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A UNIFIED FRAMEWORK FOR DISTRIBUTED OPTIMIZATION

ALGORITHMS OVER TIME-VARYING DIRECTED GRAPHS

WOOCHEOL CHOI, DOHEON KIM, AND SEOK-BAE YUN

Abstract. In this paper, we propose a framework under which the decentralized optimization algo-

rithms suggested in [8, 11, 14, 15] can be treated in a unified manner. More precisely, we show that

the distributed subgradient descent algorithms [8, 14], the subgradient-push algorithm [15], and the

distributed algorithm with row-stochastic matrix [11] can be derived by making suitable choices of con-

sensus matrices, step-size and subgradient from the decentralized subgradient descent proposed in [14].

As a result of such unified understanding, we provide a convergence proof that covers the algorithms

in [8, 11, 14, 15] under a novel algebraic condition that is strictly weaker than the conventional graph-

theoretic condition in [14]. This unification also enables us to derive a new distributed optimization

scheme.

1. Introduction

In this paper, we consider N agents cooperating with each other to solve the following optimization

problem:

Find a minimizer x∗ ∈ R
d of the function f(x) :=

N
∑

i=1

fi(x). (1.1)

Here, for each 1 ≤ i ≤ N , the function fi : R
d → R is local cost known only to the i-th agent. The N

agents are connected by a network and each agent can receive information from its neighboring agents.

Distributed optimization has received a lot of attention due to its application for various problems

containing wireless sensor network, multi-agent control, machine learning. In distributed optimization,

many agents have their own local cost and try to find a minimizer of the sum of those local cost

functions in a collaborative way. The algorithms consist of optimization step for local function and

consensus step by communication.

In the seminal work [14], Nedic et al introduced the concept of the decentralized (sub)gradient

descent (DGD) to solve (1.1):

xi(t+ 1) =

N
∑

j=1

pij(t)xj(t)− δi(t)gi(t), i = 1, . . . , N, t = 0, 1, 2, . . . , (1.2)

with the N × N row-stochastic matrices P (t) := (pij(t)), the step-size δi(t), and the subgradients

gi(t) ∈ ∂fi(xi(t)) (1 ≤ i ≤ N, t = 0, 1, 2, . . . ). The matrix P contains the information on the

connectivity of the underlying network: pij(t) vanishes if the i-th agent does not receive any information

from the j-th agent at time t. Otherwise pij is always positive.
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Many varaints and extensions of (1.2) were proposed in the literature, and their convergence prop-

erties were extensively studied. In [8], the authors designed a distributed subgradient algorithm to

solve (1.1) given by

xi(t+ 1) =

N
∑

j=1

pij(t)
(

xj(t)− δj(t)gj(t)
)

, (1.3)

The convergence of the above algorithms were investigated for undirected graph under the assumption

that {pij(t)} is a symmetric and doubly-stochastic matrix.

On the other hand, it is more practical to consider directed communications between agents under

certain environments. The network of agents is then represented by a directed graph. To handle the

distributed optimization on directed graph, Nedic-Olshevsky [15] employed the push-sum protocol [9]

to design the subgradient-push method:


















































wi(t+ 1) =

N
∑

j=1

aij(t)xj(t) ∈ R
d, i = 1, . . . , N, t = 0, 1, 2, . . . ,

yi(t+ 1) =

N
∑

j=1

aij(t)yj(t) ∈ R+,

zi(t+ 1) =
wi(t+ 1)

yi(t+ 1)
∈ R

d,

xi(t+ 1) = wi(t+ 1)− δi(t+ 1)gi(t+ 1), gi(t+ 1) ∈ ∂fi(zi(t+ 1)),

(1.4)

where {aij(t)} is a column-stochastic matrix used for the direct communication. When stated in terms

of wi(t) and yi(t), (1.4) can be reformulated in a more succinct form:


























wi(t+ 1) =
N
∑

j=1

aij(t)(wj(t)− δj(t)gj(t)), gi(t) ∈ ∂fi

(

wi(t)

yi(t)

)

yi(t+ 1) =

N
∑

j=1

aij(t)yj(t), 1 ≤ i ≤ N, t ≥ 0.

(1.5)

This algorithm has been extended to various problems containing the stochastic distributed optimiza-

tion [16, 20], online distributed optimization [1].

Recently the authors in [11] designed a distributed subgradient algorithm for directed graph by using

row-stochastic matrix for communication


























xi(t+ 1) =

N
∑

j=1

pijxj(t)−
δ(t)

e⊤i zi(t)
gi(t), gi(t) ∈ ∂fi(xi(t)),

zi(t+ 1) =
N
∑

j=1

pijzj(t), zi(0) = ei, 1 ≤ i ≤ N, t ≥ 0.

(1.6)

We also refer to [12] for further details and the convergence analysis of the above algorithm.

The main goal of this paper is two-fold. First, we show that the algorithms (1.3) - (1.6) can be

exploited in a unified way in the framework (1.2). More pecisely, we show that the above mentioned

algorithms (1.3)-(1.6) can all be derived from (1.2) by making specific choices of the row-stochastic

matrix P (t) and the scalars δi(t) in (1.2). This unified perspective also enables us to design a new
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algorithm which resembles the subgradient-push method [15], but differs in the order of the consensus

step and the gradient descent step:


























wi(t+ 1) =
N
∑

j=1

aij(t)wj(t)− θi(t)gi(t), gi(t) ∈ ∂fi

(

wi(t)

yi(t)

)

,

yi(t+ 1) =

N
∑

j=1

aij(t)yj(t), 1 ≤ i ≤ N, t ≥ 0,

(1.7)

where A(t) = {aij(t)} are column stochastic. We refer to [2, 7, 18, 22, 23, 24] for unifications of gradient

tracking type algorithms.

Secondly, as a result of such unified understanding of the above schemes, we provide a convergence

proof that covers the optimization schemes (1.3) - (1.7) in a unified manner. The novelty of this

convergence proof, aside from the unification itself, lies in providing the convergence of the distributed

algorithm (1.2) for which the matrices P (t) are row-stochastic, but not necessarily column-stochastic.

While the convergence analysis of (1.2) is well-understood when P (t) are doubly stochastic (both row-

stochastic and column-stochastic) and the stepsize δi(t) satisfies a sutiable decaying property and is

independent of i, i.e., δi(t) = δ(t), the convergence analysis of (1.2) for general row-stochastic P (t) is,

to the best knowledge of the authors, not established yet. Moreover, when P (t) is only row-stochastic

and δi(t) = δ(t), the distributed algorithm (1.2) may fail to converge to an optimizer of the problem

even though a suitable decaying property is given.

We establish the convergence of (1.2) to a minimizer for row-stochastic P (t) under a general condition

on the stepsize δi(t) which is associated to the sequence of absolute probability vectors [10]. We mention

that the sequence of absolute probability vectors has been used importantly in the literature containing

consensus algorithms [13] and distributed optimization algorithms [19].

Another contribution of our convergence result is that we successfully replace the conventional graph

theoretic condition [15] on the underlying graph with an algebraic condition on the consensus matrix

in the convergence proof, and show that the latter is strictly more general than the former. More

precisely, the previous works assumed that each vertex of graph G(t) has a self-loop, and finite unions

of time-varying graphs,

⋃

t≤s<t+T

G(s) :=



V,
⋃

t≤s<t+T

E(s)



 (∀ t ≥ 0) for some fixed T ∈ N,

are strongly connected. We replace these conditions with a strictly weaker non-vaninishing condition

on the time-varying consensus matrices up to a finite product:

P (t+ T, t) := P (t+ T − 1)P (t+ T − 2) · · ·P (t) > 0 (∀ t ≥ 0) for some fixed T ∈ N.

We also provide an explicit example which satisfies the latter but not the former (see Section 4). Here

P (t + T, t) > 0 means that every element of P (t + T, t) is positive. We note that our condition does

not require the existence of self-loop at each vertex of graph G(t), which was necessary in most of the

previous works.

