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We describe a Bayesian formalism for analyzing individual gravitational-wave events in light of
the rest of an observed population. This analysis reveals how the idea of a “population-informed
prior” arises naturally from a suitable marginalization of an underlying hierarchical Bayesian model
which consistently accounts for selection effects. Our formalism naturally leads to the presence of
“leave-one-out” distributions which include subsets of events. This differs from other approximations,
also known as empirical Bayes methods, which effectively double count one or more events. We design
a double-reweighting post-processing strategy that uses only existing data products to reconstruct
the resulting population-informed posterior distributions. Although the correction we highlight is an
important conceptual point, we find it has a limited impact on the current catalog of gravitational-
wave events. Our approach further allows us to study, for the first time in the gravitational-wave
literature, correlations between the parameters of individual events and those of the population.

I. INTRODUCTION

Bayesian statistics plays a prominent role in
gravitational-wave (GW) astronomy, where it is routinely
used to infer the properties of individual binary black
hole (BH) events [1, 2]. Bayesian statistics is also used
to infer the properties of the underlying distribution of
sources [3, 4], assuming all events come from the same
modeled population (which can be a mixture of several
channels; for reviews see [5, 6]). Although individual-event
and population inferences are often treated separately for
practical and computational purposes, they can be viewed
as two sides of the same coin: namely a full, hierarchical
Bayesian model.

Hierarchical Bayesian models have been successfully
applied to many astronomical data sets, including spectro-
scopic data for the determination of stellar ages [7], light
curve [8] and radial velocity [9] data for the determina-
tion of exoplanet obliquities and eccentricities respectively,
and astroseismic data for the determination of stellar in-
clinations [10] and helium enrichment [11]. One benefit
of hierarchical Bayesian models is that one can obtain
improved measurements of the parameters of individual
events by exploiting the fact that they are part of a large
catalog—an approach that can be described as using a
population-informed prior. Taking the first GW event as
an example, this line of reasoning is equivalent to asking:

What can be learned about GW150914 us-
ing not only the ∼ 0.2 s of data from Septem-
ber 14th, 2015, but rather from all of the
LIGO/Virgo observations to date?

We now describe several different, but related analyses.
The interplay between these procedures can be visualized
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using the probabilistic graphical models (PGMs) in Fig. 1.
In these diagrams, data and parameters are indicated with
circles while arrows represent conditional probabilistic de-
pendencies between quantities. Figure 1(a) illustrates the
standard single-event parameter estimation (e.g. [1, 2]):
one selects an event (index i) from the catalog and infers
its parameters θi (masses, spins, etc.) using only the data
di for that event and an uninformative prior. Figure 1(b)
illustrates the standard population analysis (e.g. [3, 4]):
hyperparameters λ describing the source population (e.g.
the slope of the mass spectrum) are inferred using the
results of all of the single-event analyses, taking care to
properly account for selection effects. In this approach,
the single-event parameters are marginalized over and,
therefore, cannot be sampled. Figure 1(c) illustrates a
population-informed single-event analysis, which is the
main topic of this paper. Targeting event j, this analysis
uses the data for all other events, {di6=j}, to infer the pop-
ulation parameters λ which are then marginalized over,
while incorporating the data dj , to infer the parameters
θj . As is shown below, the analyses depicted in panels
(b) and (c) are appropriate marginalizations of the full
hierarchical Bayesian model indicated in Fig. 1(d).

This paper describes a complete formalism for per-
forming population-informed single-event analyses in the
presence of selection effects, showing in particular how it
follows from a full hierarchical Bayesian model (Sec. II).
Our solution differs from some previous studies that rely
on heuristic derivations and that sometimes mistreat se-
lection effects and/or implicitly apply an empirical Bayes
method [12]—a known approximation of a hierarchical
Bayesian analysis. We present a practical implementa-
tion of a population-informed single-event analysis which
relies on a double-reweighting procedure and makes use
of existing data products (Sec. III). Finally, we apply our
formalism to the current LIGO/Virgo catalog (Sec. IV).
We obtain population-informed posterior distributions for
all the events in the catalog and consider, for the first
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FIG. 1. Probabilistic graphical models (PGMs) for the analyses described in the introduction. Observed data are indicated
with gray circles; empty circles indicate model parameters one wishes to sample; hatched circles indicate model parameters that
are marginalized over in the analysis; boxes indicate parts of the analysis that are repeated independently for multiple events;
diamonds indicate steps in the analysis where selection effects must be taken into account. Panel (a): Single-event parameter
estimation. It is common practice for every event to be analyzed individually under an uninformative choice of prior, πpe(θ);
the target distribution for this analysis is given in Eq. (15). Panel (b): Population inference. When interested solely in the
population parameters, these can be inferred using posterior samples from the single-event analyses; the target distribution for
this analysis is given in Eq. (8). The θi parameters are analytically marginalized over and therefore cannot be inferred from this
analysis. Note how the PGM from panel (a) is contained within this diagram. Panel (c): Population-informed single-event
inference. In this case, single events are analyzed in light of the whole population; the target distribution for this analysis
is given in Eq. (11). Note how the PGM from panel (b) is contained within this diagram but with one event omitted and λ
marginalised out. Panel (d): Full hierarchical model. In principle, the population can be analyzed simultaneously with all of the
events in a full hierarchical Bayesian model; the target distribution is given in Eq. (2). The analyses in panels (b) and (c) can
be obtained by marginalising this over {θi} (see Sec. II C) and ({θi 6=j}, λ) (see Sec. II D), respectively.

