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Abstract

We investigate the simple model of Pennington, Shenker, Stanford and Yang for modeling the density

matrix of Hawking radiation, but further include dynamics for EOW branes behind the horizon. This

allows interactions that scatter one interior state to another, and also allows EOW loops. At strong

coupling, we find that EOW states are no longer random; the ensemble has collapsed, and coupling

constants encode the microscopic matrix elements of Hawking radiation. This suggests strong interior

dynamics are important for understanding evaporating black holes, without any ensemble average.

In this concrete model the density matrix of the radiation deviates from the thermal state, small off-

diagonal fluctuations encode equivalences between naively orthogonal states, and bound the entropy

from above. For almost evaporated black holes the off-diagonal terms become as large as the diagonal

ones, eventually giving a pure state. We also find the unique analytic formula for all Renyi entropies.
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1 Introduction

Hawking argued that black holes evaporate into a mixed state of radiation [1], even those formed from

pure states. However, AdS/CFT implies that all black holes act as normal, unitary quantum mechanical

systems when viewed from the outside [2]. Hawking’s notion of black hole evaporation must therefore be

incomplete; black holes formed from pure states cannot evaporate into mixed states within AdS/CFT.

There has been significant recent progress on reconciling black hole evaporation with the constraints

of unitarity [3,4]. Instead of computing the state of Hawking radiation and evaluating its von Neumann

entropy, the entropy can be computed using the replica trick and the gravitational path integral [5, 6].

Replica wormholes contribute to the gravitational path integral, and give a unitary Page curve [7].

However, in these recent developments, the state of the radiation appears to be the same state that

Hawking computed. Naively it seems inconsistent to have both a mixed state and a unitary Page curve.

The reason is that, naively, gravity is dual to an ensemble average of unitary quantum systems; not one
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Repρijq

Figure 1: Normalized version of the density matrix (1.2) for k “ 20 and eS “ 50 , 5 , 1 (left, middle, right).
Orange is positive and blue negative. Intensity of colors reflects the magnitude of individual matrix elements.
Off-diagonal elements are less/not suppressed for black holes that have almost evaporated (middle/right).

quantum system [5,6,8–30]. This gravity/ensemble duality [31] occurs when considering simple models

of gravity, like pure JT gravity.

We believe that more realistic models of quantum gravity, like those typically imagined in AdS/CFT,

require no ensemble averaging. The price for unitarity, is a less simple bulk description. See [32–34] for

a concrete recent example that averaging over string theories is not required.

In those realistic models, the Page curve is unitary, and the density matrix of the radiation follows

the standard rules of quantum mechanics; therefore the state does not remain mixed. We would like to

understand the bulk phenomena that explain the deviations of the density matrix from being maximally

mixed. To accomplish this, we study the gravity description of one member of the ensemble dual to JT

gravity with non-dynamical EOW branes [6], focusing on the description of density matrix elements.

The partition function for the ensemble dual to JT gravity with non-dynamical EOW branes, is [6]1

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙
ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

. (1.1)

One member of this ensemble is described by a LˆL Hamiltonian H0, describing the bulk gravitational

degrees of freedom; and furthermore by a Lˆ k matrix C0, describing the interior states [6]. In section

3 we explain that in one member of the ensemble the density matrix of the radiation is essentially

ρ “
k
ÿ

i,j“1

xψj |ψiy |iy xj| “
k
ÿ

i,j“1

eS
ÿ

α“1

C0
˚
αj C0αi |iy xj| “ eS

k
ÿ

i“1

|iy xi|`OpeS{2q . (1.2)

Here we took the microcanonical ensemble with eS black hole states. We want to understand the gravity

dual to a theory with fixed C0, which produces this density matrix; this is described in section 2. The

1 See appendix D of [6].
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numerical structure of these matrix elements is discussed in section 3. The state is plotted for fixed C0

in Fig. 1.2

The gravity interpretation of fixing the random Hamiltonians to H0 is a decoupled problem, aspects

of which have been understood in [12,13,35,36]. This is not the focus of the present paper; nevertheless

we include a short discussion on the associated extra ingredients in section 4.

1.1 Summary, structure and main lessons

In section 2 we are invited by gravity considerations to investigate deformations of the matrix integral

(1.1)3

Z “
ż

dCdC: exp

ˆ

´
1

G
Tr

´

C:C
¯

´ γ Tr
´

C:0C ` C
: C0

¯

˙

. (1.3)

The actual model for which we construct the gravitational dual in section 2 is slightly more complicated;

here we simplify for presentation purposes. The gravitational interpretation of this deformation is to

introduce scattering interactions from one EOW state into another, with coupling constants gij that

depend on γ and C0. See section 2.2 and Fig. 2 for gravity and section 2.3 for the matrix integral.

Matrix elements are computed in this simplified description as ensemble averages of

xψj |ψiy “
eS
ÿ

α“1

C˚αjCαi . (1.4)

We are particularly interested in the models where the propagator G takes the value 1{G “ 1` γ.

This interpolates between JT gravity with non-dynamical EOW branes (1.1) for weak coupling γ “ 0

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙

; (1.5)

and a gravity model with the matrix C fixed to one member of the ensemble for strong coupling γ “ 84

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙

δ
´

C ´ C0

¯

δ
´

C: ´ C:0

¯

. (1.6)

The stronger the interactions the less random the matrix C, and the more realistic the quantum gravity

model under consideration. This is one key lesson of this work; in these two dimensional models, realistic

gravity systems involve strong interior dynamics. See section 2.4.

Furthermore, the microscopic data of the theory, here represented by the non-random matrix C0,

are encoded in the specific coupling constants gij for the EOW brane interactions. See section 2.3.

2 Similar plots were made for SYK with fixed couplings [11], using a different representation for the density matrix (1.2).
3 This is technically rather similar to deformations considered recently in [35]. We briefly suppress the H matrix integral.
4 Overall constants are irrelevant.
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xψj |ψiy “ δij ` `

k
ÿ

k1“1

k1 `

k
ÿ

k1,k2“1

k2

k1
` . . .

Figure 2: In the model of section 2 the off-diagonal terms come from EOW interactions where boundary
particles can change flavor, the associated coupling constants depend on γ and C0 and the summations are
over different flavors of the intermediate boundary particles (external flavor labels i and j were left implicit).

For weak coupling γ ! 1, the matrix elements acquire small off-diagonal components

xψj |ψiy “
δij

p1` γq
`

γ2

p1` γq2

eS
ÿ

α“1

C0
˚
αj C0αi . (1.7)

The first term, δij , corresponds to the usual rule for summing over EOW branes connected to asymptotic

boundaries. If the brane flavor is the same on both ends of the boundary, the EOW particle can freely

propagate. The second term accounts for scattering interaction between branes of different flavor, this

leads to nonzero off-diagonal matrix elements [6, 11,37,38]. See section 2.2 and Fig. 2.

In the strong coupling regime γ " 1, one recovers the non-random density matrix (1.2). Although it

may not be obvious, the off-diagonal terms are small relative to the diagonal ones in (1.2) when eS " 1.

In realistic gravity models, without averaging, the density matrix (1.2) is not maximally mixed. The

matrix C0 has dimensions eS ˆ k, which means that the rank of the density matrix is upper bounded

by both k and eS [10]; this suffices to understand the Page curve. See section 3.1 and section 3.2.

When we are ignorant about the microstructure of our system, we believe the states |ψiy are linearly

independent; but in reality there are equivalence relations between them, there are null states. This

is captured by numerical plots in Fig. 1. The leading order approximation to the density matrix retains

only the dominant diagonal in Fig. 1 (left) and suggests a maximally mixed state; however the smaller

off-diagonal matrix elements become competitive when k 9 eS and encode equivalence relations. When

the black hole has almost evaporated eS 9 1, the off-diagonal matrix elements are actually no longer

suppressed, and the density matrix is far from being maximally mixed. Ultimately, for eS “ 1 the state

becomes pure again. See Fig. 1 (right) and section 3.2.

The Page transition is caused by the collective behavior of many small off-diagonal matrix elements

of order Ope´S{2q [6,11,37,38], but the fact that the density matrix becomes pure again actually relies

on the off-diagonal matrix elements ultimately becoming large at the end of evaporation.

In section 3.3 we obtain the unique analytic continuation for the Renyi entropies within the planar

approximation, as an aside. In section 4 we summarize our main findings, and discuss generalizations.
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2 Gravitational description

In section 2.1 we review the simple model of [6] both from the gravity and matrix model perspective. In

section 2.2 brane interactions are introduced on the gravitational side, and it is shown that previously

orthogonal inner products receive small overlaps due to these new interactions. In section 2.3 the matrix

model deformation that gives the brane interactions is introduced and analyzed, and in 2.4 the strong

coupling limit is considered where the matrix C is fixed to C0.5

2.1 Replica wormholes

Following [6], let |ψiy be the state of a black hole with a non-dynamical EOW brane with flavor i

behind the horizon. We would like to think of this state as modeling an interior mode of the radiation.

Furthermore, let |iy be a basis of an auxiliary system, modeling the early outgoing Hawking modes.

Evaporating black holes can be emulated by considering the entangled, unnormalized state [6]

k
ÿ

i“1

|ψiy b |iy . (2.1)

Naively |ψiy form a k dimensional basis; and concordantly this state is maximally mixed. Black hole

evaporation is modeled by increasing k. Naively, increasing k can make the entanglement between the

black hole and radiation arbitrarily large, even exceeding the Bekenstein-Hawking entropy S - this is

the maximal entanglement the black hole can have with the exterior. This contradiction is a version of

the information paradox, similar to the Page curve.

The resolution is that the states |ψiy are not a k dimensional basis; they have small nonzero overlaps

that conspire to put an upper bound eS on the dimension of their span [6,11,39,40]. The way this gets

diagnosed in [6], is by computing the Renyi entropies associated with the reduced density matrix of the

radiation6

ρij “ xψj |ψiy . (2.2)

The state |ψiy is prepared by shooting in an EOW particle with flavor i and mass µ at the boundary

and then evolving for a thermal time β{2, giving the black hole some finite temperature. The bra works

similarly, and because the EOW branes are non-dynamical there is no way for them to change flavors

along their trajectory. To calculate inner products we apply the rules of the gravitational path integral.

