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Abstract: Policy learning for delicate industrial insertion tasks (e.g., PC board
assembly) is challenging. This paper considers two major problems: how to learn
a diversified policy (instead of just one average policy) that can efficiently handle
different workpieces with minimum amount of training data, and how to han-
dle defects of workpieces during insertion. To address the problems, we propose
tolerance-guided policy learning. To encourage transferability of the learned pol-
icy to different workpieces, we add a task embedding to the policy’s input space
using the insertion tolerance. Then we train the policy using generative adversarial
imitation learning with reward shaping (RS-GAIL) on a variety of representative
situations. To encourage adaptability of the learned policy to handle defects, we
build a probabilistic inference model that can output the best inserting pose based
on failed insertions using the tolerance model. The best inserting pose is then
used as a reference to the learned policy. This proposed method is validated on
a sequence of IC socket insertion tasks in simulation. The results show that 1)
RS-GAIL can efficiently learn optimal policies under sparse rewards; 2) the tol-
erance embedding can enhance the transferability of the learned policy; 3) the
probabilistic inference makes the policy robust to defects on the workpieces.
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1 Introduction

Although robotics have been widely applied in manufacturing, it remains challenging for robots
to handle delicate industrial insertion [1, 2, 3]. This paper mainly considers insertion tasks on
a small scale with multiple contact points. For example, the assembly of an IC socket that has
multiple pins on a printed circuit board, the plug of a USB port, etc. Conventional model-based
methods for insertion are able to achieve high performance on modeled tasks, but require case-by-
case tuning and have poor generalizability [4]. As the emphasis of electronic assembly shifts from
massive production to massive customization, the assembly lines are made more and more flexible,
which requires robots to be equipped with general insertion skills that cover a wide variety of tasks.
Learning-based methods are promising for robots to learn those skills [5, 6, 7, 8]. Nonetheless,
there are two major challenges for policy learning in delicate industrial insertion tasks. The first
is how to learn a diversified policy (instead of just one average policy) that can efficiently handle
different workpieces with minimum amount of training data. The second is how to handle defects
of workpieces during insertion, e.g., bent pins.

This paper proposes a tolerance-guided policy learning method to address the problems as a way to
leverage models (i.e., tolerance) in the policy learning. Tolerance refers to the amount of misalign-
ment error and force error that is admissible so that the insertion can still succeed. Every insertion
task has a tolerance. Different insertion tasks may have the same amount of tolerance. We can
explicitly explore the similarities in the tolerance to transfer learned policies to different insertion
tasks. The (nominal) tolerance can be directly computed from the CAD models and the specs of
the insertion tasks. We call the mathematical description of the tolerance as a tolerance model. To
encourage transferability of the policy, we augment the policy input space to include the tolerance
model and train the policy on a variety of representative tasks. To remove redundant information
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in the tolerance model, we encode the tolerance model into a low dimensional vector using auto-
encoder. With the tolerance embedding, the next problem is how to efficiently learn the policy as the
insertion tasks are with sparse rewards. By leveraging imitation learning and reinforcement learning,
we propose generative adversarial imitation learning with reward shaping (RS-GAIL) that starts the
learning by mimicking a suboptimal expert and gradually converges to a policy that is optimal with
respect to the environment reward. The expert effectively guides the initial exploration. In addition,
to encourage adaptability of the learned policy to handle defects, we build a probabilistic inference
model that can output the best inserting pose based on failed insertions. The probabilistic inference
starts from the nominal tolerance model (computed from CADs) and will gradually learn the true
tolerance model (with defects). The best inserting pose based on the true tolerance model is then
used as a reference to the learned policy. The contributions of the paper include:

• introduction of RS-GAIL to efficiently train insertion policies in sparse reward environments;
• policy generalization to different workpieces (with different number of pins and different geometry

of the pins) using tolerance embedding;
• introduction of probabilistic inference of the defects on workpieces and the consequent optimal

insertion points to make the policy robust to defects.