time in GW astronomy, the correlations between event
and population parameters. We discuss the prospects of
our work in Sec. V and present some generalizations in
Appendices A, B and C. Additional results are provided
as supplemental material.

Although we restrict ourselves to GW astronomy, our
statistical methods are very general and can be applied
to any scenario where individual observations need to
be analyzed as part of a larger set while consistently
accounting for their intrinsic detectability.

II. HIERARCHICAL BAYESIAN INFERENCE

A. Notation

Let i ∈ [[1, Nobs]] label observed events in a catalog and
di denote the strain for event i. Events are described by
parameters θi (e.g. BH masses and spins). The collection
of all Nobs parameters and strain data are denoted {θi}
and {di} respectively. It will be necessary to use sets with
one specific event, say j, is omitted; these are denoted

{θi 6=j} and {di 6=j}.
We assume that we have an astrophysical population

model (“pop”) which depends on parameters λ and pre-
dicts an expected number of sources N(λ) distributed
such that the number with parameters in volume dθ is
given by

dN

dθ
= N(λ)ppop(θ|λ), (1)

with
∫

dθ ppop(θ|λ) = 1. It is convenient to reparame-
terize λ = (N,λ), separating out one parameter N that
describes the rate from the remaining λ that describe the
shape of the population (e.g. the slope of the mass func-
tion and locations of any mass gaps). With this change of
variables, one has N(λ) = N and ppop(θ|λ) = ppop(θ|λ).

B. Full hierarchical model

Given all the observed data {di}, what we would like
to do is to simultaneously infer the properties of all the
individual events {θi} and the population parameters
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λ. The posterior on these parameters is given by the
following hierarchical Bayesian model,

Ppop({θi}, λ|{di}) =
L({di}|{θi})p({θi}|λ)πpop(λ)

Zpop
. (2)

where Zpop = Ppop({di}) is the evidence.1

If events are independent and non-overlapping, then
the first term in the numerator of Eq. (2) is the product
of the individual event likelihoods,

L({di}|{θi}) =

Nobs∏
i=1

L(di|θi), (3)

where L(di|θi) is the usual single-event GW likelihood
(e.g. [13]).

The second term describe an in-homogeneous Poisson
process and involves a factor of the population model for
each event (cf. [14])

p({θi}|λ) ∝ e−Nα(λ)NNobs

Nobs∏
i=1

ppop(θi|λ), (4)

where we again split λ = (N,λ) and discard normalization
terms that do not depend on {θi} or λ. The efficiency

α(λ) =

∫
dθ Pθ(det)ppop(θ|λ). (5)

is the fraction of events in the population that are de-
tectable and accounts for selection effects via the inclusion
of a detection probability for a given event.2

The final term in Eq. (2) is the Bayesian prior on the
population parameters, πpop(λ).

As the focus of this study is mainly on the shape of the
population, not on the event rate, here we will restrict to
the case where the (improper) prior on N is scale invariant,
i.e. πpop(λ) ∝ πpop(λ)/N , and marginalize over N . A
generalized derivation that includes N and is suitable for
inferring on the rate of events is presented in Appendix A.
Marginalizing over N , the posterior in Eq. (2) becomes

Ppop({θi}, λ|{di}) ∝ L({di}|{θi})p({θi}|λ)πpop(λ). (6)

where

p({θi}|λ) ∝ α(λ)−Nobs

Nobs∏
i=1

ppop(θi|λ). (7)

The logical structure of this full hierarchical model is in-
dicated graphically in Fig. 1(d). This model is impractical
to sample from directly due to its high dimensionality and
the computational cost of its evaluation. In practice, two
of its marginalized distributions are used, as described in
the following subsections.

1 Hereafter, a subscript is used to denote a conditional probability.
E.g. Ppop({di}) ≡ P ({di}|pop) is the probability of observing the
data given a particular astrophysical model for the population.

2 The detection probability 0 ≤ Pθ(det) ≤ 1 is the conditional prob-
ability of detecting an event given its parameters; i.e. P (det|θ),
hence the subscript θ. Other authors write this as pdet(θ).

C. Population inference

First, consider marginalizing Eq. (2) over all the {θi}.
This is what is typically done GW population inference [3,
4] and leaves a posterior on just the population parameters

Ppop(λ|{di}) ∝
∫

d{θi} Ppop({θi}, λ|{di}), (8)

∝ πpop(λ)

α(λ)Nobs

Nobs∏
i=1

∫
dθi L(di|θi)ppop(θi|λ).

