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Abstract—Battery energy storage systems are providing in-
creasing level of benefits to power grid operations by decreasing
the resource uncertainty and supporting frequency regulation.
Thus, it is crucial to obtain the optimal policy for utility-level
battery to efficiently provide these grid-services while accounting
for its degradation cost. To solve the optimal battery control
(OBC) problem using the powerful reinforcement learning (RL)
algorithms, this paper aims to develop a new representation of the
cycle-based battery degradation model according to the rainflow
algorithm. As the latter depends on the full trajectory, existing
work has to rely on linearized approximation for converting
it into instantaneous terms for the Markov Decision Process
(MDP) based formulation. We propose a new MDP form by
introducing additional state variables to keep track of past
switching points for determining the cycle depth. The proposed
degradation model allows to adopt the powerful deep Q-Network
(DQN) based RL algorithm to efficiently search for the OBC
policy. Numerical tests using real market data have demonstrated
the performance improvements of the proposed cycle-based
degradation model in enhancing the battery operations while
mitigating its degradation, as compared to earlier work using
the linearized approximation.

Index Terms—Energy storage, reinforcement learning, battery
degradation, rainflow algorithm, deep Q-networks (DQN)

I. INTRODUCTION

Battery energy storage systems as flexible resources are a
key technology to enable the decarbonization of electricity in-
frastructure in future [1], [2]. Particularly, utility-level battery
systems can be used to increase the payoff from electricity
market via energy arbitrage [3], while contributing to the grid’s
power balance through participating in ancillary services [4].
It is crucial to develop effective strategies for real-time battery
operations in order to utilize its flexibility potentials to mitigate
the increasing uncertainty introduced by renewable or non-
controllable loads.

The optimal battery control (OBC) problem for determining
the (dis)charging policies has been popularly considered to
reduce a combination of battery operational costs. It aims to
reduce the net cost for electricity usage and frequency regu-
lation (FR) penalty, as well as possible violations of network
constraints; see e.g., [5]–[8]. In addition, battery’s cycle life
as characterized by the degradation cost is especially needed
when participating in FR or other fast services [5], [7]. Unlike
other costs that mostly depend on the instantaneous battery
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status, the modeling of battery degradation is cycle-based ac-
cording to the full trajectory of battery’s state of charge (SoC).
It requires the identification of all charging/discharging cycles
using the so-termed rainflow algorithm [9]. Thus, degradation-
aware OBC problem results in increased complexity as shown
by [5], [7].

Due to the fast dynamics in prices or load demands, the
OBC solution can be greatly affected by the uncertainty of
future information. To address this issue, a model-predictive
control (MPC) framework has been widely used by optimizing
the current action according to the predicted input values for
a fixed time window; see e.g., [10]–[12]. Nonetheless, the FR
signal exhibits very minimal temporal correlation [13], leading
to significant difficulty in predicting it and thus applying MPC
for reducing FR penalty. Furthermore, even though battery
health has been considered in MPC-based OBC work [14],
[15], the cycle-based degradation model is largely missing.

Recent advances on reinforcement learning (RL) [16] en-
able the effective search of optimal control policies directly
using real data samples to address the uncertainty issue
in dynamical systems. This data-driven framework helps to
bypass the hurdles in formulating the complex models of
system dynamics or estimating the statistical information on
the uncertainty. Specifically for the OBC problem, it allows
to flexibly incorporate a variety of operational objectives,
and several RL techniques have been widely used, such as
the Deep Q-Network (DQN) [17], SARSA [18] and TD(λ)-
learning [19]. However, a majority of these techniques have
not considered the battery degradation cost, due to the diffi-
culty of representing cycle-based model in the RL formulation.
Very recently, [20] has developed a linearized approximation
for the cycle-based degradation cost, which converts it to
an instantaneous degradation coefficient that can be used
by the RL algorithms. Nevertheless, the accuracy of this
approximation method depends on a given sample trajectory
based on which the linearization is performed. The resultant
modeling mismatch can limit the RL iterations from finding
the best policy within the full search space. Thus, it is still an
open problem of effectively incorporating the accurate battery
degradation cost into the search of OBC policy.