2 Related Work

Learning Framework for Insertion An insertion policy takes the state (e.g., pin/hole relative
pose, contact force) as input, and outputs an action for the robot to move the workpiece. Inoue
et al [6] used LSTM based policy networks to map the current contact force and peg position to
desired force and peg position. Luo et al [7] used model-based RL algorithm and iLQG to train
a torque controller and used a neural network to process force/torque readings as reference inputs
to the controller. These works focus on single task without workpiece variations, hence the learned
policy cannot generalize to new workpieces. Using meta-reinforcement learning [8, 9], the robot can
learn skills on new tasks with a small amount of demonstrations. However, since the specifications
of workpieces (e.g., number of pins, shape of pins) have large variations, it is intractable to get
demonstrations for all new workpieces. Our proposed method, by encoding task specifications into
low dimensional parameters and embedding these parameters as another input modality of the policy
network, can generalize to new workpieces without training or finetuning using new data.

Learning Algorithm To learn a policy, one can use either imitation learning (IL) or reinforcement
learning (RL). In IL, the agent learns the policy by mimicking expert’s behavior. Among common IL
algorithms, behavior cloning (BC) [10] requires large amount of expert demonstration data; dataset
aggregation (DAGGER) [11] requires access to the expert during rollout. Generative adversarial
imitation learning (GAIL) [12] can overcome these problems. It includes a discriminator to measure
similarity between the student policy and the expert policy, and uses the similarity as criteria to im-
prove the student policy (similar to a RL problem). However, since IL training drives the state-action
distribution of student policy towards that of the expert, it is impossible for the student to outper-
form the expert. In RL, the agent learns the policy by interacting with the environment according to
a reward function which needs to be carefully engineered. For tasks with sparse rewards (such as the
insertion task considered in this paper), RL algorithms (e.g., DDPG [13]) converge slowly and are
not data-efficient due to the difficulty to explore non-zero rewards. To address the problem, we may
add demonstration data into the replay buffer [14, 15, 16, 17]. However, these algorithms either need
a large amount of demonstration data to balance the data distribution, or may still diverge due to the
difficulty in exploration. On the other hand, adding priors to current reward function, namely reward
shaping (RS) [18, 19, 20, 21] can guide the policy towards the desired behaviors indicated by the
priors. By adding RS to IL, the student policy can explore more efficiently due to the guidance pro-
vided by the expert, and keep the potential to capture the desired behaviors to outperform the expert.
Our proposed policy learning method leverages IL, RL, and RS, which is data-efficient, converges
fast, and can outperform the suboptimal expert demonstrator in sparse reward environments.

3 Problem Formulation

This paper considers the delicate industrial insertion tasks. Let ε be a task (characterized by the
workpiece) and E be the distribution of tasks. The goal is to efficiently learn a policy πε, which
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varies according to the tasks, that achieves the highest reward over the distribution of tasks. Let τ be
the trajectory generated by πε andR(τ) be the reward function on τ , which evaluates the completion
of the task within a given time frame, the duration of the task, and the number of collisions during
the task. Then the policy learning problem can be written as the following optimization:

max
πε

Eε∼E [ Eτ∼πε [R(τ)] ]. (1)

It is worth noting that every task has a nominal model that is characterized by the design param-
eters of the workpiece (e.g., CAD model), while the real workpiece may deviates from the design
parameters due to defects, which are difficult to be perceived before insertion. We define a mapping
from a real workpiece ε to its nominal model ε̄ as f : ε 7→ ε̄. It is assumed that before insertion,
only the nominal model ε̄ is available, while we can infer the actual model ε based on the insertion
performance. In the following discussion, we introduce the task embedding using tolerance.

