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Abstract. In this article, we develop a posteriori error analysis of a nonconforming finite
element method for a linear quadratic elliptic distributed optimal control problem with two
different set of constraints, namely (i) integral state constraint and integral control constraint
(ii) integral state constraint and pointwise control constraints. In the analysis, we have taken
the approach of reducing the state-control constrained minimization problem into a state min-
imization problem obtained by eliminating the control variable. The reliability and efficiency
of a posteriori error estimator are discussed. Numerical results are reported to illustrate the
behavior of the error estimator.
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1. Introduction

Optimal control problems (OCPs) play an important role in various applications in physics,
mechanics and other engineering sciences. For the theoretical and numerical development of
the OCPs, we refer to [55, 41, 44, 31]. The finite element method is a popular and widely used
numerical method to approximate OCPs. The finite element approximation of the elliptic
optimal control problems started with articles of Falk [23] and Geveci [25]. In these papers,
piecewise constant approximation of the control is considered and optimal order error estimates
are obtained for the optimal variables. The authors of [3] have established the optimality con-
ditions and introduce the Ritz-Galerkin discretization for elliptic optimal control problem and
obtained error estimates for the control and state variables. The authors of [30] have introduced
the variational discretization method, therein the error estimates are obtained by exploiting
the relationship between the state and adjoint state. The numerical approximation of the ellip-
tic optimal control problems with control variable from measure spaces can be found in [16, 17].

There have been abundant research on the adaptive finite method for OCPs governed by differ-
ential equations in last few decades. The use of adaptive techniques based on a posteriori error
estimation is well accepted in the context of finite element discretization of partial differential
equations [2, 56]. In this direction, the pioneer work has been made by Liu and Yan [43] for
residual based a posteriori error estimates, and Becker et al. [4] for dual-weighted goal oriented
adaptivity for optimal control problems. In [36] the authors have proved that the sequence
of adaptively generated discrete solutions converge to the true solutions of OCPs. Recently,
Gong and Yan [27] have presented a rigorous proof for convergence and quasi-optimality of
adaptive finite element method for an OCP with pointwise control constraints by means of
variational discretization technique. In [57], Wolfmayr has derived functional type a posteriori
error estimates for elliptic optimal control problems with control constraints. The authors of
[54] have studied the finite element approximation of OCPs governed by elliptic equations with
measure data, therein they have derived both a priori and a posteriori error bounds for the
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state and control variables. We refer to the reference section for other notable works on the
adaptive finite element methods for OCPs with control constraints.

In recent years, numerical analysis of OCPs with state constraints has been an active area
of research. The articles [14, 15, 18, 19, 22, 49, 48] are devoted to the control problems
with pointwise state constraints. These articles are concentrated on the existence, uniqueness,
regularity results of the optimal variables and also analyze asymptotic convergence of the errors
in optimal variables. The authors of [53] have considered the elliptic optimal control problem
with state and control constraints, and derived reliable a posteriori error estimator. In [32],
authors have used mixed-control state constraints as a relaxation of originally state constrained
to avoid the intrinsic difficulties arising from measure-valued Lagrange multipliers in the case
of pure state constraints OCP and derived residual type a posteriori error estimates.
A priori analysis of OCPs with integral state constraint is discussed in [46, 59, 60, 52]. The
authors of [58] have derived a posteriori error estimates for a state-constrained OCP with
integral state constraint. Recently in [20], Chen et al. considered hp spectral element method
for integral state constrained elliptic optimal control problem and derived a posteriori error
estimates for the coupled state and control approximation. The authors of [59] have considered
Galerkin spectral approximation for an OCPs with state integral constraint in one dimension
and derived a priori and a posteriori error estimates.
In this article, we use a different approach to analyze adaptive finite element method for
OCPs with integral state constraints. This approach avoids the use of the first order optimal-
ity conditions and therein the state and control constrained OCP can be reformulated into
purely state constrained optimization problem. The optimal state is then obtained by solving
a fourth order variational inequality. The main intent of this article is to derive a reliable
and efficient a posteriori error estimator of a non-conforming finite element method for the
elliptic distributed optimal control problem with two different set of constraints, namely (i)
with integral state constraint and integral control constraint (ii) with integral state constraint
and pointwise control constraints. We refer to [11, 9, 45, 12], for the numerical analysis of
constrained OCP based on the approach of reduction to purely state constrained optimization
problem. Recently in [10], the authors have used C0 interior penalty method for an elliptic
state-constrained optimal control problem with Neumann boundary conditions and derived a
priori and a posteriori error estimates.

Let Ω ⊂ R2 be a convex polygonal domain with smooth boundary ∂Ω. For any 1 ≤ p ≤ ∞
and D ⊂ Ω, we denote Lp(D) norm by ‖ · ‖Lp(D). We adopt the standard notations Wm,p(Ω)

and Wm,p
0 (Ω) for Sobolev spaces for p ∈ [1,∞] and m ≥ 0 equipped with norm ‖·‖Wm,p(Ω) and

seminorm | · |Wm,p(Ω). When p = 2, we denote Wm,p(Ω) by Hm(Ω) and Wm,p
0 (Ω) by Hm

0 (Ω)
and corresponding norm and seminorm are denoted by ‖ · ‖Hm(Ω) and | · |Hm(Ω), respectively.
We consider the following state and control constrained optimal control problem: to find
(ũ, ỹ) ∈ L2(Ω)×H1

0 (Ω) such that

J(ũ, ỹ) = min
(u,y)∈L2(Ω)×H1

0 (Ω)
J(u, y)(1.1)

subject to 
∫
Ω∇y · ∇w dx =

∫
Ω uw dx ∀w ∈ H

1
0 (Ω)∫

Ω u dx ≥ δ1,∫
Ω y dx ≥ δ2,

(1.2)

where J(u, y) = ‖y − yd‖2L2(Ω) + β
2 ‖u‖

2
L2(Ω) with yd as the given desired state, δ1, δ2 ∈ R and

β > 0 is a given constant.
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The rest of the article is organized as follows. In Section 2, we obtain the characterization of
the solution of the optimization problem (1.1)-(1.2) by the solution of a fourth order variational
inequality and discuss the optimality conditions of the underlying OCP with integral state as
well as integral control constraints. In Section 3, we introduce notations and preliminary results
required in the subsequent sections. Therein, we also discuss the finite element discretization
of the continuous problem by a bubble enriched Morley finite element method and present the
optimality conditions associated to the discrete problem. A posteriori error estimator of the
underlying finite element method in introduced in Section 4, followed by that reliability and
efficiency estimates are established. In Section 5, we discuss a posteriori error bounds for an
OCP with integral state and pointwise control constraints using the proposed finite element
method. Finally, in Section 6, we present numerical results to illustrate the performance of
derived a posteriori error estimators.

