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Abstract

This paper describes two basic queueing models of service platforms in digital

sharing economy by means of two different policies of platform matching information.

We show that the two queueing models of service platforms can be expressed as

the level-independent quasi birth-and-death (QBD) processes. Using the proposed

QBD processes, we provide a detailed analysis for the two queueing models of service

platforms, including the system stability, the average stationary numbers of seekers

and of idle owners, the expected sojourn time of an arriving seeker, and the expected

profits for both the service platform and each owner. Finally, numerical examples

are employed to verify our theoretical results, and demonstrate how the performance

measures of service platforms are influenced by some key system parameters. We

believe that the methodology and results developed in this paper not only can be

applied to develop a broad class of queuing models of service platforms, but also will

open a series of promising innovative research on performance evaluation, optimal

control and queueing-game of service platforms and digital sharing economy.
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1 Introduction

In the past few years, with great advances of wireless, mobile, Internet and digital tech-

nologies, we have witnessed rapid rise of digital, platform and sharing economies, which

have become a class of increasingly important economic modes in the current world. Many

famous companies of service platforms continue to emerge and develop rapidly. Impor-

tant examples include taxi-style transportation: Uber, Lyft, Didi; rental housing : AirBnB,

HomeAway; restaurant food delivery : Caviar, DoorDash; consumer goods delivery : Uber-

Rush, Go-Mart; and so forth. For more details of sharing economy, readers may refer to

survey papers by Narasimhan et al. [40], Agarwal and Steinmetz [3], Hossain [29] and

Kraus et al. [32].

A service platform connects service requirements, called seekers (e.g., subscribers, cus-

tomers) with service providers, called owners (e.g., contractors, suppliers, agents, taxi

drivers). An owner receives a payment from the service platform once a service is com-

pleted. The owners are mutually independent in the sense that each of them can separately

decide whether and when to work. The service platform can operate well with the current

digital and information technologies, and it provides a matching structure in a bilateral

or multilateral market. It is worthwhile to note that the service platforms play a key role

in the digital sharing economy. The readers may refer to, for example, survey papers by

Breidbach and Brodie [12], Sutherland and Jarrahi [44] and Costello and Reczek [23]; key

research by Wirtz et al. [49], Choi and He [19], Clauss et al. [21], Wen and Siqin [48],

Cachon et al. [13] and Kung and Zhong [33]; and practical service platforms include food

by Choi et al. [18], ride-hailing by Feng et al. [25], hotel by Akbar and Tracogna [4],

E-tailing by Cho et al. [17] and Gong et al. [26], and Airbnb by Leoni and Parker [35]

and Xu et al. [50].

It is an interesting topic to develop queuing models that can sufficiently express basic

characteristics and physical structure of the service platforms. To this end, this paper

makes necessary exploration how to design such queuing models of service platforms (e.g.,

see Figure 1). It is worthwhile to note that the matching processes play a key role in

the study of service platforms. To this end, for a matched (or double-ended) queue,

readers may refer to, for example, Adan et al. [1], Weiss [47], Castro et al. [15], Liu

et al. [38, 39] and the references therein. It is a key in queueing analysis of service

platforms that we find two different policies of platform matching information. Policy
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one: The platform matching information is over at the moment that the matching of a

seeker and an owner is completed and their service begins thereafter immediately. Policy

one motivates us to set up the first queuing model of service platforms, which has not

been studied in the literature up to now yet. Note that Policy one can be well related to

familiar service platforms in matching the ordinary items from the bilateral markets, for

example, taxi-style transportation, and medical appointment. Policy two: The platform

matching information is over at the time that a seeker and an owner start a matching

process. In this case, the matching and service processes are completed sequentially. This

leads to our second queuing model, corresponding to the PH/PH/N queue. Note that

Policy two can be used to high-value service platforms in matching the precious items

from the bilateral markets, for instance, jewelry reservation, and forward sale of houses.

In this paper, our two queuing systems of service platforms try to keep simple. Therefore,

both of them can be generalized from different perspectives, such that we can open a

series of promising innovative research on performance evaluation, optimal control and

queueing-game of service platforms and digital sharing economy.

So far little work has been done on the queueing analysis of service platforms in

digital sharing economy. Now, we review few recent literature on the queueing models of

service platforms from several perspectives. Kim and Yeun [31] proposed a GX/M/1 type

queue to describe and analyze the sharing economy platforms. Wang and Yan [46] used

the M/M/1/K queue to describe a taxi–passenger dispatching model, the pairs of which

are matched between the two queues of taxis and passengers. Li and Fan [37] applied

the mean-field theory to set up a MAPt/PHt/1 queue in the bike-sharing system with a

Markovian environment. From the above analysis, it is easy to see that those works only

applied the known queueing systems to express the service platforms (or sharing systems),

but they did not find a class of new queuing systems which have the characteristics and

context of service platforms. This motivates us in this paper to find two new queueing

models of service platforms.

Some studies have applied the queueing theory to the pricing control of service plat-

forms. Readers may refer to recent publications for details, among which Cachon and

Feldman [14] applied the queueing theory to find that a firm may prefer to subscription

pricing over per-use pricing even if consumers dislike congestion. Banerjee et al. [7] set

up a queueing economic model to study the optimal pricing of a ride-sharing platform.

Banerjee et al. [6] presented a formal framework for point-to-point pricing in a closed
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queueing network, and then analyzed the vehicle sharing systems. Taylor [45] used an

M/M/n queue to discuss an on-demand service platform and analyzed the service plat-

form’s price and wage decisions. Bai et al. [5] proposed a queueing model that considers

the earnings-sensitive independent drivers with heterogeneous reservation prices, and the

price-sensitive passengers with heterogeneous valuations of the service. Zhong et al. [51]

compared surge pricing and static pricing queues from multiple perspectives. Although

the above mentioned studies touched the pricing control issues of service platforms, the

queueing models they adopted are not consistent with the two policies of platform match-

ing information we find, and, thus, are not practical. It is interesting to develop more

practical queueing models to study the pricing control issue of service platforms through

using our two queueing models and their generalization.