Tolerance The performance of policy depends on the system dynamics, which then depends on the
task. It is natural to use the peculiar dynamic properties of different workpieces to encode various
insertion tasks. Here we use tolerance as the fundamental property to construct task encoding.
Tolerance T (ε) of task ε is defined as the set of states s̄ of the workpiece so that the pins (denoted
as the set Cp,ε(s̄)) can be inserted into the holes (denoted as the set Ch,ε):

T (ε) = { s̄ | Cp,ε(s̄) ⊂ Ch,ε }. (2)

Figures 2b and 2d show examples for tolerance. Workpieces with different specifications may result
in the same tolerance. Tasks with similar tolerances should have similar policies. However, since
T (ε) is excessively redundant as task encoding, we will introduce an encoder to transfer tolerances
to low-dimensional representations ψ(ε) to be discussed in section 5.1. We then use ψ(ε) to guide
the policy in order to generate diversified strategies for different workpieces. Since the tolerance of
defective realistic workpieces is inaccessible before insertion, we can only parameterize the policy
using its nominal model ε̄ = f(ε). Therefore, the policy learning problem in (1) is decomposed into
two problems: policy learning with respect to the nominal model formulated in (3) and inference of
the actual task ε.

max
π(ψ(ε̄))

Eε∼E [ Eτ∼π(ψ(ε̄))[R(τ)] ], (3)

Assumptions and Notations This paper focuses on the insertion tasks of circle-shaped multiple
pin-hole pairs and polygon-shaped single pin-hole pairs. We use n*m to denote that there are n
rows and m pins per row. For example, Fig. 1a shows a 1*3 case. The x and y axes span the
horizontal plane and the z axis is the vertical axis that aligns with the insertion direction. The origin
is attached to the center of the board on its upper surface. It is assumed that pins and holes are rigid
during insertion, and the rotations w.r.t. the x or y axis are negligible given that the robot controller
is robust along these two axes. We denote [x, y, θ, z] as the pose of the workpiece, [Fx, Fy, Fz]
as the forces on the workpiece along each axis, qθ as the torque on the workpiece along θ, s =
[x, y, θ, z, Fx, Fy, qθ, Fz] as the state of workpiece, and a = [ux, uy, uθ, uz] as velocities along each
axis and also the action of the robot. s̄ = [x, y, θ] denotes the truncated state used to determine the
tolerance and the success of insertions, i.e., if s̄ ∈ T (ε) and z < 0, then the pins are inside the
holes. The target insertion pose is denoted as s̄∗ = [x∗, y∗, θ∗] ∈ T (ε). The coordinate system
is defined such that the target insertion poses are [0, 0, 0] for all nominal tasks. For real tasks, the
target insertion pose may be set to a non-zero value to maximize the chance of successful insertion
with defective workpieces. The measurement ŝ = [x̂, ŷ, θ̂, ẑ, F̂x, F̂y, q̂θ, F̂z] of the state s follows a
Gaussian distribution with mean s. Define ŝ∗ := [x̂ − x∗, ŷ − y∗, θ̂ − θ∗, ẑ, F̂x, F̂y, q̂θ, F̂z] as the
shifted measurement, which will be used as the input to the policy. We also define r(s, a) as the
reward function for state-action pairs, while the cumulative r(s, a) over a trajectory τ is R(τ). The
discount factor is set to be 1.

System Architecture The proposed policy πε consists of two components as shown in Fig. 1b:
the policy π(ψ(ε̄)) (shown as the policy network) and the probabilistic inference on the actual task
ε (shown as the outer loop). The policy π(ψ(ε̄)) also contains two parts: the nominal policy (shown
in blue) and the tolerance-guided adaptation (shown in green). The nominal policy πn : ŝ∗ → a
considers only the measurement feedback and does not consider the diversity of the workpieces.
It is trained on a representative workpiece ε0. The nominal policy learns the common features of
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Figure 1: System diagram. (a) Coordination system. (b) System architecture for tolerance-guided insertion.
(c) Training pipeline for tolerance-guided policy.