The inner product (2.2) introduces boundary conditions consisting of an asymptotic boundary of length

β connected to two EOW branes of flavors i and j. We sum over all geometries consistent with these

boundary conditions. This results in the following gravitational amplitude, to leading order in eS

5 The Hamiltonians H remains random throughout this section, see section 4.
6 Throughout this section the density matrix is unnormalized.
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ρij “ δij 9 δij e
S. (2.3)

The black circle denotes an asymptotic JT gravity boundary of length β, and the orange line denotes the

EOW particle with mass µ.7 These amplitudes significantly simplify in the microcanonical ensemble,

the black circle then denotes a microcanonical boundary condition [41]. Details about gravitational

amplitudes are gathered in appendix A.1.8

This looks like a maximally mixed state with the states |ψiy spanning a k dimensional basis due to

the δij . However, this conclusion changes when considering higher moments of matrix elements

ρij ρkl “ xψj |ψiy xψl|ψky . (2.4)

The particle with flavor i can end up where one detects the outgoing particle with flavor j, however it

could also end up where one detects the flavor l. Therefore we have two contributing Feynman diagrams

ρij ρkl “ δij δkl ` δil δkj 9 δij δkl e
2S ` δil δkj e

S. (2.5)

This is not simply the square of (2.3), because JT gravity with EOW branes is not one quantum system,

but an ensemble of unitary quantum systems (1.1).

The expectation value for off-diagonal elements xψj |ψiy vanishes, but their standard deviation does

not, as captured by the second geometry in (2.5). These smaller off-diagonal terms become important

and severely constrain the span of |ψiy when k exceeds eS.

Consider for example the purity, which in the leading order approximation becomes [7]9,10

R2 “
1

k
`

1

eS
. (2.6)

The second term stems from the replica wormhole in (2.5) and dominates when k " eS, this effectively

places an upper bound eS on the dimension of the span of interior states |ψiy. The ensemble averaged

theory knows about the finite dimensionality of the interior state space.

The ensemble in question consists of a random kˆL matrix C, describing the EOW brane degrees of

7 We exclude brane labels on most gravitational diagrams for presentation purposes.
8 We suppress subleading higher genus wormholes for reader comfort throughout.
9 There are corrections in the denominators from contracting with the normalization of the density matrix [42].

10 We define Rn “ Trpρnq throughout, with ρ normalized. These are not quite the Renyi entropies but play the same role.
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freedom; and some random LˆL Hamiltonian H describing the bulk gravitational degrees of freedom

(1.1). In this ensemble language, the random interior states and corresponding matrix elements are [6]11

|ψiy “
L
ÿ

a,b“1

´

e´βH{2 Γ
´

µ´ 1{2˘ iH1{2
¯¯

ab
Cbi |ay

ρij “
´

C: Γ
´

µ´ 1{2˘ iH1{2
¯1{2

e´βH Γ
´

µ´ 1{2˘ iH1{2
¯1{2

C
¯

ji
“

L
ÿ

a,b“1

C˚aj

´

. . .
¯

ab
Cbi . (2.7)

The vectors |ay represent a fixed rigid basis, analogous to the spin basis in SYK [43], the Hamiltonian H

in this basis is a matrix of random numbers. The brane states |ψiy are some random linear combination

of the fixed basis states, specified by the matrix C. Wick contractions of C are EOW branes in gravity,

see section 2.3.

2.2 Interior dynamics

In a unitary gravity theory the density matrix elements are just numbers without any variance. This

raises the question of what the gravity interpretation of these numbers is. We partially address this, by

describing a gravity model where the ensemble over random matrices C collapses to a fixed matrix C0.

The simple model of JT gravity with EOW branes, has mass µ boundary particles representing the

branes, with action and boundary conditions [6]

S “ µ

ż

ds , BnΦ “ µ , K “ 0 . (2.8)

The pieces of thermal boundary have fixed length boundary conditions [44–46], see also appendix A.1.

We now enrich this model by allowing EOW interactions. EOW branes are boundaries on which two

dimensional spacetimes end. This severely limits the set of EOW brane dynamics that we can introduce:

1. There can be interaction vertices for 1 Ñ 1 EOW particle scattering where a particle of flavor i

scatters to a particle of flavor j, potentially accompanied by the emission or absorption of particles

into the bulk spacetime. We restrict ourselves to one type of interaction, weighted with coupling

constant gij

gij or gij . (2.9)

Our specific choice for interaction vertices, which is of the first kind above, is detailed below and

in appendix A.2.

2. An EOW particle can propagate between two distinct points, these are either interaction vertices

or points where the EOW particle ends on a bra or ket. We have the liberty to include an extra

11 The ˘ means we multiply both signed gamma functions. We implicitly use the double scaled Hamiltonian throughout.
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overall factor G weighting every EOW propagator

G , (2.10)

which corresponds to adding a constant to the EOW brane action (2.8). This is somewhat ad-hoc,

but entirely similar to the introduction of SB in [10]. One can imagine more complicated quantum

systems living on EOW branes which give these extra factors. We forsake the details since we are

only interested in constructing a proxy for more general dynamical interiors.

3. When 1 Ñ 1 interactions are included, there exist clearly also 0 Ñ 2 creation events, and 2 Ñ 0

annihilation events with the same coupling constants gij . Furthermore there is nothing preventing

dynamical EOW branes from forming closed vacuum loops, making holes in the spacetimes. This

exhausts all options for EOW brane interactions.12

Let us summarize the ingredients of our theory. There are k flavors of EOW particles with the same

mass µ, and we have black hole states |ψiy for each particle flavor. There are interaction vertices where

a particle of flavor i turns into a particle with flavor j. Because this theory is dynamical, any number

of interactions is allowed, and we must sum over all possible interactions when calculating amplitudes.

Also, there are closed loops of EOW particles, with and without [47] interaction vertices on them.

The main new ingredient are interaction vertices where branes can change flavor; we must choose a

specific way to model these interactions and deduce the corresponding JT gravity boundary conditions.

For this it helps to think of JT gravity from the minimal string perspective [8, 41,48–53].

Then each flavor of EOW particles corresponds with a D-brane, and interaction vertices correspond

naturally with insertions of boundary operators Tn ij ; these are open string Tachyons stretching between

D-branes, with Chan-Paton indices i and j. Only the simplest of the chiral vertex operators T1 ij , known

as marking operators, have a known JT gravity interpretation [51, 54–56] when stretching between D-

branes with FZZT boundary conditions [8,57–59].13 Marking operators then correspond with the β “ 0

limit of a fixed length boundary. This extends to mass µ boundary particle segments, relevant for EOW

particles, since these are linear combinations of FZZT segments. See appendix A.2.

We have obtained sensible JT gravity boundary conditions for the EOW interaction vertices. This

allows us to calculate any desired amplitude. We consider two examples to clarify the rules.

12 For example 1 Ñ 2 brane scattering interactions clearly cannot represent the boundary of some nonsingular spacetime.
13 Recently an educated guess was made for the interpretation of the other boundary operators [54].
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Brane partition function

We first consider something we call the D-brane partition function, consisting of all interacting EOW

brane loops, and all spacetimes ending on them. These are the vacuum fluctuations of our system, they

are modded out in all interesting calculations of matrix elements. Going through this first, lightens the

presentation of matrix elements later.

The D-brane partition function Z has the following expansion14

logZ “
k
ÿ

p1“1

p1 `

k
ÿ

p1“1

p1 `
1

2

k
ÿ

p1,p2“1

p2p1 `
1

3

k
ÿ

p1,p2,p3“1

p3

p1 p2 `. . .

(2.11)

This is a sum over the number n of scattering interactions, within each closed EOW particle loop. The

1{n symmetry factor is because cyclic permutations of the flavors describe the same Feynman diagram,

which should be counted only once. The log reflects the fact that in the D-brane partition function Z,

we can have any number mn of those closed EOW particle loops with n interactions and an identically

ordered set of flavors; which are therefore indistinguishable.

To compute the full D-brane partition function we must exponentiate the disks (2.11) and then fill

in bulk geometries; this includes cylinders connecting disks and more general wormhole topologies.

It is no accident that we use the same notation Z as for the matrix integral partition function, these

are the same modulo disconnected spacetimes, like the sphere, which can be ignored; see section 2.3.

To compute these diagrams we must first isolate the EOW brane Feynman rules, meaning the factors

G and gij , from the basic JT gravity amplitudes; then simply compute the latter.

We find it convenient to denote gravitational boundary conditions by their matrix integral counter-

parts. The JT gravity calculation is insensitive to the flavors of the EOW particles, and only depends

on the number of interactions n. In that case there are n segments of mass µ boundary particles,

separated by marked points; as explained in appendix A.2 this corresponds with the operator insertion

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

. (2.12)

The double scaled matrix integral dual of the loop without marking operators was deduced in [47] and

reads15

Tr log
´

Γ
´

µ` 1{2˘ iH1{2
¯¯

. (2.13)

When translating the partition function (2.11) to gravity calculations, the EOW particle Feynman

weights come out as prefactors for the gravity amplitudes. Because of the summation over flavor indices,

14 We suppress similar higher genus contributions with handles. The particle flavor indices are p1, p2 etcetera.
15 This looks remarkably similar up to signs to the relation of the FZZT loops with and without a marking operator.
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the couplings gij combine nicely into traces, and we obtain the gravitational “boundary conditions”

logZ “ k G Tr log
´

Γ
´

µ` 1{2˘ iH1{2
¯¯

`

8
ÿ

n“1

Gn

n
Tr

´

gn
¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

. (2.14)

There is an exponential of JT gravity boundaries in Z, represented by the traces, we should sum over

all spacetimes ending on them. The way to proceed with the gravity calculations is to use the general

identity for expectation values of observables in any theory, crucial to understand D-branes [8, 60]

log xexppxqy “
8
ÿ

m“1

1

m!
xxmyconn . (2.15)

To good approximation one can then only include the exponential of disk shaped topologies, and annulus

shaped topologies connecting to EOW particle boundaries [8].16 Because we will not need any detailed

answers for the point we are trying to make in this paper, we omit the resulting expression.