It is important to note that the matching resources of a service platform are always

scattered among different geographical locations. Thus, it is necessary and interesting to

discuss spatial queues of service platforms in digital sharing economy. For earlier research

on spatial queues with finer granularity, readers may refer to Bertsimas and Ryfin [8],

Bertsimas and Ryfin [9] and Serfozo [42]. Chu et al. [20] studied a single-location model

in which drivers can cherry-pick riders, and focused on information, routing, and priority

controls by the service platform. Afèche et al. [2] considered two locations and focused on

the performance impact of drivers’ self-repositioning and demand-side admission control.

Braverman et al. [11] discussed multiple locations and focused on empty-car routing

control. Besbes et al. [10] provided an M/M/k queue with a state-dependent service

rate that takes into account the pickup time under the match-to-the-closest dispatch rule.

Feng et al. [24] examined the on-demand hailing and traditional street-hailing systems

by using an M/M/k queueing approximation. Hu [30] adopted the queuing theory to

capture the spatial movements of vehicles in a centralized vehicle-sharing system. Chen

and Hu [16] analyzed a courier dispatching problem in an on-demand delivery system

where customers are sensitive to delay. He et al. [28] proposed an integrated model of

service platforms to understand the operations of shared-mobility systems. Sun et al. [43]

used an approximate queue to explore how the destination preference affects a driver’s

system choice, and how the service platform optimally allocated rides to both system

structure and setting of radius. From the above discussions, similarly with those studies

on pricing control reviewed in the previous paragraph, the research on spatial queues also

employed queueing models that are inconsistent with the two policies of platform matching
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information we find, such that they are not also practical. Therefore, it is an interesting

topic to develop new practically spatial queueing models to be able to effectively support

the matching and service processes of service platforms.

The main contributions of this paper can be summarized in three-fold.

(1) We describe two basic queueing models of service platforms according to two different

policies of platform matching information: One is at the matching completion time

(it is also the service beginning time), while another is at the matching beginning

time (no service yet). In addition, we inductively find several practical factors: (a)

finite number of owners, (b) infinite number of seekers, (c) the matching process

derived from the fact that an owner can match a seeker as a pair, (d) the service

process for each pair of matched owner and seeker, and (e) the phenomenon that

once the service is completed, the owner returns to the service platform, while the

seeker immediately leaves the system. See Figure 1 for more details. This queueing

model captures the basic characteristics and physical structure of service platforms,

and can motivate a series of new interesting queueing systems of service platforms.

(2) We express the two basic queueing models of service platforms as the level-independent

QBD processes, and apply the matrix-geometric method to obtain a necessary and

sufficient condition under which the system is stable, the stationary probability vec-

tor, the expected sojourn time by using the RG-factorizations, and the expected

profits for the service platform and each owner. This enables the performance anal-

ysis of service platforms.

(3) We use some numerical examples to illustrate our theoretical results, and show how

performance measures of service platforms are influenced by the identified key system

parameters.

The structure of this paper is organized as follows. Section 2 describes two basic

queueing models of service platforms in digital sharing economy. Sections 3 and 4 analyze

the first queueing model of service platforms. Section 3 expresses the first model as a

level-independent QBD process, and obtains a necessary and sufficient condition under

which the system is stable. Section 4 applies the matrix-geometric solution to derive

the stationary probability vector of the QBD process, and then provides some useful

performance measures of the service platforms. Section 5 simply analyzes the second
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queueing model of service platforms by means of another QBD process. Section 6 uses

numerical examples to discuss how the performance measures depend on some key system

parameters. Section 7 provides concluding remarks.

2 Model Description

In this section, we describe two basic queueing models of service platforms in digital

sharing economy, and provide some necessary notation used in our following analysis.

For a service platform in digital sharing economy, we need to capture the following

factors: owners, seekers, the matching process between owners and seekers, the service

process for the matched pairs of owners and seekers, and the fact that the owner returns

to the service platform and the seeker immediately leaves the system once the service is

completed. In addition, we need to determine how a service price is paid by each seeker,

and how the expected profits are allocated between the service platform and each owner.

It is a key to find two policies of platform matching information. This motivates us to

design two basic queueing models of service platforms as follows:

Model one: The information completed in a service platform is observed at the

matching completion time (it is also the service beginning time).

Model two: The information completed in a service platform is observed at the

matching beginning time (no service yet). In this case, the matching and service times

may be regarded as forming a generalized service time, i.e., the sum of a matching time

and a service time.

We adopt the following assumptions for the two queueing models:

(1) The owners: There are N independent owners who have registered in the service

platform, i.e., all the service resources of the platform are the N owners. When an owner

is serving a seeker, he/she cannot accept any new task assignments. Once the owner

completes his/her service for the seeker, he/she immediately returns to the resource of the

service platform and waits for a new task assignment.

(2) The seekers: The service requirements of the seekers arrive at the service platform

according to a Poisson process with rate λ. A seeker can successfully submit only one

service requirement to the service platform. Meanwhile, the service platform can receive

an infinite number of service requirements from the seekers.

(3) The matching process: If there is at least one idle owner who has no service
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task arranged by the service platform, and the service requirement of a seeker arrives at

the service platform, then the idle owner and the seeker begin to match as a pair, and the

matching time of the seeker and an owner is exponential with matching rate γ, i.e., the

average matching time is 1/γ.

To match the seeker, one owner is chosen based on a number of practical factors, such

as the reputation ratings of owners, the matching distance, the matching difficulty, and

so forth. To some extent, the matching rate γ reflects a comprehensive effect of these

practical factors.

(4) The service process: Once a seeker is matched with an owner as a pair, he/she

is immediately served from the owner. The service time of each matching pair of a seeker

and an owner is exponential with service rate µ, i.e., the average service time is 1/µ. Note

that a working owner cannot receive any new task assignment for the seekers.

Once the service of a matching pair is completed, the owner returns to and becomes

available in the service platform, while the seeker leaves the system immediately. Note

that the seekers are served based on the First Come First Served (FCFS) discipline.