In order to sample this distribution, it is necessary to
evaluate the θi-integrals; in practice this is done using
parameter estimation samples, see Sec. III B. The logi-
cal structure of this analysis is indicated graphically in
Fig. 1(b).

D. Population-informed single-event inference

Second, consider marginalizing Eq. (2) over λ and
{θi 6=j}, resulting in a posterior on just the parameters
for event j. Using Eqs. (3), (6) and (7) and bringing the
terms that depend on θj in front of the product on i yields

Ppop(θj |{di}) =

∫
dλ

∫
d{θi6=j} Ppop({θi}, λ|{di}) (9)

= L(dj |θj)
∫

dλ
ppop(θj |λ)

α(λ)
Ppop(λ|{di 6=j}),

where Ppop(λ|{di 6=j}) is given by Eq. (8) but with event
j omitted from the catalog; i.e.

Ppop(λ|{di 6=j}) ∝
πpop(λ)

α(λ)Nobs−1

∏
i 6=j

∫
dθi L(di|θi)ppop(θi|λ).

(10)

This is the typical end-product of the so-called “leave-
one-out” analyses, where individual events are excluded
from the catalog. These analyses can be used as part
of a posterior-predictive test for the presence of outlying
events from the main population. For instance, some
of the analyses in Refs. [3, 4] were performed excluding
either GW170729, GW190521, or GW190814.

Equation (9) can be rewritten in a suggestive manner:

Ppop(θj |{di}) ∝ L(dj |θj)$(θj |{di 6=j}), (11)

where

$(θj |{di 6=j}) =

∫
dλ

ppop(θj |λ)

α(λ)
Ppop(λ|{di 6=j}). (12)

This now resembles Bayes’ theorem where $ plays the
role of a population-informed prior (which also incor-
porates selection effects) for the parameters of event j.
Crucially, this expression relies on the leave-one-out pos-
terior Ppop(λ|{di6=j}), thus avoiding double-counting the
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event j in Eq. (11). Given the properties of the Nobs − 1
events we have observed so far, and what we know about
the sensitivity of my instrument, the population-informed
prior $ quantifies what we expect the N th

obs event to look
like. Although we informally refer to $ as a prior distri-
bution, this analogy must be used carefully because the
quantity $(θ) is not normalized.

The logical structure of this analysis is indicated graph-
ically in Fig. 1(c). First Nobs − 1 events are used to learn
about the population, this information is encoded in the
distribution Ppop(λ|{di 6=j}). This is used, along with in-
formation about selection effects, to build the (pseudo)
prior distribution $(θj |{di 6=j}) for the parameters of the
final event. Finally, this prior is combined with the likeli-
hood for the final event to obtain the posterior distribution
Ppop(θj |{di}) on those event parameters.

It is also important to remember that population-
informed reanalysis of event j is necessarily conditioned
on a particular model for the population.

E. Empirical Bayes method

A important comment is due about the distribution
Ppop(θj |{di}) in Eq. (11): care must be taken not to
include event j twice in the inference; it is for this reason
that the integrals in Eqs. (10) and (12) must be taken
over the leave-one-out distribution Ppop(λ|{di 6=j}) which
only use information from the other events in the catalog.

One could attempt to use population-informed priors
without omitting the event from the prior. This is a known
approach to approximate the outcome of a hierarchical
analysis and is often referred to as “empirical Bayes” [12].
In our context, the empirical Bayes approximation of the
single-event parameters reduces to using

Ppop(θj |{di}) ≈ L(dj |θj)
∫

dλ ppop(θj |λ)Ppop(λ|{di})
(13)

instead of Eq. (9). The PGM for an analysis based on
this expression looks identical to that of Fig. 1(c) with
the exception that the event j is not excluded from the
box when iterating over i. We stress that Eq. (13) does
not follow from the hierarchical Bayesian model in Eq. (2)
and, compared to Eq. (9), double counts event number j.

Assuming event j is not a population outlier, we would
expect the empirical Bayes approximation to become in-
creasingly accurate as the size of the GW catalog increases.
As we will see below in Sec. IV, it seems that we are al-
ready in this regime and the empirical Bayes method
generally provides a good approximation to the full hier-
archical analysis. However, it is an important conceptual
point that event j is being double-counted in this analysis
(it enters once in the population-informed prior and once
in the likelihood) and that this is only an approximation
to the full hierarchical Bayesian model. This conceptual
point is in some ways analogous to Bessel’s N/(N−1) cor-

rection factor in the frequentist estimation of the variance
in a population.