Matrix elements

Next consider matrix elements ρij “ xψj |ψiy, which give the gravitational boundary conditions discussed

in [6]

xψj |ψiy “ . (2.16)

As always we should sum over all possible Feynman diagrams ending on the boundary conditions. This

includes EOW particle dynamics, and all gravitational spacetimes ending on the resulting diagrams.

Let us first consider the leading order amplitudes in small gij perturbation theory, ignoring vacuum

loops of EOW particles. For diagonal matrix elements one obtains up to order gij

xψi|ψiy “ ` ` . . .

“ G Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

`G2 gii Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯2
e´βH

¯

` . . . (2.17)

where in the second equality we applied the EOW particle Feynman rules, and rewrote the gravity am-

plitudes by the corresponding observables in random matrix theory. For off-diagonal matrix elements,

16 The others topologies have negative Euler character and therefore contribute negligibly assuming that eS0 " 1.
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there is no leading contribution; however, crucially, there are contribution starting at linear order in gij

xψj |ψiy “ ` ¨ ¨ ¨ “ G2 gij Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯2
e´βH

¯

` . . . (2.18)

So off-diagonal elements in the interacting theory are nonzero, unlike in the non-interacting model (2.3).

This is the first sign that EOW particle interactions are important for understanding matrix elements

in any non-random gravitational theory.

Higher orders in gij are obvious; ignoring the vacuum loops this is an expansion in the number of

scattering interactions on the EOW brane

xψj |ψiy “ δij ` `

k
ÿ

k1“1

k1 `

k
ÿ

k1,k2“1

k2

k1
` . . . (2.19)

Note that unlike in (2.11) there is no 1{n for the diagram with n interactions, because the bra and the

ket break the cyclic permutation symmetry. We translate this to pure gravity amplitudes by extracting

the EOW particle Feynman weights. The JT gravity amplitudes are insensitive to the flavors, the sum

over intermediate flavor indices combines the couplings into traces

xψj |ψiy “ δij G Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

`

8
ÿ

n“1

Gn`1
´

gn
¯

ij
Tr

´

Γ
´

µ´ 1{2˘ iH1{2
¯n`1

e´βH
¯

(2.20)

We should also include the effects of the EOW particle loops Z. These are only truly vacuum loops

if they are not connected to the probe boundaries (2.19) via spacetime wormholes. In random matrix

theory, denoting (2.20) by O, matrix elements are really computed as xOZy { xZy; and thus boundaries

in (2.20) can connect, via spacetime wormholes, to boundaries in (2.14).

This means we will have contributions to (2.19) with extra holes in the spacetimes; these holes are

the EOW particle loops that the spacetime wormholes are connecting to, for example17

xψj |ψiy Ą
1

3

k
ÿ

k1,k2“1

k
ÿ

p1,p2,p3“1

k2

k1
. (2.21)

There can be any number such holes in each portion of spacetime; if some of those have the same labels

17 The labels p1, p2 and p3 on the sides of the inner triangle are suppressed for presentation purposes, and idem for i and
j.
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they are again indistinguishable. Notably one should not include the possibility of EOW particle loops

that connect via spacetimes to each other, but not to any probe boundaries; those are normalized away

with the 1{ xZy.

It is straightforward to compute the matrix elements order by order in small gij perturbation theory;

these are JT gravity amplitudes, which are known exactly. One all-encompassing example is discussed

in appendix A.3.

The generalization to products of matrix elements like ρij ρkl “ xψj |ψiy xψl|ψky, relevant for Renyi

entropies, is clear. There are scattering interactions on all the EOW branes, and a nonzero answers for

all values of i, j, k and l. Furthermore, there can be holes due to EOW loops in all pieces of spacetime.

The Lorentzian interpretation is that there are interactions in the interior, where these EOW branes

reside [6, 43,47]; schematically the associated Lorentzian spacetimes are

xψj |ψiy Ą . (2.22)

Holes in the Euclidean spacetime (2.21) are interpreted as associated with the spontaneous emission and

absorption of open baby universes, ofcourse there is also still the spontaneous emission and absorption of

closed baby universes; associated with the spacetime wormholes which encode eigenvalue correlation [9].

2.3 Dual matrix integral

We next discuss the matrix integral dual of this model of JT gravity with interaction EOW particles.

Using this, we can consider large gij . This strong coupling limit selects one member C0 of the ensemble.

Consider first the matrix dual to JT gravity with non-dynamical EOW branes with partition function

(1.1), and with matrix elements (2.7)

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙
ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

(2.23)

xψj |ψiy “
´

C: Γ
´

µ´ 1{2˘ iH1{2
¯1{2

e´βH Γ
´

µ´ 1{2˘ iH1{2
¯1{2

C
¯

ji
. (2.24)

The Gaussian integral over the complex matrix C reduces to standard Wick contractions

CaiC
˚
bj “ δijδab . (2.25)

For one matrix elements ρij “ xψj |ψiy, the ensemble average over C therefore gives

xψj |ψiy “ δij Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

. (2.26)
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For two copies of the matrix element ρij ρkl “ xψj |ψiy xψl|ψky, summing over Wick contractions gives18

xψj |ψiy xψl|ψky “ δij δkl Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

` δil δkj Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

. (2.28)

As explained in appendix A.1, these operator insertions in the H matrix integral correspond in gravity

with the EOW brane geometries shown in formula (2.3) and (2.5) respectively. Each Γ
`

µ´ 1{2˘ iH1{2
˘

represents a geodesic boundary segment with a mass µ EOW particle, and each factor e´βH corresponds

with a fixed length β segment. Segments inside each trace form a closed loop. We see that every Wick

contraction of matrix elements of C becomes an EOW particle propagator in gravity. Therefore, (2.23)

and (2.24) corresponds indeed with JT gravity with non-dynamical EOW branes, see appendix D in [6].

We claim that the model of section 2.2 corresponds with the deformed matrix integral

Z “
ż

dC dC: exp

ˆ

´
1

G
Tr

´

C:C
¯

` γ Tr
´

C:0 Γ
´

µ´ 1{2˘ iH1{2
¯1{2

C
¯

` c.c.

˙

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

, (2.29)

where the coupling constants for EOW particle scattering are determined by g and C0

gij “ γ2 1

L

´

C:0 C0

¯

ji
. (2.30)

For now the matrix C0 are just complex numbers parameterizing the coupling constants, but eventually

it will represent the matrix that the C ensemble collapses to, see section 2.4. We next prove that (2.29)

is equivalent to the gravity model of section 2.2, by computing the same quantities and matching them.

Brane partition function

We start with the brane partition function Z. The integral over C in (2.29) remains a simple Gaussian,

this can immediately be computed by completing the square19

Z “
ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ

Gγ2 Tr
´

C0 C:0 Γ
´

µ´ 1{2˘ iH1{2
¯¯

˙

. (2.31)

18

xψj |ψiy “
L
ÿ

a,b“1

C˚aj

´

. . .
¯

ab
Cbi “ δij

L
ÿ

a“1

´

. . .
¯

aa
“ δij Tr

´

. . .
¯

(2.27)

xψj |ψiy xψl|ψky “
L
ÿ

a,b,c,d“1

C˚aj

´

. . .
¯

ab
Cbi C

˚
cl

´

. . .
¯

cd
Cdk `

L
ÿ

a,b,c,d“1

C˚aj

´

. . .
¯

ab
Cbi C

˚
cl

´

. . .
¯

cd
Cdk “ . . .

19 We discard some irrelevant overall normalization constant which depends only on G.
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Note that the exponential in the integrand is not UpLq invariant because of the presence of the matrices

C0 ,C
:
0. Concordantly, the gravitational interpretation of this insertion is not immediately clear; the

dictionary between operator insertions in random matrix theory and gravitational boundary conditions

concerns only UpLq invariant operators. To transform the above into UpLq invariant operator insertions

we can diagonalize the random matrix H with random unitaries U [61]20

H “ U ΛU : , Λ “ diagpλ1, . . . , λLq , dH “ dU dλ1 . . . dλL

L
ź

αăβ

pλα ´ λβq
2 , (2.32)

with dU the Haar measure on UpLq; and then explicitly compute the integral over the random unitaries.

We are led in (2.31) to calculate the following integral over Haar random unitaries

ż

dU exp

ˆ

Gγ2 Tr
´

C0 C:0 U F pΛqU
:
¯

˙

, F pΛq “ Γ
´

µ´ 1{2˘ iΛ1{2
¯

. (2.33)

This Harish-Chandra integral can be computed exactly [62,63]. However, to link with the expansion

of section 2.2, it is actually more practical to instead apply (2.15) to correlators in the Haar ensemble [35]

log

B

exp

ˆ

Gγ2 Tr
´

C0 C:0 U F pΛqU
:
¯

˙F

“

8
ÿ

n“1

Gn

n!
γ2n

B

Tr
´

C0 C:0 U F pΛqU
:
¯n

F

conn

. (2.34)

The unitary group integrals on the right evaluate to a double sum over permutations21

ż

dU Tr
´

C0 C:0 U F pΛqU
:
¯n
“

ÿ

σ,τ PSn

Trσ

´´

C0 C:0

¯n¯

Trτ

´

F pHqn
¯

Wgpσ{τ, Lq . (2.36)

This sum over permutations is weighted with Weingarten functions Wgpσ, Lq, which are known explicitly

[64, 65]. We are interested in continuum JT gravity, where L “ 8. Using the leading large L behavior

of Weingarten functions; one checks that these correlators of Haar unitaries reduce, for large L, to the

Wick contractions σ “ τ generated by a Gaussian complex matrix U with variance L [13]. Explicitly

ż

dU Tr
´

C0 C:0 U F pΛqU
:
¯n large L

“
1

Ln

ÿ

σ PSn

Trσ

´´

C0 C:0

¯n¯

Trσ

´

F pHqn
¯

. (2.37)

In this Gaussian approximation one therefore finds

B

Tr
´

C0 C:0 U F pΛqU
:
¯n

F

conn

“ pn´ 1q!
1

Ln
Tr

´´

C0 C:0

¯n¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

. (2.38)

20 The following manipulations follow those previously used in [35], where more details can be found.
21

Trσ
´

An
¯

“
ź

σi

Tr
´

A`pσiq
¯

, `pσiq length cycles of σ (2.35)
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Figure 3: Haar random unitaries. Wires contract indices, integrating over Haar random unitaries corresponds
with inserting complete sets of wire states, Weingarten functions weight each bra-ket combination. Dominant
terms for large L have identical bra and ket (middle), the subleading terms have different bra and ket (right).