The goal of our work is to develop a modeling approach
to precisely represent the battery degradation cost and use
it for the design of RL-based OBC algorithm. The overall
objective includes the net electricity cost, FR penalty, and
cycle-based degradation cost. The main modeling challenge
lies in the latter as it is determined by the battery’s full
SoC trajectory. Based on the rainflow algorithm, the complex
process of material fatigue is associated with the stress level
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of each individual charging or discharging cycle [21]. Thus,
the degradation cost is an exponentially increasing function
of cycle depth [9], and the latter strongly depends on the
past trajectory of battery status. This leads to a pronounced
mismatch with the Markov Decision Process (MDP) form used
by RL algorithms, as the latter would represent the problem
objective as functions of instantaneous states and actions only.
The aforementioned approach of linearizing the degradation
cost as in [20], [22] fails to recognize this exponential relation
with the cycle depth, and unfortunately can lead to deep
(dis)charging cycles that may not be overall profitable.

To this end, we have analytically shown that it is possible
to keep track of the battery cycles by augmenting the state
with the more recent switching points (SPs) along the SoC
trajectory. These critical transition points between charging
and discharging sessions are extremely useful for identifying
the correct cycle depth according to the rainflow condition. In
addition, they allow for decomposing the degradation cost of
a full (dis)charging cycle into incremental differences between
consecutive time instances in the form of instantaneous cost.
This proposed representation of battery degradation cost helps
to deploy state-of-the-art RL algorithms to learn the OBC
policy. We have used the DQN technique to search for
the parameters of the action-value function, or Q-function,
associated with the resultant MDP form.

To sum up, the main contribution of the present paper is
two-fold. First, we have developed an instantaneous cost mod-
eling of the battery degradation with guaranteed equivalence
to the original cycle-based representation based on rainflow
algorithm. Second, the proposed degradation cost is success-
fully applied to form an MDP, allowing to develop efficient RL
algorithms for the OBC problem. Our numerical tests using
real data of electricity prices and FR signals have validated
the performance improvement of the proposed cycle-based
cost model in accurately representing battery degradation and
effectively generating profit-seeking OBC policies.

The rest of the paper is organized as follows. Section II
introduces the key variables for modeling the battery control
problem into the MDP form. In Section III, we model the
cycle-based degradation cost using the rainflow algorithm, and
develop a new approach to represent it as instantaneous cost
through state augmentation. Section IV formalizes the OBC
problem and presents the DQN method as the RL solution
technique. Numerical results using real-world data are pre-
sented in Section V to validate the performance improvement
of the proposed degradation model, as compared to earlier
approach using linearized approximation. Finally, the paper is
wrapped up in Section VI.

II. SYSTEM MODELING

This paper considers the optimal battery control (OBC) for
maximizing the economic pay-off while accounting for the
battery degradation. The pay-off is from energy market partic-
ipation and also the provision of FR service, as discussed later.
One notable feature of the present work is the consideration of
battery degradation cost, which can greatly increase the life-
cycle under any general pay-off model [5]. A list of symbol
notation and description is tabulated in Table I.

TABLE I: List of symbols

Notation Description

ct state of charge (SoC) of the battery
c, c maximum/minimum capacity of the battery
pt electricity market price
ft frequency regulation (FR) signal
st battery full state
at battery charging/discharging action
bt battery charging/discharging power
γ discount factor
T the exploration time-horizon
het net cost for electricity usage
hft frequency regulation penalty
hdt battery degradation cost
δ frequency regulation penalty coefficient

Φ(d) degradation cost for a cycle of depth d
αd, β degradation coefficient based on battery types

c
(0)
t , c

(1)
t , c

(2)
t SoC level of switching points (SPs)

To determine the battery’s effective (dis)charging power
bt ∈ [b, b̄] at each discrete-time instance t = 0, 1, . . ., we
introduce a list of state variables based on battery status or
external inputs.
• ct ∈ [c, c̄]: normalized state of charge (SoC) of the

battery;
• pt: electricity market price;
• ft: frequency regulation (FR) signal.

Note that the SoC is normalized by the maximum capacity;
i.e., ct ∈ [0, 1]. It is also an internal battery state affected
by the past actions {bτ}, whereas the other states are received
from grid operators and thus are not directly action-dependent.

To leverage reinforcement learning algorithms for this prob-
lem, we consider it as a Markov Decision Process (MDP) [23,
Ch. 3] denoted by a tuple (S,A,P,R, γ), as detailed here.

State space S contains the set of feasible values for the
system state st, including both the SoC ct, and the other
inputs pt and ft which affect the economic benefits. Additional
state variables will be specified in Section IV for representing
cycle-based degradation cost. State dynamics need to follow
the Markov property as discussed soon.