Notation. Before we finish this introduction we set up notational convention that is kept throughout

the paper.
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• For 1 ≤ p ≤ ∞, v = (v1, . . . , vd)
⊤ ∈ R

d×1 and A = (aij) ∈ R
m×n, define

‖v‖p :=

(

d
∑

l=1

|vl|p
)

1

p

(1 ≤ p < ∞), ‖v‖∞ = max
1≤l≤d

|vl|, ‖A‖p := sup
x 6=0

‖Ax‖p
‖x‖p

(1 ≤ p ≤ ∞).

Note that

‖v‖2 ≤ ‖v‖1, ‖A‖2 = ‖A⊤‖2, ‖A‖∞ = max
1≤i≤n

n
∑

j=1

|aij |, ‖A‖1 = max
1≤j≤n

n
∑

i=1

|aij |.

• Unless a specification is needed, we use ‖·‖ generically to denote any sub-multiplicative matrix

norm throughout the paper: If we write a statement with this norm, then it means that it

holds for any sub-multiplicative matrix norm since they are all equivalent.

• Lastly, we denote by IN , ON and 1N the N ×N identity matrix, the N ×N zero matrix and

the N × 1 matrix whose entries are all 1, respectively.

The paper is organized as follows. In Section 2, we derive the algorithms (1.3)-(1.7) from the distributed

algorithm (1.2) choosing suitable parameters. In Section 3, we review some fundamental properties

of row-stochastic matrices. In Section 4, we state the convergence result for (1.2) and discuss the

assumptions used in the convergence result. In Section 5, we apply the result of Section 4 to derive

the convergence estimates of the algorithms (1.3)-(1.7). Section 6 is devoted to give the proof of the

convergence result stated in Section 4.

2. Derivation of distributed algorithms from (1.2)

In this section, we show that the distributed algorithms (1.3)-(1.6) can be recovered from (1.2) by

making specific choices of P (t) and δi(t). For this purpose, we write (1.2) as

X(t+ 1) = P (t)X(t) −∆(t)G(t), t ≥ 0, (2.1)

with the following notations:

X(t) = [x1(t) . . . xN (t)]⊤ ∈ R
N×d, P (t) = (pij(t)) ∈ R

N×N ,

∆(t) = diag(δ1(t), . . . , δN (t)) ∈ R
N×N , G(t) = [g1(t) . . . gN (t)]⊤ ∈ R

N×d.
(2.2)

Example 2.1. Derivation of (1.3): We divide (2.1) in odd and even cases:

X(2t + 1) = P (2t)X(2t) −∆(2t)G(2t),

X(2t + 2) = P (2t+ 1)X(2t + 1)−∆(2t+ 1)G(2t + 1).
(2.3)

We choose P (2t) ≡ IN in (2.3)1 to get

X(2t + 1) = X(2t)−∆(2t)G(2t). (2.4)

On the other hand, we set ∆(2t+ 1) ≡ ON to reduce (2.3)2 into

X(2t+ 2) = P (2t+ 1)X(2t + 1). (2.5)

Inserting (2.4) into (2.5), we obtain

X(2t+ 2) = P (2t+ 1)
(

X(2t) −∆(2t)G(2t)
)

.
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Finally, we make the following choices of P (t), ∆(t), and G(t):

P̃ (t) = (p̃ij(t)) := P (2t+ 1), ∆̃(t) = diag(δ̃1(t), . . . , δ̃N (t)) := ∆(2t),

G̃(t) := [g̃1(t) . . . g̃N (t)]⊤ := G(2t).

and introduce the new optimizing variable:

X̃(t) = [x̃1(t) . . . x̃N (t)]⊤ := X(2t),

to obtain the distributed algorithm (1.3):

X̃(t+ 1) = P̃ (t)
(

X̃(t)− ∆̃(t)G̃(t)
)

, t ≥ 0,

or equivalently,

x̃i(t+ 1) =
N
∑

j=1

p̃ij(t)(x̃j(t)− δj(t)g̃i(t)), g̃i(t) ∈ ∂fi(x̃i(t)), 1 ≤ i ≤ N, t ≥ 0.

Example 2.2. Derivation of (1.6): We let the matrix P (t) of (2.1) independent of time, i.e.,

P (0) = P (1) = P (2) = · · · =: P,

and introduce a new variable Z(t) defined as the t-th power of P with the convention P 0 := IN :

Z(t) = [z1(t) . . . zN (t)]⊤ := P t, with zi(t) = [zi1(t) . . . ziN (t)]⊤, 1 ≤ i ≤ N, t ≥ 0.

Then, we have

Z(t+ 1) = P t+1 = PP t = PZ(t). (2.6)

We then choose our new step-size by

δi(t) ≡
δ(t)

i-th diagonal entry of P t
, t ≥ 0,

for some scalars δ(t) (t ≥ 0), to get from (2.1) that

X(t+ 1) = PX(t)− δ(t)

P t
ii

G(t). (2.7)

From (2.6) and (2.7), we derive the distributed algorithm (1.6):


























xi(t+ 1) =

N
∑

j=1

pijxj(t)−
δ(t)

zii(t)
gi(t), gi(t) ∈ ∂fi(xi(t)),

zi(t+ 1) =

N
∑

j=1

pijzj(t), zi(0) = ei, 1 ≤ i ≤ N, t ≥ 0,

where ei ∈ R
N denotes the i-th standard unit vector.

Example 2.3. Derivation of a new algorithm: In this example, we propose a new algorithm that

generalizes the subgradient-push method in [15] (see Example 2.4). Let the sequence {A(t)}t≥0 of

N ×N column-stochastic matrices and the sequence {Y (t)}t≥0 of N × 1 matrices satisfying

Y (t+ 1) = A(t)Y (t), Y (t) > 0, t ≥ 0
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be given. Here we remark that one may replace the condition “Y (t) > 0 (∀ t ≥ 0)” by a stronger

condition “each A(t) (t ≥ 0) has no zero row and Y (0) > 0”. Indeed, we have

min
1≤i≤N

yi(t+ 1) = min
1≤i≤N





N
∑

j=1

aij(t)yj(t)



 ≥ min
1≤i≤N





N
∑

j=1

aij(t)



 ·
(

min
1≤k≤N

yk(t)

)

,

and by the assumption that A(t) has no zero row, we have

min
1≤i≤N





N
∑

j=1

aij(t)



 > 0.

So we can prove Y (t) > 0 by inducting on t.

We then make the following choice for {P (t)}t≥0:

P (t) ≡ diag(Y (t+ 1))−1A(t) diag(Y (t)), t ≥ 0,

which is row-stochastic by construction:

P (t)1N = diag(Y (t+ 1))−1A(t) diag(Y (t))1N

= diag(Y (t+ 1))−1A(t)Y (t)

= diag(Y (t+ 1))−1Y (t+ 1)

= 1N .

(2.8)

We choose this P (t) in (2.1) and, finally we multiply diag(Y (t+ 1)) to the left of both sides of (2.1)

diag(Y (t+ 1))X(t + 1) = A(t) diag(Y (t))X(t) − diag(Y (t+ 1))∆(t)G(t), t ≥ 0,

and introduce

W (t) := diag(Y (t))X(t), Θ(t) := diag(Y (t+ 1))∆(t), t ≥ 0

to get






Y (t+ 1) = A(t)Y (t),

W (t+ 1) = A(t)W (t)−Θ(t)G(t), t ≥ 0.
(2.9)

If we denote

W (t) = [w1(t) . . . wN (t)]⊤, Y (t) = [y1(t) . . . yN(t)]⊤,

Θ(t) = diag(θ1(t) . . . θN (t)), A(t) = (aij(t)),
(2.10)

then we can rewrite (2.9) as



























yi(t+ 1) =

N
∑

j=1

aij(t)yj(t), 1 ≤ i ≤ N, t ≥ 0,

wi(t+ 1) =
N
∑

j=1

aij(t)wj(t)− θi(t)gi(t), gi(t) ∈ ∂fi

(

wi(t)

yi(t)

)

.