The combinatorial prefactor counts the cycles of length n in Sn, only these contribute to the connected

correlator. Combining this with (2.34) and using the dictionary between the couplings (2.30), the brane

partition function (2.31) becomes

Z “
ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ 8
ÿ

n“1

Gn

n
Tr

´

gn
¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

˙

. (2.39)

This matches the D-brane partition function of our JT gravity theory with interacting EOW particles

(2.14), modulo the first term in (2.14), which represents EOW loops without interactions. Those have

nothing to do with the C matrix integral, and are therefore of little interest here. We can include them

by deforming the potential V pHq by the first term in (2.14), before doing the C or U integrals in (2.29).

In summary, we have shown that the deformed matrix integral partition function (2.29) is equivalent

for weak coupling γ, with the D-brane partition function of JT gravity with interacting EOW branes

discussed in section 2.2. At strong coupling there are modification to this picture, as the approximation

(2.38) breaks down; we discuss in the discussion section 4 how this affect the gravitational description.

We define the strongly coupled version of the gravity theory in section 2.2 as the gravity dual to (2.29).

Matrix elements

We now check that the matrix model (2.29) also reproduces the matrix elements (2.20) that we computed

in the gravitational theory, hence establishing the full fledged duality of the matrix and gravity models.

These matrix elements are computed in the deformed matrix integral (2.29) via the dictionary (2.24)

xψj |ψiy “
1

Z

ż

dC dC: exp

ˆ

´
1

G
Tr

´

C:C
¯

` γ Tr
´

C:0 Γ
´

µ´ 1{2˘ iH1{2
¯1{2

C
¯

` c.c.

˙

(2.40)

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

´

C: Γ
´

µ´ 1{2˘ iH1{2
¯1{2

e´βH Γ
´

µ´ 1{2˘ iH1{2
¯1{2

C
¯

ji
.

We first calculate the Gaussian integral over the matrix C. The two matrices C and C: in the operator
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insertion can either contract with one another, or with the C and C: in the deformation term in (2.29).

The first Wick contraction gives

xψj |ψiy Ą
1

Z

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ

Gγ2 Tr
´

C0 C:0 Γ
´

µ´ 1{2˘ iH1{2
¯¯

˙

δij G Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

, (2.41)

where Z represents (2.31). The Wick contraction with the exponential deformation gives

xψj |ψiy Ą
1

Z

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ

Gγ2 Tr
´

C0 C:0 Γ
´

µ´ 1{2˘ iH1{2
¯¯

˙

G2 γ2
´

C:0 Γ
´

µ´ 1{2˘ iH1{2
¯

e´βHΓ
´

µ´ 1{2˘ iH1{2
¯

C0

¯

ji
. (2.42)

Neither of these integrands is UpLq invariant, to give this integral a gravitational interpretation we

again diagonalize the Hamiltonian as in (2.32), and compute the resulting integral over random unitaries

U via the Gaussian large L approximation as explained around (2.38). For the first contribution (2.41)

this is the same calculation as (2.33) because the operator insertion on the second line of (2.41) is UpLq

invariant, therefore we find

xψj |ψiy Ą
1

Z

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ 8
ÿ

n“1

Gn

n
Tr

´

gn
¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

˙

δij G Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

e´βH
¯

, (2.43)

with Z representing (2.39). The second contribution (2.42) requires the large L Gaussian approximation

for the integral

ż

dU
´

C:0 U F pΛq e
´βΛ F pΛqU : C0

¯

ji
exp

ˆ

Gγ2 Tr
´

C0 C:0 U F pΛqU
:
¯

˙

. (2.44)

We need to account for Wick-contractions between the operator insertion and the exponential, in other

words this calculation can be rewritten as

8
ÿ

m“0

Gm

m!
γ2m

B

´

C:0 U F pΛq e
´βΛ F pΛqU : C0

¯

ji
Tr

´

C0 C:0 U F pΛqU
:
¯m

F

conn
B

exp

ˆ

Gγ2 Tr
´

C0 C:0 U F pΛqU
:
¯

˙F

, (2.45)

the first line includes contractions between the insertion and the exponential, while the second line are

the vacuum loops computed above. Summing over all large L Gaussian Wick contractions one obtains

B

´

C:0 U F pΛq e
´βΛ F pΛqU : C0

¯

ji
Tr

´

C0 C:0 U F pΛqU
:
¯m

F

conn
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“ m!
1

Lm`1

´´

C0 C:0

¯m`1¯

ji
Tr

´

e´βHΓ
´

µ´ 1{2˘ iH1{2
¯m`2 ¯

. (2.46)

Combining everything one finds that the second contribution (2.42) becomes

xψj |ψiy Ą
1

Z

ż

dH exp

ˆ

´ LTr
´

V pHq
¯

˙

exp

ˆ 8
ÿ

n“1

Gn

n
Tr

´

gn
¯

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯n¯

˙

8
ÿ

m“0

Gm`2
´

gm`1
¯

ji
Tr

´

e´βHΓ
´

µ´ 1{2˘ iH1{2
¯m`2 ¯

. (2.47)

Combining with (2.43), we see that the matrix elements are indeed computed via the gravitational rules

discussed in section 2.2; since we precisely recover (2.20). The exponential within this H integral, and

the corresponding normalization with 1{Z reflects the fact that we also include geometries where EOW

particle loops are connected with the probe boundaries; as discussed below (2.20). These calculations

generalize in an obvious way to products of matrix elements like xψj |ψiy xψl|ψky.

In summary, we have shown that all observables in the deformed matrix integral (2.29) are equivalent

for weak coupling γ, with those of JT gravity with interacting EOW branes; establishing their duality.

2.4 Strong coupling and non-random states

Next we consider particular versions of our model, with propagator 1{G “ γ`1. For these, the partition

function becomes22

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

´ γ Tr
´´

C ´ F pHq1{2C0

¯´

C: ´ C:0F pHq
1{2

¯¯

˙

. (2.48)

This matrix model is very similar to the matrix model recently considered in [35]; it interpolates between

JT gravity with non-dynamical EOW branes (1.1) at weak coupling γ “ 0

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙

, (2.49)

and a gravity model with the matrix C fixed to one member of the ensemble at strong coupling γ “ 8

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

˙

δ
´

C ´ F pHq1{2C0

¯

δ
´

C: ´ C:0F pHq
1{2

¯

. (2.50)

The stronger the interactions, the less random the matrix C, and the more realistic the quantum gravity

model under consideration. This is one key lesson of this work, in these two dimensional models, realistic

gravity systems appear to feature strong interactions/have strongly interacting interiors gij " 1.

Equally important, the microscopic details of the theory, here represented by the non-random matrix

C0, are encoded in the specific coupling constants gij for the interior mode interactions, via (2.30). These

22 In this section we are only interested in the C matrix integral and suppress the H ensemble for presentation purposes.
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coupling constants take typical values respecting the fact that C0 is a typical draw of the ensemble.

Concordantly, one can also interpret the completely random theory (2.49) as an ensemble of gravity

theories, with the ensemble average over the specific coupling constants of the theory. The interpretation

of (2.49) as bulk models with random couplings constants agrees with ideas of Coleman and company

[10,24,66–68]. Here too, the theory with random couplings is “simpler” than that with fixed couplings.

In the most realistic models, where γ “ 8, the matrix elements of Hawking radiation (2.24) become

xψj |ψiy “
´

C:0 F pHq e
´βH F pHqC0

¯

ji
. (2.51)

This is obvious from (2.50), but can also be seen explicitly in (2.41) and (2.42). The contribution of the

first Wick contraction (2.41) vanishes, because in this double scaling regime the propagator vanishes

G “ 0. The contribution of the second Wick contraction survives, because in the same regime G2γ2 “ 1.

This extends to products of matrix elements, EOW branes without any interaction vertices on them

are suppressed because G “ 0; for the product of two matrix elements one obtains for example

xψj |ψiy xψl|ψky “
´

C:0 F pHq e
´βH F pHqC0

¯

ji

´

C:0 F pHq e
´βH F pHqC0

¯

lk
, (2.52)

where H remains random but C0 is non-random. The non-randomness of C0 does not imply that (2.52)

is numerically close to factorizing, or to the matrix elements in a completely non-random gravity theory.

Since H remains random there remains large correlation between two density matrix elements. This is

largely because of the random unitaries U ; not so much the more common eigenvalue correlation.23

The bulk gravity description of the matrix elements of Hawking radiation in realistic incarnations of

these two dimensional quantum gravity models, described by non-random matrices H0 and C0, involves

at minimum these interior mode interactions.

On top of that, these involve extra ingredients that capture the non-random matrix H0. What these

ingredients are is an orthogonal question that goes beyond our current scope; progress has been made

in this regard in [12,13,35,36], see section 4. Regardless of the specific details of those extra ingredients,

the result is some gravity theory whose matrix elements are good-old-fashioned non-random numbers

xψj |ψiy “
´

C:0 F pH0q e
´βH0 F pH0qC0

¯

ji
. (2.53)

The structure in these numbers for a typical draw of the ensemble deserves some attention.