2. Continuous Variational Inequality and Optimality Conditions

This section is devoted to characterize the solution of (1.1)-(1.2) by the solution of a varia-
tional inequality and discuss the associated optimality conditions.
For u ∈ L2(Ω), Lax-Milgram lemma [21] ensures the existence of a unique solution y ∈ H1

0 (Ω)
satisfying the variational formulation∫

Ω
∇y · ∇w dx =

∫
Ω
uw dx ∀w ∈ H1

0 (Ω).(2.1)

Moreover, from elliptic regularity theory (cf. [1, 28]) we obtain y ∈ H2(Ω). Set W = H2(Ω)∩
H1

0 (Ω). Using u = −∆y, we can rewrite the optimization problem (1.1)-(1.2) as follows: to
find y∗ ∈ K such that

y∗ = argminy∈K

[1

2

∫
Ω

(y − yd)2 dx+
β

2

∫
Ω

(−∆y)2 dx
]

(2.2)

where K is defined by

K = {w ∈W :

∫
Ω
w dx ≥ δ2 and

∫
Ω

(−∆w) dx ≥ δ1 }.(2.3)

The minimizer of (2.2) can further be characterized by the minimizer of the following opti-
mization problem: find y∗ ∈ K such that

y∗ = argminy∈K

[1

2
A(y, y)− (yd, y)

]
(2.4)

where

A(v, w) = β

∫
Ω
D2v : D2w dx+

∫
Ω
vw dx, v, w ∈W,(2.5)

with D2v : D2w =
2∑

i,j=1

( ∂2v

∂xi∂xj

)( ∂2w

∂xi∂xj

)
where D2 denotes the Hessian matrix.

We assume the following Slater condition holds [55]: there exists y ∈W satisfying
∫
Ω y dx > δ2

and
∫
Ω(−∆y) dx ≥ δ1. This ensures that the set K is nonempty, together with closed and

convex. Since the bilinear form A(·, ·) is bounded, coercive and symmetric on W , by the
standard theory (cf. [26, 35]) there exists a unique solution y∗ ∈ K of (2.4) satisfying the
following variational inequality

(2.6) A(y∗, w − y∗) ≥
∫
Ω
yd(w − y∗) dx ∀w ∈ K.

3



Using the Lagrange multiplier approach, we obtain the following Karush-Kuhn-Tucker condi-
tions (cf. [34, 47]) together with complementarity conditions (2.8)-(2.11): there exist λ ∈ R
and µ ∈ R such that

A(y∗, w) =

∫
Ω
ydw dx−

∫
Ω
λ(∆w) dx+

∫
Ω
µw dx ∀w ∈W,(2.7)

with

λ ≥ 0, if

∫
Ω

(−∆y∗) dx = δ1,(2.8)

λ = 0, if

∫
Ω

(−∆y∗) dx > δ1,(2.9)

µ ≥ 0, if

∫
Ω
y∗ dx = δ2,(2.10)

µ = 0, if

∫
Ω
y∗ dx > δ2.(2.11)

Note that, the adjoint state p ∈ H1
0 (Ω) satisfy∫

Ω
∇p · ∇w dx =

∫
Ω

(y∗ − yd)w dx−
∫
Ω
µw dx ∀w ∈ H1

0 (Ω).(2.12)

3. Notations and Finite Element Discretization

In this section, we introduce the discrete control problem and present some useful tools
required for subsequent analysis. Let Th be a regular triangulation of the domain Ω. The
following notations will be used throughout this article.

Te : set of elements in Th that share the common edge e,

hT : the diameter of the triangle T, h = max
T∈Th

hT

Vh : set of all vertices of Th,
VT : set of three vertices of T,

Eh = E ih ∪ Ebh : the set of the edges of the triangle in Th,where E ih(resp., Ebh) is the subset of Eh
consisting of edges interior toΩ (resp., along ∂Ω),

he : length of an edge e ∈ Eh
∆h : piesewise (element-wise) Laplacian operator

Pk(T ) : space of polynomials defined on T of degree less than or equal to k, k ≥ 0 integer,

X . Y : there exists a positive constant C (independent of mesh parameter) such that X ≤ CY,
X ≈ Y : there exists positive constants C1 and C2 such that C1Y ≤ X ≤ C2Y.

Throughout this article, the constant C will denote a positive generic constant.
We denote by Hk(Ω, Th) the broken Sobolev space

Hk(Ω, Th) := {w ∈ L2(Ω) : wT = w|T ∈ Hk(T ) ∀T ∈ Th}.

Let e ∈ E ih be the common side shared by elements T+ and T−. Further, suppose n+ is the
unit normal of e pointing from T+ to T−, and n− = −n+. For any scalar valued function
w ∈ H2(Ω, Th), we define the jumps [[·]], and averages {{·}} across the edge e as follows:[[

∂w

∂n

]]
=
∂w+

∂n

∣∣∣
e
− ∂w−

∂n

∣∣∣
e

and

{{
∂w

∂n

}}
=

1

2

(∂w+

∂n

∣∣∣
e

+
∂w−
∂n

∣∣∣
e

)
.

4



For any w ∈ H3(Ω, Th), we define[[
∂2w

∂n2

]]
=
∂2w+

∂n2

∣∣∣
e
− ∂2w−

∂n2

∣∣∣
e

and

{{
∂2w

∂n2

}}
=

1

2

(∂2w+

∂n2

∣∣∣
e

+
∂2w−
∂n2

∣∣∣
e

)
,

where w± = w|T± . For e ∈ Ebh, we choose n be the unit outward normal of e and let T ∈ Th be
such that e = ∂T ∩ ∂Ω. Set[[

∂w

∂n

]]
=
∂w|T
∂n

∣∣∣
e

for any w ∈ H2(Ω, Th).