(2.11)
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Example 2.4. Derivation of (1.4) As in the case of Example 2.1, we divide (2.9) in the Example

2.3 into odd and even cases as

Y (2t+ 1) = A(2t)Y (2t)

W (2t+ 1) = A(2t)W (2t) −Θ(2t)G(2t)

Y (2t+ 2) = A(2t+ 1)Y (2t+ 1)

W (2t+ 2) = A(2t+ 1)W (2t+ 1)−Θ(2t+ 1)G(2t + 1)

(2.12)

and set

A(2t) = IN , ∆(2t+ 1) = ON , t ≥ 0.

It leads to

Y (2t+ 1) = Y (2t)

W (2t+ 1) = W (2t)−Θ(2t)G(2t)

Y (2t+ 2) = A(2t+ 1)Y (2t+ 1)

W (2t+ 2) = A(2t+ 1)W (2t+ 1),

(2.13)

which is reduced to

Y (2t+ 2) = A(2t+ 1)Y (2t)

W (2t+ 2) = A(2t+ 1)(W (2t) −Θ(2t)G(2t)).
(2.14)

This, together with the following choices:

X̂(t) = [x̂1(t) . . . x̂N (t)]⊤ := W (2t+ 1), Ĝ(t) := [ĝ1(t) . . . ĝN (t)]⊤ := G(2t),

Ŷ (t) = [ŷ1(t) . . . ŷN (t)]⊤ := Y (2t), Â(t) = (âij(t)) := A(2t+ 1),

Θ̂(t) = diag(θ̂1(t), . . . , θ̂N (t)) := Θ(2t), Ŵ (t) = [ŵ1(t) . . . ŵN (t)]⊤ := W (2t),

(2.15)

lead to the subgradient-push method in [15]

Ŷ (t+ 1) = Â(t)Ŷ (t)

Ŵ (t+ 1) = Â(t)(Ŵ (t)− Θ̂(t)Ĝ(t)),
(2.16)

which can be written as










































ŷi(t+ 1) =
N
∑

j=1

âij(t)ŷj(t) ∈ R+,

x̂i(t) = ŵi(t)− θ̂i(t)ĝi(t), ĝi(t) ∈ ∂fi

(

ŵi(t)

ŷi(t)

)

,

ŵi(t+ 1) =

N
∑

j=1

âij(t)x̂j(t) ∈ R
d.

In Table 1, we provide a systematic summary of this section.
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Table 1. Summary of the derivations of optimization algorithms

Choice of P (t), δi(t), xi(t) in (1.2) Corresponding algorithm Ref.

P (t) = P (t)

δi(t) = δ(t)

xi(t) = xi(t)

xi(t+ 1) =
∑N

j=1 pij(t)xj(t)− δ(t)gi(t)

gi(t) ∈ ∂fi (xi(t))

P : doubly-stochastic

[14]

P (2t) = IN , P (2t+ 1) = P̃ (t)

δi(2t+ 1) = 0, δi(2t) = δ̃i(t)

xi(2t) = x̃i(t)

xi(2t+ 1) = x̃i(t)− δ̃i(t)g̃i(t)

x̃i(t+ 1) =
∑N

j=1 p̃ij(t)
(

x̃j(t)− δ̃j(t)g̃j(t)
)

g̃i(t) ∈ ∂fi (x̃i(t))

P̃ : doubly-stochastic

[8]

P (t) ≡ P

δi(t) = δ(t)/zii(t)

xi(t) = xi(t)

xi(t+ 1) =
∑N

j=1 pijxj(t)−
δ(t)
zii(t)

gi(t)

zi(t+ 1) =
∑N

j=1 pijzj(t)

gi(t) ∈ ∂fi (xi(t))

P : row-stochastic

[11]

P (t) ≡ diag(Y (t+ 1))−1A(t)diag(Y (t))

δi(t) = θi(t)/yi(t)

xi(t) = wi(t)/yi(t)

wi(t+ 1) =
∑N

j=1 aij(t)wj(t)− θi(t)gi(t)

yi(t+ 1) =
∑N

j=1 aij(t)yj(t)

gi(t) ∈ ∂fi

(

wi(t)
yi(t)

)

A: column-stochastic

This

paper

P (2t) = IN

P (2t+ 1) ≡ diag(Ŷ (t+ 1))−1Â(t)diag(Ŷ (t))

δi(2t) = θ̂i(t)/ŷi(t), δi(2t+ 1) = 0

xi(2t) = ŵi(t)/ŷi(t)

xi(2t+ 1) = ŵi(t)
ŷi(t)

− θ̂i(t)
ŷi(t)

ĝi(t)

ŵi(t+ 1) =
∑N

j=1 âij(t)x̂j(t)

ŷi(t+ 1) =
∑N

j=1 âij(t)ŷj(t)

x̂i(t+ 1) = ŵi(t+ 1)− θ̂iĝi(t+ 1)

ĝi(t+ 1) ∈ ∂fi

(

ŵi(t+1)
ŷi(t+1)

)

A: column-stochastic

[15]

3. Properties of row-stochastic matrices

In this section, we study some properties of ergodic sequences of row-stochastic matrices, which is

crucially used in the sequel.

Definition 3.1.

(1) A matrix A is non-negative (positive) if all of its entries are non-negative (positive), and we

write A ≥ 0 (> 0).

(2) A non-negative square matrix is row-stochastic if all of its row has sum equal to 1.

(3) A non-negative vector is a probability vector if the sum of its entries is equal to 1.
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(4) A sequence {P (t)}t≥0 of row-stochastic matrices is ergodic if there exists a sequence {v(t)}t≥0

of probability vectors satisfying

lim
t→∞

P (t)P (t− 1) . . . P (t0) = 1Nv(t0)
⊤, ∀ t0 ≥ 0.

(5) A sequence {π(t)}t≥0 of probability vectors is a set of absolute probability vectors for the

sequence {P (t)}t≥0 of row stochastic matrices if

π(t+ 1)⊤P (t) = π(t)⊤, t ≥ 0. (3.1)

The following proposition establishes a relation between ergodic sequences and sets of absolute

probability vectors.

Proposition 3.2 ([10]). Let {P (t)}t≥0 be a sequence of N × N row stochastic matrices, and let

{π(t)}t≥0 be a sequence of N × 1 probability vectors. Then the following are equivalent.

(1) {P (t)}t≥0 is ergodic and satisfies

lim
t→∞

P (t)P (t− 1) . . . P (t0) = 1Nπ(t0)
⊤, ∀ t0 ≥ 0.

(2) {π(t)}t≥0 is a unique set of absolute probability vectors for {P (t)}t≥0.

Next, we introduce a useful tool to study ergodicity of sequences of row-stochastic matrices.

Definition 3.3 ([5, 6]). For each N × N row-stochastic matrix P = (pij), we define its ergodicity

coefficient by

τ(P ) :=
1

2
max
i1,i2

N
∑

j=1

|pi1j − pi2j| = 1−min
i1,i2

N
∑

j=1

min{pi1j, pi2j}. (3.2)

The identity (3.2) can be derived in the following way:

1

2
max
i1,i2

N
∑

j=1

|pi1j − pi2j| =
1

2
max
i1,i2

N
∑

j=1

(pi1j + pi2j − 2min{pi1j , pi2j})

=
1

2
max
i1,i2



2− 2
N
∑

j=1

min{pi1j , pi2j}



 = 1−min
i1,i2

N
∑

j=1

min{pi1j , pi2j}.

For any N ×N row-stochastic matrix P , it is clear from the definition that 0 ≤ τ(P ) ≤ 1, and that

τ(P ) = 0 if and only if P = 1Nv⊤ for some v ∈ R
N×1,

which reveals a close relationship between τ and ergodicity. We finish this section by introducing some

useful properties of τ .

Lemma 3.4 ([5, 6]).

(1) For any row-stochastic matrix P , we have

τ(P ) = sup
u 6=0,

u⊤1N=0

‖P⊤u‖1
‖u‖1
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(2) For any row-stochastic matrices P1, P2 of the same size, we have

τ(P1P2) ≤ τ(P1)τ(P2).

Lemma 3.5 ([4]). A sequence {P (t)}t≥0 of N ×N row stochastic matrices is ergodic if and only if

lim
t→∞

τ(P (t)P (t− 1) . . . P (t0)) = 0, ∀ t0 ≥ 0.