There have been some previous attempts at using
population-informed priors in the GW context. The liter-
ature on this topic is rather opaque and it is often unclear
which expressions are actually being used. Careful reading
of Refs. [4, 15, 16] suggests that the empirical Bayes is im-
plicitly being used and that one event is erroneously being
double-counted, although private discussions with some
of the authors indicate that this is in fact not the case.
Ref. [17] considers a population of GW events modeled
using a restricted set of parameters but does explicitly
use the correct leave-one-out expression in Eq. (9). The
heuristic expressions for the population-informed prior
reported in Refs. [18, 19] do not double-count any events,
however they differ in the treatment of selection effects
by not including the extra factor of α(λ) in Eq. (9); there-
fore, those treatments do not follow from a hierarchical
Bayesian analysis, although in practice similar numerical
results are obtained. Finally there are some unpublished
technical documents [20–22] which also describe the leave-
one-out population-informed posterior in Eq. (9) together
with a condition-reweighting approach to sampling this
distribution which differs from the double-reweighting
strategy put forward in this paper.

F. Correlations between event parameters and
population parameters

The full hierarchical model of Eq. (2) contains infor-
mation on the correlations between the event parameters
{θi} and the population parameters λ. These correlations
are lost if one pursues the common population approach
described in Sec. II C where the event parameters are
marginalized over. The correlations are also lost when
one pursues the population-informed single-event analysis
described in Sec. II D (or the empirical Bayes approxima-
tion described in Sec. II E) as this analysis marginalizes
over the population parameters.

In order to study correlations between individual event
parameters θj and the population parameters λ we can
marginalize the full hierarchical model of Eq. (2) over
{θi 6=j}. This gives

Ppop(θj , λ|{di}) = L(dj |θj)
ppop(θj |λ)

α(λ)
Ppop(λ|{di6=j}) .

(14)

This distribution can be used to assess the extent to which
certain parameters from specific events might be affecting
the population parameters, see Sec. IV D.

III. SAMPLING AND REWEIGHTING

A straightforward implementation of the population-
informed individual-event analysis in Sec. II D would re-
quire Nobs dedicated population inference runs to be
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performed, one leaving out each event in turn. This is
clearly impractical, especially as Nobs becomes large. In
this section we present a double-reweighting strategy that
avoids the needs for these expensive calculations.

First, we briefly describe the two analyses that are
commonly performed in GW astronomy: single-event
parameter estimation (Sec. III A) and population in-
ference (Sec. III B). We then show how the results of
these can be used to obtain weighted samples from the
full population-informed prior analysis in Eq. (11) via a
double-reweighting strategy (Sec. III C).

A. Parameter estimation

Parameter estimation (PE) is routinely performed on in-
dividual GW events using an uninformative3 prior, πpe(θ);
for instance, common choices include priors that are uni-
form in masses and isotropic in spins. The target posterior
for this analysis is given by,

Ppe(θi|di) ∝ L(di|θi)πpe(θi) . (15)

A subscript PE indicates that a probability is conditioned
on the assumptions in the uninformative prior used in
single-event PE. The simple logical structure of this anal-
ysis indicated graphically in Fig. 1(a).

An output of the PE analysis is a set of (equally
weighted;4 wki = 1) posterior samples,(

θki , w
k
i = 1

)
∼Ppe(θi|di), for k = 1, 2, . . . , Si. (16)

B. Population inference

Higher-level population analyses are performed with
the target posterior distribution Ppop(λ|{di}) described
in Sec. II C. Again, the subscript pop is there to remind us
that this is a probability conditioned on the assumptions
in a particular population model.

In practice, the samples from the PE analyses of individ-
ual events are used to efficiently evaluate the population
likelihood. The integrals in Eq. (8) are usually approxi-
mated by the following Monte Carlo sums using Eq. (15)
and the samples in Eq. (16),∫

dθi L(di|θ)ppop(θi|λ) ∝
∫

dθi Ppe(θi|di)
ppop(θi|λ)

πpe(θi)

≈ 1

Si

Si∑
k=1

ppop(θki |λ)

πPE(θki )
. (17)

3 All priors introduce some information in the analysis. In this
context “uninformative” indicate a prior choice that does not
make use of data from the other events in the catalog.

4 We use the notation (xa, wa)∼P (x), a = 1, 2, . . . , N , to indicate
weighted samples from distribution P (x). The importance sam-
pling estimate for the expectation of a function of x is given by
E[f(x)] =

∑N
a=1(w

af(xa))/
∑N
a=1(w

a).

This is a reweighting procedure, where the ratio in the
integrand divides by the original PE prior and multiplies
by the desired population model.