(5) The service price: P is the service price charged to each seeker given that the

required service is completed.

(6) The profit allocation proportion: For the service price P , once the owner

completes the service of the seeker, the proportion d of the service price P is paid to the

owner, while the rest of the price is retained by the service platform, where, 0 < d < 1.

(7) The independence: We assume that all the random variables defined above,

such as the matching and service times, are independent of each other.

Figure 1 is an illustration of the queueing structure of service platforms.

Remark 1. Our queueing models have broad applications in the sharing economy (or the

service platform). In a bike-sharing system, the owners are bikes, and the seekers are

riders. In a car-sharing system, the owners are cars, and the seekers are drivers. In Didi

Taxi or Uber, the owners are taxis, and the seekers are passengers. In a house-sharing

system, the owners are houses or rooms, and the seekers are tenants. In an equipment-

sharing system, the owners are equipments, and the seekers are customers.
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N owners
Seekers

Service platform

RequestOffer

Once an owner and a seeker is matched 

 a service immediately begins

The seeker leaves

The owner returns

Seeker arrives
Matching

Serving

Service price P
Profit allocation

proportion dP

Figure 1: The queueing structure of service platforms

3 A QBD Process and Stability

In this section, we express the first queueing model of service platforms as a level-

independent QBD process, and obtain a necessary and sufficient condition under which

this system is stable.

We denote by N1 (t) and N2 (t) the number of seekers waiting for their services, and

the number of idle owners retained in the service platform at time t ≥ 0, respectively.

Note that the information completed in a service platform is observed at the matching

completion time (it is also the service beginning time), the first queueing model of service

platforms is modeled as a continuous-time Markov process {(N1 (t) , N2 (t)) , t ≥ 0} whose

state space is given by

Ω =
∞⋃

k=0

Sk,

where the 0th level is

S0 =

N−1⋃

i=0

{(i, 0) , (i, 1) , (i, 2) , ..., (i,N)} ,

and for k ≥ 1, the kth level is

Sk = {(N + k − 1, 0) , (N + k − 1, 1) , ..., (N + k − 1, N)} .

Since the information completed in a service platform is observed at the matching com-

pletion time (it is also the service beginning time), we can understand such special state
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transitions:

(k, k) kγ
−→

(k − 1, k − 1) , k ≥ 1,

(k, k + j) kγ
−→

(k − 1, k + j − 1) , k ≥ 1, j ≥ 1,

(k + j, k) kγ
−→

(k + j − 1, k − 1) , k ≥ 1, j ≥ 1.

Based on this finding, the state transition relations of the Markov process {(N1 (t) , N2 (t)) , t ≥ 0}

are depicted in Figure 2.

0,0

0,1

0, 2

0,N

1,0

1,1

1, 2

1,N

2,0

2,1

2, 2

2,N

1,0N

1,1N

1, 2N

-1,N N

N

1N

2N

, 0N

,1N

, 2N

0, 1N 1, 1N 2, 1N 1, 1N N

2

, -1N N

,N N

2 2 2 2 2

2 3 3 3 3

2

2

3

3

1N

1N

1N

N

1N

N

N N N N

1N 1N 1N 1N

2N 2N 2N 2N

2 2 2 2

Figure 2: The state transition relations of the Markov process in Model one

It can be seen from Figure 2 that the infinitesimal generator of the Markov process

{(N1 (t) , N2 (t)), t ≥ 0} is given by

Q =




B0 C0

A0 B C

A B C

A B C

.. .
. . .

. . .




, (1)

9



where the repeated blocks are given by

A =




0

γ 0

2γ 0

. . .
. . .

(N − 1) γ 0

Nγ 0




, C =




λ

λ

λ

. . .

λ

λ




,

B =




b(0) Nµ

b(1) (N − 1)µ

b(2) (N − 2)µ

. . .
. . .

b(N−1) µ

b(N)




;

b(i) = − [λ+ (N − i)µ+ iγ] , 0 ≤ i ≤ N ;

and the boundary blocks are given by

A0 =
(

0 · · · 0 B
(N)
2

)
, C0 =




0
...

0

B
(N−1)
0



,

B0 =




B
(0)
1 B

(0)
0

B
(1)
2 B

(1)
1 B

(1)
0

B
(2)
2 B

(2)
1 B

(2)
0

. . .
. . .

. . .

B
(N−2)
2 B

(N−2)
1 B

(N−2)
0

B
(N−1)
2 B

(N−1)
1




,

B
(k)
0 =




λ

. . .

λ


 , 0 ≤ k ≤ N − 1,
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B
(k)
2 =




0

γ 0

2γ 0

. . .
. . .

(k − 1) γ 0

kγ 0

. . . 0

kγ 0




, 1 ≤ k ≤ N,

and for 0 ≤ k ≤ N − 1

B
(k)
1 =




c(0) Nµ

c(1) (N − 1)µ

. . .
. . .

c(k−1) (N − k + 1)µ

c(k) (N − k)µ

. . .
. . .

c(N−1) µ

c(N)




,

c(i) =





− [λ+ iγ + (N − i)µ)] , 0 ≤ i ≤ k − 1,

− [λ+ kγ + (N − i)µ)] , k ≤ i ≤ N.

It is easy to see from the infinitesimal generator Q that the Markov process {(N1 (t) , N2 (t)),

t ≥ 0} is an irreducible QBD process.

To find the stable condition of the QBD process Q, the following lemma is useful in

our later computation. The first equation in Lemma 1 is straightforward by means of

the Newton binomial theorem, and the second equation can be obtained by taking the

derivatives in both sides of the first equation.

Lemma 1. For x > 0, we have

N∑

i=0

Ci
Nx

i = (1 + x)N

and
N∑

i=1

iCi
Nx

i = Nx (1 + x)N−1 .
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The following theorem provides a necessary and sufficient condition under which the

QBD process Q is stable.

Theorem 1. The QBD process Q is positive recurrent if and only if ρ = λ (1 + µ/γ) /Nµ <

1. Also, the first queueing model of the service platforms is stable.

Proof. It is easy to identify the irreducibility of the QBD process Q from Figure 2.