Action space A includes the set of decisions that battery
can take. We consider a discrete multi-level set with a total of
|A| actions, as

at ∈ A = {a(1), a(2), · · · , a(|A|)} (1)

with normalized actions a(n) ∈ [−1, 1]. Accordingly, the
normalized (dis)charging power bt ∈ [b, b̄] is set to be

bt =

{
min{c− ct, bat} if at ≥ 0,

max{c− ct, bat} if at < 0.
(2)

Continuous action space that directly determines bt = at is
also possible. While this paper focuses on a discrete A, the
RL algorithm can be generalized to continuous at as well.

Transition kernel P : S×A×S → [0, 1] captures the sys-
tem dynamics under the Markov property [23, Ch. 3]. For the
input states such as price pt, we assume Pr(pt+1|{pτ}tτ=1) =
Pr(pt+1|pt); and similarly for ft. This is reasonable as the
market price has very short-term memory [24], while FR signal
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ft can be modeled as a white noise sequence of no memory
[25]. A longer memory is possible too; such as the prices that
follow Pr(pt+1|{pτ}tτ=1) = Pr(pt+1|pt, pt−1). In this case,
both pt and pt−1 are included as the part of the state per time
t to satisfy the Markov transition property.

Using Eq. (2), the SoC state ct transitions as

ct+1 = ct + bt, with bt given in (2). (3)

For general action space with any bt ∈ [b, b̄], ct is updated by

ct+1 =


c if c− ct ≤ bt,
c if c− ct ≥ bt,
ct + bt otherwise.

(4)

Reward function R : S × A → R captures the learning
objective. Notably, it is always the accumulated reward con-
sisting of instantaneous terms, where per time t the latter only
depends on the current state and action as

rt = rt(st, at) (5)

In the following we will minimize the objective cost function
ht as negative reward, where its instantaneous property will be
ensured after introducing additional state variables as detailed
in Section IV.

Discount factor γ ∈ (0, 1] is a constant to accumulate the
total reward along the time horizon. Smaller γ values imply
that future rewards are less important than current ones at a
discounted rate [23, Ch. 3]. As we adopt a finite exploration
time-horizon T = [1, . . . , T ] for the OBC problem, for
simplicity γ = 1 will be used.

III. MODELING OF BATTERY DEGRADATION COST

We consider three types of operational cost related to battery
management. The energy cost relates to the electricity price
according to (dis)charging, while the FR cost is based on
its fast-varying flexibility. Under a contract of providing FR
service, the battery would follow the ft signal sent by the
market operator as much as possible [5]. These two costs can
be simply obtained by the state variables discussed so far. First,
the net cost for electricity usage under (dis)charging power bt
can be represented as

het (pt, bt) = ptbt, ∀ t ∈ T . (6)

Second, using a penalty coefficient δ for deviation from FR
signal ft, one can form

hft (ft, bt) = δ|ft − bt|, ∀t ∈ T . (7)

The energy cost in (6) is typically negative due to the energy
arbitrage capability, while the FR penalty in (7) is always
positive. This is because the additional economic benefit by
participating in the FR contract is not included here. Overall,
a battery should receive positive pay-off from these two tasks.

Remark 1. (Frequency regulation signal) In practice, the FR
signal is much faster than other system dynamics. For example,
the real-time price is typically updated every 5 minutes, while
the FR signal may be at 2-second rate [26]. To reduce the

Fig. 1: An example of battery SoC trajectory used for modeling
the battery degradation cost based on the rainflow algorithm.

complexity of the training computation later on, we will down-
sample the FR signal to attain {ft} at a slower rate for
searching the policy. In testing and implementing the resultant
policy, the original fast FR signal will be instead used to
realistically evaluate the performance of the RL approach.

As for the battery degradation cost, there are several stress
factors affecting the battery lifetime such as temperature,
high C-rates, average SoC, and Depth of Discharge (DoD)
[9], [27]. During daily battery operations, the DoD stress
model is considered the most relevant while other factors
may be minimally affected. This will be shown numerically
in Section V. According to the DoD stress model, the aging
of battery cells mainly depends on material fatigue as a
result of (dis)charging cycles of the SoC trajectory, especially
due to following the FR signal [13]. Since this cycle-based
degradation constitutes as a key battery lifetime consideration
[28], the proposed OBC formulation to reduce it can greatly
increase the battery’s lifetime revenue.