An output of this analysis (e.g. [4]), is a set posterior
samples (again, equally weighted, ωl = 1) drawn from the
target distribution;(

λl, ωl = 1
)
∼Ppop(λ|{di}), for l = 1, 2, . . . ,S. (18)

C. Reweighting samples for population-informed
single-event inference

We take the samples θkj from Eq. (16) and reweight
them to the population-informed target distribution in
Eq. (11) for a single event;(

θkj ,W
k
)
∼Ppop(θj |{di}). (19)

The necessary weights are given by the ratio of the target
distribution to the current PE distribution,

W k =
Ppop(θkj |{di})
Ppe(θkj |dj)

. (20)

Using Eqs. (10), (11) and (12) for the numerator, and
Eq. (15) for the denominator, this expression simplifies to

W k =
1

πpe(θkj )

∫
dλ

Ppop(λ|{di})ppop(θkj |λ)∫
dθj L(dj |θj)ppop(θj |λ)

. (21)

The integral in the denominator is the same as that in
Eq. (8) and can be approximated by the Monte Carlo sum
in Eq. (17). The integral in the numerator can also be be
approximated by a Monte Carlo sum using the population
samples in Eq. (18). Doing so gives

W k =
1

πpe(θkj )S

S∑
l=1

ppop(θkj |λl)Sj∑Sj

k′=1

ppop(θk
′

j |λl)

πpe(θk
′

j )

. (22)

The samples λl were obtained from a likelihood that
involves a reweighting of the PE samples, θki . We are now
using the λl samples to reweight the original PE samples
θki to target the population-informed single-event poste-
rior. In this sense this procedure is a double reweighting
of existing posterior samples.

Via an entirely analogous calculation, an additional set
of weights can be obtained to approximate Ppop(θj , λ|{di})
of Eq. (14) and thus capture correlations between param-
eters and hyperparameters.

Finally, one can also attempt a similar reweighting tar-
geting the full hierarchical model of Sec. II B (this involves
reweighting samples on λ and {θi} simultaneously). We
have attempted this and found that it is not possible
to do accurately with given existing LIGO/Virgo data
products. The much higher dimensionality of the distri-
bution means that results are dominated by errors due
to the finite number of samples available. Although we
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are reporting a null result, we provide the expressions for
the full Hierarchical reweighting in Appendix B and plan
to re-investigate this point in the future with different
techniques.

IV. APPLICATION TO THE LIGO/VIRGO
CATALOG

We refer to the different analyses as follows:

• “Uninformative”: the posterior Ppe(θj |dj) in
Eq. (15) obtained from single-event parameter-
estimation that does not use the rest of the catalog.

• “Hierarchical”: the population-informed posterior
Ppop(θj |{di}) of Eq. (9), which was obtained by
marginalizing the full hierarchical model. In prac-
tice, we sample this using the double-reweighting
procedure described in Sec. III C.

• “Empirical”: the empirical Bayes approximation
to the population-informed posterior Ppop(θj |{di})
given in Eq. (13), where the analyzed event en-
ter twice. This is also sampled using a double-
reweighting procedure.

We use both the parameter estimation samples for θ and
population inference samples for λ provided with Ref. [4].
This analysis includes the Nobs = 44 confident binary
BH events detected with false-alarm rate < 1yr−1 during
the first two and a half observing runs of LIGO/Virgo.
We consider individual events to be described by the
following 6 parameters: θ = {m1,m2, χ1, χ2, θ1, θ2} where
mi are the BH masses, χi are the dimensionless BH spin
magnitudes, and θi are the tilt angles between the BH
spins and the orbital angular momentum (subscripts i =
1, 2 refer to the heavier and the lighter BH, respectively).

For our population model, we use the Power Law
+ Peak model from Ref. [4] as an example; however,
we stress that our method is general and can be applied
to any population model. This Power Law + Peak
model depends on dim(λ) = 12 population parameters
which are briefly described here. The primary mass is
assumed to follow a power-law distribution between mmax

and mmin with a spectral index α and a Gaussian peak
component designed to model a possible pileup of events
below the pair-instability supernova mass gap (the peak
has fractional strength λm and is located at µm with a
width σm). The mass ratio q = m2/m1 ≤ 1 is assumed to
follow a power-law distribution with index βq. Both the
primary mass and mass ratio distributions are smoothed
over a range of masses δm at the low mass end. The
dimensionless spin magnitudes are assumed to follow a
beta distributions parameterised by a mean µχ and a
variance σ2

χ. The distributions of the spin tilt cosines
have a uniform component and a (truncated) Gaussian
component with fractional strength ζ and width σt that
is designed to model field formation channels that might

preferentially form binaries with aligned spins. The red-
shift z is assumed to be distributed uniformly in comoving
volume and source frame time independently of λ.

A. Catalog summary

We compute the three posterior distributions high-
lighted above (“uninformative”, “hierarchical”, and “em-
pirical”) for each of the 44 events. The complete set of
posteriors for all 44 events is provided as a supplementary
file. Inspecting these plots reveals that, in general, the
most noticeable effect of using a population-informed prior
is to reduce the error on the mass ratio q measurement and
shift the posterior towards q = 1; this is expected as most
of the events in the catalog are consistent with q = 1 and
this trend is captured by the population model. It is also
noticeable that in most cases there is excellent agreement
between the “Hierarchical” posterior and the “Empirical”
approximation. Here we attempt to summarize the results
for all these events by computing the Hellinger distance
d2

H(p, q) ≡ 1 −
∫√

p(x)q(x)dx ∈ [0, 1] [23] between the
“Uniformative” and the other two population-informed dis-
tributions. A short summary of the key properties of the
Hellinger distance is presented in Appendix C. Although
we find the Hellinger distance to be a useful indicator, we
caution against overinterpreting of these results; it is not
a substitute for visually inspecting the distributions.

