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Abstract

We show that the leading derivative corrections to the Heisenberg-Euler effective action can be

determined efficiently from the vacuum polarization tensor evaluated in a homogeneous constant

background field. After deriving the explicit parameter-integral representation for the leading

derivative corrections in generic electromagnetic fields at one loop, we specialize to the cases of

magnetic- and electric-like field configurations characterized by the vanishing of one of the secu-

lar invariants of the electromagnetic field. In these cases, closed-form results and the associated

all-orders weak- and strong-field expansions can be worked out. One immediate application is

the leading derivative correction to the renowned Schwinger-formula describing the decay of the

quantum vacuum via electron-positron pair production in slowly-varying electric fields.
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I. INTRODUCTION

In contrast to the classical notion of vacuum, describing the absence of everything, the

vacuum of a quantum field theory (QFT) amounts to a highly non-trivial state. It is charac-

terized by the omnipresence of quantum fluctuations of all the dynamical degrees of freedom

of the underlying QFT. These fluctuations effectively endow the quantum vacuum with

medium-like properties, such as a non-vanishing non-linear response to applied electromag-

netic fields. The latter is in particular triggered by fluctuations of charged particles, which

couple directly to electromagnetic fields, and depends on the charges and masses of all

fluctuating particles. Within the Standard Model of particle physics the leading effective in-

teractions between electromagnetic fields are governed by quantum electrodynamics (QED).

A central quantity in the study of the effective nonlinear interactions of macroscopic elec-

tromagnetic fields in the QED vacuum is the Heisenberg-Euler effective action ΓHE [1–3]. The

latter arises from the microscopic theory of QED in a given prescribed (non-quantized) elec-

tromagnetic field F̄ = F̄ µν by integrating out the dynamical degrees of freedom, namely the

quantized spinor fields, describing electrons and positrons, and the quantum photon field; cf.,

e.g., Ref. [4]. This supplements the classical Maxwell action ΓMW[F̄ ] = −1
4

∫

x
F̄µνF̄

µν with

effective, nonlinear self-interactions of the prescribed field. Apart from the applied electro-

magnetic field F̄ and derivatives ∂ = ∂ρ thereof, at zero temperature and vanishing chemical

potential the only physical parameters characterizing the latter are the electron/positron

mass m, and the elementary charge e mediating the coupling between charges and electro-

magnetic fields. As the quantum fields only appear as virtual states, their momenta are

integrated over and hence not determined, eliminating the possibility of any explicit refer-

ence to them. In terms of Feynman diagrams ΓHE[F̄ ] can be represented as an infinite set

of vacuum diagrams, with the charged particle lines dressed to all orders in the external

electromagnetic field and its derivatives. The simplest diagram is a one-loop diagram. Dia-

grams featuring more loops are parametrically suppressed with powers of the fine-structure

constant α = e2/(4π) ≃ 1/137.

Upon combination with the speed of light c and the Planck constant ~, the ratio of

m2 and e can be converted into electric Ecr = m2c3/(e~) ≈ 1.3 × 1018V/m and magnetic

Bcr = Ecr/c ≈ 4 × 109T reference field strengths. Analogously, the inverse of the electron

mass can be converted into spatial λC = ~/mc ≈ 3.8 × 10−13m and temporal τC = λC/c ≃
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1.3 × 10−21 s reference scales. The former quantities can be used to render the applied

electric and magnetic fields dimensionless, and the latter ones the derivatives. Hence, is

slowly varying electromagnetic fields, characterized by typical spatial (temporal) scales of

variation much larger than λC (τC) derivative corrections should be suppressed relatively to

contributions scaling with the same power of F̄ but featuring no derivatives.

The present work is devoted to the study of the leading derivative corrections to the

Heisenberg-Euler effective action. The one-loop Heisenberg-Euler effective action in constant

fields has been worked out by Refs. [1–3], an the leading derivative correction by Refs. [5, 6].

For ΓHE in constant fields at two loops, see Refs. [4, 7, 8]. Apart from this, higher-loop

results in constant fields and lower space-time dimensions [9, 10], as well as one-loop results

for specific purely electric or magnetic (one-dimensional) field inhomogeneities are available

[11–16]. See also Ref. [17] for an adiabatic propertime expansion of ΓHE at one-loop, and

Ref. [18] for a study of nonlinear waves in a dispersive vacuum described with a high order

derivative electromagnetic Lagrangian.

Our article is organized as follows: after detailing the strategy devised to determine the

leading derivative corrections to the Heisenberg-Euler effective action in Sec. II, we employ

our approach to determine the leading derivative correction to the Heisenberg-Euler effective

action in Sec. III. Thereafter, in Sec. IV we focus on the special cases of magnetic- and

electric-like fields for which only one of the secular invariants of the electromagnetic field

does not vanish. Finally, we end with conclusions and an outlook in Sec. V.

II. OUR APPROACH

Here, we demonstrate that the leading derivative correction to the Heisenberg-Euler ef-

fective action can efficiently be determined from the vacuum polarization tensor evaluated

in a generic constant and homogeneous background field F̄ . In position space, this correc-

tion contains exactly two derivatives but arbitrary powers of the electromagnetic field F̄ .

Our derivation – which is somewhat reminiscent of the approach [19] devised in a different

context – constitutes an alternative route to the result of Gusynin and Shovkovy [5, 6], who

determined this correction at one-loop order.