The rainflow algorithm [9] is widely used for computing
the cycle-based degradation cost. Fig. 1 illustrates an example
of battery SoC trajectory which consists of several charging
and discharging cycles. The switching points (SPs), labeled
by A − E, correspond to the transitions between charging
and discharging and will be used for identifying the cycles by
rainflow algorithm. For example, the trajectory A−B−C−D
consists of a long charging cycle with a small discharging part
from B−C. The respective depths of these two cycles, defined
as the absolute SoC differences between the start and end SPs,
are d0 and d1. As d1 is smaller than the difference between
A−B and that between C−D, this trajectory is thus divided
into the full cycle from K −B−C of depth d1 and the other
half cycle from A −K(C) −D of depth d0. This is the so-
called rainflow condition as stated in Lemma 1; see e.g., [5].

Lemma 1. The SoC values of the last three SPs by time
t are sufficient for evaluating the rainflow condition and
determining the depth of (dis)charging cycles.

Based on the cycle depth d > 0, the associated degradation
cost is given by

Φ(d) = αde
βd (8)

with positive constant coefficients αd and β based on battery
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types [9], [22]. Recalling the normalized SoC ct ∈ [0, 1], we
have the cycle depth d ∈ [0, 1] as well. Note that for any pair
in D := {(d1, d2) : d1, d2 ≥ 0, d1 + d2 ≤ 1}, we can
show that e(d1+d2) ≤ ed1 +ed2 . This is because the maximum
value of the function g(d1, d2) := e(d1+d2) − ed1 − ed2 for
the simplex D equals to (e − 2e0.5) < 0, which is attained
at (d1, d2) = (0.5, 0.5). Thus, to reduce the degradation
cost a single (dis)charging cycle that is longer and deeper is
typically preferred, as opposed to the combination of multiple
shorter cycles. This intuitive rule for cycle-based degradation
model will be demonstrated later on in numerical tests. Un-
fortunately, this cycle-based degradation cost depends on the
past SoC trajectory, and unfortunately, it does not follow the
accumulated form of instantaneous terms as in Eq. (5).

Linearized degradation model has been developed in [20]
to compute the averaged degradation coefficient from past SoC
trajectory. Specifically, a degradation coefficient αd is first
determined using a given SoC trajectory over T as

ad =

∑N̄
i=0 Φ(d̄i)∑T
t=0|b̄t|

(9)

by averaging the total degradation costs of the (N̄ + 1) cycles
over the accumulative absolute charging power throughout the
sample trajectory. This way, the instantaneous degradation cost
for any new SoC trajectory is approximated by

hdt (bt) u −ad|bt|. (10)

This linearized degradation cost model can be easily computed
once ad is known. However, this approximation inexplicitly
assumes that the new trajectory should be very similar to
the given sample trajectory for computing ad. To implement
the RL algorithm later on, the coefficient ad will be updated
using the most recent trajectory during the sampling process.
Nonetheless, as an approximation it does not represent the
actual cycle-based degradation cost and thus limits the RL
algorithm’s search for the best SoC trajectory.

Cycle-based degradation model will be pursued instead
to address the approximation issue by augmenting the state
st with the last three SPs before time t. As stated in Lemma
1, they are sufficient information for checking the rainflow
condition. The state st now includes three additional variables,
c
(0)
t , c(1)

t , and c(2)
t , as the SoC from the oldest SP to the latest

one. Note that they may overlap if there are less than three SPs
before time t. For example, at point K in Fig. 1, these three
SP states all equal to the SoC of point A; and similarly for
point C, we have c(1)

t = c
(2)
t equal to the SoC of B. The latest

SP’s SoC c
(2)
t can be used to identify if the current instance

t is a new SP, using the rule

bt(ct − c(2)
t ) < 0. (11)

If Eq. (11) holds, we have a new SP and will update {c(i)t }
based on whether the rainflow condition is satisfied.

To update {c(i)t }, Fig. 2 illustrates two cases where the
rainflow condition is not satisfied. Fig. 2(a) shows the SoC
of the point C1 is not within the range between A and B,
while Fig. 2(b) indicates the SoC of the new SP D is within
the range between C2 and B. These cases are denoted by

Fig. 2: Two cases of rainflow condition not satisfied: (a) case
NRa and (b) case NRb.

cases NRa and NRb, respectively. In either case, the oldest
SP A will be removed while the remaining SPs will be used
to update {c(i)t+1}, as listed in Table II. In addition, case RA
denotes the scenario of rainflow condition being satisfied, such
as the point D in Fig. 1. This is because at SP D: i) the third
SP C lies between the first two SPs A and B; and ii) the
current SoC at SP D exceeds the range between the latest two
SPs B and C. Hence, the trajectory A−B−C−D is divided
in to the long half-cycle A−K−C−L, and another full-cycle
K − B − C of depth d1. After the RA case is satisfied, the
two SPs B and C will be removed from the record. The SoC
state updates for all three cases are summarized in Table II.