Before introducing the finite element spaces, we define for each triangle T ∈ Th a cubic bubble
function bT ∈ P3(T ) by

bT = 60λT1 λ
T
1 λ

T
3 ,

where λTi , i = 1, 2, 3 are the barycentric coordinates of T associated with the vertices pi ∈ VT .

Discrete Spaces: Let VM denote the Morley finite element space [50] defined by

VM ={wh ∈ L2(Ω) : wh|T ∈ P2(T ) ∀ T ∈ Th, wh is continuous at the vertices of Th,
and the normal derivative ofwh is continuous at the midpoint of the edges of Th,
andwh vanish on ∂Ω},

and define the space Vh as

Vh = {wh ∈ L2(Ω) : wh|T ∈ span(bT ) ∀T ∈ Th}.
The finite element space Wh is defined as

Wh = VM ⊕ Vh.
The discrete norm ‖ · ‖h on Wh is defined by

‖wh‖2h = β
∑
T∈Th

|wh|2H2(T ) + ‖wh‖2L2(Ω) for wh ∈Wh.

The discrete approximation of the convex set K is then given by

Kh = {wh ∈Wh :

∫
Ω
wh dx ≥ δ2 and

∫
Ω

(−∆hwh) dx ≥ δ1}.(3.1)

Next, we define the projection, interpolation and enriching operators and tabulate their ap-
proximation properties required in further analysis.

Discrete Operators: For any T ∈ Th and w ∈ L1(T ), define

QT (w) =
1

|T |

∫
T
w dx.(3.2)

Let Wpc,h := {w ∈ L1(Ω) : w|T ∈ P0(T ) ∀ T ∈ Th}. Then, Qh : L1(Ω) → Wpc,h is defined by
setting Qh(w)|T = QT (w) for all w ∈ L1(Ω), T ∈ Th.

Define interpolation operator Ih : W →Wh as: for ξ ∈W ,

(Ihξ)(p) = ξ(p) ∀p ∈ Vh,(3.3) ∫
e

∂(Ihξ)

∂n
ds =

∫
e

∂ξ

∂n
ds, ∀e ∈ Eh,(3.4)

QT (Ihξ) = QT (ξ), ∀T ∈ Th.(3.5)

The interpolation operator is well-defined and (Ihw)|T = w for any w ∈ P2(T ).
5



For any ξ ∈W , using (3.5) we find

(3.6)

∫
Ω
Ihξ dx =

∫
Ω
ξ dx.

Further, a use of integration by parts and (3.4) yields∫
T
∆(Ihξ) dx =

∑
e∈∂T

∫
e

∂(Ihξ)

∂n
ds =

∫
T

(∆ξ) dx ∀T ∈ Th,(3.7)

which implies that

Qh(∆h(Ihξ)) = Qh(∆ξ), ∀ξ ∈W.(3.8)

In view of (2.3), (3.1), (3.6) and (3.8), we have

IhK ⊂ Kh.(3.9)

This relation also depicts that the discrete set Kh is non-empty. We would like to remark here
that enriching the Morley finite element space VM by the bubble function space Vh plays a
crucial role in obtaining (3.9).
Below, we state the stability and approximation properties of Ih, whose proof follows by using
Bramble Hilbert lemma and scaling arguments; see [8, 21] for details.

Lemma 3.1. Let T ∈ Th and s be an integer such that 0 ≤ s ≤ 2 and ψ ∈ Hs(T ). Then,

|Ihψ|Hs(T ) . |ψ|Hs(T ), 0 ≤ s ≤ 2(3.10)
s∑

k=0

hk−sT |ψ − Ihψ|Hk(T ) . |ψ|Hs(T ), 0 ≤ s ≤ 2.(3.11)

Now we define an important tool for the analysis, the enriching operator Eh : Wh → (Mh ⊕
Vh) ∩W , where Mh is the Hsieh-Clough-Tocher macro element space [21] associated with Th.
The operator Eh can be constructed by averaging techniques (cf. [13, 12, 52]) satisfying∫

e

∂(Ehwh)

∂n
ds =

∫
e

∂wh
∂n

ds ∀e ∈ Eh,(3.12)

and

∫
T
Ehwh dx =

∫
T
wh dx ∀T ∈ Th.(3.13)

An application of integration by parts and (3.12) leads to

Qh(∆Ehwh) = Qh(∆hwh).(3.14)

Moreover, the enriching operator satisfies the following approximation properties (cf. [12]).

Lemma 3.2. For any wh ∈Wh, we have∑
T∈Th

(
h−4T ‖wh − Ehwh‖

2
L2(T ) + h−2T |wh − Ehwh|

2
H1(T ) + |wh − Ehwh|2H2(T )

)
. ‖wh‖2h,

∑
T∈Th

|wh − Ehwh|2H2(T ) .
∑
e∈Eh

1

he

∥∥∥ [[∂wh
∂n

]] ∥∥∥2
L2(e)

∀wh ∈Wh.

We recall the following inverse and trace inequalities which will be useful in later analysis [21].

Inverse Inequalities: For any wh ∈Wh and 1 ≤ p , q <∞,

‖wh‖Wm,p(T ) . h
`−m
T h

2
(

1
p
− 1
q

)
T ‖wh‖W `,q(T ) ∀T ∈ Th,(3.15)

‖∇wh‖Lp(T ) . h−1T ‖wh‖Lp(T ) ∀T ∈ Th.(3.16)

6



Discrete trace inequality: Let ψ ∈ W 1,p(T ), T ∈ Th and let e ∈ Eh be an edge of T . Then for
any 1 ≤ p <∞, it holds that

(3.17) ‖ψ‖pLp(e) . h
−1
e

(
‖ψ‖pLp(T ) + hpe‖∇ψ‖

p
Lp(T )

)
.