To this end, we first note that the photon polarization tensor generically mediates a

quantum-fluctuation induced effective interaction between two inhomogeneous electromag-
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netic fields characterized by the vector potential A(x). In turn, it is a central ingredient to

the effective action describing the physics of arbitrary-frequency fields in the presence of a

constant background field [20, 21]. In position space, this effective action reads

Γ[A(x)] = −1

4

∫

x

Fµν(x)F
µν(x)− 1

2

∫

x

∫

x′

Aµ(x)Π
µν(x− x′|F̄ )Aν(x

′) +O(A3) . (1)

Here, F (x) denotes the field strength tensor of the manifestly inhomogeneous field A(x),

and Πµν(x − x′|F̄ ) is the polarization tensor evaluated in the background field F̄ . The

neglected higher-order terms encode effective self-interactions of the field A(x). To keep

notations compact, throughout this work we employ the shorthand notations
∫

x
≡

∫

d4x

and
∫

k
≡

∫

d4k/(2π)4 for integrations over position and momentum space, respectively.

Moreover, we use the Heaviside-Lorentz System with c = ~ = 1; gµν = diag(−1,+1,+1,+1).

Due to translational invariance in homogeneous constant fields, in momentum space the

polarization tensor Πµν(k, k′|F̄ ) =
∫

x

∫

x′ e
ikxΠµν(x−x′|F̄ ) eik′x′

does not depend explicitly on

both the in- and outgoing momenta, but is a function of the momentum transfer k only. This

implies that Πµν(k, k′|F̄ ) ∼ (2π)4δ(k + k′) and resembles the situation at zero background

field, where the vacuum polarization tensor can be solely expressed in terms of k. There,

the Ward identity kµΠ
µν = Πµνkν = 0 immediately constrains its tensor structure to be

spanned by (k2gµν − kµkν). In the present case, the field strength tensor of the background

field F̄ provides an additional building block to form tensor structures compatible with the

Ward identity. However, as both Π and F̄ have two Minkowski indices, and the former is

a function of k and F̄ only, Πµν(k, k′|F̄ ) has to be even in k. Besides, it is even in F̄ and

regular at F̄ = 0.

Upon transformation to position space, insertion into Eq. (1), and making use of partial

integrations, the contribution to Πµν(k, k′|F̄ ) which is quartic in k gives rise to an effective

interaction term which can be schematically expressed as Γ[F, F̄ ]|∼∂2 =
∫

x
h(2)(F̄ ) (∂F )2.

Here, the scalar function h(2)(F̄ ) accounts for arbitrary powers of the background field F̄ ,

and we explicitly ensured that a single derivative acts on each factor of the inhomogeneous

fields F (x). Finally, substituting ∂F → ∂F̄ , where F̄ = F̄ (x) is now to be understood as

slowly varying electromagnetic field, we arrive at

ΓHE[F̄ ]|∼∂2 =

∫

x

h(2)(F̄ ) (∂F̄ )2 , (2)

which corresponds to the desired derivative correction to the Heisenberg-Euler effective ac-

tion ΓHE featuring exactly two derivatives, but arbitrary powers of the slowly varying field.
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As the derivation of Πµν(k, k′|F̄ ) explicitly accounts for all possible variants of coupling

the in- and out-fields with momenta k, k′ and Minkowski indices µ, ν to the charged particle

loop, the procedure outlined above indeed ensures that Eq. (2) can be identified with the

leading derivative correction to the Heisenberg-Euler effective action in the field F = F̄ +

∂F̄ + . . . We emphasize that for this identification the regrouping of the terms such that

each power of the inhomogeneous field F comes with a derivative acting on it prior to the

substitution is absolutely essential.

Moreover, we note that though upon insertion into Eq. (1) and appropriate integrations

by parts, the contribution to Πµν(k, k′|F̄ ) which is quadratic in k results in a contribution

∼
∫

x
h(0)(F̄ )F 2, this expression does not reproduce the zero-derivative result for ΓHE in

the limit of F → F̄ . The reason for this is the fact that in the derivation of the photon

polarization tensor and Eq. (1) the fields F̄ and F are assumed to be manifestly different.

Inconsistencies arise as soon as (at least) one of the couplings to the field F is identified

with a coupling to the background field.

The contributions to Πµν(k, k′|F̄ ) beyond quartic order, which translate into higher-order

n derivative terms are also not helpful for the purpose of a systematic derivation of higher-

order derivative corrections to ΓHE. This is a direct consequence of the fact that there is no

unambiguous way in assigning the additional derivatives to any of the two inhomogeneous

fields F (x) before invoking the substitution F → F̄ . The possibility of partial integrations,

which after this substitution also act on the factors of F̄ in the scalar functions h(2n)(F̄ ),

renders different assignments inequivalent for n > 1, and imply inconsistent results.

On the other hand, along the lines outlined above the result for the contribution to ΓHE

containing n derivatives, but arbitrary powers of the field could be extracted from the n-

rank polarization tensor evaluated in the homogeneous constant background field F̄ . As the

determination of the n-derivative contribution only requires knowledge of the term scaling as

k2n ∼ kσ1 . . . kσ2n of the n-rank polarization tensor, aiming at the evaluation of the respective

contribution in cases where the required polarization tensor has not yet been determined,

for this endeavor it suffices to determine this tensor only at an accuracy of order k2n.
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III. EXPLICIT CALCULATION

Subsequently, we employ the strategy outlined above to explicitly determine the quadratic

derivative correction to the Heisenberg-Euler effective action at one loop [5, 6]. The deter-

mination of this contribution is particularly straightforward because Πµν(k, k′|F̄ ) is known
analytically at one-loop order [22–27]. However, we emphasize that our approach is not

limited to one loop. For instance, a result for the two-loop photon polarization tensor eval-

uated in a homogeneous constant background field could be readily employed to extract the

quadratic derivative correction to ΓHE at two loops.