To prove that the QBD process Q is positive recurrent, it is the key to find a necessary

and sufficient condition by using the mean drift technique by Neuts [41].

Let D = A+B + C. Then

D =




d(0) Nµ

γ d(1) (N − 1)µ

2γ d(2) (N − 2)µ

. . .
. . .

. . .

(N − 1) γ d(N−1) µ

Nγ d(N)




,

where

d(i) = − [(N − i)µ+ iγ] , 0 ≤ i ≤ N.

Note that the Markov process D is irreducible and has finite states. Thus, it is positive

recurrent. Let α = (α1, α2, α3, . . . , αN+1) be the stationary probability vector of the

Markov process D. Then

αD = 0, αe = 1,

where 0 is a zero row vector with a suitable sizes (here, size N + 1), and e is a column

vector of ones with a suitable sizes (here, size N + 1). Note that α > 0 is due to the fact

that the Markov process D is irreducible.

Once the stationary probability vector α is obtained, we can compute the (upward and

downward) mean drift rates of the QBD process Q. From level i to level i+1, the upward

mean drift rate is given by

αCe =λαe = λ,

since C = λI and αe = 1, where I is an identity matrix.

Similarly, from level i to level i−1, the downward mean drift rate is αAe. To compute

the drift rate αAe, we need to solve the system of linear equations: αD = 0 and αe = 1
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as follows:

α1 =
1

N∑
i=0

Ci
N

(
µ
γ

)i
,

and for 2 ≤ k ≤ N + 1,

αk = Ck−1
N

(
µ

γ

)k−1

α1 =
Ck−1
N

(
µ
γ

)k−1

N∑
i=0

Ci
N

(
µ
γ

)i
.

Now, we compute

αAe = 1γα2 + 2γα3 + · · · +NγαN+1

=

γ
N∑
i=1

iCi
N

(
µ
γ

)i

N∑
i=0

Ci
N

(
µ
γ

)i
=

Nµγ

µ+ γ
.

Let ρ = (αCe) / (αAe). Then

ρ =
λ (µ+ γ)

Nµγ
.

It is clear that αCe < αAe if and only if ρ < 1. Therefore, the QBD process Q is positive

recurrent if and only if ρ < 1 or αCe < αAe. This completes the proof. �

The following corollary provides a novel stable condition under which the QBD process

Q is positive recurrent. We show that the first queueing model of service platforms is

always stable as long as the number N of independent owners is large enough. Such a

result is not intuitive but it is very useful in the design of a service platform whose normal

operation needs to have enough independent owners.

Corollary 2. If N > 1 +
⌊
λ
µ

(
1 + µ

γ

)⌋
, where ⌊x⌋ is the maximum integer lower than or

equal to x, then the QBD process Q (or the first queueing model of service platforms) must

be positive recurrent.

Proof. We only need to observe that if N > 1+
⌊
λ
µ

(
1 + µ

γ

)⌋
, then ρ < 1. This completes

the proof. �

4 Performance Measures

In this section, we apply the matrix-geometric solution to give the stationary probability

vector of the QBD process, and provide some useful performance measures of the service

platform.
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We write

pi,j (t) = P {N1 (t) = i,N2 (t) = j} .

Since the QBD process is stable, we have

πi,j = lim
t→+∞

pi,j (t) .

For k = 0, we write

π0 =
(
π
(0)
0 , π

(1)
0 , π

(2)
0 , . . . , π

(N−1)
0

)

,

π
(i)
0 = (πi,0, πi,1, . . . , πi,N ) , 0 ≤ i ≤ N − 1;

for k ≥ 1, we write

πk = (πN+k−1,0, πN+k−1,1, πN+k−1,2, . . . , πN+k−1,N ) ,

and

π = (π0, π1, π2, . . .) .

If π = (π0, π1, π2, . . .) is the stationary probability vector of the QBD process Q, then π

satisfies the system of linear equations:

πQ = 0, πe = 1, (2)

which leads to

π0B0 + π1A0 = 0, (3)

π0C0 + π1B + π2A = 0, (4)

πk−1C + πkB + πk+1A = 0, k ≥ 2, (5)

∞∑

k=0

πke = 1. (6)

Let the matrix rate R be the minimal non-negative solution to the matrix quadratic

equation

R2A+RB + C = 0. (7)

The following theorem can directly be obtained by using Chapter 3 of Neuts [41].

14



Theorem 3. The stationary probability vector of the QBD process Q is a matrix-geometric

solution

πi = π1R
i−1, i ≥ 1, (8)

where (π0, π1) is the unique solution to the following system of linear equations

π0B0 + π1A0 = 0,

π0C0 + π1 (B +RA) = 0

and

π0e+ π1 (I −R)−1 e = 1.

4.1 The stationary performance measures

In this subsection, by using the stationary probability vector of the QBD process Q, we

provide some useful performance measures of the first queueing model of service platforms,

e.g., the stationary average numbers, and the expected profits of the platform and each

owner.

(a) The stationary average numbers

Let Q(1) and Q(2) denote the stationary numbers of the idle owners retained in the

service platform, and of the seekers waiting for their services, respectively. Then

E
[
Q(1)

]
=

∞∑

i=0

N∑

j=1

jπi,j

=
N−1∑

l=0

π
(l)
0 f + π1 (I −R)−1 f, (9)

where f = (0, 1, 2, . . . , N)T , and

E
[
Q(2)

]
=

∞∑

i=1

N∑

j=0

iπi,j

= π1 (I −R)−1 e. (10)

(b) The expected profits of the service platform and each owner

Let f1 and f2 denote the expected profits per unit time of the service platform and

each owner, respectively. Then by using the service price P and the profit allocation

proportion d, we have

f1 = (1− d) · P
(
N − E

[
Q(1)

])
µ,
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and

f2 =
1

N
d · P

(
N − E

[
Q(1)

])
µ

= d · P

(
1−

1

N
E
[
Q(1)

])
µ,

where E
[
Q(1)

]
is given in (9). Note that N −E

[
Q(1)

]
is the average number of the busy

owners, and P
(
N − E

[
Q(1)

])
µ is the total expected profits per unit time of the service

platform, which is paid by all the seekers served per unit time.