Interestingly, the state transitions in Table II also allow for
decomposing the cycle-based degradation cost into instanta-
neous difference term for each instance t. As the cycle depth
changes according to bt only, the degradation cost in Eq. (8)
can be modeled by accumulating the following incremental
term per time t:

hdt (bt, ct, c
(2)
t ) = αde

β|ct+bt−c(2)t | − αdeβ|ct−c
(2)
t |. (12)

Basically, the instantaneous degradation model in Eq. (12)
accounts for difference of Φ(·) due to the change of cycle-
depth, which can be computed based on the latest SP state c(2)

t .
Therefore, summing up all instantaneous terms in Eq. (12)
yields the total degradation cost, as formally stated in Propo-
sition 1 with the proof provided in the Appendix.

Proposition 1. Under Lemma 1, the summation of the in-
stantaneous terms in Eq. (12) throughout the time-horizon
T = [1, · · · , T ] is exactly equivalent to the total cycle-based
degradation cost along T .
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TABLE II: State transitions at a new SP identified at time t

Next state NRa NRb RA

c
(0)
t+1 c

(1)
t c

(1)
t c

(0)
t

c
(1)
t+1 c

(1)
t c

(2)
t c

(0)
t

c
(2)
t+1 c

(1)
t ct c

(0)
t

IV. OPTIMAL BATTERY CONTROL ALGORITHM

Thanks to our proposed model of instantaneous degradation
cost, we can define the MDP form for the OBC problem. First,
each state is given by

st = [pt, ft, ct, c
(0)
t , c

(1)
t , c

(2)
t ], ∀t ∈ T (13)

which is used to determine the action at based on the policy
of interest. The transition kernel P now includes the updates
in Table II, while the instantaneous reward is given by

rt(st, at) = −het − h
f
t − hdt , ∀t ∈ T . (14)

The battery control problem now becomes to determine the
best policy π for forming the action as at ∼ π(st) with
st given in Eq. (13). To simplify the policy search, we are
particularly interested in the set of parameterized policies
given by πθ(·) = π(·; θ), with parameter θ optimized through

max
θ

Eπθ

[
T∑
t=1

γtrt(st, at)

]
. (15)

To solve Eq. (15), we can adopt certain RL algorithms to
search for the optimal parameter θ; see e.g., [16]. We use
the deep Q-networks (DQNs) [23, Ch. 9] here as a popular
RL approach based on nonlinear neural network modeling.
Accordingly, the parameter θ represents the DQN weights to
be learned, and the DQN is used to obtain the so-termed Q-
network that models the MDP’s action-value, or Q-function,
namely the expected total future reward under a given pair of
state and action:

Q(st, at) := Eπθ

[
T∑
τ=t

γ(τ−t)rτ (sτ , aτ )
∣∣∣st, at] . (16)

For the optimal Q-function, the Bellman optimality condition
[16] states that:

Q∗(st, at) = rt(st, at) + γEst+1

[
max
at+1

Q∗(st+1, at+1)
∣∣∣st, at] .

(17)

To find the optimal Q∗, we parameterize the action-value Q-
function using θ as the NN weights, as denoted by Q(st, at; θ).
The Bellman optimality in Eq. (17) can be used to develop
iterative gradient descent updates to obtain the best θ. At each
update, the Q-network on the right-hand side of Eq. (17) is
kept constant as the target network, whereas the other one is
varied to minimize the difference between both sides. Letting
θ′ denote the latest NN weights, we design the loss function
for DQN training as the expected squared difference:

L(θ) = E{st,at,st+1}

[(
rt + γmax

at+1

Q(st+1, at+1; θ′)

−Q(st, at; θ)
)2]

. (18)

To minimize L(θ), one can need to compute its gradient over
the parameter θ given by

∇θL(θ) =E{st,at,st+1}

[
− 2
(
rt + γmax

at+1

Q(st+1, at+1; θ′)

−Q(st, at; θ)
)
∇θQ(st, at; θ)

]
. (19)

Each gradient-based update relies on the estimate from sam-
pling the trajectory such that the expectation in Eq. (19)
is replaced by the sample average. To this end, the action
at is sampled for given state st based on θ′ as a∗t =
arg maxat Q(st, at; θ

′), ∀t. To ensure adequate exploration of
the state space, the ε-greedy method [23, Ch. 2] can be used to
randomize the action by selecting a∗t with probability (1− ε)
at every time. The value of ε would decrease as the DQN
updates continue, typically at an exponential decreasing rate
κ ∈ (0, 1). This method can improve the exploration process
at the beginning phase while eventually picking the optimal
actions to attain convergence.