insertion tasks. The tolerance-guided adaptation is designed to handle distinctions among work-
pieces, serving similarly as learning residual [22, 23]. It takes the task encoding ψ(ε̄) as input and
provides modifications to the nominal policy. We call the policy combining the nominal policy
and the tolerance-guided adaptation as a diversified policy and parameterize the policy by φ, i.e.,
πφ(ψ(ε̄)) : ŝ∗ × ψ(ε̄) 7→ a. The parameter contains two parts φ = [φ1;φ2] where φ1 corresponds
to the nominal policy and φ2 corresponds to the tolerance-guided adaptation. The training of πφ is
discussed in section 4 and section 5.1. Probabilistic inference then exploits the insertion history of
the current workpiece and infers the actual task ε and the optimal reference point s̄∗. The optimal
reference for s̄∗ will then be compensated to the input vector of πφ. The new policy is denoted π∗φ,
to be discussed in section 5.2.

4 Learning

The learning algorithm will be used to train the nominal policy πn as well as the diversified policy
πφ. The learning algorithm essentially solves the following problem

max
π

Eτ∼π,ε[R(τ)]. (4)

Since the workpieces have small tolerance in our application, positive rewards (i.e., successful inser-
tion) are sparse. As a result, the exploration of RL algorithm becomes expensive. Imitation learning
algorithms provide efficient guidance for exploration, but the performance of the learned policy is
constrained by the optimality of the expert policy. We propose an integrated imitation learning and
reinforcement learning framework, generative adversarial imitation learning with reward shaping
(RS-GAIL), which leverages the effective exploration of IL and optimality of RL. Denote the expert
policy as πe which may be generated by simple PID control or human demonstration. The original
GAIL [12] solves the following minimax problem

min
π

max
D

Eπe [D(s, a)]− Eπ[D(s, a)], (5)

where D is the discriminator that tries to differentiate the learned policy from the expert policy. s
and a are the states and actions generated by the policy. However, since the original GAIL does not
contain the environment reward, the learned policy may be suboptimal. We then combine the two
objective (4) and (5) through a weighting factor α ∈ [0, 1]:

min
π

max
D

(1− α) [Eπe [D(s, a)]− Eπ[D(s, a)]]− αEπ[r(s, a)]. (6)

When α = 0, the problem reduces to GAIL, where π goes to πe. When α = 1, the problem is a pure
reinforcement learning problem, where π optimizes the environment reward. In practice, we can
start with a small α so that the policy π can mimic πe to avoid useless exploration in the beginning,
then gradually increase α in order to achieve optimality. The detailed execution of the RS-GAIL
algorithm is summarized in algorithm 1.
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Algorithm 1 The Generative Adversarial Imitation Learning with Reward Shaping (RS-GAIL).
1: Input: Expert trajectory τe ∼ πe, initial policy parameters winit, reward shaping factor α
2: Train πwinit on τe using Behavior Cloning, get πwBC
3: Initialize the policy parameters in GAIL w0 with wBC , initialize discriminator parameters d0
4: for i = 0, 1, . . . , N − 1 do
5: Rollout student trajectory τi ∼ πθi , updated the discriminator parameters from di to di+1 using gradient

descent with cost function

max
di+1

Eπe [Ddi+1(s, a)]− Eπwi [Ddi+1(s, a)]. (7)

6: Update the policy parameter from wi to wi+1 using CMA-ES optimization [24] on

max
wi+1

(1− α)Eπwi+1
[Ddi+1(s, a)] + αEπwi+1

[r(s, a)]. (8)

7: end for
8: return optimal policy πθN
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Figure 2: Tolerance embedding. (a) Architecture of the tolerance auto-encoder where cyan, green, and blue
layers denote input, convolutional, and fully-connected layers. (b) Tolerance of a circle-shaped 2*2 workpiece
with 0.3mm radius of pins, 0.5mm radius of holes, and 2.5mm as row/column intervals. (d) Tolerance of a
regular-polygon-shaped 1*1 workpiece with 1.5mm circumradius of pins and 1.575mm circumradius of holes.
(c) and (e) are the corresponding predictions. The units of x and y axes are millimeter. The unit of θ axis is
radius. Only the upper parts of tolerance are shown here since the difference between the upper part (θ > 0)
and the lower part (θ < 0) is negligible for small θ. Meanwhile, the upper part is already distinctive enough to
distinguish different workpieces.