Following the notations of [27], the photon polarization tensor can be expressed as

Πµν(k, k′|F̄ ) = (2π)4δ(k + k′)
{

Π0P
µν
T + (Π⊥ − Π0)P

µν
⊥ + (Π‖ − Π0)P

µν
‖ + πQQ

µν
}

, (3)

where Π0,‖,⊥ and πQ are scalar functions which depend both on the background field F̄ and

the transferred momentum k. Its tensor structure is spanned by

P µν
T = gµν − kµkν

k2
, P µν

⊥ =
vµ⊥v

ν
⊥

v2⊥
, P µν

‖ =
vµ‖ v

ν
‖

v2‖
, Qµν = vµ‖ v

ν
⊥ + vµ⊥v

ν
‖ , (4)

where the four-vectors v‖,⊥ are defined as

vµ‖/⊥ =
c±(k

⋆F̄ )µ ∓ c∓(kF̄ )
µ

c2+ + c2−
, such that v2‖/⊥ =

(kF̄ )2 ∓ k2c2±
c2+ + c2−

. (5)

Also note that v2⊥ − v2‖ = k2. Here, we use the shorthand notation (kF̄ )µ = kνF̄
νµ, etc., and

c± denote the secular invariants of the electromagnetic field. The latter are related to the

gauge and Lorentz invariants F = 1
4
F̄µνF̄

µν and G = 1
4
F̄µν

⋆F̄ µν as c± = (
√
F2 + G2 ± F)1/2;

⋆F̄ µν is the dual field strength tensor. The above definitions are such that the three tensors

P µν
‖,⊥ and P µν

0 = P µν
T −P µν

‖ −P µν
⊥ are projectors and fulfill the usual projector identities. At

the same time, Qµν is only orthogonal to P µν
0 and not a projector.

Defining πT = Π0/k
2 and π‖/⊥ = (Π‖/⊥ − Π0)/v

2
‖/⊥, Eq. (3) can alternatively be repre-

sented as

Πµν(k, k′|F̄ ) = (2π)4δ(k + k′)
{

(k2gµν − kµkν) πT + (kF̄ )µ(kF̄ )νπF̄ F̄ + (k⋆F̄ )µ(k⋆F̄ )νπ⋆F̄⋆F̄

+ [(k⋆F̄ )µ(kF̄ )ν + (kF̄ )µ(k⋆F̄ )ν ]π⋆F̄ F̄

}

. (6)

The scalar coefficients πp in Eq. (6) are given by

πF̄ F̄ =
1

(c2+ + c2−)
2

[

c2+π⊥ + c2−π‖ − 2c+c−πQ
]

,
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π⋆F̄ ⋆F̄ =
1

(c2+ + c2−)
2

[

c2−π⊥ + c2+π‖ + 2c+c−πQ
]

,

π⋆F̄ F̄ =
1

(c2+ + c2−)
2

[

c+c−(π⊥ − π‖) + (c2+ − c2−)πQ
]

. (7)

While this structure is general, the explicit expressions for the scalar functions encoding the

nontrivial dependences on F̄ and k at one loop order can be cast in the following form,
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α

2π

∫ ∞

0
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∫ 1

0
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‖
n‖)s zz′

sin z sinh z′
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2
3

0

0

0









































, (8)

with

N0 = cos(νz) cosh(νz′)− cot z sin(νz) coth z′ sinh(νz′) ,

N1 = 2 cos z
cosh z′ − cosh(νz′)

sinh2 z′
, N2 = N1|z↔−iz′ ,

N3 =
1− cos z cos(νz)

sin z

1− cosh z′ cosh(νz′)

sinh z′
+ sin(νz) sinh(νz′) ,

n‖ =
cosh z′ − cosh(νz′)

2z′ sinh z′
, n⊥ = n‖|z↔−iz′ , (9)

where we used the shorthand notations z = ec+s and z′ = ec−s. Here and in the following,

the prescription m2 → m2− i0+ for the square of the electron mass m is implicitly assumed.

Besides, the integration contour of the propertime integration is implicitly assumed to lie

slightly below the real positive axis [28].

Note, that the entire momentum dependence of Eq. (8) is encoded in the phase of the

propertime integral over s. Hence, it is obvious that all the scalar functions πp introduced

above can be formally expanded as πp =
∑∞

n=0 π
(2n)
p , with π

(2n)
p ∼ k2n. The contributions

π
(2n)
p constitute the photon polarization tensor Πµν(k, k′|F̄ ) at order k2n+2. In turn, here we

are specifically interested in π
(2)
p ; the polarization at this order Π(2)µν(k, k′|F̄ ) follows from

Eq. (6) upon substitution of the coefficients πp → π
(2)
p .

Clearly, central building blocks to π
(2)
p are

N ‖
i =

∫ 1

0

dν n‖Ni and N⊥
i =

∫ 1

0

dν n⊥Ni , (10)

with i ∈ {0, 1, 2, 3}. The integral over ν in Eq. (10) can be performed explicitly, yielding

N ‖
0 (z, z

′) =
1

z2 + 4z′2
z′

z

[

3

2

z2

z2 + z′2
coth z′

(cosh z′

sin z
− z′

z

cos z

sinh z′

)

− sin z

sinh z′

]

,
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N ‖
1 (z, z

′) =
1

z′
cos z

sinh z′

[

1 +
3

2

1

sinh z′

( 1

sinh z′
− cosh z′

z′

)

]

,

N ‖
2 (z, z

′) =
cosh z′

sin z

[

1

z2 + z′2

(z′

z
coth z′ +

z2

z′2
cot z

)

− cot z coth z′

z′

]

,

N ‖
3 (z, z

′) =
3

4

coth z′

sin z

1

z′

( 1

sinh z′
− cosh z′

z′

)

+
1

2

1

z2 + z′2
z2

z′2
sinh z′

sin z

+
3

2

1

z2 + 4z′2
z′2

z2 + z′2

[

2 coth z′
(cosh z′

sin z
− z′

z

cos z

sinh z′

)

− sin z

sinh z′

]