To improve the efficiency and stability of DQN imple-
mentation, we introduce two additional techniques. First, we
implement the experience replay method [29] to efficiently use
the past samples by storing all the past samples in the memory
D := {(st, at, st+1, rt)} along the trajectory. When computing
the loss function Eq. (18), a subset of samples denoted by
mini-batch J is randomly picked from D and used as the
samples for gradient estimation. This method can improve the
training efficiency by selectively reusing past samples. In ad-
dition, we advocate the fixed target network approach [30] by
keeping the target network parameter fixed for several updates.
To this end, let θ− denote the target network parameter, which
is only updated once every No iterations. This technique could
mitigate any potential instability issue by changing the DQN
target weights less frequently. By adopting experience replay
method and fixed target network approaches, we obtain the
estimates of loss function and its gradient as

∇θL̂(θ) = (1/|J|)
∑
t∈J

[
− 2
(
rt + γmax

at+1

Q(st+1, at+1; θ−)

−Q(st, at; θ)
)
∇θQ(st, at; θ)

]
. (20)

The detailed algorithmic steps for DQN-based OBC algo-
rithm are tabulated in Algorithm 1. As mentioned earlier, the
state variables pt and ft are not action dependent. Thus, their
transitions are obtained from the profiles given as the algorithm
input, such as real data provided by the market operators.
For the convergence of DQN algorithms, the total number of
episodes N is typically chosen to be large enough in practice.
For each episode n, there are total T samples from t = 1 to
t = T . Note that Algorithm 1 can be used to search for the
best policy under the linearized degradation cost as well, by
using this simpler degradation cost model in Eq. (10). The
ensuing section will compare these two degradation models
numerically.

V. NUMERICAL TESTS

We have compared the proposed RL-based battery con-
trol algorithm under cycle-based degradation cost with the
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Algorithm 1: DQN-based Optimal Battery Control

1 Hyperparameters: discount factor γ = 1, learning
rate η > 0, ε-greedy coefficient κ ∈ (0, 1), mini-batch
size |J|, target network update interval No, and
maximum number of episodes N .

2 Input: training profiles of prices and FR signals with
the exploration time horizon T .

3 Initialize: the ε-greedy probability ε ∈ (0, 1), replay
memory D = ∅, initial action-value function
Q(s, a; θ′) with a random θ′ and the target network
parameter θ− = θ′ at episode n = 0.

4 while n ≤ N do
5 for t=1, · · · ,T do
6 Select a random action at with probability ε;

otherwise, use the action
a∗t = arg maxat Q(st, at; θ

′).
7 Implement the action at to obtain the ensuing

state st+1 based on the transitions of both
Eq. (4) and Table II, and by using the input
profiles of pt+ and ft+1.

8 Compute the instantaneous reward rt in
Eq. (14).

9 Store the tuple (st, at, st+1, rt) in D.
10 Select a random mini-batch J with size |J|

from D.
11 Compute the gradient estimate using Eq. (20).
12 Update the parameter θ′ ← θ′ − η∇L̂(θ′).
13 if t/No is an integer then
14 Update the target network parameter

θ− ← θ′.
15 end
16 Update ε = κε.
17 end
18 Update the episode number n← n+ 1.
19 end

linearized approximation one [20]. Actual data of electricity
market prices and FR signals have been used, respectively
from the ERCOT’s market data depository [31] and PJM’s
ancillary service datasets [32]. Each time instance corresponds
to a 5-minute interval. The FR signal is normalized to indicate
either maximum charging or discharging for the battery. As
mentioned in Remark 1, the fast FR signal at 2-second
rates is averaged over a 10-second interval for the training
phase, while the original data rate is maintained for the
testing phase. We have used a 200kWh-capacity battery with
(dis)charging rate of 120kW and minimum SoC of 20kWh,
which takes 90 minutes to fully (dis)charge. The multiple
discrete action space is adopted with overall 11 actions, as
A = {−1,−0.8, · · · , 0.8, 1}. The parameters associated with
battery degradation are set to αd = 4.5× 10−3 and β = 1.3,
as used in [22].