Discrete Problem: The discrete form of the minimization problem (2.4) is defined as follows:
Find y∗h ∈ Kh such that

y∗h = argminyh∈Kh

(
1

2
Ah(yh, yh)− (yd, yh)

)
,(3.18)

where

Ah(wh, vh) = β
∑
T∈Th

∫
T
D2wh : D2vh dx+

∫
Ω
whvh dx, wh, vh ∈Wh.(3.19)

Since Kh is non-empty, closed, convex and the bilinear form Ah(·, ·) is symmetric and positive
definite on Wh, the discrete problem (3.18) is well-posed and it’s solution is characterized by
the solution of the discrete variational inequality

Ah(y∗h, wh − y∗h) ≥ (yd, wh − y∗h) ∀wh ∈ Kh.(3.20)

As in the case of the continuous problem, we have the following optimality conditions associated
with the discrete problem [55]:

Lemma 3.3. Let y∗h ∈ Kh be the optimal solution of the discrete problem, then there exists
Lagrange multipliers λh ∈ R and µh ∈ R such that the following conditions hold:

Ah(y∗h, wh)−
∫
Ω
ydwh dx =

∫
Ω
µhwh dx−

∫
Ω
λh(∆hwh) dx, ∀wh ∈Wh,(3.21)

together with

µh ≥ 0, λh ≥ 0,(3.22)

µh

(
δ2 −

∫
Ω
y∗h dx

)
= 0,(3.23)

λh

(
δ1 +

∫
Ω
∆hy

∗
h dx

)
= 0.(3.24)

4. A Posteriori Error Analysis

In this section we introduce a posteriori error estimator and present the first main result
of the paper, namely, the reliability analysis of the error estimator. Followed by that, we
also discuss the efficiency estimates of a posteriori error estimator. The contributions of error

7



estimator are defined by

η21 = β−1
∑
T∈Th

h4T ‖yd + µh − y∗h‖2L2(T ),

η22 = β
∑
e∈Eih

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

,

η23 = β
∑
e∈Eih

he

∥∥∥∥∥
[[
∂2y∗h
∂n2

]] ∥∥∥∥∥
2

L2(e)

,

η24 = β
∑
e∈Eih

h3e

∥∥∥∥∥
[[
∂(∆y∗h)

∂n

]] ∥∥∥∥∥
2

L2(e)

,

η25 = β−1
∑
T∈Th

h2T |λh|2.

The full error estimator ηh is given by

η2h = η21 + η22 + η23 + η24 + η25.(4.1)

4.1. Reliability of Error Estimator. Below, we establish the reliability estimates of a pos-
teriori error estimator ηh.

Theorem 4.1. Let y∗ and y∗h be solutions of variational inequalities (2.6) and (3.20), respec-
tively. Then, it holds that,

‖y∗ − y∗h‖h . ηh.

Proof. We set φ = y∗−Ehy∗h ∈W and let φh ∈Wh. Using the coercive property of the bilinear
form A(·, ·), (2.7) and (3.21) we obtain

‖y∗ − Ehy∗h‖2h . A(y∗ − Ehy∗h, φ) = A(y∗, φ)−Ah(y∗h, φ) +Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
ydφdx−

∫
Ω
λ(∆φ) dx+

∫
Ω
µφdx−Ah(ȳh, φ) +Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
yd(φ− φh) dx−

∫
Ω
λ(∆φ) dx+

∫
Ω
µφdx+

∫
Ω
λh(∆hφh) dx−

∫
Ω
µhφh dx

−Ah(y∗h, φ− φh) +Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
yd(φ− φh) dx−

∫
Ω
µh(φh − φ) dx−Ah(y∗h, φ− φh)−

∫
Ω

(λ− λh)(∆φ) dx

+

∫
Ω

(µ− µh)φdx+

∫
Ω
λh∆h(φh − φ) dx+Ah(y∗h − Ehy∗h, φ).(4.2)

Now, we bound the terms of the right hand side of the last estimate. The estimation of first
three terms is discussed towards the end. We first handle the rest terms other than the first
three terms. For the fourth term in (4.2), using the discrete and continuous complementarity

8



conditions we get

∫
Ω

(λ− λh)(−∆φ) dx =

∫
Ω

(λ− λh)
(
−∆(y∗ − Ehy∗h)

)
dx

=

∫
Ω
λ(−∆y∗ +∆Ehy

∗
h) dx−

∫
Ω
λh(−∆y∗ +∆Ehy

∗
h) dx

= λ
(∫

Ω
(−∆y∗) dx− δ1

)
+ λ

(
δ1 +

∫
Ω
∆Ehy

∗
h dx

)
− λh

(∫
Ω

(−∆y∗) dx− δ1
)
− λh

(
δ1 +

∫
Ω
∆Ehy

∗
h dx

)
≤ λ

(
δ1 +

∫
Ω
∆hy

∗
h dx

)
− λh

(
δ1 +

∫
Ω
∆hy

∗
h dx

)
≤ 0,(4.3)

where in obtaining second last estimate we have used that
∫
Ω∆Ehy

∗
h dx =

∫
Ω∆hy

∗
h dx,

λh

( ∫
Ω(−∆y∗) dx− δ1

)
≥ 0 and then λ

(
δ1 +

∫
Ω∆hy

∗
h dx

)
≤ 0.

Next, we handle the fifth term of right hand side of (4.2). A use of (2.10), (2.11), (3.13)

together with µh ≥ 0,
∫
Ω y
∗ dx ≥ δ2 and µ

(
δ2 −

∫
Ω y
∗
h dx

)
≤ 0, yields

∫
Ω

(µ− µh)φdx =

∫
Ω
µ(y∗ − Ehy∗h) dx−

∫
Ω
µh(y∗ − Ehy∗h) dx

= µ
(∫

Ω
y∗ dx− δ2

)
+ µ

(
δ2 −

∫
Ω
Ehy

∗
h dx

)
− µh

(∫
Ω
y∗ dx− δ2

)
− µh

(
δ2 −

∫
Ω
Ehy

∗
h dx

)
≤ µ

(
δ2 −

∫
Ω
Ehy

∗
h dx

)
− µh

(
δ2 −

∫
Ω
Ehy

∗
h dx

)
≤ µ

(
δ2 −

∫
Ω
y∗h dx

)
− µh

(
δ2 −

∫
Ω
y∗h dx

)
≤ 0.(4.4)

The estimate on the last two terms of (4.2) can be realized with an application of Lemmas 3.2
and 3.1 as,

Ah(y∗h − Ehy∗h, φ) ≤ ‖y∗h − Ehy∗h‖h‖φ‖h ≤ η2‖φ‖h,(4.5)

and ∫
Ω
λh∆h(φh − φ) dx =

∑
T∈Th

|λh|
∫
T
|∆(φh − φ)| dx ≤

∑
T∈Th

hT |λh|‖∆(φh − φ)‖L2(T )

≤
∑
T∈Th

hT |λh||φ|H2(T ) ≤ η5‖φ‖h.(4.6)
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We now proceed to handle the first three terms of (4.2). Performing integration by parts twice
yields