, (11)

as well as N⊥
0 = N ‖

0 |z↔−iz′, N⊥
1 = N ‖

2 |z↔−iz′, N⊥
2 = N ‖

1 |z↔−iz′ and N⊥
3 = N ‖

3 |z↔−iz′. For

completeness and later reference, we also provide the leading contributions of these quantities

in a weak-field expansion. The respective results are

N ‖
0 (z, z

′) =
2

15
− e2

315
(c2+ + 2c2−)s

2 +O(F̄ 4) ,

N ‖
1 (z, z

′) =
2

15
− e2

315
(21c2+ + 13c2−)s

2 +O(F̄ 4) ,

N ‖
2 (z, z

′) =
2

15
+

e2

315
(10c2+ + 18c2−)s

2 +O(F̄ 4) ,

N ‖
3 (z, z

′) = − e2

35
c+c−s

2 +O(F̄ 4) . (12)

Moreover, note that

zz′

sin z sinh z′
= 1 +

e2

6
(c2+ − c2−)s

2 +O(F̄ 4) .

Introducing the shorthand notations

N−
i = N ‖

i −N⊥
i and N+

i =
c2+

c2+ + c2−
N ‖

i +
c2−

c2+ + c2−
N⊥

i , (13)

the functions π
(2)
p can then be compactly expressed as

π(2)
p = kαh

αβ
p (F̄ )kβ , with hαβp (F̄ ) =

F̄ α
τ F̄

βτ

c2+ + c2−
h−p (c+, c−)− gαβh+p (c+, c−) , (14)

where


























h±T

h±‖

h±⊥

h±Q



























= i
α

2π

∫ ∞

0

ds e−im2s zz′

sin z sinh z′



























N±
0

N±
0 −N±

1

N±
2 −N±

0

−N±
3



























. (15)

The fact that the functions π
(2)
p are regular at c+ = c− = 0 and feature asymptotic expansions

in terms of combinations of c+ and c− is not obvious. However, at least at low orders one
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can easily convince oneself that this is indeed the case by performing explicit expansions; cf.

also Eq. (12). Besides, we note that Eqs. (7) and (14) imply that hαβ
F̄ F̄

(h±
F̄ F̄

) relates to hαβ⊥ ,

hαβ‖ and hαβQ (h±⊥, h
±
‖ and h±Q) in exactly the same way as πF̄ F̄ relates to π⊥, π‖ and πQ, etc.

With these preparations, we can now explicitly determine the quadratic derivative cor-

rection ΓHE[F̄ ]|∼∂2 to the Heisenberg-Euler effective action. Following the strategy outlined

above and using the Fourier representation of the gauge field Aµ(x) =
∫

k
eikxAµ(k), we first

evaluate the quantity

Γ[F, F̄ ]
∣

∣

∼∂2 = −1

2

∫

k

∫

k′
Aµ(k) Π

(2)µν(k, k′|F̄ )Aν(k
′) . (16)

A direct consequence of our definition of the momentum space representation of the gauge

field is F µν(x) =
∫

k
eikxF µν(k) with F µν(k) = i

(

kµAν(k)−kνAµ(k)
)

. Therewith it is easy to

show that (kF̄ )νAν(k) = −iF̄ ρνFρν(k)/2 and analogously (k∗F̄ )νAν(k) = −i ∗F̄ ρνFρν(k)/2.

Correspondingly, we find

Γ[F, F̄ ]
∣

∣

∼∂2 =
1

4

∫

k

{

[

kαFµν(k)
][

−kβF µν(−k)
]

hαβT (F̄ )

+
1

2

[

kαFσµ(k)
][

−kβFρν(−k)
]

[

F̄ σµF̄ ρνhαβ
F̄ F̄

(F̄ ) + ∗F̄ σµ∗F̄ ρνhαβ∗F̄ ∗F̄
(F̄ )

+ 2∗F̄ σµF̄ ρνhαβ∗F̄ F̄
(F̄ )

]}

. (17)

Accounting for the identities
∫

k
eikx[kαFµν(k)] = −i∂αFµν(x) and

∫

k
u(k)v(−k) =

∫

x
u(x)v(x), this expression can be readily transformed to position space.

Finally substituting F → F̄ (x) and F̄ → F̄ (x), Eq. (17) yields the desired contribution

to the Heisenberg-Euler effective action,

ΓHE[F̄ ]
∣

∣

∼∂2 = −1

4

∫

x

{

∂αF̄µν∂βF̄
µν hαβT (F̄ )

+
1

2
∂αF̄σµ∂βF̄ρν

[

F̄ σµF̄ ρνhαβ
F̄ F̄

(F̄ ) + ∗F̄ σµ∗F̄ ρνhαβ∗F̄ ∗F̄
(F̄ )

+ 2∗F̄ σµF̄ ρνhαβ∗F̄ F̄
(F̄ )

]}

, (18)

where F̄ = F̄ (x) is to be implicitly understood. We note that this expression with tensor

structures (14) is generic and holds at all loop orders.

With the help of Eq. (12), we infer the following weak-field limits for the tensor structures

in Eq. (18) at one loop,

hαβT (F̄ ) = − 1

15

α

π

1

m2

[

1− 1

7

( e

m2

)2

F̄κλF̄
κλ
]

gαβ +
1

105

α

π

1

m2

( e

m2

)2

F̄ α
τ F̄

βτ +O(F̄ 4) ,
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hαβ
F̄ F̄

(F̄ ) =
11

315

α

π

1

m2

( e

m2

)2

gαβ +O(F̄ 2) ,

hαβ∗F̄∗F̄
(F̄ ) =

4

63

α

π

1

m2

( e

m2

)2

gαβ +O(F̄ 2) ,

hαβ∗F̄ F̄
(F̄ ) = O(F̄ 2) . (19)

Upon plugging these results into Eq. (18) and using the identity (A5) to eliminate the

dependences of the dual field strength tensor, we obtain

L1-loop
HE (F̄ )

∣

∣

∼∂2 =
1

60

α

π

1

m2
∂αF̄µν∂

αF̄ µν

+
α

π

( e

m2

)2 1

m2

[ 1

180
F̄µνF̄

µν∂αF̄ρσ∂αF̄
ρσ +

1

280
F̄µνF̄ρσ∂

αF̄ µν∂αF̄
ρσ

− 2

63
F̄ρµF̄

σµ∂αF̄σν∂αF̄
ρν − 1

420
F̄ρσF̄

ρα∂σF̄µν∂αF̄
µν
]

+O(F̄ 6) . (20)

It is noteworthy that the contribution to Eq. (20) which is quartic in the field strength can

be expressed in terms of just four different tensor structures.