23 These random unitaries did not play any role for the non-dynamical theory (2.29), because its action is UpLq invariant.
However this UpLq invariance is broken by the deformation (2.48) because C0 is some fixed matrix not proportional to the
identity.
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3 Matrix elements without ensemble average

In this section we examine the consequences of collapsing the theory to a single member of the ensemble,

by studying numerical features of the matrix elements (2.53), and how they reproduce the Page curve.

Throughout this section, we work in a microcanonical ensemble centered around E, with eS states.

Since F pH0q is approximately constant for eigenvalues of H0 within the microcanonical window we have

xψj |ψiy “ F pEq2
eS
ÿ

α“1

C0
˚
αj C0αi . (3.1)

The kernel F pEq drops out of the normalized density matrix and all derivative quantities like the Renyi

entropies and the von Neumann entropy, this means we can immediately drop it and continue with

xψj |ψiy “
eS
ÿ

α“1

C0
˚
αj C0αi . (3.2)

Crucially, the matrix C0 must be interpreted as typical representative of the undeformed C ensemble

(2.49). This means the entries of C0 are complex numbers with typical norm-squared one.24

Formula (3.2) is a toy model for the matrix elements of evaporating black holes in quantum gravity.

The ensemble is an incredibly powerful tool that simplifies calculations and presents a simpler effective

picture, but is has also caused confusion. Mistaking the ensemble for proper quantum mechanics, one

apparently finds that the density matrix is maximally mixed, as in Hawking’s calculation [1].

In realistic theories, represented by the toy model (3.2), the density matrix is not maximally mixed.

The complex matrix C0 has dimensions eSˆk, and concordantly the rank of the matrix is upper bound

by both k and eS [10]; this suffices to understand the Page curve. The point is that when we are ignorant

about the microstructure of our system, that we believe the states |ψiy are linearly independent; where

in reality there are equivalence relations between them, there are null states. The remaining question

is then how microstructure gets realized in the bulk, this work has been a step in that direction.25

We plotted the density matrix in Fig. 4, the purity in Fig. 5, and the von Neumann entropy in Fig.

6 for one single matrix C0. Comparison with the averaged answers confirms the latter are self-averaging.

In the remainder of this section we explain analytically why (3.2) produces these plots.

24 Fixing to non-typical members is physically non-sensible, since those systems are not even remotely accurately described
by the ensemble to begin with.
25 Factorization is another interesting question, this remains geometrically nontrivial even in microscopic realizations; we
have not investigated that here [6, 8, 11–13,30,36,69,70].
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Repρijq

Figure 4: Normalized density matrix with k “ 20 and eS “ 50 (left). Orange is positive and blue negative.
The diagonal is removed (right) and the intensity is rescaled to probe typical sizes 1{k eS{2. This reproduces
similar plots obtained within SYK, with notably a different realization for the density matrix than (3.3) [11].

3.1 Density matrix

The unnormalized density matrix of radiation is plotted in Fig. 1 and Fig. 4, and reads explicitly

ρ “
k
ÿ

i,j“1

xψj |ψiy |iy xj| “
k
ÿ

i,j“1

eS
ÿ

α“1

C0
˚
αj C0αi |iy xj| . (3.3)

To understand this figure, let us estimate the typical size of the matrix elements. The entries of C0

are complex numbers with typical norm squared one, which means that the diagonal matrix elements

xψi|ψiy “
eS
ÿ

α“1

C0
˚
αi C0αi (3.4)

are real numbers with typical size eS, because they are the sum of eS real numbers of typical size one.

The off-diagonal matrix elements

xψj |ψiy “
eS
ÿ

α“1

C0
˚
αj C0αi (3.5)

are complex numbers with a “random” phase, and typical amplitude of size eS{2. This is because they

are the sum of eS complex numbers with random phases and typical amplitudes of size 1, combined they

are to be interpreted as a “random” walk in the complex plane with unit step length and eS steps26.

The typical radial distance traveled by this random walk is the square root of the number of steps eS{2.

The off-diagonal terms correspond to sums over random complex numbers that do not constructively

26 Random is quoted because there is nothing uncertain about the number in (3.5), “typical” might be more appropriate.
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interfere, the phases in (3.4) align but those in (3.5) do not, hence they give small contributions relative

to the diagonal terms as long as eS " 1.

Alternatively one could directly estimate the norm squared for the off-diagonal matrix elements

|xψj |ψiy|2 “
eS
ÿ

α1,α2“1

C0
˚
α1j C0α1i C0

˚
α2i C0α2j . (3.6)

The most sizable contribution comes from the terms with α1 “ α2. These are eS real numbers of typical

size one, adding up to give some real contribution of typical size eS. There are other terms that pair up

to form real numbers, combining terms where we exchange α1 and α2. The typical size of the sum of

such two terms is
?

2; but there is typically the same number of terms with overall positive sign, and

overall negative sign. Therefore these are subleading. Crucially, the leading contributions always come

from terms where the phases precisely cancel.

Typical values of matrix elements are most efficiently estimated by using the ensemble average, this

is what typicality means. In the ensemble averaged description, one indeed computes

xψi|ψjy
aver
“ δij e

S , |xψj |ψiy|2
aver
“ δij e

2S ` eS , (3.7)

reproducing the above typical estimates. These formulas also highlight the discussion below (3.2). The

leading order approximation for the density matrix is the maximally mixed diagonal Hawking state; but

there are subleading non-self-averaging contributions of order eS{2 in the unnormalized density matrix

ρ “ eS
k
ÿ

i“1

|iy xi|`OpeS{2q . (3.8)

We cannot emphasize enough that these subleading corrections can, and do save unitary [6, 11, 37, 38].

We will show in the following section that these subleading corrections are important for observables.

Their effect is to cause linear relations between the different vectors |ψiy

k
ÿ

i“1

ai |ψiy “ 0 . (3.9)

The off-diagonal matrix elements do not need to be leading order for such linear relations to exist. The

density matrix (3.3) shown in Fig. 4 and Fig. 1, is an extremely concrete example of how this happens.

The leading order approximation is diagonal, but by construction the dimension of the span of the |ψiy,
which equals the rank of C0; is upper bound by both k and eS. The off-diagonal matrix elements are

therefore responsible for the Page transition at late times.

Circling back to the gravitational picture of section 2.2, notice in (2.30) that the typical off-diagonal

couplings gij are subleading compared to the diagonal couplings gii. This intuitively explains why the

diagonal matrix elements remain bigger than the off-diagonal ones, even in the interacting theory.
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Figure 5: Purity R2 as function of k with eS “ 50, showing (3.10) (black dots) and the planar approximation
1{k ` 1{L (orange), log-log representation.

3.2 Higher moments

Next we examine how calculations of various entropies in a typical member of the ensemble are consistent

with the answers given by the replica wormhole calculations of [6]. We will find that off-diagonal matrix

elements constructively add up and give large contributions to observables, corresponding to the effects

of replica wormhole geometries.

The simplest entropy observable is the purity, which is plotted in Fig. 5 and reads explicitly

R2 “
1

Trpρq2

k
ÿ

i,j“1

xψj |ψiy xψi|ψjy “
1

Trpρq2

k
ÿ

i,j“1

eS
ÿ

α1,α2“1

C0
˚
α1j C0α1i C0

˚
α2i C0α2j , (3.10)

here Trpρq is computed using (3.3). As explained below (3.6) the leading contributions come from terms

in the sums where two phases align, meaning that complex matrix elements of C0 pair up as

C0
˚
αi C0αi

est
“ 1 . (3.11)

In the purity summation (3.10), this happens if i “ j and or α1 “ α2. Using the leading order estimate

Trpρq “ k eS one then estimates the typical purity27

R2
est
“

1

k
`

1

eS
`

1

k eS
Repeiφq (3.12)

“
1

k2

k
ÿ

i,j“1

eS
ÿ

α1,α2“1

C0
˚
α1j C0α1i C0

˚
α2i C0α2j `

1

k2

k
ÿ

i,j“1

eS
ÿ

α1,α2“1

C0
˚
α1j C0α1i C0

˚
α2i C0α2j ` . . .

The first contribution in (3.12) comes from terms with i “ j, corresponding with diagonal matrix

27 These orange “Wick contractions” represent the ways that complex matrix elements can pair up in real numbers (3.11).
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elements or the disk geometries in (2.6). By itself these diagonal terms claim the purity of the radiation

decreases forever as 1{k. However, there is another important contribution from the terms with α1 “ α2.

This term counts the norm squared of the non-self-averaging fluctuations in all of the matrix elements

ρij , represented by the final contribution in (3.7). The noise in the off-diagonal elements constructively

interferes when computing the purity, this corresponds with the replica wormhole in (2.6) [6, 11].

There are k2 matrix elements with fluctuations, whereas there are only k diagonal matrix elements

whose self-averaging behavior gives the Hawking answer. For late enough times k the non-self-averaging

fluctuations win over the self-averaging terms and cause the Page transition [6, 11, 37, 38]. Here this is

represented by the second contribution in (3.12) winning over the first one [6], see also Fig. 5.

These corrections actually become much more important when constructing a more standard Page

curve, keeping the dimension of the Hilbert space of the total system fixed k eS “ d, whilst increasing

k. For extremely old black holes eS 9 1, the off-diagonal terms are not small anymore; the size of the

non-self-averaging fluctuations in (3.7) becomes comparable to the size of the signal itself, as in Fig. 1.

It is hence not true that small corrections save unitarity [37,38], large off-diagonal matrix elements do.

The last term in (3.12) estimates the size of non-self-averaging fluctuations, it comes from terms in

the sum where a1 ‰ α2 and i ‰ j. Each term in this sum is a “random” complex number with typical

norm squared one. There are roughly k2 e2S such terms, therefore the sum represents a “random” walk

that travels a typical radial distance k eS. For large k and eS these fluctuations are small, meaning that

the purity is self-averaging. Ensemble averages accurately compute entropies, but not matrix elements.

This generalizes to the other moments Rn “ Trpρnq{Trpρqn

Rn “
1

Trpρqn

k
ÿ

i1...in“1

xψi1 |ψi2y . . . xψin |ψi1y “
1

Trpρqn

k
ÿ

i1...in“1

eS
ÿ

α1...αn“1

C0
˚
α1i1 C0α1i2 . . .C0

˚
αnin C0αni1 .