Ah(y∗h, φ− φh) = β
∑
T∈Th

∫
T
D2y∗h : D2(φ− φh) dx+

∫
Ω
y∗h(φ− φh) dx

= β
∑
T∈Th

∫
T
∆2y∗h(φ− φh) dx+ β

∑
T∈Th

∫
∂T

(∂2y∗h
∂n2

)(∂(φ− φh)

∂n

)
ds

+ β
∑
T∈Th

∫
∂T

( ∂2y∗h
∂n∂t

)(∂(φ− φh)

∂t

)
ds− β

∑
T∈Th

∫
∂T

(∂∆y∗h
∂n

)
(φ− φh) ds

+

∫
Ω
y∗h(φ− φh) dx

= β
∑
e∈Eih

∫
e

[[
∂∆y∗h
∂n

]]
(φ− φh) ds− β

∑
e∈Eih

∫
e

[[
∂2y∗h
∂n2

]]{{
∂(φ− φh)

∂n

}}
ds

− β
∑
e∈Eh

∫
e

{{
∂2y∗h
∂n2

}}[[
∂(φ− φh)

∂n

]]
ds− β

∑
e∈Eih

∫
e

[[
∂2y∗h
∂n∂t

]]
∂(φ− φh)

∂t
ds

+

∫
Ω
y∗h(φ− φh) dx.(4.7)

Thus,∫
Ω
yd(φ− φh) dx−

∫
Ω
µh(φh − φ) dx−Ah(y∗h, φ− φh) =

∫
Ω

(yd + µh − y∗h)(φ− φh) dx

− β
∑
e∈Eih

∫
e

[[
∂∆y∗h
∂n

]]
(φ− φh) ds+ β

∑
e∈Eih

∫
e

[[
∂2y∗h
∂n2

]]{{
∂(φ− φh)

∂n

}}
ds

+ β
∑
e∈Eh

∫
e

{{
∂2y∗h
∂n2

}}[[
∂(φ− φh)

∂n

]]
ds+ β

∑
e∈Eih

∫
e

[[
∂2y∗h
∂n∂t

]]
∂(φ− φh)

∂t
ds.

Now, we estimate the terms of right hand ride as follows: a use of the Cauchy-Schwarz in-
equality and Lemma 3.1 yields∣∣∣ ∫

Ω
(yd + µh − y∗h)(φ− φh) dx

∣∣∣ ≤ ∑
T∈Th

h2T ‖yd + µh − y∗h‖L2(T )h
−2
T ‖φ− φh‖L2(T )

.
∑
T∈Th

h2T ‖yd + µh − y∗h‖L2(T )|φ|H2(T )

. η1‖φ‖h.(4.8)

Using Cauchy-Schwarz inequality, discrete trace inequality and Lemma 3.1, we find∣∣∣β ∑
e∈Eih

∫
e

[[
∂2y∗h
∂n2

]]{{
∂(φ− φh)

∂n

}}
ds
∣∣∣ ≤

β

(∑
e∈Eih

he

∥∥∥ [[∂2y∗h
∂n2

]] ∥∥∥2
L2(e)

)1/2(∑
e∈Eih

h−1e

∥∥∥∥∥
{{
∂(φ− φh)

∂n

}}∥∥∥∥∥
2

L2(e)

)1/2

. η3‖φ‖h.(4.9)
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Invoking Lemma 3.1 together with inverse inequality and discrete trace inequality (3.17), we
obtain ∣∣∣β ∑

e∈Eih

∫
e

[[
∂2y∗h
∂n∂t

]]
∂(φ− φh)

∂t
ds
∣∣∣ ≤

β

(∑
e∈Eih

he

∥∥∥ [[ ∂2y∗h
∂n∂t

]] ∥∥∥2
L2(e)

) 1
2
(∑
e∈Eih

h−1e

∥∥∥∥∥∂(φ− φh)

∂t

∥∥∥∥∥
2

L2(e)

) 1
2

. η2‖φ‖h(4.10)

and, ∣∣∣β ∑
e∈Eih

∫
e

[[
∂(∆y∗h)

∂n

]]
(φ− φh) ds

∣∣∣ ≤
β

(∑
e∈Eih

h3e

∥∥∥∥∥
[[
∂(∆y∗h)

∂n

]] ∥∥∥∥∥
2

L2(e)

) 1
2( ∑

e∈Eih

h−3e ‖φ− φh‖2L2(e)

) 1
2

. η4‖φ‖h.(4.11)

Finally, combining the estimates (4.3)-(4.11) together with (4.2), we get the desired result. �

In order to obtain the reliability estimates for Lagrange multiplier errors |µ−µh| and |λ−λh|,
we introduce the auxiliary variables zh ∈W and p̂h ∈ H1

0 (Ω) satisfying the following equations.

A(zh, w) =

∫
Ω
ydw dx+

∫
Ω
λh (−∆w) dx+

∫
Ω
µhw dx ∀w ∈W.(4.12)

and ∫
Ω
∇p̂h · ∇w dx =

∫
Ω

(zh − yd)w dx−
∫
Ω
µhw dx ∀w ∈ H1

0 (Ω).(4.13)

The well-posedness of these auxiliary problems 4.12 and 4.13 follows from Lax-Milgram lemma
[21]. These auxiliary problems help in estimating the errors in Lagrange multipliers. In the
next lemma, we estimate the error ‖zh − y∗‖h.

Lemma 4.2. There exists a positive constant C, depending only on the shape regularity of Th,
such that

‖zh − y∗‖h ≤ Cηh.