4. Conditions for convergence to an optimum

In this section, we present the main theorem of this paper, which states a general sufficient condition

for which the algorithm (2.1) finds a minimizer x∗ of the distributed optimization problem (1.1).

For our convergence result, we make the following assumptions for fi:

(1) For each i = 1, . . . , N , fi is convex, and we have Li := sup
z∈Rd

sup
g∈∂fi(z)

‖g‖1 < ∞.

(2) There is at least one solution to the minimization problem x∗ ∈ argminx∈Rd f(x).

From now on, to the sequence {P (t)}t≥0, we associate the backward products

P (t, t0) := P (t− 1)P (t − 2) . . . P (t0), t ≥ t0 ≥ 0

with the convention P (t0, t0) := IN (t0 ≥ 0). Below, we introduce the main assumptions which

constitute a sufficient condition to guarantee the convergence of the algorithm (2.1) to a minimizer of

f .

• (A1): The sequence {P (t)}t≥0 of N ×N row-stochastic matrices satisfies

p+ := inf
t≥0

[

min
i,j: pij(t)>0

pij(t)

]

> 0 (4.1)

and there exists T ∈ N such that

P (t+ T, t) > 0 ∀ t ≥ 0.

• (A2): Each δi(·) is nonnegative, and
∑∞

t=0

(

‖∆(t)‖ supℓ≥t ‖∆(ℓ)‖
)

< ∞.

• (A3): The set of absolute probability vectors for {P (t)}t≥0 denoted by

π(t) = (π1(t), . . . , πN (t))⊤ (t ≥ 0)

satisfies
∞
∑

t=0
‖∆(t)π(t + 1)‖ = ∞ and

∞
∑

t=0

√
t

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
)

< ∞.

We remark that the existence and uniqueness of the vector π(t) in (A3) is guaranteed by (A1) as

proved in Lemma 4.2 below.

Now we state the main theorem of this paper.

Theorem 4.1. Let X(t) be a solution to (2.1). Suppose that (A1)-(A3) hold. Then there exists some

minimizer x∗ of f such that lim
t→∞

xi(t) = x∗ for all 1 ≤ i ≤ N .

In the following lemma, we prove that if there exists a sequence {P (t)}t≥1 satisfying (A1) is given,

then there exist sequences {∆(t)}t≥0 and {π(t)}t≥0 satisfying (A2)-(A3).

Lemma 4.2. Suppose that (A1) holds. Then the following assertions hold.
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(1) For all t ≥ t0 ≥ 0, the function τ defined in (3.2) satisfies

τ(P (t, t0)) ≤ Cλt−t0

for some constants C > 0 and 0 < λ < 1, both independent of t and t0.

(2) The set {π(t)}t≥0 of absolute probability vectors defined in (A3) uniquely exists, and satisfies

πi(t) ≥ (p+)T , ∀ 1 ≤ i ≤ N, ∀ t ≥ 0.

(3) If we set

δi(t) :=
cδ̄(t)

πi(t+ 1) + ǫi(t)
, ∀ 1 ≤ i ≤ N, ∀ t ≥ 0 (4.2)

for some c > 0, δ̄(t) ≥ 0 satisfying
∑

t≥0 δ̄(t) supℓ≥t δ̄(t) < ∞ and
∑

t≥0 δ̄(t) = ∞, and

ǫi(t) ∈ (−πi(t+ 1),∞) approaching zero geometrically fast as t → ∞, then {∆(t)}t≥0 satisfies

(A2)-(A3).

Proof. (1) For any row-stochastic Q = (qij), we deduce from (3.1) the following inequality

τ(Q) = 1−min
i1,i2

N
∑

j=1

min{qi1j, qi2j} ≤ 1−N min
i,j

qij. (4.3)

For any s ≥ 0, every entry of P (s+T, s) is greater than or equal to (p+)T defined in (4.1). Combining

this with (4.3) we deduce

τ(P (s+ T, s)) ≤ 1−N(p+)T =: γ < 1.

Suppose t− t0 = qT +m with q ∈ N ∪ {0} and 0 ≤ m < T . By Proposition 2.4, we have

τ(P (t, t0)) ≤ τ(P (t, t0 + qT ))

q
∏

k=1

τ(P (t0 + kT, t0 + (k − 1)T ))

≤ γq = γ
t−t0−m

T = γ−
m
T ·
(

γ
1

T

)t−t0
< γ−1 ·

(

γ
1

T

)t−t0
= Cλt−t0 .

(2) By (1), Lemma 3.5 and Proposition 3.2, the existence and uniqueness of {π(t)}t≥0 are guaranteed.

By (A1), we have

πi(t) = π(t)⊤ei = π(t+ T )⊤P (t+ T, t)ei ≥
N
∑

j=1

πj(t+ r0)(p
+)T = (p+)T .

(3) By (2) and (4.2), there exist positive constants c1, c2 indepedent of t such that

c1δ̄(t) ≤ δi(t) ≤ c2δ̄(t).

Combining this with the given assumptions, we have

∞
∑

t=0

(

‖∆(t)‖ sup
ℓ≥t

‖∆(ℓ)‖
)

< ∞ and

∞
∑

t=0

‖∆(t)π(t+ 1)‖ = ∞.

Also note that maxi,j |πi(t+ 1)δi(t)− πj(t+ 1)δj(t)| approaches zero geometrically fast, since

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)| =
cδ̄(t)

(πi(t+ 1) + ǫi(t))(πj(t+ 1) + ǫj(t))
· |πi(t+ 1)ǫj(t)− πj(t+ 1)ǫi(t)|

≤ C̃ ·
(

|ǫj(t)|+ |ǫi(t)|
)

,
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for some constant C̃ > 0. Hence
∞
∑

t=0

√
t

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
)

< ∞. (4.4)

The proof is finished. �

Remark 4.3.

(1) We may set δi(t) =
ctα

πi(t+1) with α ∈ [−1,−1/2) and c > 0 in Lemma 4.2 (3).

(2) When all P (t) are doubly-stochastic, then π(0) = π(1) = · · · = 1
N
1N . So we may simply set

δi(t) = ctα with α ∈ [−1,−1/2) and c > 0 in Lemma 4.2 (3).

In the following proposition, we provide a sufficient condition (A1)′ for {P (t)}t≥0 to satisfy (A1),

described in terms of directed graphs. The condition (A1)′ is adapted from [15]. We mention that

however, (A1) is not equivalent to (A1)′. (See the remark that follows Proposition 4.5 below.) We

begin with the following definition.

Definition 4.4. For graph G = (V,E) with V = {1, · · · , N} and E ⊂ V × V , we call G strongly

connected if for any (i, j) ∈ V × V , there exists a path from i to j, i.e., there exists a finite sequence

of vertices i = i0, i1, . . . , in = j in V such that (il−1, il) ∈ E for l = 1, . . . , n.

Proposition 4.5. Given the sequence of N ×N matrices {P (t)}t≥0 with nonnegative entries, define

the directed graphs G(t) = (V,E(t)) (t ≥ 0) with V = {1, . . . , N} and E(t) ⊆ V × V in the following

way:

(i, j) ∈ E(t) if and only if pij(t) > 0.

Then the following assumption implies (A1):

(A1)′ The sequence {P (t)}t≥0 of N ×N row-stochastic matrices with positive diagonal entries satisfy

p+ := inf
t≥0

[

min
i,j: pij(t)>0

pij(t)

]

> 0 (4.5)

and there exists t0 ∈ N such that for all t ≥ 0, the union graph

⋃

t≤s<t+t0

G(s) :=



V,
⋃

t≤s<t+t0

E(s)





is strongly connected.

Proof. Define A(t) = (aij(t)) (t ≥ 0) by

aij(t) =







1 if (i, j) ∈ E(t) and i 6= j,

0 otherwise.