Figure 2 shows the distances between the uninforma-
tive distribution and the (i) hierarchical and (ii) empir-
ical distributions. The resulting values of dH are in the
range ∼ 0.4–0.7, indicating that the population-informed
reweighting has a relative major impact on the interpreta-
tion of the systems. The events with largest dH have either
large masses (GW190521, GW170729, GW190929 012149)
or large effective spin (GW151226, GW190517 055101,
GW190620 030421) compared to the rest of the cata-
log [1, 2]. In general, the events with low dH (i.e. those
for which the population-informed reweighting is less im-
pactful) have either parameters that are well in the bulk
of the population or large signal-to-noise ratios such that
the posterior is mostly driven by the likelihood and not
the prior. GW150914 is an excellent example of this.

We find that the two distances we computed (uninforma-
tive vs hierarchical and uninformative vs empirical) are, in
general, very similar to each other with differences as small
as ∆dH . 0.01. This is within the errors on dH, which we
estimate by splitting the samples weights into 10 subsets
and computing the resulting standard deviations. Overall
we find that, despite being an important conceptual point,
the Bessel-like correction highlighted in this paper is sub-
dominant. Some exceptions include GW190517 055101
(∆dH∼ 0.07, see Sec. IV C below), GW190728 064510,
GW190720 000836, and GW190924 021846 (∆dH∼ 0.02)

Let us now focus on two cases of particular interest.
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FIG. 2. The Hellinger distances between the standard parameter-estimation 6-dimensional posterior distributions on θi
(uninformative prior) and the population-informed posteriors. Results are shown for all 44 BH binary events detected with
false-alarm rate < 1yr−1 during the first two and a half LIGO/Virgo observing runs. “Hierarchical” (red circles) refers to the
population-informed expression derived in this paper, cf Eq. (9); “Empirical” (green triangles) refers to the approximation
of Eq. (13) which double-counts the event considered. Errors are estimated by splitting posterior samples into 10 sets and
computing the standard deviation of dH computed from each set.

B. The masses of GW190521

GW190521 is the heaviest binary in the catalog. It is
also the event for which the use of a population-informed
prior makes the biggest difference to the posterior in the
sense that it has the largest value of dH in Fig. 2. Fig-
ure 3 shows the posterior distributions on its component
masses m1 and m2. Priors that are inferred from the
(rest of the) population shift the posterior distribution
toward lower masses compared to the uninformative prior
adopted in the single-event parameter-estimation anal-
ysis (cf. Ref. [4] for an analogous discussion). This is
unsurprising because all of the other events have masses
that are likely to be lower than those of GW190521. We
find that the hierarchical and empirical estimate of the
population-informed posterior return essentially the same
result: it appears that, already with a catalog of ∼ 50
events, the double counting of one event involved in the
empirical Bayes approximation has a small effect on the
result. This is compatible with the results the posterior-
predictive checks reported in Ref. [4], which concluded
that GW190521 is not a population outlier.

C. The spins of GW190517 055101

GW190517 055101 is the event with the largest effec-
tive spin χeff [24] in the catalog (this is the spin combina-
tion parameter that is currently best measured) and also
present a moderate value of χp [25] (another measured
spin combination that captures the precession of the or-

50 75 100 125
m1 [M�]

50

75

100

125

m
2

[M
�

] GW190521

Uninformative

Hierarchical

Empirical

FIG. 3. The posteriors for the source-frame component
masses of the heaviest binary observed to date, GW190521.
The blue contours show results of the single-event parameter
estimation, [“Uninformative”, Eq. (15]. The red contours show
the population-informed single-event inference developed in
this paper [”Hierarchical”, Eq. (9)]. The green contours show
the empirical Bayes approximation to the population-informed
single-event distribution [”Empirical”, Eq. (13)]. We show
50% and 90% contours.
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FIG. 4. The posteriors for the spin combinations χeff

and χp of the binary with the largest χeff in the catalog,
GW190517 055101. The blue, red and green contours show
the results of the ”Uninformative” [Eq. (15], ”Hierarchical”
[Eq. (9)], and ”Empirical” [Eq. (13)] inferences respectively.
We show 50% and 90% contours.

bital plane; see Ref. [26] for issues and refinements on
its definition). Figure 4 illustrates the joint distribution
of these two parameters for GW190517 055101. Much
like for the masses of GW190521, GW190517 055101 has
higher effective spins compared to the rest of the catalog
and thus the population-informed posteriors peak at lower
values compared to the uninformative ones. In this case,
the difference between the full hierarchical estimate and
the empirical approximation is more pronounced. When
the event is double counted (empirical Bayes method),
the high-spin value of GW190517 055101 contaminates
the population-informed prior and produces a distribution
with χeff = 0.44+0.17

−0.18 (median and 90% credible interval).
The result obtained from marginalizing the full hierar-
chical model instead returns χeff = 0.40+0.17

−0.19, which is

further from the uninformative results χeff = 0.53+0.19
−0.20.