4.2 The sojourn time of an arriving seeker

In this subsection, we compute the expected sojourn time of each arriving seeker at the

service platform. That is, the sojourn time begins from the moment of the seeker entering

the service platform to the epoch that the seeker leaves the system after receiving his/her

service from the owner.

We denote by W the sojourn time of an arriving seeker at the service platform. To

compute the expected sojourn time E [W ], we need to apply the first passage time of

the QBD process with an absorbing state. To this end, we revise the QBD process

{(N1 (t) , N2 (t)) , t ≥ 0} as a QBD process with an absorbing state

∆ = {(0, 0) , (0, 1) , (0, 2) , ..., (0, N − 1)} ,

while state (0, N) is a sliding state and is mitted here. Thus, the QBD process with the

absorption state ∆ is depicted in Figure 3. Based on this, the state space of the QBD

process with the absorbing state is given by

Ω̃ = {∆} ∪ S̃0 ∪

{
∞⋃

i=1

Si

}
,

where

S̃0 =

N−1⋃

i=1

{(i, 0) , (i, 1) , (i, 2) , ..., (i,N)} ,

and for k ≥ 1,

Sk = {(N + k − 1, 0) , (N + k − 1, 1) , ..., (N + k − 1, N)} .
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Figure 3: The state transition relations of the QBD process with an absorbing state

From Figure 3, it is seen that the infinitesimal generator of the QBD process with the

absorption state ∆ is given by

Q =




0 0 0 0 0 · · ·

ϕ̃ B̃0 C̃0

Ã0 B C

A B C

. . .
. . .

. . .




(11)

where the blocks A, B and C are the same as those given in matrix Q, and

B̃0 =




B
(1)
1 B

(1)
0

B
(2)
2 B

(2)
1 B

(2)
0

. . .
. . .

. . .

B
(N−2)
2 B

(N−2)
1 B

(N−2)
0

B
(N−1)
2 B

(N−1)
1




,

Ã0 =
(

0 · · · 0 B
(N)
2

)
, C̃0 =




0
...

0

B
(N−1)
0



,
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ϕ̃ =




ϕ

0
...

0



, ϕ =




0

γ
...

γ



.

Let

T =




B̃0 C̃0

Ã0 B C

A B C

.. .
. . .

. . .



, T 0 =




ϕ̃

0

0
...



.

Then the infinitesimal generator Q can be abbreviated as

Q =


 0 0

T 0 T


 . (12)

It is easy to see that Te+ T 0 = 0.

Now, the initial probability vector of the QBD process Q with the absorption state ∆

is written as

ω = (ω△, ω̃) ,

where ω△ is a scalar, and ω
(i)
0 for 1 ≤ i ≤ N − 1 and ωk for k ≥ 1 are row vectors of size

N + 1,

ω̃ = (ω0, ω1, ω2, . . .) ,

ω0 =
(
ω
(1)
0 , ω

(2)
0 , ω

(3)
0 , . . . , ω

(N−1)
0

)
,

with

ω△ +

N−1∑

i=1

ω
(i)
0 e+

∞∑

k=1

ωke = 1,

By using the stationary probability vector π = (π0, π1, π2, . . .), we can set up a key

initial probability vector

ω =
(
ω△;ω

(1)
0 , ω

(2)
0 , ω

(3)
0 , . . . , ω

(N−1)
0 ;ω1, ω2, . . .

)
,

where

ω△ = π
(0)
0 e,

ω
(i)
0 = π

(i)
0 , 1 ≤ i ≤ N − 1,

ωk = πk, k ≥ 1.
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The following theorem uses the phase-type distribution of infinite size to provide ex-

pression for the probability distribution of the sojourn time W .

Theorem 4. If the initial probability vector of the QBD process Q with the absorption

state ∆ is ω = (ω△, ω̃), then

(1) the probability distribution of the sojourn timeW is of phase type with an irreducible

representation (ω̃, T ), i.e.,

FW (t) = P {W ≤ t} = 1− ω△ − ω̃ exp {T t} e, t ≥ 0;

(2) the expected sojourn time

E [W ] = ω̃ (−T )−1
min e,

where (−T )−1
min is the minimal nonnegative inverse matrix of the matrix −T .

Proof. (1) For i = 1, 2, 3, ..., and j = 1, 2, 3, ..., N , we write

qi,j (t) = P {N1 (t) = i,N2 (t) = j} ,

For k = 0, we write

q0 (t) =
(
q
(1)
0 (t) , q

(2)
0 (t) , q

(3)
0 (t) , . . . , q

(N−1)
0 (t)

)

,

q
(i)
0 (t) = (qi,1 (t) , qi,2 (t) , qi,3 (t) , . . . , qi,N (t)) , 1 ≤ i ≤ N − 1;

for k ≥ 1, we write

qk (t) = (qN+k−1,0 (t) , qN+k−1,1 (t) , qN+k−1,2 (t) , . . . , qN+k−1,N (t)) ,

and

q (t) = (q0 (t) , q1 (t) , q2 (t) , . . .) .

It follows from the Chapman-Kolmogorov forward equation that

d

dt
q (t) = q (t)T, (13)

with the initial condition

q (0) = ω̃. (14)
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It follows from (13) and (14) that

q (t) = ω̃eTt. (15)

Note that q (0) e = 1− ω△. We then obtain

FW (t) = P {W ≤ t} = 1− ω△ − q (t) e

= 1− ω△ − ω̃ exp (T t) e, t ≥ 0.

(2) Now, we compute the expected sojourn time E [W ] by the Laplace-Stieltjes trans-

form. Let f (s) be the Laplace-Stieltjes transform of the distribution function FW (t) or

the random variable W . Then

f (s) =

∫ ∞

0
e−stdFW (t)

= 1− ω△ + ω̃ (sI − T )−1
min T

0, (16)

where (sI − T )−1
min is the minimal nonnegative inverse of the matrix sI−T of infinite size.

