vehicles and the infrastructure
which is a Road Side Unit (RSU) in our case. The difference
between the two implementations is the assignment model,
which is not the same in SUMO and in our model. In the
Omnet++ implementation, the assignment simulation model

corresponds accurately with our theoretical assignment model.
But in the SUMO implementation, the simulation assignment
model is the SUMO lane changing model [27]. This is why in
the present paper we use a simulation model using Omnet++
exclusively.

We have used a symmetric and an asymmetric scenarios for
the simulation. For both scenarios, there are three outgoing
roads. In both cases, the topology of the road junction is as
follows : if a vehicle turns left, it must be on the left lane; if it
turns right, it must be on the right lane; if it goes straight, it can
be on any of the three lanes. So we have w̃21 = w̃31 = w̃13 =
w̃23 = 0; see section II-A. The matrix W in the two scenarios
is the result of the optimization problem given in (12) with
the constraints (6) on the variable w̃ given by the junction
topology.

Scenario S1 The turn ratios for the symmetric scenario
S1 are (ρ1, ρ2, ρ3) = (0.1, 0.8, 0.1). The total arrival rate
λ = 0.75 vehicles/second. Then the optimization problem (12)
gives the matrix W given in TABLE II. We observe that this
scenario S1 is symmetric, because the incoming lanes are
balanced : wia = wib = wic = 1/3.

Symmetric scenario S1 Destination
wiIncoming lane 1 2 3

ia 0.1 0.23 0 1/3
ib 0 0.33 0 1/3
ic 0 0.23 0.1 1/3
ρj 0.1 0.8 0.1

TABLE II: Matrix W for the symmetric scenario. Total arrival
rate=0.75 vehicles/second.

Scenario S2 The turn ratios for the asymmetric scenario
S2 are (ρ1, ρ2, ρ3) = (0.7, 0.15, 0.15). The total arrival rate
λ = 0.5 vehicles/second. Then the optimization problem (12)
gives the matrix W given in TABLE III. The scenario S2 is
asymmetric since wia 6= wib and wia 6= wic .

Asymmetric scenario S2 Destination
wiIncoming lane 1 2 3

ia 0.7 0 0 0.7
ib 0 0.15 0 0.15
ic 0 0 0.15 0.15
ρj 0.7 0.15 0.15

TABLE III: Matrix W for the asymmetric scenario. Total
arrival rate=0.5 vehicles/second.

In Fig. 2 we display the penetration ratio estimator we have
proposed in section II-A. The estimator p̂ =

∑
nXp(n)

qsat
∑
j maxk{tk,je }

generalizes the estimators proposed in [2] to the multi-lanes
case. We observe on Fig. 2 that for p > 0.15 the estimation
error is very low compared to the case p < 0.15.

In Fig. 3, we show the mean absolute error of various
estimators for computing Ap, Bp, Cp. The first estimator is
the one which estimates the number of probes per incoming
lane, based on the destination road of each probe vehicle.
For example, with this estimator we will assume that all the
vehicles that have turned right came from the right lane. We
will denote this estimator as E0. With E0, we write :

âp = [
∑
k

P (Dk = j1)] (32)
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Fig. 2: Penetration ratio estimator. Simulated time=25 hours.

b̂p = [
∑
k

P (Dk = j2)] (33)

ĉp = [
∑
k

P (Dk = j3)] (34)

We propose a more realistic estimator, E1 which is based on
Equation (14) which we recall here :

âp = [
∑
k

P (Ok = ia|Dk = jk)] (35)

b̂p = [
∑
k

P (Ok = ib|Dk = jk)] (36)

ĉp = [
∑
k

P (Ok = ic|Dk = jk)] (37)

We notice in Fig. 3 that the estimator E1 performs better than
the estimator E0. The estimation error for E1 is at maximum
around 1 vehicle, although it can be around 3 vehicles for E0.
This is because with the estimator E1, we use the matrix W to
enhance the estimator E0 which estimates probe vehicles per
lane based on the counting of probe vehicles per destination.
We notice also that estimation error for E0 increases linearly
with the penetration ratio p while the estimation error for E1

is clearly sub linear.

B. Road traffic state estimation

In this section we evaluate the queue length estimations as
given by the expectations of the probability distributions of
Propositions 1,2 and 3.

In Fig. 4 and Fig. 5, we compare the mean absolute error
between the queue lengths and their estimated values with the
different propositions respectively for scenario S1 and S2. We
notice on Fig. 4 that the estimator m performs quite well for
high penetration ratios, because we consider here the symmet-
ric scenario. On the other hand, we notice on Fig. 4 that the
estimator m is not accurate for low penetration ratios even
in this symmetric scenario. We notice also that Proposition 2
and Proposition 3 perform better than Proposition 1 because
we add some information to the estimations. In addition, we
notice that all the estimators increase their accuracy as the
penetration ratio of probe vehicles increases.

Let us now look at the simulation results of the asymmetric
scenario. We notice on Fig. 5 that although the estimator m
performs quite well on lane ia, it is not true for lanes ib and ic
because the demand is asymmetric. The estimator m is not an
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Fig. 3: Mean absolute error for âp, b̂p, ĉp and estimators E0,
E1, averaged over 10 replications. Simulated time = 10 hours,
asymmetric scenario.

option for lanes ib and ic. On another hand, Proposition 2 and
Proposition 3 perform better than Proposition 1 for the all the
lanes. Proposition 2 performs better than Proposition 3 for the
longest lane ia although for the lanes ib and ic Proposition 3
is more accurate than Proposition 2.
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Fig. 4: Mean absolute error for queue lengths on lanes ia,
ib and ic, with Propositions 1, 2, 3. m means estimating the
queue length with Â = B̂ = Ĉ = m the last probe location.
Simulated time = 2.5 hours and symmetric scenario.
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ib and ic, with Propositions 1, 2, 3. m means estimating the
queue length with Â = B̂ = Ĉ = m the last probe location.
Simulated time = 2.5 hours and asymmetric scenario.
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IV. CONCLUSION

We have proposed a method to estimate the road traffic state
at a multi-lanes road junction. We have given an estimator for
the penetration ratio of communicating vehicles as well as
the arrival rate of vehicles. Based on the assumption that the
queues tend to balance, we have derived an assignment matrix
which gives the probabilities that a vehicle comes from an
origin lane and goes to a destination road. We have extended
an existing method for road traffic state estimation on 2-
lanes roads, to the case where roads are composed of any
number of lanes. Three estimators for the queue lengths at
the road junction have been proposed. We have implemented
the model with a discrete event simulator where vehicles are
represented by packets. Numerical experiments allow us to
discuss the propositions and confirm that the model performs
good especially for the asymmetric traffic demand scenarios.
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