However, although the maximum-a-posteriori is affected
by the erroneous double counting, the difference between
the peaks of the hierarchical and empirical of χeff poste-
riors is still smaller than the widths of the distributions.
This suggests that, at least at the present signal-to-noise-
ratio, the empirical Bayes approximation is appropriate.
The population-informed estimates of χp peak at lower
values compared to the uninformative case; this is driven
by the bulk of the observed catalog which shows relatively
little evidence for spin precession [4].

D. Correlations between event and population
parameters

Beside re-investigating single events in light of the pop-
ulation, our double reweighting approach allows us to
study the correlations between the parameters of single
events (i.e. the θ’s) and those of the population (i.e. the
λ’s). This is the first time that such θ–λ correlations are
studied in the published GW literature (although we note
some unpublished results are present at Ref. [27]). Study-
ing these correlations requires a suitable marginalization
of the full hierarchical model as described in Sec. II F
and cannot be done with the usual approach of, e.g.,
Refs. [3, 4].

Figure 5 shows the joint distribution of the primary
mass m1 of GW190521 (which is part of {θi}) and the
upper mass cutoff in the population model mmax (which
is instead part of λ). Among the many combinations
between parameters and hyperparameters, this choice is
particularly interesting because the value of the upper
mass cutoff in the population fit is largely driven by the
need to accommodate the largest mass in the catalog
(although, the Power Law + Peak population model
we are using can accommodate a fraction of events above
mmax, depending on the values of the “peak” parameters
λm, µm, and σm). Indeed, we find that the two quantities
are moderately strongly correlated. This result can be
read both ways: (i) if the mass of GW190521 turns out to
be on the lower edge of its credible interval, one infers a
lower mass cutoff in the entire population; (ii) if statistical
and systematic errors in the population inference cause an
overestimate of the mass cutoff (i.e. mmax is smaller than
what comes out of the inference), then the population-
informed estimate of GW190521 points to lighter BHs.

This is just one of the possible analyses that can be
performed with the method we presented. Going forward,
we argue these correlations should be investigated in
greater detail as they might shed further light on the GW
data-analysis procedure and the related astrophysical
interpretation of the sources.

V. DISCUSSION

Inference on single events and inference on the popula-
tion are part of a common Bayesian hierarchical model.
These two aspects are, in practice, tackled individually
for practical and computational constraints. In the LIGO
context, this is made possible by the fact that sources
are not overlapping, such that one can take a short time
segment of data containing an event and analyze it inde-
pendently on the rest of the data stream. This will not be
possible with next-generation GW detectors. Source over-
lap will require the development of the so-called “global
fit”, tackling individual events, populations, and noise all
at the same time (this is especially true for LISA, but 3rd
generation ground-based detectors will also be affected).

But even for current detector networks, developing a full
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FIG. 5. Correlations between the primary mass of GW190521
(one of the event parameters θ) and the maximum mass cutoff
in the source distribution (one of the population parameters
λ). Investigating θ–λ correlations requires considering the full
hierarchical model (cf. Sec. II F) and cannot be tackled with
the most common population approach which marginalizes
over the event parameters (cf. Sec. II C and III B).

hierarchical model might uncover new features in the data.
This paper tackles a particular aspect of this problem,
namely the characterization of individual events in light of
the (rest of the) detected population, an approach which
is often referred to as using a “population-informed prior”.
The key result is presented in Eqs. (11) and (12).

We presented a thorough derivation of population-
informed single-event statistics in the presence of selection
effects, which we hope clarifies implicit assumptions and
inconsistencies present in previous treatments. In partic-
ular, we highlighted the conceptual difference between
the correct marginalization stemming from the full hier-
archical model and the so-called empirical Bayes method,
where the targeted event is effectively double counted.

Our formalism has several applications. Firstly, one
can constrain the properties of GW events under the
plausible assumption that they belong to a common pop-
ulation of sources. While we find that the conceptual
correction pointed out here is subdominant, we stress it
can be applied “for free”, using data products that are
routinely produced and made available. We thus argue
that this correction should be applied to all GW analyses
that make use of population-informed priors. Secondly,
this approach further allows us to study, for the first time
in the context of GW astronomy, the correlations between
the parameters of individual events and those of the pop-
ulation. The line of investigation that is put forward in
this paper has the potential to unveil new details on the

(astro)physics of GW sources from existing and future
data.