It is easy to see that

E [W ] = −
d

ds
f (s)|s=0 = ω̃

[
(sI − T )−2

min

]
|s=0

T 0 = ω̃ (−T )−1
min e, (17)

by using Te+ T 0 = 0 and (−T )−1
min (−T ) e = e. This completes the proof. �

In the remainder of this section, we use the RG-factorizations by Li [36] to compute

the expected sojourn time E [W ]. It is easy to see that the key is how to deal with the

minimal nonnegative inverse matrix (−T )−1
min of the matrix −T of infinite size. To this

end, we write

T =


 T1,1 T1,2

T2,1 T2,2


 ,

where

T1,1 = B̃0, T1,2 =
(
C̃0

)
, T2,1 = Ã0,

T2,2 =




B C

A B C

A B C

.. .
. . .

. . .



.

Note that the QBD process Q is irreducible, and thus matrix T and T2,2 must be

invertible. Here, we take that T−1 = T−1
max and T−1

2,2 =
(
T−1
2,2

)
max

, i.e., their inverse
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matrices are maximal non-positive. Based on this, it is easy to check that

T−1 =


 T−1

1,1;2 −T−1
1,1;2T1,2T

−1
2,2

−T−1
2,2 T2,1T

−1
1,1;2 T−1

2,2 + T−1
2,2 T2,1T

−1
1,1;2T1,2T

−1
2,2


 , (18)

where

T1,1;2 = T1,1 − T1,2T
−1
2,2 T2,1. (19)

It is clear that the inverse matrix T−1 can be expressed by means of the inverse matrix

T−1
2,2 of matrix T2,2. This relation plays a key role in setting up the PH distribution of

infinite sizes with an irreducible representation (ω̃, T ).

To compute the inverse matrix T−1
2,2 of infinite sizes, we define the UL-type U -, R- and

G-measures as follows. Let R and G be the minimal non-negative solutions to the matrix

quadratic equations

R2A+RB + C = 0 (20)

and

A+BG+ CG2 = 0, (21)

respectively. The U -measure is given by

U = B +RA = B + CG. (22)

Now, we can provide the UL-type RG-factorization of the Markov process T2,2 of infinite

size as follows:

T2,2 = (I −RU )UD (I −GL) , (23)

where

I −RU =




I −R

I −R

I −R

I
. . .

. . .




, (24)

UD = diag (U,U,U,U, . . .) , (25)

I −GL =




I

−G I

−G I

−G I

.. .
. . .




. (26)
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It is easy to check that the matrices I −RU , UD, and I −GL are invertible, and

(I −RU )
−1 =




I R R2 R3 . . .

I R R2 . . .

I R . . .

I . . .

. . .




, (27)

U−1
D = diag

(
U−1, U−1, U−1, U−1, . . .

)
, (28)

(I −GL)
−1 =




I

G I

G2 G I

G3 G2 G I
...

...
...

...
. . .




. (29)

By using the RG-factorization (23), we obtain

T−1
2,2 = (I −GL)

−1 U−1
D (I −RU )

−1 . (30)

By means of (18), (19), and (30), we can obtain the inverse matrix T−1.

5 The Second Queueing Model

In this section, we provide a simple analysis for the second queueing model of service

platforms by using the level-independent QBD process.

We first observe the matching and service processes. Let X and Y be two exponential

random variables with the means 1/γ and 1/µ, respectively. Then the sum X +Y follows

a generalized Erlang distribution of order 2, or X + Y also follows a phase-type (PH)

distribution of order 2 under a more general setting. Here, X and Y are regarded as Phases

1 and 2 of the PH distribution, respectively. For the generalized Erlang distribution of

order 2, we write

α = (1, 0) , T =


 −γ γ

0 −µ


 , T 0 =


 0

µ


 , e =


 1

1


 .

For 2 ≤ n ≤ N

T (n) = T ⊕ T ⊕ · · · ⊕ T︸ ︷︷ ︸;
Keronecker sum of n matrices T
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for 2 ≤ k ≤ N − 1

C (k + 1) =T 0 ⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
Keronecker product of k identity matrices

+ e⊗
(
T 0α

)
⊗ I ⊗ · · · ⊗ I + · · ·

+ e⊗ I ⊗ · · · ⊗
(
T 0α

)
⊗ I + e⊗ I ⊗ I ⊗ · · · ⊗

(
T 0α

)
,

and for 1 ≤ l ≤ N − 1

D (l) = I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
Keronecker product of l identity matrix

⊗ α,

For the second queueing model of service platforms, the information completed in a

service platform is observed at the matching beginning time. Thus, the sum X + Y of

the matching and service times is regarded as a generalized service time, which follows a

generalized Erlang distribution of order 2 (abbreviated as Ẽ2). In this case, the second

queueing model of service platforms can be regarded as an M/Ẽ2/N queue (or an M/PH/N

queue).

To study the M/Ẽ2/N queue, we denote by N (t) and M (t) the number of seekers

waiting for their services, and the number of working owners at time t ≥ 0, respectively.

If N (t) = 0, then 0 ≤ M (t) ≤ N ; and if N (t) ≥ 1, then M (t) = N . Let J (t) be the

phase of the generalized Erlang service time Ẽ2 at time t. Then J (t) ∈ {1, 2}. It is easy to

see that




N (t) ,M (t) , J (t) , J (t) , . . . , J (t)︸ ︷︷ ︸

the number of J(t)s is M(t)





is a level-independent QBD process whose

infinitesimal generator is given by

Q =




F1 F0

F2 A1 A0

A2 A1 A0

. . .
. . .

. . .



,

where

F1 =




−λ λα (1)

T 0 T − λI λD (1)

C (2) T (2)− λI (2) λD (2)

. . .
. . .

. . .