5 Adaptation

5.1 Tolerance-guided Policy

Convolutional auto-encoder [25, 26] is introduced for task encoding ψ(ε) to reduce the redundancy
of tolerance T (ε) for ε ∼ E as shown in Fig. 2. Though we may directly encode the three-
dimensional tolerance [27, 28], it is more efficient to do two-dimensional encoding by ‘flattening’
the surface of the tolerance, i.e., using a value table to store θ on the tolerance surface and turning
the volume of T (ε) to an image. In this way, we can use a solid simple-structured convolutional
auto-encoders for two-dimensional image processing [29]. Encoders for circle-shaped workpieces
and polygon-shaped workpieces are trained separately with corresponding training data. Training
data for circle-shaped workpieces is sampled from 2*1 to 2*20 sockets with different radius of pins
and radius of holes. Training data for polygon-shaped workpieces is sampled from 1*1 socket with
shapes of triangle, rectangle, pentagon, and hexagon in different sizes. As shown in Fig. 2, we can
successfully reduce the dimension of tolerance to 5.

The overall training pipeline of the tolerance-guided policy is shown in Fig. 1c. It can be viewed
as a form of curriculum learning [30]. We first start with the nominal part of the diversified policy
π(ψ(ε)) on a representative task ε0 to learn the general features of insertions. In this phase, only
the parameters related to the measurements, i.e., φ1, are updated. According to algorithm 1, we
first initialize πbc : ŝ∗ 7→ a by cloning an expert policy πe. Then we obtain the nominal policy
πn : ŝ∗ 7→ a by applying RS-GAIL on top of πbc. In the second phase, we enable policy adaptation
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with tolerance embedding to learn the distinction among various tasks. The parameters in φ1 are
copied from πn and do not change during the training. Parameters that are related to tolerance
embedding, i.e., φ2, are updated from zero initiation using RS-GAIL. Tasks ε in this phase are
sampled from a training task set E1. The resulting policy is denoted πφ : ŝ∗ × ψ(ε) 7→ a.

5.2 Probabilistic Inference

Since the tolerance of realistic workpieces T (ε) may not align with its nominal form T (ε̄), the diver-
sified policy π(ψ(ε̄)) may deviate from the desired policy π(ψ(ε)). Therefore, we introduce proba-
bilistic model to narrow the gap between the two policies. We leverage the information contained in
previous insertions to infer the actual task ε and the optimal insertion point s̄∗. Denote I1, . . . , Im
as the results of previous insertions and s̄1, . . . , s̄m as the corresponding insertion states. m is the
number of previous insertions. I = 1 indicates successful insertion while I = 0 indicates the op-
posite. Now we consider the problem of maximizing the expectation of Im+1 over the next goal
insertion state s̄∗ given insertion histories: maxs̄∗ gm+1 = E[Im+1|I1, . . . , Im, s̄1, . . . , s̄m, s̄

∗]. We
assume that the prior distribution of the realistic workpieces ε given its nominal model ε̄ is normal
ε ∼ N (ε̄,Σ). The conditional probability p(Ij | s̄j , ε) for the jth insertion attempt (denoted as Ij)
equals to Ij if Cp,ε(s̄j) ⊂ Ch,ε or 1 − Ij if Cp,ε(s̄j) 6⊂ Ch,ε Then we can infer the actual workpiece
ε using the previous insertion results and insertion states by applying the Bayesian rule:

p(ε | I1, . . . , Im, s̄1, . . . , s̄m) =
Πm
j=1p(Ij | s̄j , ε) p(ε)∫

Πm
j=1p(Ij | s̄j , ε) p(ε) dε

. (9)

Then we can rewrite the objective gm+1 in (10), which is conditioned on true insertion states. In
practice, true states of workpieces are inaccessible. An altered objective g′m+1 conditioned on mea-
sured states given the noise model p(s̄|ˆ̄s) is shown in (11), where ˆ̄s are the observed truncated states.