Selection effects —analogous to the so-called Malmquist
bias in observational astronomy— play an important
role in GW population inference [5, 6]. For population-
informed single-event analyses like those presented here,
selection effects turn out to be a nuisance. In this con-
text, one is interested solely in the observed population
of sources, not the observable one. Our formalism con-
tains selection effects because we wish to rely on current
pipelines (e.g. Refs. [3, 4]) where λ parameterizes the
intrinsic population of BHs. This is also indicated in the
PGM of Fig. 1(c), where selection effects are first intro-
duced when inferring λ from {θi 6=j} and then removed
when reconstructing θj from λ. We stress that developing
a simpler population analysis without selection effects

—targeting the observed population and not the intrinsic
one—, can also have applications in GW astronomy, an
example of which is presented here. If the observed popu-
lation has parameters λ̃, our equations can be immediately
applied by substituting λ→ λ̃ and setting α(λ) = 1.

We hope that the formalism presented in this paper can
set the stage for deeper explorations of GW data exploit-
ing the interplay between single events and populations.
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Appendix A: Rates analysis

In this appendix, we present the more general expres-
sions one obtains without marginalizing over the expected
number of events N .

The starting point is given by Eq. (4). Marginalizing
over the individual-event parameters as in Sec. II C yields

Ppop(λ|{di}) ∝ πpop(λ)e−Nα(λ)NNobs

×
Nobs∏
i=1

∫
dθi L(di|θi)ppop(θi|λ). (A1)

With a calculation analogous to that of Sec. II D, the
population-informed single-event posterior can be ob-
tained by instead marginalizing Eq. (4) over θi 6=j and
λ. We obtain

Ppop(θj |{di}) ∝ L(dj |θj)$(θj |{di 6=j}, (A2)
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where

$(θj |{di 6=j}) =

∫
dλ N ppop(θj |λ)Ppop(λ|{di 6=j}) (A3)

and

Ppop(λ|{di 6=j}) ∝ πpop(λ)e−Nα(λ)NNobs−1 (A4)

×
Nobs−1∏
i 6=j

∫
dθi L(di|θi)ppop(θi|λ) .

Appendix B: Full hierarchical reweighting

Here we highlight a possible strategy to combine sam-
ples from single-event and population analysis to target
the full hierarchical posterior of Eq. (2). We have at-
tempted to implement this strategy and report here that
this approach fails due to the limited numbers (∼ 103-104)
of samples provided in public LIGO/Virgo data products.

Let us take one sample from each of the individual
PE posterior chains (Eq. [16]) and a sample from the
population inference posterior chain (Eq. [18]) and denote
the result Xm = ({θi}m, λm). This combined sample
follows a distribution Q({θi}, λ) that is the product of
Nobs + 1 target distributions of the individual analyses,
i.e.

Q({θi}, λ) ∝ Ppop(λ|{di})
Nobs∏
i=1

Ppe(θi|di). (B1)

Posterior samples from the full hierarchical model in
Eq. (2) can be obtained by a reweighting of Xm;

(
Xm,Wm

)
∼Ppop({θi}, λ|{di}), for m = 1, 2, . . . , s,

(B2)

where s = min(S, {Si}). The necessary weights are given
by the ratio of the target distribution in Eq. (2) to the

Q-distribution evaluated at the Xm samples:

Wm =
Ppop({θi}m, λm|{di})

Q({θi}m, λm)
, (B3)

=

Nobs∏
i=1

ppop(θmi |λm)

πpe(θmi )

[∫
dθi L(di|θi)ppop(θi|λm)

]−1

≈
Nobs∏
i=1

ppop(θmi |λm)Si
πpe(θmi )

[
Si∑
k=1

ppop(θki |λm)

πpe(θki )

]−1

.

Appendix C: Properties of the Hellinger distance

There are many ways to quantify the difference between
probability distributions (see, for example, [28]). There
is no particularly natural choice for our problem. Never-
theless, we find it convenient to quote a single number to
quantify the distance between two distributions; we use
the Hellinger distance [23] for this purpose.

The Hellinger distance between distributions p(x) and
q(x) is defined as

d2
H(p, q) = 1−

∫
dx
√
p(x)q(x) (C1)

and has a few convenient properties. First, it is symmetric:
dH(p, q) = dH(q, p). It also lies the range 0 ≤ dH ≤ 1
with the equalities occurring when p and q are identical
or disjoint (mutually exclusive), respectively. To gain
intuition for what a value of dH “means”, one can compute
the distance between offset Gaussians: if p = N (µ,Σ) and
q = N (µ + c,Σ) then d2

H(p, q) = 1 − exp(−c · Σ−1 · c/8)
in any dimension.

Finally, we present a toy Bayesian calculation that is
useful for gaining further intuition about dH. Suppose
we infer the value of parameters x ∈ A. We have a prior
π(x), normalized such that

∫
A dxπ(x) = 1. We make

observations with a likelihood function L(obs|x) ∝ 1B(x),
where 1 is the indicator function and B ⊂ A. That is,
our observations exclude with certainty some values of
x while allowing all others with equal likelihood. Using
Bayes’ theorem, the posterior distribution is P (x|obs) =
1B(x)π(x)/F , where the normalization F =

∫
B dxπ(x) is

the fraction of the prior allowed by our observations. We
find that the squared Hellinger distance between our prior
and posterior is related to this fraction by d2

H(P, π) =

1−
√
F .
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