C (N − 1) T (N − 1)− λI (N − 1)
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F0 =




λD (N − 1)



, F2 =

(
C (N)

)
;

A0 = λ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸
Keronecker product of N identity matrices

,

A1 = T ⊕ T ⊕ · · · ⊕ T︸ ︷︷ ︸
Keronecker sum of N matrices T

− λ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸,
Keronecker product of N identity matrices

A2 =
(
T 0α

)
⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

Keronecker product of N−1 identity matrices

+ I ⊗
(
T 0α

)
⊗ I ⊗ · · · ⊗ I + · · ·

+ I ⊗ I ⊗ · · · ⊗
(
T 0α

)
⊗ I + I ⊗ I ⊗ I ⊗ · · · ⊗

(
T 0α

)
.

Now, we apply the mean drift technique to find a necessary and sufficient condition

under which the QBD process Q is stable.

Theorem 5. The QBD process Q is stable if and only if ρ = [λ (γ + µ)] / (Nµγ) < 1.

Proof. We compute

A =A0 +A1 +A2

= T ⊕ T ⊕ · · · ⊕ T︸ ︷︷ ︸
Keronecker sum of n matrices T

+
(
T 0α

)
⊗ I ⊗ I ⊗ · · · ⊗ I︸ ︷︷ ︸

Keronecker product of N−1 identity matrices

+ · · ·+ I ⊗ I ⊗ I ⊗ · · · ⊗
(
T 0α

)

=
(
T + T 0α

)
⊗ I ⊗ I ⊗ · · · ⊗ I + · · ·

+ I ⊗ I ⊗ I ⊗ · · · ⊗
(
T + T 0α

)
.

Since the Markov process T + T 0α is irreducible and positive recurrent, it has one unique

stationary probability vector ω = (ω1, ω2), where

ω1 =
µ

γ + µ
, ω2 =

γ

γ + µ
.

It is easy to check that Θ = ω ⊗ ω ⊗ · · · ⊗ ω︸ ︷︷ ︸
Keronecker product of N vectors ω

is the stationary probability

vector of the the Markov process A. Also, we get

ΘA2e = Nµ
γ

γ + µ
, ΘA0e = λ.
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By using the mean drift technique, the QBD process Q is stable if and only if ΘA2e >

ΘA0e. Note that ΘA2e > ΘA0e is equivalent to

ρ =
λ

Nµ γ
γ+µ

=
λ (γ + µ)

Nµγ
< 1.

Therefore, we find a necessary and sufficient condition under which the QBD process Q is

stable. This completes the proof. �

If the QBD process Q is stable, then it must has a stationary probabilty vector

Ψ = (ψ0, ψ1, ψ2, . . .) ,

where ψ0 is related to Level 0 corresponding to the matrix B1, and ψk is related to

Level k corresponding to the matrix A1. To provide performance evaluation of the second

queueing model of service platforms, we need to express each element of the stationary

probabilty vector Ψ according to the Keronecker sum and the Keronecker product in

matrix computation involved.

It is a little more complicated to express the elements of the vector ψ0. Corresponding

to the matrix B1 with the Keronecker sums and the Keronecker products, we have

ψ0 =
(
ψ
(0)
0,(0);ψ

(0)
1,(1), ψ

(0)
1,(2);ψ

(0)
2,(1,1), ψ

(0)
2,(1,2), ψ

(0)
2,(2,1), ψ

(0)
2,(2,2); . . .

)
.

For 1 ≤ n ≤ N − 1, these elements ψn,(i1,i2,i3,...,in) with ik = 1 or 2 and for 1 ≤ k ≤

n are arranged in a multi-dimensional lexicographic order. For the multi-dimensional

lexicographic order, we provide two simple examples for n = 2, 3, while for the general

case with 4 ≤ n ≤ N − 1, we can similarly write such a lexicographic order.

Example one: n = 2. In this case, ψ
(0)
2,(1,1), ψ

(0)
2,(1,2), ψ

(0)
2,(2,1), ψ

(0)
2,(2,2).

Example two: n = 3. In this case, ψ
(0)
3,(1,1,1), ψ

(0)
3,(1,1,2), ψ

(0)
3,(1,2,1), ψ

(0)
3,(1,2,2), ψ

(0)
3,(2,1,1), ψ

(0)
3,(2,1,2),

ψ
(0)
3,(2,2,1), ψ

(0)
3,(2,2,2).

Now, we arrange the elements of the vector ψl for l ≥ 1. These elements ψ
(l)
N,(i1,i2,i3,...,iN )

with ik = 1 or 2 and for 1 ≤ k ≤ N are arranged in the N -dimensional lexicographic order.

Note that Ψ = (ψ0, ψ1, ψ2, . . .) is the stationary probability vector of the QBD process

Q, then Ψ satisfies the system of linear equations: ΨQ = 0 and Ψe = 1.

Let the rate matrix R be the minimal non-negative solution to the matrix quadratic

equation

R2A2 +RA1 +A0 = 0.
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By using Chapter 3 of Neuts [41], the stationary probability of the QBD process Q is a

matrix-geometric solution

ψi = ψ1R
i−1, i ≥ 1,

where (ψ0, ψ1) is the unique solution to the following system of linear equations

ψ0F1 + ψ1F2 = 0,

ψ0F0 + ψ1 (A1 +RA2) = 0

and

ψ0e+ ψ1 (I −R)−1 e = 1.

In the remainder of this section, by using the stationary probability vector of the QBD

process Q, we provide the performance measures of the second queueing model of service

platforms as follows:

(a) The stationary average queue lengths

Let Q(1) and Q(2) denote the stationary queue lengths for the idle owners retained in

the service platform, and for the seekers waiting for their services, respectively. Then

E
[
Q(1)

]
=

N−1∑

n=0

(N − n)

n∑

k=1

∑

ik=1,2

ψn,(i1,i2,i3,...,in)

and

E
[
Q(2)

]
=

∞∑

k=1

kΨke = Ψ1 (I −R)−2 e.

(b) The expected profits of the service platform and each owner

Let f1 and f2 denote the expected profits per unit time of a service platform and each

owner, respectively. Then

f1 = (1− d) · P
(
N − E

[
Q(1)

])
µ,

and

f2 = d · P

(
1−

1

N
E
[
Q(1)

])
µ.