Proof. We have,

‖zh − y∗‖h .
(
‖zh − y∗h‖h + ‖y∗h − y∗‖h

)
.(4.14)

The estimation of ‖zh − y∗h‖h follows in similar steps as in Theorem 4.1. For completeness, we
briefly discuss the proof. A use of triangle inequality gives

‖zh − y∗h‖h ≤ ‖zh − Ehy∗h‖h + ‖Ehy∗h − y∗h‖h.(4.15)
11



For φ = zh − Ehy∗h ∈ W and φh = Ihφ ∈ Wh, a use of coercive property of A(·, ·), (3.21) and
(4.12) leads to

‖zh − Ehy∗h‖2h = ‖φ‖2h . A(zh − Ehy∗h, φ)

. A(zh, φ)−Ah(y∗h, φ) +Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
ydφdx+

∫
Ω
λh(−∆φ) dx+

∫
Ω
µhφdx−Ah(y∗h, φ) +Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
yd(φ− φh) dx+

∫
Ω
λh(−∆(φ− φh)) dx+

∫
Ω
µh(φ− φh) dx

−Ah(y∗h, φ− φh) +Ah(y∗h − Ehy∗h, φ).(4.16)

Each term of right hand side of the last equation are estimated as in Theorem 4.1, so we omit
the details. The estimate of ‖zh − y∗h‖h by ηh is then realized by a use of (4.15), (4.16) and
Lemma 3.2. �

Next, we show that the error in Lagrange multipliers can be estimated in terms of ‖zh− y∗‖h.

Lemma 4.3. There exists a positive constant C depending only on the shape regularity of Th,
such that

|µ− µh| ≤ C‖y∗ − zh‖L2(Ω),(4.17)

|λ− λh| ≤ C‖y∗ − zh‖h.(4.18)

Proof. Upon subtracting (2.12) and (4.13), we find∫
Ω
∇(p− p̂h) · ∇w dx =

∫
Ω

(y∗ − zh)w dx−
∫
Ω

(µ− µh)w dx ∀w ∈ H1
0 (Ω).(4.19)

We choose the cut-off function ψ ∈ C∞0 (Ω) with 1
|Ω|
∫
Ω ψ dx = 1 and ‖ψ‖H1(Ω) ≤ C. Let

Ĉ = 1
|Ω|
∫
Ω(p− p̂h) dx, we observe that Ĉψ ∈ C∞0 (Ω) ⊂ H1

0 (Ω). Take w = p− p̂h−Ĉψ ∈ H1
0 (Ω)

in (4.19) to obtain∫
Ω
∇(p− p̂h) · ∇(p− p̂h − Ĉψ) dx =

∫
Ω

(y∗ − zh)(p− p̂h − Ĉψ) dx−
∫
Ω

(µ− µh)(p− p̂h − Ĉψ) dx.

Using the fact µ− µh ∈ R and
∫
Ω(p− p̂h − Ĉψ) dx = 0, we obtain

‖∇(p− p̂h)‖2 =

∫
Ω
∇(p− p̂h)Ĉψ dx+

∫
Ω

(y∗ − zh)(p− p̂h − Ĉψ) dx

. ‖∇(p− p̂h)‖L2(Ω)‖Ĉψ‖L2(Ω) + ‖y∗ − zh‖L2(Ω)‖p− p̂h − Ĉψ‖L2(Ω)

. |Ĉ|‖∇(p− p̂h)‖L2(Ω)‖ψ‖L2(Ω) + ‖y∗ − zh‖L2(Ω){‖p− p̂h‖L2(Ω) + |Ĉ|‖ψ‖L2(Ω)}

. ‖p− p̂h‖L2(Ω)‖∇(p− p̂h)‖L2(Ω)‖ψ‖L2(Ω) + ‖y∗ − zh‖L2(Ω){‖p− p̂h‖L2(Ω)

+‖p− p̂h‖L2(Ω)‖ψ‖L2(Ω)},(4.20)

where in obtaining the last estimate, we have used that | 1
|Ω|
∫
Ω(p − p̂h) dx| . ‖p − p̂h‖L2(Ω).

An application of Poincaré inequality keeping in view the construction of ψ and the standard
kick back argument leads to

‖∇(p− p̂h)‖ . ‖y∗ − zh‖L2(Ω).(4.21)
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In view of (4.19) and (4.21), we get the desired estimate (4.17). Upon subtracting (4.12) from
(2.7), we get∫

Ω
(λ− λh)(∆w) dx = A(zh − y∗, w) +

∫
Ω

(µ− µh)w dx ∀w ∈W.(4.22)

Then, the estimate (4.18) can be realized from (4.22) and (4.17). �

Finally, in view of lemma 4.2 and 4.3, we have the estimation of error in Lagrange multipliers
by the error estimator ηh.

4.2. Local Efficiency Estimates. In this section, we derive the local efficiency estimates of a
posteriori error estimator ηh obtained in last subsection. Therein, we use the standard bubble
function techniques [56]. We have discussed the main ideas involved in proving these efficiency
estimates and skipped the standard details. For z ∈ H4(Ω, Th) and v ∈ H2(Ω, Th), we have
the following integration by parts formula.∫

T
(∆2z)v dx =

∫
T
D2z : D2v dx+

∫
∂T

∂∆z

∂n
v ds−

∫
∂T

∂2z

∂n∂t

∂v

∂t
ds−

∫
∂T

∂2z

∂n2
∂v

∂n
ds.(4.23)

Upon summing up for all T ∈ Th, we obtain∑
T∈Th

∫
T
∆2zv dx =

∑
T∈Th

∫
T
D2z : D2v dx+

∑
e∈Eih∪E

b
h

∫
e

{{
∂∆z

∂n

}}
[[v]] ds

+
∑
e∈Eih

∫
e

[[
∂(∆z)

∂n

]]
{{v}} ds+

∑
e∈Eih

∫
e

[[
∂2z

∂n2

]]{{
∂v

∂n

}}
ds

+
∑
e∈Eh

∫
e

{{
∂2z

∂n2

}}[[
∂v

∂n

]]
ds+

∑
e∈Eih

∫
e

[[
∂2z

∂n∂t

]]{{
∂v

∂t

}}
ds

+
∑
e∈Eh

∫
e

{{
∂2z

∂n∂t

}}[[
∂v

∂n

]]
ds.(4.24)

Theorem 4.4. It holds that,

h2T ‖yd + µh − y∗h‖L2(T ) . ‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T ) +Osc(yd;T ) ∀T ∈ Th,

(4.25)

βh−1/2e

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

)
+Osc(yd; Te) ∀e ∈ E ih,(4.26)

βh1/2e

∥∥∥∥∥
[[
∂2y∗h
∂n2

]] ∥∥∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

)
+Osc(yd; Te) ∀e ∈ E ih,(4.27)

βh3/2e

∥∥∥∥∥
[[
∂(∆y∗h)

∂n

]] ∥∥∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖+ ‖λ− λh‖L2(T )

)
+Osc(yd; Te) ∀e ∈ E ih,(4.28)

hT |λh| . ‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T ) +Osc(yd;T ) ∀T ∈ Th,(4.29)
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where ‖w‖2,T := β|w|H2(T ) + h2T ‖w‖L2(T ) for any w ∈ H2(Ω, Th), Osc(yd;T ) := h2T ‖yd −
ȳd‖2L2(T ) with ȳd := 1

|T |
∫
T yd dx and Te denotes the union of elements sharing the edge e.