IV. MAGNETIC- AND ELECTRIC-LIKE FIELD CONFIGURATIONS

In the remainder, we focus on the special situation where only one of the two invariants

c+ or c− does not vanish. The remaining parameter may be arbitrarily strong. This grants

access to the cases of a purely magnetic and electric field, respectively. In this case additional

insights are possible and (i) the asymptotic expansion for perturbatively weak fields can

be organized in terms of a single infinite sum, with all the expansion coefficients known

explicitly. Besides, (ii) the propertime integration over s can even be performed explicitly

and the result can be expressed in terms of the Hurwitz zeta function ζ(l, χ) =
∑∞

n=0(χ+n)
−l

and derivatives thereof; primes on ζ denote derivatives with respect to l.

First of all, we note that for either c+ = 0 or c− = 0 Eq. (18) simplifies significantly due

to the fact that in this case ∂αF̄σµ
∗F̄ σµ = 2∂αG = 0, which implies that

LHE(F̄ )
∣

∣

∼∂2 = −1

4
∂αF̄µν∂βF̄

µν hαβT (F̄ )− 1

8
∂αF̄σµ∂βF̄ρνF̄

σµF̄ ρνhαβ
F̄ F̄

(F̄ ) . (21)

Hence, the only quantities to be determined in this specific limit are hαβT (F ) and hαβFF (F ).

Aiming at their explicit determination, we note that for finite c+ but c− = 0 ↔ z′ = 0 we
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have

z

sin z
N ‖

0 (z, 0) = − 1

z2

[3

2

(

∂z +
1

z

)

cot z + 1
]

,

z

sin z
N ‖

1 (z, 0) =
2

15
z cot z ,

z

sin z
N ‖

2 (z, 0) = −
[1

2

(1

z
+
z

3

)

∂z +
1

z2

]

∂z cot z,

z

sin z
N ‖

3 (z, 0) = 0 , (22)

and

z

sin z
N⊥

0 (z, 0) = −3

8

{ 1

z2
+
[ 1

2z
∂z +

( 1

z2
+

2

3

)]

∂z cot z
}

,

z

sin z
N⊥

1 (z, 0) =
[( 1

z2
+

1

3

)

∂z +
1

z3

]

cot z +
1

z2
+

1

3
,

z

sin z
N⊥

2 (z, 0) = −1

4

(

∂z +
3

z

)

∂2z cot z

z

sin z
N⊥

3 (z, 0) = 0 . (23)

Obviously, these quantities be written entirely in terms of products of powers of z and cot z

as well as derivatives thereof.

The analogous expressions for c+ = 0 ↔ z = 0 but finite c− follow straightforwardly with

the identities given below Eq. (11). In turn, the only two non-trivial identities needed to

determine the perturbative weak field expansions of Eq. (21) are

cot(z) =

∞
∑

n=0

(−1)n
22nB2n

(2n)!
z2n−1 for |z| < π , ([29] : 1.411.11) (24)

where B2n denote Bernoulli numbers, and

∫ ∞

0

ds zn+ǫ e−im2s =
1

ec+

Γ(n+ 1 + ǫ)

in+1+ǫ

(ec+
m2

)n+1+ǫ

, ([29] : 3.551.2) (25)

which holds individually for n + ǫ > −1. Therewith we infer the following expressions for

the scalar coefficients determining the tensors hαβp in Eq. (21) for the case of c− = 0,

h+T (c+, 0) = −α
π

1

m2

∞
∑

n=0

12B2(n+2)

(2n+ 1)(2n+ 2)(2n+ 3)

(2ec+
m2

)2n

,

h−T (c+, 0) =
α

π

1

m2

∞
∑

n=1

1

4

1

n+ 1

[3(2n− 5)B2(n+2)

(2n+ 1)(2n+ 3)
− B2(n+1)

](2ec+
m2

)2n

, (26)

h+
F̄ F̄

(c+, 0) = −α
π

1

m2

( e

m2

)2
∞
∑

n=0

4
n+ 1

n+ 2

[ 4B2(n+3)

(2n+ 3)(2n+ 5)
− B2(n+2)

3

](2ec+
m2

)2n

,

11



h−
F̄ F̄

(c+, 0) =
α

π

1

m2

( e

m2

)2
∞
∑

n=1

1

n + 2

[ 16n2 + 50n+ 49

(2n + 3)(2n+ 5)
B2(n+3) +

4n+ 7

3
B2(n+2)

](2ec+
m2

)2n

.