6 Numerical Examples

In this section, we uses numerical examples to discuss how the performance measures

depend on some key system parameters. Note that the numerical analysis is useful and

necessary in the design and operations management of the service platforms.
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Note that the number of owners N is a key factor that determines the sizes of blocks

(for example, the matrices A, B and C) in the infinitesimal generator Q. Also, the

sizes of blocks directly affect algorithm design and computational complexity of the level-

independent QBD process Q. Obviously, the larger the number N , the more difficult the

numerical computation is.

In the first two parts (a) and (b), the selected parameters λ, µ, γ and N must satisfy

the system stable condition: ρ = λ (1 + µ/γ) /Nµ < 1.

(a) The stationary average queue lengths

To obtain the stationary probability vector, we first need to compute the rate matrix

R, which is the minimal nonnegative solution to the quadratic nonlinear matrix equation:

R2A+RB+C = 0. A modified successive iteration method is found in, e.g., see Neuts [41]

and Latouche and Ramaswami [34]. Now, we describe the modified successive iteration

method as follows. The sequence {R (n) ;n ≥ 0} is designed as

R (0) = 0,

R (n+ 1) = −
[
R (n)2A+ C

]
B−1, n = 0, 1, 2, . . . .

Neuts [41] indicated that R (n) ↑ R as n→ ∞. For any sufficiently small positive number

ε within the desired degree of accuracy, set at 10−12, if there exists a positive integer n

such that

‖R (n+ 1)−R (n)‖ = max
∣∣∣R (n+ 1)i,j −R (n)i,j

∣∣∣ < ε,

then we take R = R (n).

Once the rate matrix R is computed numerically, the two vector π0 and π1 can be

obtained by solving Equations (3), (4), (6), and (8). Further, by substituting π1 into

Equation (8), we can obtain πn for n ≥ 2.

(1) The effect of the arrival rate λ: We take the parameters: N = 60, µ = 1, γ = 100,

and λ ∈ [10, 46].

The left of Figure 4 shows that E
[
Q(1)

]
decreases and E

[
Q(2)

]
increases as the arrival

rate λ increases. Such two numerical results are intuitive from our practical observation.

As the arrival rate λ increases, the seekers arrive at the service platform at a faster pace.

This leads to the result that fewer idle owners are retained in the service platform, while

more seekers have to wait for their services.

(2) The effect of the matching rate γ: We take the parameters: N = 60, λ = 10,

µ = 1, and γ ∈ [100, 300].
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The right of Figure 4 indicates that both E
[
Q(1)

]
and E

[
Q(2)

]
decrease as the match-

ing rate γ increases. When the matching rate γ increases, the owners enter service state

faster, and, hence, the seekers receive their services and leave the system more quickly.
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Figure 4: E
[
Q(1)

]
and E

[
Q(2)

]
vs. λ and γ

(3) The effect of the owner number N : We take the parameters: λ = 10, µ = 0.26,

γ = 100, and N = 43, 44, 45, . . . , 53.

Figure 5 shows that E
[
Q(1)

]
increases and E

[
Q(2)

]
decreases as the owner number

N increases. When the owner number N increases, more idle owners are retained in

the service platform, while more seekers can receive their services and leave the system

immediately. Thus, fewer seekers are kept waiting.
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and E
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(b) The expected profits for the service platform and each owner
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(1) The effect of the arrival rate λ: We take the parameters: N = 60, µ = 1, γ = 100,

P = 50, d = 0.8 and λ ∈ [10, 46].

The left of Figure 6 that f1 and f2 increase as the arrival rate λ increases. Such

numerical results are consistent with our intuitive understanding. As the arrival rate

λ increases, more seekers enter the system per unit time, which directly improves the

expected profits for both the service platform and each owner.

(2) The effect of the service price P : We take the parameters: N = 60, λ = 10, µ = 1,

γ = 100, d = 0.8, and P ∈ [30, 50].

From The right of Figure 4, we show that f1 and f2 increase as the service price P

increases. Clearly, the service platform and each owner earn more with a higher service

price P .
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Figure 6: Effect of λ and P on f1 and f2

(c) The expected sojourn time

(1) The effect of the arrival rate λ: We take the parameters: N = 60, µ = 1, γ = 100,

P = 50, d = 0.8, and λ ∈ [10, 46].

The left of Figure 7 shows that the expected sojourn time E [W ] increases as the arrival

rate λ increases. The numerical result is intuitive. With a higher arrival rate, more seekers

wait for their services. This leads to a larger expected sojourn time.

(2) The effect of the number of owners N : We take the parameters: λ = 10, µ = 0.26,

γ = 100, P = 50, d = 0.8, and N = 43, 44, 45, . . . , 53.

The rightt of Figure 7 shows that the expected sojourn time E [W ] decreases as N

increases. When the number of owners N increases, the seekers can be more quickly

matched with the owners so that the expected sojourn time decreases.
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7 Concluding remarks

In this paper, we firstly describe two basic queueing models of service platforms in digital

sharing economy according to two different policies of platform matching information:

One is at the matching completion time (it is also the service beginning time), while

another is at the matching beginning time (no service yet). Then we express the two basic

queueing models of service platforms as the level-independent QBD processes, and apply

the matrix-geometric method to obtain a necessary and sufficient condition under which

the system is stable, the stationary probability vector, the expected sojourn time by using

the RG-factorizations, and the expected profits per unit time of a service platform and

each owner. This enables performance evaluation of the service platforms. Finally, we

use some numerical examples to indicate how the performance measures are influenced by

some key system parameters.

We believe that the methodology and results given in this paper are applicable to

more extensive queueing analysis of service platforms, and will open a series of promising

research, such as in the following directions:

- Extending our basic queueing models to the Markovian arrival process of seekers,

and to that one owner can match more than one seekers as a pair.

- Considering several types of owners and/or seekers, and introducing different match-

ing and service priorities, and full-time and part-time owners.

- Based on our two basic queueing models, developing Markov decision processes of

service platforms.
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- Setting up queueing-game to analyze the owners’ and/or seekers’ strategic behaviors

in the study of service platforms and digital sharing economy.
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