Proof. (i)(Local bound for η1) Let b̃T be a polynomial bubble function vanishing up to the

first order on ∂T , i.e., b̃T and ∇b̃T vanish on ∂T , and set φT = (ȳd + µh − y∗h)b̃T . Let φ̃ be the

extension of φT to Ω̄ by zero, clearly φ̃ ∈W . We further have,

‖φT ‖L2(T ) . ‖ȳd + µh − y∗h‖L2(T ),(4.30)

and

‖ȳd + µh − y∗h‖2L2(T ) ≈
∫
T

(ȳd + µh − y∗h)φT dx

=

∫
T

(yd + µh − y∗h)φT dx+

∫
T

(ȳd − yd)φT dx.(4.31)

Using equation (2.7) and the fact that, β
∫
ΩD

2ȳh : D2φ̃ dx =
∫
Ω λh(−∆hφ̃) dx, we have∫

T
(yd + µh − y∗h)φT dx = β

∫
Ω
D2y∗ : D2φ̃ dx+

∫
Ω
y∗φ̃ dx+

∫
Ω
λ(∆φ̃)dx

−
∫
Ω
µφ̃ dx+

∫
Ω
µhφ̃ dx−

∫
Ω
y∗hφ̃ dx

= β

∫
Ω
D2(y∗ − y∗h) : D2φ̃ dx+

∫
Ω

(y∗ − y∗h)φ̃ dx

+

∫
Ω

(µh − µ)φ̃ dx+

∫
Ω

(λ− λh)∆hφ̃ dx

.
(
β |y∗ − y∗h|H2(T )|φT |H2(T ) + ‖y∗ − y∗h‖L2(T )‖φT ‖L2(T )

+ ‖µ− µh‖L2(T )‖φT ‖L2(T ) + ‖λ− λh‖L2(T )‖∆φT ‖L2(T )

)
.
(
βh−2T |y

∗ − y∗h|H2(T ) + ‖y∗ − y∗h‖L2(T ) + ‖µ− µh‖L2(T )

+ h−2T ‖λ− λh‖L2(T )

)
‖φT ‖L2(T ).(4.32)

where in the last step, we used the inverse estimate |φT |H2(T ) ≤ Ch−2T ‖φT ‖L2(T ). Thus, from
equation (4.31) and (4.32), we obtain

h2T ‖ȳd + µh − y∗h‖L2(T ) . ‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T ) + h2T ‖yd − ȳd‖L2(T ),

thus we get the desired estimate.

(ii)(Local bound for η2) We skip the proof of (4.26) which follows using standard bubble
function techniques together with the realization that

h−1/2e

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥
L2(e)

= h−1/2e

∥∥∥ [[∂(y∗ − y∗h)

∂n

]] ∥∥∥
L2(e)

∀e ∈ E ih.(4.33)

(iii)(Local bound for η3) Let Θ = β
[[
∂2y∗h
∂n2

]]
along e and define θ1 ∈ P1(Te) by

θ1 = 0 and
∂θ1
∂n

= Θ on the edge e.(4.34)

It is easy to verify that ‖θ1‖1,T± ≈ he|Θ| and |θ1|∞,T± ≈ he|Θ|. Next, define θ2 ∈ P8(Te)
satisfying the following properties:
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(a) θ2 is positive on the edge e and takes unit value at the midpoint of the edge.
(b) θ2 vanishes up to first order on (∂T+ ∪ ∂T−) \ e.
It follows from the scaling that

‖θ2‖1,T± ≈ 1 ≈ ‖θ2‖∞,T± .(4.35)

Using integration by parts formula (4.24), Poincaré inequality, inverse inequality and equations
(2.7), (3.21), we find

β2
∥∥∥ [[∂2y∗h

∂n2

]] ∥∥∥2
L2(e)

=

∫
e
β2
[[
∂2y∗h
∂n2

]]2
ds =

∫
e
β

[[
∂2y∗h
∂n2

]]
Θ ds

. β

∫
e

[[
∂2y∗h
∂n2

]]
∂θ1
∂n

θ2 ds = β

∫
e

[[
∂2y∗h
∂n2

]]
∂(θ1θ2)

∂n
ds

= −β
∑
T∈Te

∫
T
D2y∗h : D2(θ1θ2) dx

= β
∑
T∈Te

∫
T
D2(y∗ − y∗h) : D2(θ1θ2) dx− β

∑
T∈Te

∫
T
D2y∗ : D2(θ1θ2) dx

.
∑
T∈Te

{
β

∫
T
D2(y∗ − y∗h) : D2(θ1θ2) dx−

∫
T

(yd + µh − y∗h) θ1θ2 dx

+

∫
T

(µh − µ)θ1θ2 dx+

∫
T

(y∗ − y∗h)θ1θ2 dx+

∫
T

(λ− λh)∆h(θ1θ2) dx
}

.
∑
T∈Te

{
β|y∗ − y∗h|H2(T ) + h2T ‖y∗ − y∗h‖L2(T ) + h2T ‖yd + µh − y∗h‖L2(T )

+h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

}
|θ1θ2|H2(Te)

.
∑
T∈Te

{
‖y∗ − y∗h‖2,T + h2T ‖yd + µh − y∗h‖L2(T ) + h2T ‖µ− µh‖L2(T )

+‖λ− λh‖L2(T )

}
h−1e |θ1θ2|H1(Te),

therein, using (4.34) and (4.35), we have

|θ1θ2|H1(Te) ≤ |θ1|∞,T± |θ2|1,T± + |θ1|1,T± |θ2|∞,T± .
(
heβ

2
∥∥∥ [[∂2y∗h

∂n2

]] ∥∥∥2
L2(e)

) 1
2
.(4.36)

Finally, the estimate (4.27) can be realized by using (4.25).