Then we have P (t) ≥ p+(IN +A(t)), for any t ≥ 0 by definition of p+ given in (4.5), and so

P (t+ t0, t) ≥ (p+)t0(IN +A(t+ t0 − 1)) . . . (IN +A(t))

≥ (p+)t0

(

IN +

t0−1
∑

k=0

A(t+ k)

)

=: B(t, t0).
(4.6)
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The (i, j)-entry of B(t, t0) is positive if and only if

(i, j) ∈
⋃

0≤k≤t0−1

E(t+ k) or i = j.

By the strong connectivity of (A1)′, the matrix B(t, t0) is an irreducible matrix, i.e., for any pair of

indices (i, j) there exists a finite sequence i = i0, i1, . . . , in = j such that (im−1, im)-entry of the matrix

B(t, t0) is positive for all 1 ≤ m ≤ n, and has positive diagonal entries. So, the same is true for

P (t+ t0, t) by (4.1). Noting that P (t+ (N − 1)t0, t) is equal to

P (t+ (N − 1)t0, t) =

N−1
∏

k=0

P (t+ (k + 1)t0, t+ kt0) (4.7)

which is a product of N −1 irreducible matrices with positive diagonal entries, we can see that proving

the following claim would ensure the positivity of P (t+ (N − 1)t0, t), thereby finishing the proof. �

Lemma 4.6. Each row of a product of k irreducible matrices with positive diagonal entries has at least

k + 1 positive entries. (1 ≤ k ≤ N − 1)

Proof. Let A(ℓ) = (a
(ℓ)
ij ) (ℓ = 1, . . . , k) be such matrices, and consider the product A(1) . . . A(k). We

proceed by induction on k.

(i) k = 1: For each i, we have a
(1)
ii > 0, and the existence of j 6= i satisfying a

(1)
ij > 0 can be shown

in the following way: Choose any q 6= i. Since A(1) is irreducible, there exists a finite sequence

i = i0, i1, . . . , in = q of indices such that a
(1)
im−1im

> 0 for all 1 ≤ m ≤ n. Set j = is, where s is the

minimal index satisfying is 6= i.

(ii) Suppose that the claim holds for k − 1 ≤ N − 2, Set A(1) . . . A(ℓ) = (a
(1,ℓ)
ij ). Note that if a

(1,k−1)
ij is

positive then so is a
(1,k)
ij , as can be seen in the following relation:

a
(1,k)
ij =

∑

ℓ

a
(1,k−1)
iℓ a

(k)
ℓj ≥ a

(1,k−1)
ij a

(k)
jj . (4.8)

Fix i. If the i-th row of A(1) . . . A(k−1) had at least k+1 positive entries, then by (4.8), the same is true

for A(1) . . . A(k). Now suppose that the i-th row of A(1) . . . A(k−1) has exactly k positive entries (k ≤
N−1). To complete the induction step, it suffices to show that there exists j with a

(1,k)
ij > 0 = a

(1,k−1)
ij .

Pick any ℓ with a
(1,k−1)
iℓ = 0. Since A(k) is irreducible, there exists a finite sequence i = i0, i1, . . . , in = q

of indices such that a
(k)
im−1im

> 0 for all 1 ≤ m ≤ n. Set j = is, where s is the minimal index satisfying

a
(1,k−1)
iis

= 0, whose existence is guaranteed by the fact that a
(1,k−1)
iℓ = 0. Then

a
(1,k)
iis

=
∑

p

a
(1,k−1)
ip a

(k)
pis

≥ a
(1,k−1)
iis−1

a
(k)
is−1is

> 0.

Hence the claim holds for k + 1. �

We close this section with showing that the condition (A1) is strictly more general than the condition

(A1)′. For this, we consider time independent P (t) ≡ P , where P is irreducible and aperiodic. In other

words, the corresponding directed graph G(t) ≡ G = (V,E) (as described in Proposition 4.5) is

(i) strongly connected: for any pair of vertices (i, j), G contains a path from i to j, i.e., a finite

sequence i = i0, i1, . . . , in = j such that (im−1, im) ∈ E for all 1 ≤ m ≤ n, and
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(ii) of period 1: for each vertex i ∈ V , the greatest common divisor of the lengths of all paths from

i to i is equal to 1,

which is necessary and sufficient for the matrix P to be primitive, i.e., P T > 0 for some T ∈ N (see

[17], for example). It implies that our example P (t) ≡ P satisfies the condition (A1). In addition, if P

has at least one zero diagonal entry, then our example does not satisfy the positive diagonal condition

of (A1′). Here is an example of such P :

P =











0 1 0 0

0 0 1 0
1
2 0 0 1

2

0 0 1 0











.

5. Application of the main theorem to several algorithms

In this section, we apply the result of Theorem 4.1 to derive the convergence results for the four

examples discussed in Section 2.

5.1. Convergence theorem for Example 2.1.

Corollary 5.1. Let X̃(t) be a solution to the following algorithm, originated from [8]:

x̃i(t+ 1) =

N
∑

j=1

p̃ij(t)(x̃j(t)− δ̃j(t)g̃i(t)), g̃i(t) ∈ ∂fi(x̃i(t)), 1 ≤ i ≤ N, t ≥ 0.

Suppose that the following conditions (Ã1), (Ã2), (Ã3) hold.

• (Ã1): The sequence {P̃ (t)}t≥0 of N × N row-stochastic matrices and its backward products

satisfy

p̃+ := inf
t≥0

[

min
i,j: p̃ij(t)>0

p̃ij(t)

]

> 0

and

P̃ (t+ T, t) > 0 (∀ t ≥ 0)

for some T ∈ N.

• (Ã2): Each δ̃i(·) is nonnegative, and
∑∞

t=0

(

‖∆̃(t)‖ supℓ≥t ‖∆̃(ℓ)‖
)

< ∞.

• (Ã3): The set of absolute probability vectors for {P̃ (t)}t≥0, denoted by

π̃(t) = (π̃1(t), . . . , π̃N (t))⊤ (t ≥ 0),

satisfy
∑∞

t=0 ‖∆̃(t)π̃(t)‖ = ∞ and
∑∞

t=0

√
t
(

maxi,j |π̃i(t)δ̃i(t)− π̃j(t)δ̃j(t)|
)

< ∞.

Then there exists some minimizer x∗ of f such that lim
t→∞

x̃i(t) = x∗ for all 1 ≤ i ≤ N .

Proof. For t ≥ 0 we set xi(2t) = x̃i(t) and xi(2t+ 1) = x̃i(t)− δ̃i(t)g̃i(t). We also define

P (2t) ≡ IN , P (2t+ 1) = P̃ (t), ∆(2t+ 1) ≡ ON , ∆(2t) = ∆̃(t) (t ≥ 0) (5.1)

and

δi(2t) = δi(t) and δi(2t+ 1) = 0. (5.2)
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Then X(t) = [x1(t), · · · , xN (t)]⊤ satisfies

X(t+ 1) = P (t)X(t) −∆(t)G(t). (5.3)

Using (5.1) it is direct to check that (A1) and (A2) are equivalent to (Ã1) and (Ã2) respectively. Since

P (2t) = IN and P (2t + 1) = P̃ (t) we find that π(2t + 1) = π(2t) = π̃(t). Using this and (5.2) we see

that (A3) and (Ã3) are equivalent. Combining this with Theorem 4.1, we get the desired result. �

5.2. Convergence theorem for Example 2.2.

Corollary 5.2. Let X(t) be a solution to the following algorithm, originated from [11]:


























xi(t+ 1) =

N
∑

j=1

pijxj(t)−
δ(t)

zii(t)
gi(t), gi(t) ∈ ∂fi(xi(t)),

zi(t+ 1) =
N
∑

j=1

pijzj(t), zi(0) = ei, 1 ≤ i ≤ N, t ≥ 0.

Suppose that P = (pij) is row-stochastic and primitive. Choose δ(t) = ctα with α ∈ [−1,−1/2) and

c > 0. Then there exists some minimizer x∗ of f such that lim
t→∞

xi(t) = x∗ for all 1 ≤ i ≤ N .