(3.13)

For n ą 2 there are more ways the matrix elements C0 can pair with their complex conjugates (3.11),

corresponding with the sum over Wick contractions in the ensemble averaged calculation, and with the

different replica wormhole geometries in the model of [6]. For example for n “ 3, 4, one estimates

R3
est
“

1

k2
`

3

k eS
`

1

e2S
, R4

est
“

1

k3
`

6

k2 eS
`

6

k e2S
`

1

e3S
. (3.14)

Here we are no longer tracking the non-self-averaging fluctuations and we dropped terms of subleading

order in either k or eS. This corresponds with using the planar approximation in replica wormholes [6].
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Figure 6: Entropy S as function of k with eS “ 50, showing (3.15) (black dots) and the planar approximation
(3.26) (orange).

3.3 Entropy and planar resummation

Using (3.3) we can directly compute the von Neumann entropy, by literally computing the log of matrix,

using henceforth the normalized version of the density matrix (3.3)

S “ ´Trpρ log ρq . (3.15)

This entropy is plotted in Fig. 6. We now reproduce this figure using the planar approximation for the

moments discussed above, by explicitly applying the replica trick

S “ ´BnRn
∣∣
n“1

. (3.16)

This is nontrivial as it requires finding the unique analytic expression for the Renyis as function of n.

The first difficulty is computing Rn for arbitrary positive integer n by summing all planar diagrams.

This is in principle a difficult counting problem, the key to solving this implicitly was discussed in [6],

following [71,72]. To obtain the Renyi entropies as function of n one should instead compute a generating

function, for example the resolvent of the density matrix

Rpλq “ Tr

ˆ

1

λ´ ρ

˙

“
k

λ
`

8
ÿ

n“1

1

λn`1
Trpρnq . (3.17)

Its Taylor expansion around infinite λ encodes the moments Rn, and hence also the Renyi entropies.

This expansion, along with the structure of the planar geometries that contribute, makes it possible to

write down a Schwinger-Dyson equation for Rpλq; in our microcanonical setup this becomes [6]

Rpλq2 `

ˆ

eS ´ k

λ
´ k eS

˙

Rpλq `
k2 eS

λ
“ 0. (3.18)
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According to (3.17) the solution must behave as k{λ near λ “ 8; furthermore recognizing the generating

functional of Gegenbauer polynomials one then obtains the unique solution

Rpλq “
1

2
k eS ´

1

2

eS ´ k

λ
´

1

2

˜

´
4k2 eS

λ
`

ˆ

eS ´ k

λ
´ k eS

˙2
¸1{2

(3.19)

“
k

λ
´
kL

2

8
ÿ

n“2

1

λn

ˆ

L´ k

kL

˙n

Cp´1{2q
n

ˆ

L` k

L´ k

˙

. (3.20)

Using the relation between Gegenbauer polynomials and Jacobi polynomials,28 we can rewrite this into

Rpλq “
k

λ
`

8
ÿ

n“2

1

λn

n
ÿ

s“0

Γpn´ 1qΓpnq

Γpn´ s` 1qΓpn´ sqΓps` 1qΓpsq
kps`1´nq ep1´sqS . (3.22)

From the expansion coefficients one therefore finds the moments29

Rn “
n`1
ÿ

s“0

ΓpnqΓpn` 1q

Γpn´ s` 2qΓpn´ s` 1qΓps` 1qΓpsq
kps´nq ep1´sqS

“

n`1
ÿ

p“0

ΓpnqΓpn` 1q

Γpn´ p` 2qΓpn´ p` 1qΓpp` 1qΓppq
kp1´pq epp´nqS , (3.23)

where changing coordinates as p “ n`1´ s highlights the symmetry under exchange of k and eS. This

reproduces the correct answer for any integer n. One easily checks the simplest cases (3.12) and (3.14).

The second, we believe generally less appreciated difficulty, is finding a unique analytic continuation

of this formula away from integer n. Usually, one hopes that one obvious analytic continuation presents

itself; however here there are two obvious and inequivalent options. As 1{Γpn` 1´ sq “ 0 for s ą n` 1

one can extend the range of the first sum from s “ 0 to s “ 8. Via the same argument one may extend

the second sum from p “ 0 to p “ 8, for positive integers n.30 Both procedures give a hypergeometric

function,31 these agree on the positive integers but disagree elsewhere; resulting in two possible analytic

continuations (as function of n)

Rn “
1

kpn´1q 2F1p´n, 1´ n, 2, k{e
Sq or Rn “

1

epn´1qS 2F1p´n, 1´ n; 2; eS{kq , (3.24)

which are swapped when exchanging k and eS. Then which of these is the correct analytic continuation?

We need a theorem that specifies uniqueness of analytic continuation, given data at the positive integers.

28

Cp´1{2q
n pxq “

´2

n´ 1
P p´1,´1q
n pxq “ ´

2

n´ 1

n
ÿ

s“0

˜

n´ 1

n´ s

¸˜

n´ 1

s

¸

ˆ

x´ 1

2

˙s ˆ
x` 1

2

˙n´s

(3.21)

29 This formula was also recently derived in [73,74].
30 This corresponds with extending the first sum from s “ ´8 to s “ n` 1, doing both does not yield a convergent sum.
31 Hypergeometric functions are defined as semi-infinite sums, tread carefully with Mathematica here.
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The only such theorem that we know of is due to Carlson, see [75]. If there is a function fpzq that is

analytic for Repzq ě 0, that takes assigned values fn on the positive integers, that grows exponentially

slower than sinpπzq for imaginary z, and no faster than exponential elsewhere; then this function fpzq

is the unique one with these properties.

Conversely, the data fn is insufficient to uniquely specify an analytic function fpzq without further

constraints, and Carlson’s theorem gives the necessary constraints that uniquely select one function. It

is not a priori obvious why the moments Rpzq should satisfy these constraints, but Carlson’s theorem

proves that if they do not, then there is no unique function Rpzq; and therefore no unique von-Neumann

entropy. That is clearly nonphysical, therefore we conclude that Rpzq must satisfy Carlson’s theorem.32

The first function in (3.24) satisfies this theorem as function of n when k ă eS, however it grows too

quickly on the negative imaginary axis when k ą eS; the second function in (3.24) satisfies the theorem

for the same reason only when k ą eS. Therefore the unique analytic continuation in n is33

Rn “
1

kn´1 2F1p´n, 1´ n, 2, k{e
Sq θpk ă eSq `

1

epn´1qS 2F1p´n, 1´ n; 2; eS{kqθpk ą eSq . (3.25)

With this, one computes the entropy using the replica trick (3.16). This reproduces the Page curve [7]34

S “ plogpkq ´ k{2eSq θpk ă eSq ` pS´ eS{2kq θpk ą eSq . (3.26)

This agrees excellently with a direct calculation of the entropy (3.15) using our density matrix (3.3),

see Fig. 6. It is not surprising that the Page curve is self-averaging, the point is that we have produced

it using the density matrices in Fig. 1, confirming the claims made about off-diagonal matrix elements

in section 3.2. More importantly, we have given a gravitational interpretation for these matrix elements

in section 2.2.

4 Concluding remarks

In this work we made progress towards understanding the bulk gravity dual to one quantum system. We

investigated how the density matrix elements of evaporating black holes are computed in non-random

gravity theories, and in particular what explain small off-diagonal density matrix components.

For this we investigated an enrichment of the model of Pennington, Shenker, Stanford and Yang,

by including dynamics for EOW branes; namely brane flavor changing interaction vertices and loops of

32 Otherwise we can just add the function c sinpπzq to the moments with arbitrary c, which contributes πc to the entropy.
33 The Heavisides also conveniently save us from evaluating the hypergeometric on the branchcut it has in the last variable.
34 Analytically, using the representation of the hypergeometric as infinite sums (3.23) from s “ 0 to s “ 8, one takes the
derivatives of the Gamma functions, then uses the poles and residues of the Gamma and Digamma functions to prove that
only one term in the sum contributes. It is crucial that in the analytic continuation the sums are semi-infinite, otherwise
the derivative is not well defined.
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EOW branes; and discovered a dual description as a deformed matrix integral

Z “
ż

dC dC: exp

ˆ

´ Tr
´

C:C
¯

´ γ Tr
´´

C ´ F pHq1{2C0

¯´

C: ´ C:0F pHq
1{2

¯¯

˙

, (4.1)

where the coupling constants for the interaction vertices are related to the matrix deformation as

gij “ γ2 1

L

´

C:0 C0

¯

ji
. (4.2)

For increasing values of the coupling constant γ, and hence gij , the random matrix C gets gradually

fixed to a non-random matrix C0. This means that the interior states |ψiy are becoming less random.

Our main conclusions are the following.

1. Strong interactions behind the horizon are essential for understanding the microstructure of matrix

elements of evaporating black holes, within this simple model.

2. The microscopic details of the theory, here represented by the non-random matrix C0, are encoded

in gravity as coupling constants for interior interactions.

3. Large amounts of tiny off-diagonal matrix elements eventually overtake the bigger diagonal matrix

elements, these correspond with replica wormholes and cause the Page curve transition.

4. For nearly evaporated black holes off-diagonal matrix elements are large, and the state approaches

some pure state as required for unitarity.

In a gravity model where the density matrix of Hawking radiation is described by (2.51)

ρij “
´

C:0 F pHqe
´βHF pHqC0

¯

ji
, (4.3)

one immediately sees that there are nontrivial off-diagonal matrix elements, without having to compute

their variance. The raison d’être for the simplified ensemble averaged gravity theories is they are simple

to compute with, this is the whole philosophy behind random matrix theory [61,76]. They were never

meant to describe the microstructure of individual systems, we should not forget this. Random matrices

are sufficiently smart to understand that the off-diagonal matrix elements are nonzero. But they are not

a microscopic description of the theory, where we can actually understand why they are nonzero. The

real universe is clearly not an ensemble average; no one would claim Navier-Stokes is the fundamental

description of fluids, neither are random matrices the fundamental description of the bulk.