gm+1 =

∫
p(Im+1 | s̄∗, ε) p(ε | I1, . . . , Im, s̄1, . . . , s̄m) dε, (10)

g
′

m+1 =

∫
gm+1 p(s̄1, . . . , s̄m | ˆ̄s1, . . . , ˆ̄sm) ds̄1 . . . ds̄m. (11)

For real applications, both integrals in (10) and (11) are challenging to compute, which require
complex slicing to transfer the multi-dimensional integral to practicable repeated integral. There-
fore, we solve the problem numerically by sampling ε from its distribution N(ε̄,Σ) and s̄ from the
measurement noise model. Various optimization methods can be applied to maximize gm+1. Here
we adopt the covariance matrix adaptation evolutionary method (CMA-ES) [24]. At each iteration,
we sample various s̄m+1 and evaluate them with the expectation in (10) or (11). For a consecutive
insertion task, we apply probabilistic inference whenever a collision occurs. With the knowledge of
the insertion histories, the probabilistic inference utilizes CMA-ES to output the optimal goal inser-
tion state s̄∗. A workpiece can be considered as immoderately defected and better to be discarded
if the optimal gm+1 falls below a certain threshold, which can increase the robustness of industrial
insertion production lines.

An numerical study of the probabilistic inference is conducted on workpieces with 2*1 circle-shaped
pins and random defects: stochastic horizontal translation of each pin. The workpiece has 0.3mm pin
radius, 0.5mm hole radius, and 5mm nominal interval between two pins. This experiment only tests
probabilistic inference and assumes perfect control to the goal position and perfect measurement of
states. 500 samples are generated for the given distribution of defects where only around 60% of
samples can be inserted with unadapted goal states and 0.8% of samples are impossible to insert
regardless of goal states. We compare the probabilistic model with a random policy that randomly
selects goals from a pre-defined set of goals. The results demonstrate that the probabilistic model
outperforms random policy in terms of both the success rate within 10 attempts and the average
insertion attempts before success. It increases the former from 60% to 90.2% and maintains an
average attempts of 1.836. In contrast, the random policy has a success rate of 78.2% and 2.796
average attempts.

6 Results and Discussions

Experiment Setup The proposed method has been tested in OpenAI Gym environment. The
dynamics are specified in discrete time with sampling rate dt = 0.25s. When there is no col-
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lision, the movement follows s′ = s + a · dt. When there is a collision between two time
steps, the robot will stop at the first collision point and receive a contact force (now set as a bi-
nary value) at the direction where the collision happens. In addition, the actions are saturated
at [−amax, amax]. At the start of each episode, the workpiece is reset to a random initial pose.
The reward function is defined to be c(1 − k

kmax
) if the insertion is finished before the maxi-

mum horizon kmax, and −1 if a collision happens. The parameter c adjusts the trade-off be-
tween efficiency (fast insertion) and safety (collision minimization). In our experiments, we set
amax = [2.5mm/s, 2.5mm/s, 0.1rad/s, 2.5mm/s], kmax = 40 and c = 100. The standard deviation
of the measurement noise is set to be [0.1mm, 0.1mm, 0.0rad, 0.1mm] for [x, y, θ, z]. For RS-GAIL
training, the weight α in (6) is set to 0.8 and the maximum iteration is set to 100. The discriminator
is updated once every 5 iterations. We stop training when the environment reward of the student
policy stops increasing; and the probability that the student state-action pairs are classified by the
discriminator as expert is stably around 40-60%.

We designed two expert policies, one emphasizing safety and the other emphasizing efficiency. The
safe expert policy πsafe

e first moves the workpiece horizontally to align the pins and holes, and then
move vertically down to insert the workpiece. The efficient expert policy πeff

e moves in full speed
towards the hole. The safe expert has fewer collisions and longer insertion time than the efficient
expert. The optimal behavior would be a balance between the two.