The DQN Algorithm 1 has been implemented in Python
with the popular NN toolboxes Tensorflow and Keras [33].
Table III lists the parameter settings for the DQN training,
which uses 7 daily profiles of {pt, ft}. There are a total of

TABLE III: Parameter settings for DQN training

Parameter Value
Number of hidden layers 2

Number of nodes [128, 32]
Activation function ReLU

Learning rate 0.001
Optimizer Adam
Epsilon (ε) 0.001

Batch size (J) 256
Maximum number of episodes (N ) 2000

Number of daily profiles 7

(a)

(b)

Fig. 3: Comparisons of the total reward trajectory between (a)
cases LD1 and CD1 (αd) and (b) case LD2 and CD2 (2αd)

T = 8, 640 time instances for each exploration episode. Upon
the convergence of Q-network, it is used for determining the
optimal (dis)charging actions for each 2-second interval of
60 days of testing data, while each testing trajectory having
43,200 time instances.

Training Comparisons. To compare the proposed cycle-
based degradation cost with the linear one (denoted by CD
and LD, respectively) in terms of battery control performance,
We have considered two levels of degradation coefficients,
at αd and 2αd, respectively. Fig. 3 illustrates the training
comparisons of the actual episode rewards (all based on cycle-
based degradation) for all the three cases. Clearly, all the DQN
iterations are convergent as the total reward trajectories tend to
be non-decreasing till reaching the highest values. Moreover,
while the CD cases using our proposed instantaneous cycle-
based degradation modeling outperform the LD counterparts,
especially at larger degradation cost. This comparison validates
the advantages of the proposed degradation model in terms of
accurately representing the battery cost and thus leading to
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(a)

(b)

Fig. 4: The total reward differences (positive difference indi-
cating higher reward for CD) between (a) cases LD1 and CD1
(αd) as well as (b) case LD2 and CD2 (2αd)

effective control policies.
Testing Comparisons. We have further compared the test-

ing performance of the learned Q-networks using both CD
and LD based models. Fig. 4 plots the total reward differ-
ences between the CD and LD solutions (positive differences
indicating higher reward for CD) for each test trajectory
under the two levels of degradation coefficients. The proposed
CD based control leads to higher total reward for at least
73.33% or 81.67% of test scenarios, respectively for the two
αd levels. This result confirms the earlier observations in
training phase that proposed solution is more attractive for
larger degradation cost. Table IV indicates the total mean,
maximum, minimum values and average values of the cases
when CD has better reward than LD, and vice versa. As shown
in the table, the overall mean value increases as the degradation
coefficient increases and the battery degradation cost affects
more in total cost accordingly. In addition, the maximum,
minimum and mean values show that even though there are
some cases that LD show better performance than CD, the
number of these cases is very small. Similar comparison is also
observed in differences of battery degradation performance
only (again, positive differences indicating lower degradation
cost for CD), as illustrated by Fig. 5. Clearly, the proposed
CD solutions overwhelmingly improve the battery degradation
performance and accordingly the total reward, as compared
to the existing LD-based approximation. In addition, Fig. 4
and Fig. 5 share very similar pattern, which implies that the
increase in total reward is mostly caused by the decrease in the
battery degradation cost and has least impacts on the decrease
in the rewards regarding the net cost for electricity usage or
frequency regulation penalty.

Fig. 6 plots the selected testing SoC trajectory along with
the electricity price to better illustrate the improvement of the

TABLE IV: Reward differences between CD and LD

Cases
(A-B) Mean Max Min Mean

(A > B)
Mean

(A < B)
CD1-LD1 84.45 133.09 -97.04 111.38 -72.12
CD2-LD2 176.51 315.15 -198.85 172.79 -134.19

(a)

(b)

Fig. 5: The battery degradation cost differences (positive
differences indicating lower cost for CD) between (a) cases
LD1 and CD1 (αd) as well as (b) case LD2 and CD2 (2αd)

proposed CD-based policy, corresponding to the two choices
of degradation parameter (αd and 2αd). Clearly, both trajec-
tories show that the CD-based policy leads to less number of
cycles with long depth as compared to the LD one, which re-
duces the overall degradation cost especially for hours between
[3, 13]. In addition, during high-price hours in [12, 15], the
CD trajectory has one smooth and long discharging cycle and
this pattern is amendable to mitigating battery degradation. In
contrast, the LD one has frequent, noticeable fluctuations dur-
ing this period. Because of the linearized approximation, the
LD-based policy leads to eight more noticeable (dis)charging
cycles of considerate depth than the CD one. This speaks
for the capability of the proposed CD model in effectively
removing some unnecessary cycles of moderate depth, thanks
to the accurate representation of rainflow-based degradation.
In addition, in the post-peak hours [15, 20], the LD based
policy produces a couple of cycles of moderate depth which
are not very profitable. The proposed CD based policy is able
to successfully remove these nonprofitable cycles and does not
lead to any considerate cycles.