Proof. In Example 2.2, we see that xi(t) satisfies (1.2) with P (t) ≡ P and δi(t) =
δ(t)
zii(t)

. The condition

(A1) is satisfied for any primitive P , and we have π(0) = π(1) = · · · =: π. A standard theory of row-

stochastic matrices yields that as t → ∞, Z(t) = P t → 1Nπ, i.e., zii(t) → πi (∀ i) geometrically fast

(see [17]). Hence if we choose δ(t) = ctα with α ∈ [−1,−1/2) and c > 0, then (A2, 3) are satisfied. �

5.3. Convergence theorem for Example 2.3.

Corollary 5.3. Let Y (t),W (t) be a solution to the following algorithm:


























yi(t+ 1) =

N
∑

j=1

aij(t)yj(t), 1 ≤ i ≤ N, t ≥ 0,

wi(t+ 1) =

N
∑

j=1

aij(t)wj(t)− ctαgi(t), gi(t) ∈ ∂fi

(

wi(t)

yi(t)

)

,

with α ∈ [−1,−1/2) and c > 0. Suppose that Y (0) > 0 and (A1∗) hold.

• (A1∗): The sequence {A(t)}t≥0 of N ×N column-stochastic matrices with no zero rows satisfy

a+ := inf
t≥0

[

min
i,j: aij(t)>0

aij(t)

]

> 0

and

A(t+ T, t) := A(t+ T − 1) . . . A(t+ 1)A(t) > 0 (∀ t ≥ 0)

for some T ∈ N.

Then there exists some minimizer x∗ of f such that lim
t→∞

wi(t)
yi(t)

= x∗ for all 1 ≤ i ≤ N .
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Proof. We may write the above scheme as

wi(t+ 1)

yi(t+ 1)
=

N
∑

j=1

aij(t)yj(t)

yi(t+ 1)

wj(t)

yj(t)
− ctα

yi(t+ 1)
gi(t). (5.4)

We set P (t) = diag(Y (t + 1))−1A(t)diag(Y (t)) for t ≥ 0. Then P (t) is row-stochastic as checked in

(2.8). We take δi(t) =
ctα

yi(t+1) with α ∈ [−1,−1/2) and c > 0. Then xi(t) =
wi(t)
yi(t)

satisfies

xi(t+ 1) =
N
∑

j=1

pij(t)xj(t)− δi(t)gi(t), gi(t) ∈ ∂fi(xi(t)). (5.5)

We aim to show that P (t) and δi(t) satify the assumption (A1)−(A3). To find the absolute probability

vectors of P (t), we note that

Y (t+ 1)⊤P (t) = Y (t+ 1)⊤ diag(Y (t+ 1))−1A(t) diag(Y (t))

= (1N )⊤A(t) diag(Y (t))

= (1N )⊤ diag(Y (t))

= Y (t)⊤.

By multiplying 1N to both sides, we also get

Y (t+ 1)⊤1N = Y (t)⊤1N = · · · = Y (0)⊤1N .

Therefore, to show that π(t) = 1
Y (0)⊤1N

Y (t), it only remains to prove that the condition (A1∗) combined

with Y (0) > 0 is a sufficient condition for (A1), which implies the uniqueness of the set of absolute

probability vectors. Indeed, we have

A(t+ T, t) > 0 ⇒ P (t+ T, t) = diag(Y (t+ T ))−1A(t+ T, t) diag(Y (t)) > 0.

The condition p+ > 0 can be proved in the following way: for t ≥ T , we have

Y (t) = A(t, t− T )Y (t− T ) ≥ (a+)T 1N (1N )⊤Y (t− T ) =
(

(a+)T (1N )⊤Y (0)
)

1N

and

Y (t+ 1) ≤ 1N (1N )⊤Y (t+ 1) =
(

(1N )⊤Y (0)
)

1N

so

P (t) = diag(Y (t+ 1))−1A(t) diag(Y (t)) ≥ (a+)TA(t), t ≥ T.

Hence

p+ ≥ min

{

min
0≤t<T

[

min
i,j: aij(t)>0

aij(t)

]

, (a+)T+1

}

> 0.

Finally, note that δi(t) =
ctα

yi(t+1) with α ∈ [−1,−1/2) and c > 0, i.e., θi(t) = ctα satisfy the condition

in Lemma 4.2 (3), thereby satisfying (A2), (A3). Summing up, we obtain the desired result. �

Recall that in Example 2.3 we have used the substitution xi(t) =
wi(t)
yi(t)

. We remark that we can get

an analogous statement of Proposition 4.5 for (A1∗) instead of (A1).
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5.4. Convergence theorem for Example 2.4.

Corollary 5.4. Let X̂(t), Ŷ (t), Ŵ (t) be a solution to the following algorithm, originated from [15]:










































ŷi(t+ 1) =

N
∑

j=1

âij(t)ŷj(t) ∈ R+,

x̂i(t) = ŵi(t)− ctαĝi(t), ĝi(t) ∈ ∂fi

(

ŵi(t)

ŷi(t)

)

,

ŵi(t+ 1) =
N
∑

j=1

âij(t)x̂j(t) ∈ R
d.

with α ∈ [−1,−1/2) and c > 0. Suppose that Ŷ (0) > 0 and (Â1∗) hold.

• (Â1∗): The sequence {Â(t)}t≥0 of N ×N column-stochastic matrices with no zero rows satisfy

â+ := inf
t≥0

[

min
i,j: âij(t)>0

âij(t)

]

> 0

and

Â(t+ T, t) := Â(t+ T − 1) . . . Â(t+ 1)Â(t) > 0 (∀ t ≥ 0)

for some T ∈ N.

Then there exists some minimizer x∗ of f such that lim
t→∞

ŵi(t)
ŷi(t)

= lim
t→∞

x̂i(t)
ŷi(t)

= x∗ for all 1 ≤ i ≤ N .

Proof 1. We let

wi(2t) = ŵi(t), wi(2t+ 1) = x̂i(t) and yi(2t+ 1) = yi(2t) = ŷi(t). (5.6)

We write down the first and the second lines of the algorithm as










yi(2t+ 1) = yi(2t), 1 ≤ i ≤ N, t ≥ 0,

wi(2t+ 1) = wi(2t)− ctαgi(2t), gi(2t) ∈ ∂fi

(

wi(2t)

yi(2t)

)

.

Next we write the first and the third lines of the algorithm as


























yi(2t+ 2) =

N
∑

j=1

âij(t)yj(2t+ 1), 1 ≤ i ≤ N, t ≥ 0,

wi(2t+ 2) =
N
∑

j=1

âij(t)wj(2t+ 1).

Now we set θi(2t) = c(2t)α, θi(2t+ 1) = 0, A(2t) = IN , and A(2t+ 1) = Â(t).

Then we see that W (t), Y (t) satisfies the algorithm (2.11). By following the same argument as in

the proof of Corollary 5.3, we get the desired result. �

Proof 2. We let

x̃i(t+ 1) =
ŵi(t+ 1)

ŷi(t+ 1)
. (5.7)
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Then the scheme is written as

x̃i(t+ 1) =
N
∑

j=1

âij(t)

ŷi(t+ 1)

(

ŷj(t)x̃j(t)− ctαg̃j(t)
)

=

N
∑

j=1

âij(t)ŷj(t)

ŷi(t+ 1)

(

x̃j(t)−
ctα

ŷj(t)
g̃j(t)

)

, g̃i(t) ∈ ∂fi (x̃i(t))

(5.8)

Thus we have

x̃i(t+ 1) =:
N
∑

j=1

p̃ij(t)
(

x̃j(t)− δ̃j(t)g̃j(t)
)

, g̃i(t) ∈ ∂fi (x̃i(t)) (5.9)

where p̃ij(t) =
âij(t)ŷj (t)
ŷi(t+1) and δ̃j(t) =

ctα

ŷj(t)
. It corresponds to the algorithm in Corollary 5.1. Moreover,

from the proof of Corollary 5.3 we see that (Ã1)− (Ã3) are satisfied for P̃ and ∆̃. Therefore we may

apply Corollary 5.1 to obtain the convergence result. �

Proof 3. We let

xi(2t) =
ŵi(t)

ŷi(t)
and xi(2t+ 1) =

x̂i(t)

ŷi(t)
. (5.10)