Results Effect of different experts. We trained nominal policies from the two experts πeff
e and πsafe

e .
Comparing experiments C1.1 to C1.3 and C2.1 to C2.3 as shown in table 1, RS-GAIL optimizes the
cloned policy πbc by reducing the number of collisions of πeff

e and speeding up the number of steps of
πsafe
e . Because our RS-GAIL starts by mimicking the expert and then gradually optimizes the policy

according to the environment rewards, even starting from experts with different behaviors, the policy
can finally converge to similar optimal behavior. As shown in C1.3 and C2.3, we finally get similar
πn with promising number of steps and number of collisions. Effectiveness of RS-GAIL. From
Fig. 3 and C2.1 to C2.3, policies trained by behavior cloning πbc having similar behavior with the
expert πe, which first moves in xy plane for pin-hole alignment and then moves down for insertion.
This ‘L’ shaped trajectory is not optimal because longer travel distance induces more steps and less
successful rate. As a result, πe gets low rewards, and πbc even lower. Our RS-GAIL starts from πbc
and optimizes it according to our defined reward function. During the training process of RS-GAIL,
the learned policy πn generates smoother trajectories, which have higher rewards and successful rate.
We perform the following experiments using the πn in C2.3. Generalization to new workpieces.
Consider C2.3, C3.1, and C3.2. When we introduce new workpiece 2*4 in C3.1, πn trained in C2.3
is not able to get good performance. However, our tolerance-guilded policy πφ is able to handle this
workpiece generalization problem. In C3.2, by training on data of workpiece 2*2 and 2*8 and only
updating the parameters of the tolerance embedding networks (φ2), πφ can be generalized to new
unseen workpiece 2*4 and get higher performance than πn. Generalization to defective workpieces.
In C4.1 and C4.2, we utilize the same defective 2*1 workpieces in section 5.2 to test synthesized
probabilistic inference. Both the reward and the success rate drop significantly due to defects. The
policy with probabilistic inference, i.e., π∗φ, mitigates the negative effects of defects and increases
both the reward and the success rate. Generalization to different pin geometries. We also create a
series of 1*1 workpieces with polygon-shape pins, including rectangle , pentagon , and
hexagon . As shown in P1.1 to P1.3, RS-GAIL optimizes the policy similar to C2.1 to C2.3.
Regardless of the differences in the shape of pin sections, those workpieces can be handled with
similar policies. As a result, our robust nominal policy πn gets similar performance on and ,
as shown in P1.3 and P2.1. In P2.2, by training on and , our πφ slightly outperforms πn on .

Discussion The tolerance model can be extended in multiple directions. This paper ignored the
rotation outside the xy plane and constructed T only using the truncated state [x, y, θ]. It is possible
to relax the assumption and include more degrees of freedom in the truncated states. Meanwhile,
although this paper only considers insertion with spacial tolerances, the proposed method can apply
to insertions with tight fit using a tolerance model on force and torque, e.g., s̄ = [x, y, θ, Fx, Fy, τθ].
In addition, there are several limitations of the method and will be addressed in future work. First, the
reliability of the task encoding is determined by the prediction error of auto-encoder. The accuracy
of prediction drops significantly when the tolerance is big in θ (e.g. over 0.5 rad). We may introduce
regularization or normalization of θ to address the problem. Second, to apply the proposed method
on real robot hardware, we need to resolve the sim-to-real gap. One method is to use a robust
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Figure 3: Illustration of the RS-GAIL training on the nominal policy in experiment C2.3. (a) Trajectory change
over the training process demonstrated using a 2*2 workpiece, where (1) is the initial pin position; (2) is the pin
position when the pins start entering the holes; and (3) is the pin position of successful insertion. (b) Reward
(with variance) change over the training process in experiment C2.3.