Interestingly, by mitigating cycle-based degradation the
proposed CD approach can potentially contribute to the im-
provement of other degradation factors too. Table V compares
the proposed CD with the LD approach on the degradation
related to high C-rates [27] and SoC stress [9], both of
which have been numerically improved by the CD-based
policies. The high C-rate based degradation depends on the
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(a)

(b)

Fig. 6: Comparison of selected SoC trajectories in testing
between (a) cases LD1 and CD1 (αd) and (b) cases LD2 and
CD2 (2αd)

TABLE V: Degradation comparisons between CD and LD

Degradation factor LD1 CD1 LD2 CD2
High C-rates 0.0563 0.0342 0.0463 0.0369
SoC stress 0.0141 0.0108 0.0182 0.0107

total DoD summed over all cycles of the trajectory. Intuitively,
a concise list of smooth and long (dis)charging cycles attained
by CD-based policy can reduce both the number of cycles
and their DoD, thus beneficial for the high C-rate metric.
Similarly, as CD-based policy has also been observed to
remove unnecessary cycles in the post-peak hours, the average
SoC level decreases which relieves the SoC stress. These
intuitions corroborate the claim in Section III that the cycle-
based DoD stress model is most relevant for the fast battery
control problem.

To sum up, the numerical results have validated the perfor-
mance improvement attained by the proposed instantaneous
cycle-based degradation model, by exactly representing the
rainflow conditions. The proposed approach effectively leads
to battery control trajectories that reduce unnecessary fluctua-
tions or improve the overall economical profits.

VI. CONCLUSION AND FUTURE WORK

The paper proposes an accurate model of cycle-based
degradation cost in order to allow for efficient battery control
designs using reinforcement learning (RL). In order to model
the degradation which depends on the full cycle, we introduce
additional state variables to judiciously keep track of important
switching points of SoC trajectory for effectively identifying

(dis)charging cycles. This way, the actual degradation cost is
separated into instantaneous terms along with other operation
costs such as the net cost for electricity usage and FR
penalty, such that powerful DQN based RL algorithms are
readily applicable. Numerical tests confirm the effectiveness of
proposed cycle-based degradation model and demonstrate the
performance improvements in effectively mitigating battery
degradation over existing linearized approximation approach.

Exciting future research directions open up on expanding
the battery operations to support other ancillary services such
as peak-shaving. The key question will be how to model the
peak-shaving cost as instantaneous reward. In addition, the
power network constraints such as voltage limit are of high
interest in practice and will be considered as well.

APPENDIX

The goal is to show that Eq. (12) represents the exact
incremental degradation cost from time t to (t+ 1). With the
current SoC denoted as ct at time t, the current cycle depth
equals to dt = ct − c(2)

t starting from the SP c
(2)
t in time t0.

Thus, the resultant degradation cost is given by

Φ(dt) = αde
βdt = αde

β|ct−c(2)t |

with the absolute difference capturing cycle depth. When
transitioning to time (t + 1), the incremental difference in
degradation cost due to action bt becomes

∆t = Φ(dt+1)− Φ(dt) = Φ(dt + bt)− Φ(dt)

= αde
β|ct+bt−c(2)t | − αdeβ|ct−c

(2)
t |.

Therefore, summing up these differences leads to

Φ(dt+1) = Φ(dt) + ∆t =
∑t+1
τ=t0+1 ∆τ (21)

with the degradation cost at time t0 initialized by zero.
Notably, there are two types of scenarios when considering
this summation at time (t+ 1), as detailed here.
(1) Case NRa and case NRb: In either case, rainflow con-
dition is not satisfied as depicted in Fig. 2, and thus Eq. (21)
accumulates the total degradation thus far for this cycle.
(2) Case RA: Without loss of generality, consider the RA
cycle A−K−B−C−L−D as shown in Fig. 1. As the rainflow
condition is satisfied at point L, the total degradation cost of
this cycle equals to Φ̄ = Φ(d0) + 2Φ(d1). Following from
Eq. (21), the degradation cost from point A to L is obtained
by

ΦA→L = Φ(dK + d1) + 2Φ(d1).

Similarly, from point L to D, the cycle continues on as A−
B − L−D due to the satisfaction of rainflow condition, and
Eq. (21) leads to an additional degradation cost as

ΦL→D = Φ(d0)− Φ(dK + d1).

Together, the total degradation cost for the cycle A − K −
B − C − L −D equals to Φ̄, which completes the proof for
Proposition 1.
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