Simple effective description like JT gravity with non-dynamical EOW branes, Brownian motion, and

pure Einstein-Hilbert gravity in higher dimensions [18, 69] are ensembles. However, real fundamental

description like deformed JT gravity [35] with dynamical EOW particles, atoms, and full-fledged string

theory [33] are factorizing and unitary quantum systems without ensembles.
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xψj |ψiy “ δij `

Figure 7: Picture for (two-sided) matrix elements that generalizes to higher dimensions. One could imagine
creating orthogonal states by preparing states with particles of different flavors. In microscopic models the
particles could interact heavily in the interior, perhaps close to the singularity, resulting in off-diagonal matrix
elements. This conclusion is similar to the effective half-wormholes for eigenvalue correlation in [30,36] and
also to the picture of [12,13,35]. Strong interior interactions encode microstructure. This also applies in [5].

That being said, ensemble averaged descriptions are clearly extremely useful, precisely because they

corresponds with simple gravitational duals; those simple duals suffice for many calculations.

We end this work with several comments, first and foremost about higher dimensional implications.

General lessons

We believe our findings are evidence that strong interactions in the interior will generically be important

to capture the microstructure of higher dimensional black holes. These interactions factorize (replica)

wormholes, because they collapse the ensemble, and because without the ensemble everything factorizes.

Knowing how to calculate the microscopic out-state of the radiation is equivalent to understanding how

to factorize (replica) wormholes.

In our model factorization is less geometrically obvious than is the case with eigenvalue correlation

[12,13], where there is some exclusion rule and concordantly a diagonal “ cylinder identity [30]. In this

setup, when we calculate in gravity the product of two matrix elements, there is the replica wormhole;

but also other connected components, from both matrix elements connecting to the D-brane partition

function (or EOW loops). They can both be connected to EOW loops via wormholes, or via the nonlocal

interactions discussed below. Since the replica wormholes are not related to eigenvalue correlation, we

believe that the nonlocal interactions might be the key. Somehow the replica wormholes should then be

canceled by nonlocal interactions between different copies, restoring factorization. This must happen,

because the ensemble is collapsed, nevertheless it would be interesting to make this more precise.

This picture we obtain here is, perhaps surprisingly, morally related to the one advocated in [30,36],

where they discuss an effective description for (eigenvalue) microstructure. The information about that

microstructure is located in the interior, perhaps even near the singularity. We have a different setup

here, and are describing different aspects of black hole microstructure, namely the out-state of radiation.

Nevertheless the overall lesson is similar: strong interior interactions encode microstructure. This is also

one possible interpretation of [12,13,35], which gives a precise description of eigenvalue microstructure.

See Fig. 7
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The EOW branes studied in this paper are behind the horizon [43, 47]. But one could consider an

alternative version of this same model, with negative energy dynamical branes modeling random states,

but these are outside of the horizon [47]. Their coupling constants would still encode microstructure,

but that information would now be outside. Perhaps this is a sensible toy model for fuzzballs; it would

be interesting to connect that literature better with the current developments concerning wormholes

and ensembles [77–79].

Concerning the dependence of the couplings on C0 we believe the generalized picture is the following.

Consider a UV complete theory of quantum gravity, like string field theory. These theories are probably

rather unique and special, concordantly the couplings between the matter fields in the spectrum would

take rather specific values. One could imagine integrating out most fields in the spectrum, leaving some

“simplified” model with fewer fields; like dilaton gravity with EOW branes.

However integrating out the matter fields would leave its imprint, it would not leave something nice

and simple like ordinary JT gravity, with non-dynamical EOW branes. Rather, one would obtain some

highly deformed JT gravity with complicated dilaton gravity interactions, and dynamical EOW branes.

The details about the UV microstructure would get imprinted in all these interactions, see also [35].

Concerning the off-diagonal matrix elements there should obviously be a generalization to arbitrary

black holes. States describing the interior of black holes should acquire nontrivial overlaps as the black

holes grow old, to ultimately restore unitarity.

The mechanism by which these states become equivalent is an important open question, our results

suggest that strong interior interactions are relevant for understanding this phenomenon.35

Strong coupling

At strong coupling when gij become big, the gravitational picture of section 2.2 is modified, since in the

approximation from (2.36) to (2.38) and (2.45), we assume that terms with n of order L are suppressed.

When the coupling become big, that assumption is no longer valid; and so neither is the approximation.

This Gaussian approximation fails because for n 9 L, the contributions from subleading Weingarten

functions are not obviously suppressed [35]. For example, we can no longer trust the scaling formula

Wgpαβ´1q 9 L´#pα¨β´1q , (4.4)

which validated the Gaussian approximation. The combinatoric prefactors may also enhance naively

subleading contributions at high order in the coupling constant.

This means that the multi-trace contribution in (2.36) might become relevant at strong coupling.

One would obtain multi-trace terms in the brane partition function (2.39). These are clearly interpreted

35 Another option is that the states only become equivalent as perceived by outside observers, as required by the central
dogma [2], but perhaps interior observers could still distinguish them?

29



in gravity as corresponding with multi-local interaction vertices, we could then represent these by also

allowing dotted lines connecting dotted vertices and multiple local interaction vertices; which makes

the gravitational expansion more involved. Feynman rules for those dotted diagrams contain further

information on C0 since these rules depend on multi-trace combinations of C0.

It would be interesting to obtain analytic control over these multi-trace deformations by scaling the

couplings in certain specific ways.

Fixed Hamiltonians

Finally, we briefly mention the gravitational interpretation of fixing the random Hamiltonians H to one

single Hamiltonian matrix H0. This was investigated in [35] using a deformed matrix integral similar

to (2.48), but where H is coupled to an external matrix H0 with coupling constant 1{σ2.

Whilst not our focus, the gravitational interpretation of non-random matrix elements (2.53) involves

understanding how H0 gets encoded in gravity in addition to C0. Therefore we briefly summarize the

results of [35]. The gravity interpretation for the eigenvalues of H0 only affects the bulk JT gravity

spacetime description, not the behavior of EOW branes discussed throughout this work. This is why

our discussion in earlier sections decoupled from fixing H0.

For weak coupling 1{σ2 one finds a deformation of the JT gravity action which can be interpreted as

inserting many local defects [51,52,80–82]. These are the analogue of the interaction vertices discussed in

this work. The associated coupling constants depend on H0, in line with point 2 of the main conclusion.

When the coupling increases, nonlocal bulk spacetime interactions become important, for precisely

the same Weingarten reasons, giving a nonlocal dilaton gravity action. The analogue of terms with

n 9 L becoming important, is that macroscopic operator insertions appear. These tear up the smooth

spacetime with large holes [83].

For strong coupling we approach the eigenbrane picture [12,13] with many extra macroscopic holes

in spacetime. The boundary conditions on these extra holes [41] encode the eigenvalues of H0. However,

the theory with infinitely many eigenbranes is not under good control, and something far more drastic

probably happens. Signs were found [35,84] of some branched polymer phase of gravity, where smooth

spacetime is completely broken. Then the question is what replaces smooth spacetime; what is the true

microscopic description of gravity? These works build towards deriving a concrete microscopic picture.

What remains is the more illusive gravitational interpretation of the random unitaries U . These are

irrelevant for observables like partition functions, or the spectral form factor; but crucial for correlation

functions [9, 11,13,85,86] and density matrix elements. This is an important open problem [42].
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A Gravitational amplitudes

Here we gather some gravitational details relevant in the main text.

A.1 Pinwheels

First consider the pinwheel geometry Znpβq of [6], which is a disk geometry with n pieces of asymptotic

boundary of length β, separated by n boundary segments that describe the geodesic trajectory of some

particle of mass µ; these represent the EOW branes. For example

Z3pβq “ . (A.1)

This amplitude was computed using the techniques of [9, 87] and gives

Znpβq “ eS0
ż `8

0
dE expp´nβEqF pEqn

1

4π2
sinh

´

2πE1{2
¯

, F pEq “ Γ
´

µ´ 1{2˘ iE1{2
¯

(A.2)

We note in passing that this formula is also easily derivable in the BF formalism of [88,89], where the

mass µ boundary particles are represented by Wilson lines and one recognizes F pEq as the 3j symbols

with one trivial representation; because there is nothing on the other side of the particle.

In the matrix integral this pinwheel corresponds with the observable

Tr
´

e´βHF pHq . . . e´βHF pHq
¯

“

ż `8

´8

dE expp´nβEqF pEqn Tr δpE ´Hq . (A.3)

The leading order expectation value of Tr δpE´Hq equals the disk amplitude with fixed energy boundary
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conditions [8, 12]

xTr δpE ´Hqy “
eS0

4π2
sinh

´

2πE1{2
¯

“ ρpEq , (A.4)

which indeed reproduces (A.2). Including handles on the pinwheel replaces the genus zero disk answer

(A.2) with
ż `8

´8

dE expp´nβEqF pEqn xρpEqy , (A.5)

where xρpEqy is the exact spectral density in the matrix integral. This can be calculate order per order

in the genus expansion using Weil-Peterson volumes, and nonperturbatively using D-branes [8, 12].

When there are two pinwheels, we must include spacetime wormholes that connect them. Summing

over all genus gives rise to the full spectral correlation xρpE1qρpE2qy of random matrix theory [8,12,61]

xZn1pβqZn2pβqy “

ż `8

´8

dE1 expp´n1βE1qF pE1q
n1

ż `8

´8

dE2 expp´n2βE2qF pE2q
n2 xρpE1qρpE2qy ,

(A.6)

which, for all intents and purposes, can be approximated as

xρpE1qρpE2qy “ ρpE1qρpE2q ` δpE1 ´ E2qρpE1q ´
sinpπρpEqpE1 ´ E2qq

2

π2pE1 ´ E2q
2

. (A.7)

The generalization to multiple pinwheels is obvious [12].