ID Policy Train env Eval env reward successful rate number of steps number of collisions
C1.1 πeff

e 2*2 2*2 13.76± 1.20 0.75± 0.03 29.65± 0.23 6.11± 0.71
C1.2 πbc 2*2 2*2 6.57± 3.07 0.68± 0.04 30.91± 0.71 8.15± 1.31
C1.3 πn 2*2 2*2 20.82± 0.76 0.94± 0.03 31.05± 0.24 1.69± 0.28

C2.1 πsafe
e 2*2 2*2 11.28± 0.72 0.77± 0.04 35.49± 0.29 0.0± 0.0

C2.2 πbc 2*2 2*2 4.94± 0.96 0.58± 0.05 37.69± 0.28 0.83± 0.31
C2.3 πn 2*2 2*2 20.58± 0.71 0.90± 0.02 31.40± 0.20 0.91± 0.24
C3.1 πn 2*2 2*4 16.38± 1.53 0.84± 0.03 33.37± 0.43 2.74± 0.49
C3.2 πφ 2*2, 2*8 2*4 20.47± 0.54 0.92± 0.01 31.42± 0.18 0.98± 0.10
C4.1 πφ 2*2, 2*8 2*1 defected 6.04± 1.28 0.30± 0.03 35.03± 0.53 6.42± 0.11
C4.2 π∗φ - 2*1 defected 12.44± 2.38 0.41± 0.02 32.80± 0.82 5.60± 0.37

P1.1 πsafe
e 12.36± 0.41 0.82± 0.03 35.05± 0.16 0.0± 0.0

P1.2 πbc 7.46± 0.30 0.68± 0.02 37.02± 0.12 0.0± 0.0
P1.3 πn 15.47± 0.54 0.87± 0.01 33.96± 0.18 2.14± 0.17
P2.1 πn 15.82± 0.43 0.87± 0.01 32.91± 0.16 1.90± 0.05
P2.2 πφ 16.01± 0.51 0.89± 0.02 32.84± 0.20 1.88± 0.01

Table 1: Evaluation results of different policies. Naming Rule: IDs started with ”C” and ”P” means work-
pieces with 2*N circle pins and 1*1 polygon pin, respectively. Experiment Groups: The policies in C1.x all
come from the efficient expert πeff

e , while all other experiments are based on the safe expert πsafe
e . The exper-

iment groups C1.x, C2.x and P1.x compare the expert policy and the cloned policy and the policy learned by
RS-GAIL in different situations. The experiment groups C3.x and P2.x compare the nominal policy and the tol-
erance guided policy in different situations. C4.x compares the policy with and without probabilistic inference.
In particular, the policy in C3.1 is identical to the policy in C2.3; the policy in C4.1 is identical to the policy in
C3.2. Environment Specification: Our 2*N circle workpieces have 0.3mm pin radius and 0.5mm hole radius,
while the interval between 2 rows is 7.62mm, and the intervals between N columns are 2.54mm each. For our
1*1 polygon environments, the pin circumradious and hole circumradious of , , are (1.5mm, 1.65mm),
(1.5mm, 1.65mm), (1.2mm, 1.26mm), respectively.

controller [31] on the robot hardware so that the closed loop dynamics (robust controller plus the
hardware) are almost identical to the dynamics used in the simulation.

7 Conclusion

This paper introduced a tolerance-guided policy learning method to generate adaptable and transfer-
able policies for delicate industrial insertion tasks. We addressed two practical challenges: gener-
alization of the learned policy to unseen tasks and adaptation of the policy when the workpiece has
defects. The proposed method contains three parts. First, we used tolerance embedding to encourage
the generalization of the learned policy to different tasks. Second, to deal with efficient training in
sparse reward environments, we proposed the reward shaping generative adversarial imitation learn-
ing algorithm that leverages the advantages of imitation learning and reinforcement learning. Lastly,
we developed probabilistic inference methods to infer optimal insertion points based on failed in-
sertions to make the policy robust to defects of the workpiece. The proposed method has been
extensively validated through simulation. It has been demonstrated that 1) the proposed learning
algorithm efficiently learned optimal policies under sparse rewards; 2) the tolerance embedding en-
hanced the transferability of the learned policy; 3) the probabilistic inference improved the success
rate for defective workpieces.
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