We write the second line of the algorithm as

x̂i(t)

ŷi(t)
=

ŵi(t)

ŷi(t)
− ctα

ŷi(t)
ĝi(t), ĝi(t) ∈ ∂fi

(

ŵi(t)

ŷi(t)

)

. (5.11)

Now we set δi(2t) =
ctα

ŷi(t)
, gi(2t) = ĝi(t), and pij(2t) = δij . Then the above equality is written as

xi(2t+ 1) = xj(2t)− δi(2t)gi(2t), gi(2t) ∈ ∂fi(xi(2t)). (5.12)

Next we write down the third line of the algorithm as

ŵi(t+ 1)

ŷi(t+ 1)
=

N
∑

j=1

âij(t)ŷj(t)

ŷi(t+ 1)

x̂j(t)

ŷj(t)
. (5.13)

Let pij(2t+ 1) =
âij(t)ŷj (t)
ŷi(t+1) and δi(2t+ 1) = 0. Then this is written in terms of xi as

xi(2t+ 2) =

N
∑

j=1

pij(2t+ 1)xi(2t+ 1). (5.14)

From (5.12) and (5.14) we see that xi(t) satisfies (1.2). Now it remains to check that P (t) = (pij(t))

and ∆(t) = diag(δ1(t), . . . , δN (t)) satisfy the conditions (A1), (A2), (A3). Note that

P (t) = diag(Y (t+ 1))−1A(t)diag(Y (t)),

where

A(2t) = IN , A(2t+ 1) = Â(t), Y (2t+ 1) = Y (2t) = Ŷ (t).

By following the same argument as in the proof of Corollary 5.3, we can see that π(t) = 1
Y (0)⊤1N

Y (t),

and thus (A1)− (A3) hold. Thus we have the desired result. �
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6. Proof of Theorem 4.1

In this section we give the proof of Theorem 4.1. For this aim, we state and prove preliminary

lemmas which are inspired by [15].

Lemma 6.1. Suppose (A1) hold. Assume that a sequence {b(t)}t≥0 of vectors in R
N×1 satisfy

sup
t≥0

‖b(t)‖1 < ∞ and b(t)⊤1N = 0 (∀ t ≥ 0).

Then the sequence {X(t)}t≥0 generated by (2.1) satisfy the following:

(1) We have
∥

∥

∥X(t)⊤b(t)
∥

∥

∥

1
≤ Cλt +C

t−1
∑

k=0

λt−k−1‖∆(k)‖∞,

for some constant C > 0 independent of t ≥ 1.

(2) If limt→∞ ‖∆(t)‖∞ = 0 holds, then

lim
t→∞

∥

∥

∥
X(t)⊤b(t)

∥

∥

∥

1
= 0.

(3) If (A2) holds, then
∞
∑

t=1

‖∆(t)‖∞
∥

∥

∥X(t)⊤b(t)
∥

∥

∥

1
< ∞.

Proof. (1) Using (1.2) iteratively, we have

X(t) = P (t, 0)X(0) −
t−1
∑

k=0

P (t, k + 1)∆(k)G(k), t ≥ 1.

Multiplying b(t) to both sides and using the triangle inequality, we deduce

∥

∥

∥X(t)⊤b(t)
∥

∥

∥

1
=

∥

∥

∥

∥

∥

X(0)⊤P (t, 0)⊤b(t)−
t−1
∑

k=0

G(k)⊤∆(k)⊤P (t, k + 1)⊤b(t)

∥

∥

∥

∥

∥

1

≤ ‖X(0)⊤‖1‖P (t, 0)⊤b(t)‖1 +
t−1
∑

k=0

‖G(k)⊤‖1‖∆(k)⊤‖1‖P (t, k + 1)⊤b(t)‖1

≤ ‖X(0)‖∞τ(P (t, 0))‖b(t)‖1 +
t−1
∑

k=0

‖G(k)‖∞‖∆(k)‖∞τ(P (t, k + 1))‖b(t)‖1,

(6.1)

where we used Lemma 3.4 in the second inequality. By Lemma 4.2 (1) we have τ(P (t, 0)) ≤ C̃λt for

some C̃ > 0 and 0 < λ < 1. We also have

sup
k≥0

‖G(k)‖∞ = sup
k≥0

max
1≤i≤N

‖gi(k)‖1 ≤ max
1≤i≤N

Li < ∞.

Using this we bound the right hand side of (6.1) as

∥

∥

∥X(t)⊤b(t)
∥

∥

∥

1
≤ Cλt +C

t−1
∑

k=0

λt−k−1‖∆(k)‖∞. (6.2)
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(2) By (1), it suffices to show that

lim
t→∞

t−1
∑

k=0

λt−k−1‖∆(k)‖∞ = 0. (6.3)

For any 1 ≤ m ≤ t− 1 we have

t−1
∑

k=0

λt−k−1‖∆(k)‖∞ ≤
t−1
∑

k=0

λt−k−1 sup
ℓ≥k

‖∆(ℓ)‖∞

≤
(

sup
ℓ≥0

‖∆(ℓ)‖∞
)

m−1
∑

k=0

λt−k−1 +
(

sup
ℓ≥m

‖∆(ℓ)‖∞
)

t−1
∑

k=m

λt−k−1

≤
(

sup
ℓ≥0

‖∆(ℓ)‖∞
)λt−m

1− λ
+
(

sup
ℓ≥m

‖∆(ℓ)‖∞
) 1

1− λ

By plugging in m = ⌊ t
2⌋ and sending t → ∞, we can see that (6.3) holds.

(3) We apply (6.2) to obtain

∞
∑

t=1

‖∆(t)‖∞
∥

∥

∥X(t)⊤b(t)
∥

∥

∥

1

≤
∞
∑

t=1

‖∆(t)‖∞
(

Cλt + C
t−1
∑

k=0

‖∆(k)‖∞λt−k−1

)

= C

∞
∑

t=1

‖∆(t)‖∞λt + C

∞
∑

t=1

t−1
∑

k=0

‖∆(t)‖∞‖∆(k)‖∞λt−k−1.

We bound this as follows

∞
∑

t=1

‖∆(t)‖∞
∥

∥

∥
X(t)⊤b(t)

∥

∥

∥

1

≤ C

∞
∑

t=1

(

sup
ℓ≥1

‖∆(ℓ)‖∞
)

λt + C

∞
∑

t=1

t−1
∑

k=0

(

sup
ℓ≥k

‖∆(ℓ)‖∞
)

‖∆(k)‖∞λt−k−1

= C
λ

1− λ

(

sup
ℓ≥1

‖∆(ℓ)‖∞
)

+ C

∞
∑

k=0

∞
∑

t=k+1

(

sup
ℓ≥k

‖∆(ℓ)‖∞
)

‖∆(k)‖∞λt−k−1

= C
λ

1− λ

(

sup
ℓ≥1

‖∆(ℓ)‖∞
)

+ C
1

1− λ

∞
∑

k=0

(

sup
ℓ≥k

‖∆(ℓ)‖∞
)

‖∆(k)‖∞ < ∞,

where we used (A2) in the last inequality. The proof is done. �

Lemma 6.2. Suppose (A1)-(A2) holds. Then we have

‖X(t)‖ = O(
√
t), t → ∞.
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Proof. Using (1.2) and the fact that Li = supz∈Rd supg∈∂fi(z) ‖g‖1 < ∞, we find

‖X(t+ 1)‖∞ = ‖P (t)X(t) −∆(t)G(t)‖∞
≤ ‖P (t)‖∞‖X(t)‖∞ + ‖∆(t)‖∞‖G(t)‖∞
= ‖X(t)‖∞ + ‖∆(t)‖∞‖G(t)‖∞.

Iterating gives us the following estimate:

‖X(t)‖∞ ≤ ‖X(0)‖∞ +

t−1
∑

k=0

‖∆(k)‖∞‖G(k)‖∞

≤ ‖X(0)‖∞ +

(

max
1≤i≤N

Li

) t−1
∑

k=0

‖∆(k)‖∞.