On the other hand, when aiming at performing the propertime integration over s without

resorting to an expansion, we need another identity apart from Eq. (25), namely
∫ ∞

0

ds (as)n+ǫ e−im2s coth(as)

=
1

a

Γ(n+ 1 + ǫ)

2n+1+ǫ

[

2ζ
(

n + 1 + ǫ, im
2

2a

)

−
( 2a

im2

)n+1+ǫ
]

, ([29] : 3.551.3) (27)

which holds individually for n+ǫ > 0 and a = |a| eiδ with 0 ≤ δ < π
2
. The conditions on n+ǫ

are rendered irrelevant upon combination of these integrals in the explicit determination of

the coefficients h±p . To perform the integrals involving derivatives of cot z we moreover make

use of the identity ∂nz cot z =
1
zn
∂nc cot(cz)

∣

∣

c=1
. The resulting expressions for the coefficients

encoding the non-trivial field dependence of Eq. (21) in the limit of c− = 0 are

h+T (c+, 0) =
α

π

1

ec+

{

−9ζ ′
(

−2, 1
2
m2

ec+

)

+ 6(1
2
m2

ec+
)ζ ′

(

−1, 1
2
m2

ec+

)

+
1

4

[

1 + 2(1
2
m2

ec+
)2
]

(1
2
m2

ec+
)−

[3

2
(1
2
m2

ec+
)− 1

]

(1
2
m2

ec+
) ln(1

2
m2

ec+
)

}

,

h−T (c+, 0) =
α

π

1

ec+

{

−27

4
ζ ′
(

−2, 1
2
m2

ec+

)

+ 3(1
2
m2

ec+
)ζ ′

(

−1, 1
2
m2

ec+

)

+
3

4
(1
2
m2

ec+
)2ζ ′

(

0, 1
2
m2

ec+

)

+
1

4

[

1 + 3(1
2
m2

ec+
)2
]

(1
2
m2

ec+
)−

[3

2
(1
2
m2

ec+
)− 5

8

]

(1
2
m2

ec+
) ln(1

2
m2

ec+
)

+
1

4
(1
2
m2

ec+
)ψ(1

2
m2

ec+
) +

1

8

}

, (28)

h+
F̄ F̄

(c+, 0) =
α

π

1

ec+

1

c2+

{

3ζ ′
(

−2, 1
2
m2

ec+

)

+ 2
(

1
2
m2

ec+

)

ζ ′
(

−1, 1
2
m2

ec+

)

− 2(1
2
m2

ec+
)2ζ ′

(

0, 1
2
m2

ec+

)

− 1

12

[

5 + 14(1
2
m2

ec+
)2
]

(1
2
m2

ec+
) +

[3

2
(1
2
m2

ec+
)− 1

]

(1
2
m2

ec+
) ln(1

2
m2

ec+
)

+
1

3
(1
2
m2

ec+
)ψ(1

2
m2

ec+
) +

1

6
(1
2
m2

ec+
)2ζ

(

2, 1
2
m2

ec+

)

+
1

12

}

,

h−
F̄ F̄

(c+, 0) =
α

π

1

ec+

1

c2+

{

15

4
ζ ′
(

−2, 1
2
m2

ec+

)

−
(

1
2
m2

ec+

)

ζ ′
(

−1, 1
2
m2

ec+

)

+
1

4
(1
2
m2

ec+
)2ζ ′

(

0, 1
2
m2

ec+

)

− 1

6

[

3 + 3(1
2
m2

ec+
)− 5

2
(1
2
m2

ec+
)2
]

(1
2
m2

ec+
) +

[3

2
(1
2
m2

ec+
)− 5

8

]

(1
2
m2

ec+
) ln(1

2
m2

ec+
)

+
[ 1

12
− (1

2
m2

ec+
)2
]

(1
2
m2

ec+
)ψ(1

2
m2

ec+
) +

1

6
(1
2
m2

ec+
)2ζ

(

2, 1
2
m2

ec+

)

− 1

24

}

,

where ψ(·) denotes the digamma function. Making use of the all-orders asymptotic expan-

sions of the Hurwitz zeta function and its derivatives for large arguments, given, e.g., in

Ref. [30], it can be straightforwardly checked that Eq. (26) is recovered from Eq. (28).
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The strong-field expansions of Eq. (28) follow from the series representations of the Hur-

witz zeta function and its derivatives, cf., e.g., Refs. [31–33]. They read

h+T (c+, 0) =
α

π

1

ec+

{

−9ζ ′(−2) +
[

ln
(

1
2
m2

ec+

)

− 12ζ ′(−1)− 1

2

]

(

1
2
m2

ec+

)

+
3

2

[

ln
(

1
2
m2

ec+

)

+ ln(2π)− 5

2

]

(

1
2
m2

ec+

)2 −
(

1
2
m2

ec+

)3

+ 6

∞
∑

j=0

(−1)j
j + 1

(j + 2)(j + 3)(j + 4)
ζ(j + 2)

(

1
2
m2

ec+

)j+4
}

,

h−T (c+, 0) =
α

π

1

ec+

{

−27

4
ζ ′(−2)− 1

8
+

1

2

[5

4
ln
(

1
2
m2

ec+

)

− γ

2
− 21ζ ′(−1)− 5

8

]

(

1
2
m2

ec+

)

+
3

2

[

ln
(

1
2
m2

ec+

)

+ ln(2π) +
π2

36
− 19

8

]

(

1
2
m2

ec+

)2 − 1

4

[9

2
+ ζ(3)

]

(

1
2
m2

ec+

)3

+
1

4

∞
∑

j=0

(−1)j
[ 3(j2 + 11j + 10)

(j + 2)(j + 3)(j + 4)
ζ(j + 2) + ζ(j + 4)

]

(

1
2
m2

ec+

)j+4
}

, (29)

h+
F̄ F̄

(c+, 0) =
α

π

1

ec+

1

c2+

{

3ζ ′(−2)− 1

12
−

[

ln
(

1
2
m2

ec+

)

+
γ

3
− 8ζ ′(−1) +

1

6

]

(

1
2
m2

ec+

)

− 1

2

[

3 ln
(

1
2
m2

ec+

)

+ 3 ln(2π)− π2

6
− 13

2

]

(

1
2
m2

ec+

)2
+

2

3

[

2− ζ(3)
]