Though these expressions are very explicit, it is more practical to work in a microcanonical ensemble,

where things simplify even further. In some microcanonical ensemble centered around E, one computes

for example36

xZn1pEqZn2pEqy “

ż

E
dE1 F pE1q

n1

ż

E
dE2 F pE2q

n2 xρpE1qρpE2qy “ F pEqn1`n2 e2S , (A.8)

where the total number of eigenvalues in this microcanonical bin computes the microcanonical entropy

ż

E
dE1 ρpE1q “ eS . (A.9)

The second equality in (A.8) follows from the definition of the microcanonical ensemble, the width of the

energy bin is much smaller than 1 but much bigger than the typical level spacing 1{ρpEq. The function

F pEq varies on energy scales of order 1 and can therefore be approximated as constant within the bin.

Furthermore, on energy scales bigger than 1{ρpEq the sine kernel in (A.7) is essentially indistinguishable

from the Dirac delta term; and these two contributions therefore cancel out, and to good approximation

ż

E
dE1

ż

E
dE2 xρpE1qρpE2qy “

ż

E
dE1 ρpE1q

ż

E
dE1 ρpE1q “ e2S (A.10)

36 We have in mind some implicit Gaussian weight centered around E which defines the energy bin smoothly.
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Using these results one computes, with the rules explained in section 2.1

ρij “ δij F pEq e
S , ρij ρkl “ δij δkl F pEq

2 e2S ` δil δkj F pEq
2 eS . (A.11)

These are the results mentioned in (2.3) and (2.5). Notice that the details of the EOW brane boundary

conditions, captured by the kernel F pEq, are just overall normalization constants in these amplitudes;

all this dependence drops out when we consider normalized density matrices, and compute normalizes

quantities like Renyi entropies. Life in the microcanonical ensemble is simple.

A.2 Modeling interactions

We gather formulas about disk amplitudes with marking operators in minimal strings and in JT gravity,

more details are contained in [51,54–56].

First consider a circular FZZT boundary [8, 57–59], without marked points, which corresponds in

random matrix theory with

TrplogpE ´Hqq “ . (A.12)

The random matrix observable includes a sum over genus in gravity, which we suppress for presentation

purposes. Now consider the minimal string boundary three point function of marking operators37

xT1E1E2T1E2E3T1E3E1y . (A.13)

As written the marking operators intertwine between segments with FZZT boundary states respectively

E1, E2 and E3.38 This corresponds in random matrix theory with the following observable [51,54–56]

Tr

ˆ

1

E1 ´H

1

E2 ´H

1

E3 ´H

˙

“ . (A.14)

Now consider a disk with thermal boundary length α1`β1`α2`β2`α3`β3, which corresponds in

random matrix language with Trpexpp´pα1 ` β1 ` α2 ` β2 ` α3 ` β3qHqq. Laplace transforming some

segment of thermal boundary gives a segment of FZZT boundary, this is obviously true from the matrix

37 Boundary chiral vertex operators have three labels [90], the two extra labels denote the boundary states between which
they intertwine. In string language these are the Chan-Patton indices for the two D-branes between which the open string
operator stretches, generalized to non-coincident D-branes.
38 FZZT boundary conditions are technically a double cover of the energy axis and should be labeled by z with E “ ´z2,
there is a unique Liouville primary corresponding with each z; this is not relevant here so we suppress it for reader comfort.
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integral formulas. Therefore we have the correspondence

Tr

ˆ

1

E1 ´H
e´β1H

1

E2 ´H
e´β2H

1

E3 ´H
e´β3H

˙

“ . (A.15)

The gravity amplitude mimics the pinwheel amplitude considered in appendix A.1 and in [6], but with

FZZT boundary conditions instead of mass µ boundary conditions. FZZT and mass µ boundary states

are linear combination of each other; one checks that their JT boundary wave functions form complete

sets for certain complex ranges of E respectively µ [6,9], hence there is a basis transform between them.

Now we see that taking the thermal length of one of the segments in the pinwheel to zero reproduces

amplitudes of the type (A.14). The random matrix dual clarifies that this is indeed the correct limit to

take, if you send β1, β2 and β3 to zero in (A.15), you recover (A.14). This proves that the dilaton gravity

interpretation of a marking operator T1E1E2 corresponds with a piece of thermal boundary sandwiched

between FZZT boundary segments with boundary conditions E1 and E2, where the thermal length of

the sandwiched segments is taken to zero.

The generalization to mass µ boundaries is straightforward, since these are just linear combinations

of FZZT boundaries. We can consider for example the minimal string boundary three point function39

xT1µµT1µµT1µµy . (A.16)

Following the above, this corresponds in random matrix theory with the observable

Tr
´

Γ
´

µ´ 1{2˘ iH1{2
¯

Γ
´

µ´ 1{2˘ iH1{2
¯

Γ
´

µ´ 1{2˘ iH1{2
¯¯

“ , (A.17)

and therefore in gravity with the β “ 0 limit of the pinwheel diagrams studied in appendix A.1.

Notice that taking the β “ 0 limit of the pinwheels, gives a finite answer for the second diagram in

(2.11); representing a disk ending on a mass µ particle with a single marking operator inserted. Naively

one might have thought that amplitude would vanish, since the boundary is a geodesic, but it does not.

In summary, if we model interactions by insertions of marking operators, we know the corresponding

observables in random matrix theory and the corresponding boundary conditions in gravity, and we can

compute all amplitudes we want. One could consider modeling interactions by more general minimal

open string Tachyons Tnµµ, however the random matrix dual of the corresponding boundary correlators

39 In stringy language the k flavors of interior modes are ordinary Chan-Paton indices, because all D-branes coincide at µ.
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is not actually known,40 and concordantly neither are the precise boundary conditions in dilaton gravity.

We expect the conclusions of this work to hold when working with these other models for interactions.

A.3 Computing amplitudes

Here we go through the JT gravity calculation for one amplitude that contributes to the matrix element.

The example which we choose is sufficiently complex so that the generalization to all amplitudes should

be straightforward. We consider (2.21)

xψj |ψiy Ą
1

3
G4

´

g3
¯

ij
G3 Tr

´

g3
¯

, (A.18)

where we already extracted the EOW particle Feynman rules, such that the diagram reflects a pure JT

gravity calculation. The way to proceed is to first treat each boundary loop as analogous to a standard

fixed length boundary; chopping up the surface by cutting off “trumpets” ending on each boundary [8],

and on the unique geodesic inside the Riemann surface homologous to the boundary in question.

The remaining amputated amplitude with geodesic boundaries computes the Weil-Petersson volume,

which can be calculated by further chopping up this Riemann surface into three holed spheres. This is

explained in great detail in [8, 9, 13,25, 85,91,92], and will not be repeated here. The newer ingredient

is computing the trumpet ending on a boundary circle that includes interacting EOW branes.

Let us work through this in the above example. Cutting the Riemann surface on the blue geodesic of

length b leaves two trumpets, here there remains no amputated surface and we need no Weil-Petersson

volumes

“

ż 8

0
db b . (A.19)

Each of the remaining pieces is a trumpet with one geodesic boundary and one boundary that involves

segments of EOW particles.

As explained in appendix A.1 and appendix A.2, without geodesic boundary, the amplitudes could

be easily calculated using the boundary particle formalism [9,87] or the BF formulation [80,88,89,93,94]

“

ż `8

0
dE expp´βEqF pEq4

eS0

4π2
sinh

´

2πE1{2
¯

. (A.20)

40 Recently an educated guess was made in [54] which perhaps deserves further study.
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Including the geodesic boundary is easy within the BF or first order formulation, where it is interpreted

as introducing a hyperbolic defect; amplitude wise this simply replaces the sinh factor with a cosine [80]

“

ż `8

0
dE expp´βEqF pEq4

1

2π

1

E1{2
cos

´

bE1{2
¯

. (A.21)

The trumpet with one geodesic boundary and one triangle boundary therefore becomes

“

ż `8

0
dE F pEq3

1

2π

1

E1{2
cos

´

bE1{2
¯

. (A.22)

We can now immediately compute the b integral using

ż 8

0
db b

1

2π

1

E
1{2
1

cos
´

bE
1{2
1

¯ 1

2π

1

E
1{2
2

cos
´

bE
1{2
2

¯

“ ´
1

4π2

E1 ` E2

E
1{2
1 E

1{2
2

1

pE1 ´ E2q
2
“ xρpE1qρpE2qy0 ,

(A.23)

which is the genus zero contribution to the spectral correlation [8]. Combining the elements, we obtain

“

ż `8

0
dE1 expp´βE1qF pE1q

4

ż `8

0
dE2 F pE2q

3 xρpE1qρpE2qy0 . (A.24)

Including any number of handles and nonperturbative effects in that genus expansion simply replaces the

genus zero connected spectral correlator with the full correlator (A.7) of random matrix theory [9,13,85].

The generalization to arbitrary amplitudes should now be obvious.

Another new application of the BF formulation is the calculation of [47], which considers a trumpet

with mass µ particle on the geodesic boundary. In the BF formulation, massive particles become Wilson

lines, and the mass µ labels discrete series irreducible representations of SLp2,Rq. The geodesic length

b, over which is integrated, labels hyperbolic conjugacy class elements of SLp2,Rq, and Wilson lines in

the conjugacy class element basis contribute characters to BF amplitudes [88,89,93,95]. One then finds

“

ż 8

0
db χµpbq

ż `8

0
dE expp´βEq

1

2π

1

E1{2
cos

´

bE1{2
¯

, (A.25)

and the discrete series characters evaluated on hyperbolic conjugacy class elements are in this convention

[96]

χµpbq “
expp´µbq

2 sinhpb{2q
. (A.26)
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This therefore indeed reproduces formula (2.47) of [47], there obtained via direct canonical quantization.

This character formula is also relevant when exactly computing the contributions of matter loops around

handles in JT gravity. Inserting it as an extra kernel in the double trumpet gives the annulus with one

matter loop going around. More loops are annoying since the particles can then cross, giving potential

SLp2,Rq 6j symbols [88,89,94,97]. Could these be used to study deviations from random matrices [42]?
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