Now we use the Cauchy-Schwarz inequality to deduce

‖X(t)‖∞ ≤ ‖X(0)‖∞ +

(

max
1≤i≤N

Li

)

(

∞
∑

k=0

‖∆(k)‖2∞

) 1

2 √
t = O(

√
t),

where (A2) is used. The proof is done. �

Lemma 6.3. Suppose (A1)-(A2) holds. Then for any u ∈ R
d×1, we have

∥

∥

∥X(t+ 1)⊤π(t+ 1)− u
∥

∥

∥

2

2
≤
∥

∥

∥X(t)⊤π(t)− u
∥

∥

∥

2

2
+ ‖∆(t)‖2∞

(

max
1≤i≤N

Li

)2

+
2

N
‖∆(t)π(t + 1)‖1

N
∑

i=1

(

fi(u)− fi(X(t)⊤π(t))
)

+ 2

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
) N
∑

i=1

Li

∥

∥

∥X(t)⊤π(t)− u
∥

∥

∥

2

+ 4‖∆(t)‖∞
N
∑

i=1

Li

∥

∥

∥X(t)⊤(π(t)− ei)
∥

∥

∥

2
.

Proof. We recall from (3.1) that π(t) satisfies π(t + 1)⊤P (t) = π(t)⊤. Combining this with (1.2), we

find the following equality

X(t+ 1)⊤π(t+ 1)− u = X(t)⊤P (t)⊤π(t+ 1)−G(t)⊤∆(t)⊤π(t+ 1)− u

= X(t)⊤π(t)−G(t)⊤∆(t)⊤π(t+ 1)− u.
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Using this identitiy, we compute
∥

∥

∥
X(t+ 1)⊤π(t+ 1)− u

∥

∥

∥

2

2
=
∥

∥

∥
X(t)⊤π(t)−G(t)⊤∆(t)⊤π(t+ 1)− u

∥

∥

∥

2

2

=
∥

∥

∥X(t)⊤π(t)− u
∥

∥

∥

2

2
+

∥

∥

∥

∥

∥

N
∑

i=1

πi(t+ 1)δi(t)gi(t)

∥

∥

∥

∥

∥

2

2

− 2

N
∑

i=1

πi(t+ 1)δi(t)
〈

X(t)⊤π(t)− u, gi(t)
〉

=:
∥

∥

∥X(t)⊤π(t)− u
∥

∥

∥

2

2
+ I1 + I2.

We estimate I1 as

I1 ≤
(

N
∑

i=1

πi(t+ 1)δi(t) ‖gi(t)‖2

)2

≤ ‖∆(t)‖2∞

(

N
∑

i=1

πi(t+ 1)Li

)2

≤ ‖∆(t)‖2∞
(

max
1≤i≤N

Li

)2

,

where
∑N

i=1 πi(t+ 1) = 1 is used in the third inequality. Next we decompose I2 as follows:

I2 = −2

N
∑

i=1

πi(t+ 1)δi(t)
〈

X(t)⊤ei − u, gi(t)
〉

− 2

N
∑

i=1

πi(t+ 1)δi(t)
〈

X(t)⊤(π(t)− ei), gi(t)
〉

=: I21 + I22.

By the convexity of fi, we obtain

I21 = −2

N
∑

i=1

πi(t+ 1)δi(t) 〈xi(t)− u, gi(t)〉

≤ 2

N
∑

i=1

πi(t+ 1)δi(t) (fi(u)− fi(xi(t)))

= 2

N
∑

i=1





1

N

N
∑

j=1

πj(t+ 1)δj(t)





(

fi(u)− fi(X(t)⊤π(t))
)

+ 2

N
∑

i=1



πi(t+ 1)δi(t)−
1

N

N
∑

j=1

πj(t+ 1)δj(t)





(

fi(u)− fi(X(t)⊤π(t))
)

+ 2

N
∑

i=1

πi(t+ 1)δi(t)
(

fi(X(t)⊤π(t))− fi(X(t)⊤ei)
)

.
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Here we recall that supg∈∂fi(z) ‖g‖1 ≤ Li for all z ∈ R
d and achieve the following estimates:

I21 ≤
2

N
‖∆(t)π(t+ 1)‖1

N
∑

i=1

(

fi(u)− fi(X(t)⊤π(t))
)

+ 2

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
) N
∑

i=1

Li

∥

∥

∥
X(t)⊤π(t)− u

∥

∥

∥

2

+ 2‖∆(t)‖∞
N
∑

i=1

Li

∥

∥

∥
X(t)⊤(π(t)− ei)

∥

∥

∥

2

and

I22 ≤ 2‖∆(t)‖∞
N
∑

i=1

Li

∥

∥

∥
X(t)⊤(π(t) − ei)

∥

∥

∥

2
.

Combining the above estimates finishes the proof. �

We recall from [15, Lemma 7] the following result.

Lemma 6.4. Consider a minimization problem minx∈Rd f(x), where f : R
d → R is continuous.

Suppose that the solution set X∗ of the problem is nonempty, and let {x(t)}t≥0 be a sequence such that

for all x∗ ∈ X∗ and t ≥ 0,

‖x(t+ 1)− x∗‖2 ≤ (1 + b(t))‖x(t) − x∗‖2 − a(t)(f(x(t))− f(x∗)) + c(t),

where

a(t), b(t), c(t) ≥ 0 (∀ t ≥ 0),

∞
∑

t=0

a(t) = ∞,

∞
∑

t=0

b(t) < ∞,

∞
∑

t=0

c(t) < ∞.

Then the sequence {x(t)}t≥0 converges to some solution x∗ ∈ X∗.

We conclude this section by presenting the proof of the main theorem.

Proof of Theorem 4.1. We let x(t) := X(t)⊤π(t). Then the estimate of Lemma 6.3 with u = x∗ gives

‖x(t+ 1)− x∗‖2 ≤ ‖x(t)− x∗‖2 − a(t)(f(x(t))− f(x∗)) + c(t), (6.4)

where a(t) := 2
N
‖∆(t)π(t+ 1)‖1 and

c(t) := ‖∆(t)‖2∞
(

max
1≤i≤N

Li

)2

+ 2

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
) N
∑

i=1

Li

∥

∥

∥
X(t)⊤π(t)− x∗

∥

∥

∥

2

+ 4‖∆(t)‖∞
N
∑

i=1

Li

∥

∥

∥
X(t)⊤(π(t)− ei)

∥

∥

∥

2
.

By (A3) we see that
∞
∑

t=0

a(t) =
2

N

∞
∑

t=0

‖∆(t)π(t+ 1)‖1 = ∞. (6.5)
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Next we estimate
∑∞

t=0 c(t). It follows from (A2) that

∞
∑

t=0

‖∆(t)‖2∞ ≤
∞
∑

t=0

(

‖∆(t)‖ sup
l≥t

‖∆(t)‖
)

< ∞. (6.6)

Combining Lemma 6.2 and (A3), we derive

∞
∑

t=0

2

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
) N
∑

i=1

Li

∥

∥

∥
X(t)⊤π(t)− x∗

∥

∥

∥

2

≤ 2C
∞
∑

t=0

√
t

(

max
i,j

|πi(t+ 1)δi(t)− πj(t+ 1)δj(t)|
)

< ∞.

(6.7)

Next we apply Lemma 6.1 (3) to find

∞
∑

t=0

4‖∆(t)‖∞
N
∑

i=1

Li‖X(t)⊤(π(t)− ei)‖2 < ∞, (6.8)

where we used that (π(t) − ei)
⊤1N = 1 − 1 = 0 for all t ≥ 0 and 1 ≤ i ≤ N . Combining the above

estimates we find that
∞
∑

t=0

c(t) < ∞. (6.9)

Given the estimates (6.5) and (6.9), we may apply Lemma 6.4 to conclude that x(t) = X(t)⊤π(t)

converges to some minimizer x∗ ∈ R
d. In addition, we have

lim
t→∞

‖X(t)⊤π(t)− xi(t)‖2 = lim
t→∞

‖X(t)⊤(π(t)− ei)‖2 = 0, (6.10)

which yields that limt→∞ xi(t) = x∗. The proof is complete. �
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