(

1
2
m2

ec+

)3

−
∞
∑

j=0

(−1)j
[ 2(j2 + 6j + 5)

(j + 2)(j + 3)(j + 4)
ζ(j + 2)− j + 5

6
ζ(j + 4)

]

(

1
2
m2

ec+

)j+4
}

,

h−
F̄ F̄

(c+, 0) =
α

π

1

ec+

1

c2+

{

15

4
ζ ′(−2) +

1

24
−

[5

8
ln
(

1
2
m2

ec+

)

+
γ

12
− 13

2
ζ ′(−1) +

3

16

]

(

1
2
m2

ec+

)

− 1

2

[

3 ln
(

1
2
m2

ec+

)

+ 3 ln(2π)− π2

12
− 45

8

]

(

1
2
m2

ec+

)2
+

1

12

[43

2
− 5ζ(3)

]

(

1
2
m2

ec+

)3

− 1

4

∞
∑

j=0

(−1)j
[4j3 + 35j2 + 101j + 70

(j + 2)(j + 3)(j + 4)
ζ(j + 2)− 2j + 7

3
ζ(j + 4)

]

(

1
2
m2

ec+

)j+4
}

,

where γ is the Euler-Mascheroni constant, ζ(·) is the Riemann zeta function, and ζ ′(·) is its
derivative. The analogous results determining Eq. (21) for a finite value of c− but c+ = 0

follow from Eqs. (26), (28) and (29) via the identity h±p (0, c−) = ±h±p (c+, 0)|c+→−ic− with

p ∈ {T, FF}.
In the special case of a purely magnetic field ~B, we have c+ = | ~B| = B and Eq. (21) can

be expressed as

LHE( ~B)
∣

∣

∼∂2 = −1

2

{

(∂0 ~B)2h+T (B, 0) + [ ~B · (∂0 ~B)]2h+
F̄ F̄

(B, 0)

+ (∂i ~B)2
[

h−T (B, 0)− h+T (B, 0)
]

+ [ ~B · (∂i ~B)]2
[

h−
F̄ F̄

(B, 0)− h+
F̄ F̄

(B, 0)
]

−
[

( ~̂B · ~∇) ~B
]2
h−T (B, 0)−

{

~B · [( ~̂B · ~∇) ~B]
}2
h−
F̄ F̄

(B, 0)
}

, (30)
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with ~B = B ~̂B and | ~̂B| = 1. In Eq. (30) the Einstein summation convention over the index

i ∈ {1, 2, 3} is implicitly assumed.

On the other hand, it is well-known that the Heisenberg-Euler Lagrangian develops a

manifestly non-perturbative imaginary part in electromagnetic fields for which c− 6= 0. The

latter can be readily evaluated with the residue theorem. As obvious from Eqs. (22) and

(23), particularly for the case of c+ = 0 this evaluation boils down to the use of the single

identity

Im
{

i
α

2π

∫ ∞

0

ds e−im2s g(z) cot z
∣

∣

z→−iz′

}

=
α

2

1

ec−

∞
∑

n=1

e
− m

2

ec−
nπ
g(−nπ) , (31)

where g(z) is an analytic function: all expressions g(z) cot z to be considered here are regular

at z → 0 such that there is no pole at z = 0 ↔ n = 0; cf. Eq. (12). Therewith, we infer

Im
{

h+T (0, c−)
}

=
α

4

1

ec−

∞
∑

n=1

e
− m

2

ec−
nπ
[

m2

ec−
+

3

nπ

]

3

(nπ)2
,

Im
{

h−T (0, c−)
}

=
α

4

1

ec−

∞
∑

n=1

e
− m

2

ec−
nπ
[

(m2

ec−

)2 3

8nπ
+

1

2

m2

ec−

(

1− 3

(nπ)2

)

− 27

4(nπ)3

]

, (32)

Im
{

h+
F̄ F̄

(0, c−)
}

= −α
4

1

ec−

1

c2−

∞
∑

n=1

e
− m

2

ec−
nπ
[

(m2

ec−

)2(nπ

3
+

1

nπ

)

− m2

ec−

(2

3
− 1

(nπ)2

)

− 3

(nπ)3

]

,

Im
{

h−
F̄ F̄

(0, c−)
}

= −α
4

1

ec−

1

c2−

∞
∑

n=1

e
− m

2

ec−
nπ
[

1

2

(m2

ec−

)3

−
(m2

ec−

)2(nπ

3
− 1

8nπ

)

+
1

2

m2

ec−

(1

3
+

1

(nπ)2

)

+
15

4(nπ)3

]

.

These expressions constitute the imaginary part of Eq. (21) for c+ = 0 and result in

corrections to the Schwinger-formula describing the decay of the quantum vacuum via

electron-positron pair production in slowly-varying electric fields: the leading derivative

correction to the vacuum decay rate w(F̄ ) = 2 Im{LHE(F̄ )} [1, 3] is given by w(F̄ )|∼∂2 =

2 Im{LHE(F̄ )|∼∂2}; cf. also Refs. [31, 34, 35] and references therein.

Especially for a purely electric field ~E we have c− = E, such that Eq. (21) becomes

LHE( ~E)
∣

∣

∼∂2 =
1

2

{

(∂0 ~E)
2
[

h−T (0, E) + h+T (0, E)
]

− [ ~E · (∂0 ~E)]2
[

h−
F̄ F̄

(0, E) + h+
F̄ F̄

(0, E)
]

− (∂i ~E)
2h+T (0, E) + [ ~E · (∂i ~E)]2h+F̄ F̄

(0, E)

−
[

( ~̂E · ~∇) ~E
]2
h−T (0, E) +

{

~E · [( ~̂E · ~∇) ~E]
}2
h−
F̄ F̄

(0, E)
}

. (33)
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The associated derivative correction to the vacuum decay rate is w( ~E)|∼∂2 =

2 Im{LHE( ~E)|∼∂2}. A comparison of Eq. (33) with Eq. (30) implies that

LHE( ~E)
∣

∣

∼∂2 = −LHE( ~B)
∣

∣

∼∂2

∣

∣

∣

B→−iE,∂0↔∂i
. (34)

Recall that h±p (B, 0)
∣

∣

B→−iE
= ±h±p (0, E).

It can be straightforwardly checked that for the special cases considered explicitly by

Refs. [6, 36], namely either a purely magnetic field directed along the z axis which only

depends on x and y, or a purely electric field directed along the x axis which exclu-

sively depends on t and x, the known results are recovered. In fact, the non-trivial

structures of the effective Lagrangians associated with these cases are fully determined by

h−T (B, 0) − h+T (B, 0) + B2[h−
F̄ F̄

(B, 0) − h+
F̄ F̄

(B, 0)] ∼
∫∞

0
ds e−im2s z

sin z
N⊥

2 (z, 0) for the mag-

netic field ~B = B(x, y)~ez, and similarly h−T (0, E) + h+T (0, E)−E2[h−
F̄ F̄

(0, E) + h+
F̄ F̄

(0, E)] ∼
∫∞

0
ds e−im2s z′

sinh z′
N ‖

1 (0, z
′) for the electric field ~E = E(t, x)~ex.

Finally, we note that in the limit of crossed fields of the same amplitude characterized

by ~E(x) · ~B(x) = 0 and | ~E(x)| = | ~B(x)|, we have c+ = c− = F = G = 0. Because of

∂αF̄σµF̄
σµ = 2∂αF = 0, in this case Eq. (21) takes an especially simple form, namely

LHE(F̄ )
∣

∣

∼∂2 = −1

4
∂αF̄µν∂βF̄

µν hαβT (F̄ ) . (35)

Accounting for the fact that in this limit the tensor structure hαβT (F̄ ) can be compactly

represented as, cf. Eqs. (14), (19) and (26),

hαβT (F̄ ) =
1

15

α

π

1

m2

(

F̄ α
τ F̄

βτ 1

7

( e

m2

)2

− gαβ
)

, (36)

Eq. (35) becomes

LHE(F̄ )
∣

∣

∼∂2 =
1

60

α

π

1

m2

[

∂αF̄µν∂
αF̄ µν − 1

7

( e

m2

)2

∂αF̄µν∂βF̄
µνF̄ α

τ F̄
βτ
]

. (37)

As to be expected, this expression vanishes identically in plane wave fields [3].

V. CONCLUSIONS AND OUTLOOK

In this work, we put forward an alternative way to evaluate derivative corrections to the

Heisenberg-Euler effective action in slowly varying electromagnetic fields. Using the explicit

results available in the literature for the one-loop vacuum polarization tensor in the presence

15



of a constant electromagnetic field as central input, we arrive at a rather compact expression

for the quadratic derivative correction to the Heisenberg-Euler effective action at one loop.

For the special cases of magnetic- and electric-like field configurations characterized by the

vanishing of one of the secular invariants of the electromagnetic field, we obtain closed-form

expressions and work out all-orders weak- and strong-field expansions.

Apart from providing insights into fundamental aspects of strong-field QED, our results

are relevant for precision studies of quantum vacuum nonlinearities in experimentally realistic

field configurations beyond the locally constant field approximation.

Of course, the strategy devised in the present work to determine derivative corrections to

the Heisenberg-Euler effective action for QED in four space-time dimensions can be readily

extended to QED in other space-time dimensions as well as to other field theories, such as

scalar QED; cf also Ref. [6].
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Appendix A: Identities

Starting from the identity ∗F̄ µαF̄ ν
α = Ggµν it can be easily shown that G2 can be expressed

in terms of the field strength tensor alone, without resorting to the dual field strength tensor

or expressions involving the Levi-Civita symbol, respectively. More specifically, we have

G2 =
1

4
(∗F̄µαF̄

να)(F̄νβ
∗F̄ µβ) = −1

8
(F̄ρσF̄

ρσF̄βνF̄
βν − 2F̄ρσF̄

ρνF̄βνF̄
βσ) . (A1)

The last identity follows straightforwardly upon plugging in the definition of the dual field

strength tensor and making use of the fact that

ǫµαρσǫµβκλ = −(δαβ δ
ρ
κδ

σ
λ + δακδ

ρ
λδ

σ
β + δαλδ

ρ
βδ

σ
κ − δακδ

ρ
βδ

σ
λ − δαβ δ

ρ
λδ

σ
κ − δαλδ

ρ
κδ

β
κ) . (A2)

Along the same lines, we can express the scalar quantity (∂αG)(∂αG) as

∂ρG∂ρG =
1

4
∂ρ(

∗F̄µαF̄
να)∂ρ(F̄νβ

∗F̄ µβ)
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= F̄ρµF̄
σµ∂αF̄σν∂

αF̄ ρν − 1

4
F̄µνF̄

µν∂αF̄ρσ∂
αF̄ ρσ − 1

4
F̄µν∂αF̄

µνF̄ρσ∂
αF̄ ρσ . (A3)

Taking into account the obvious fact that

∂ρG∂ρG =
1

4
∗F̄µν∂ρF̄

µν∗F̄αβ∂
ρF̄ αβ , (A4)

we can infer the following identity

∗F̄µν∂ρF̄
µν∗F̄αβ∂

ρF̄ αβ = 4F̄ρµF̄
σµ∂αF̄σν∂

αF̄ ρν − F̄µνF̄
µν∂αF̄ρσ∂

αF̄ ρσ

− F̄µν∂αF̄
µνF̄ρσ∂

αF̄ ρσ . (A5)
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