(iv)(Local bound for η4) Let e ∈ E ih be an interior edge sharing the elements T+ and T− and

Te = T+ ∪ T−. Define θ3 ∈ P0(Te), by assigning θ3 = β
[[
∂(∆y∗h)
∂n

]]
on e and θ3 satisfies:

‖θ3‖L2(T±) . h
1
2
e

∥∥∥ [[∂(∆y∗h)

∂n

]] ∥∥∥
L2(e)

.(4.37)

Further, let θ4 ∈ P8(Te) satisfies the following:
(a) θ4 is positive on the edge e and takes unit value at the mid point of the edge.
(b) θ4 vanishes up to first order on (∂T+ ∪ ∂T−) \ e.
Then, θ4 satisfy

h−1e ‖θ4‖L2(T±) + ‖θ4‖L∞(T±) . 1.(4.38)
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Define φ̂e = θ3θ4 on Te and let φ̂ ∈W be the extension of φ̂e by zero outside Te. From (4.24),
(2.7), (3.21), discrete trace inequality and inverse inequality, it follows that

β2
∥∥∥ [[∂(∆y∗h)

∂n

]] ∥∥∥2
L2(e)

= β2
∫
e

[[
∂(∆y∗h)

∂n

]]2
ds ≤

∫
e
β

[[
∂(∆y∗h)

∂n

]]
φ̂ ds

= β
{∫
Te
∆2y∗hφ̂ dx−

∑
T∈Te

∫
T
D2y∗h : D2φ̂ dx−

∫
e

[[
∂2y∗h
∂n2

]]
∂φ̂

∂n
ds
}

=
∑
T∈Te

{
β

∫
T
D2(y∗ − y∗h) : D2φ̂ dx−

∫
T

(yd + µh − y∗h) φ̂ dx

+

∫
T

(µh − µ)φ̂ dx+

∫
T

(y∗ − y∗h)φ̂ dx+

∫
T

(λ− λh)∆hφ̂ dx
}

− β
∫
e

[[
∂2y∗h
∂n2

]]
∂φ̂

∂n
ds

.
(
βh−2e |y∗ − y∗h|H2(Te) + ‖y∗ − y∗h‖L2(Te) + ‖yd + µh − y∗h‖L2(Te)

+ ‖µ− µh‖L2(Te) + h−2e ‖λ− λh‖L2(Te)
)
|φ̂|L2(Te) + β

∥∥∥ [[∂2y∗h
∂n2

]] ∥∥∥
L2(e)

∥∥∥∂φ̂
∂n

∥∥∥
L2(e)

.

(
h−2e {β|y∗ − y∗h|H2(Te) + h2e‖y∗ − y∗h‖L2(Te) + h2e‖yd + µh − y∗h‖L2(Te)

+ h2e‖µ− µh‖L2(Te) + ‖λ− λh‖L2(Te)}+ βh
−3
2
e

∥∥∥ [[∂2y∗h
∂n2

]] ∥∥∥
L2(e)

)
‖φ̂‖L2(Te)

.

(
h−2e {β|y∗ − y∗h|H2(Te) + h2e‖y∗ − y∗h‖L2(Te) + h2e‖yd + µh − ȳh‖L2(Te)

+ h2e‖µ− µh‖L2(Te) + ‖λ− λh‖L2(Te)}+ βh
−3
2
e

∥∥∥ [[∂2y∗h
∂n2

]] ∥∥∥
L2(e)

)
βh

1
2
e

∥∥∥ [[∂(∆y∗h)

∂n

]] ∥∥∥
L2(e)

,

(4.39)

where in the last step we have used (4.37) and (4.38). Hence,

βh3/2e

∥∥∥∥∥
[[
∂(∆y∗h)

∂n

]] ∥∥∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖yd + µh − y∗h‖L2(T ) + h2T ‖µ− µh‖L2(T )

+ ‖λ− λh‖L2(T )

)
+ h1/2e β

∥∥∥ [[∂2y∗h
∂n2

]] ∥∥∥
L2(e)

.(4.40)

Finally, we obtain the bound (4.28) by a use of (4.25) and (4.27).

(v)(Local bound for η5) Let b̂T be a polynomial bubble function vanishing up to the second

order on ∂T . Let ∆ψT = λh∆b̂T and ψ̃ ∈W be the extension of ψT by zero to Ω.
In view of (4.24),

∫
T D

2y∗h : D2ψT dx = 0. Therefore, using (2.7) we have,
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‖λh‖2L2(T ) .
∫
T
λh∆ψT dx =

∫
Ω

(λh − λ)∆ψ̃ dx+

∫
Ω
λ∆ψ̃ dx

=

∫
Ω

(λh − λ)∆ψ̃ dx+

∫
Ω
ydψ̃ dx+

∫
Ω
µψ̃ dx−A(y∗, ψ̃)

=

∫
T

(λh − λ)∆ψ̃ dx+

∫
T

(yd + µh − y∗h)ψ̃ dx+

∫
T

(µ− µh)ψ̃ dx

−
∫
T

(y∗ − y∗h)ψ̃ dx− β
∫
T
D2(y∗ − y∗h) : D2ψ̃ dx

.
(
‖λ− λh‖L2(T ) + h2T ‖µ− µh‖L2(T ) + h2T ‖yd + µh − y∗h‖L2(T )

+ ‖y∗ − y∗h‖2,T
)
‖ψT ‖H2(T )

.
(
‖λ− λh‖L2(T ) + h2T ‖µ− µh‖L2(T ) + h2T ‖yd + µh − y∗h‖L2(T )

+ ‖y∗ − y∗h‖2,T
)
‖λh‖L2(T )

where in obtaining the second last estimate, we have used Poincaré inequality with scaling
arguments. Finally, we get the desired estimate by taking into account (4.25)-(4.28).

�

5. Adaptive FEM for OCPs with integral state constraint and poinwise
control constraints

This section is devoted to the a posteriori error analysis of OCPs with integral state con-
straint and pointwise control constraints. We consider the following minimization problem:
find (y∗, u∗) ∈ K, such that

(y∗, u∗) = argmin(y,u)∈K

(1

2
‖y − yd‖2 +

β

2
‖u‖2

)
(5.1)

subject to the constraints
∫
Ω∇y · ∇w dx =

∫
Ω uw dx, ∀w ∈ H1

0 (Ω)∫
Ω y dx ≥ δ3,
ua ≤ u ≤ ub a.e. in Ω,

(5.2)

where K = H1
0 (Ω)× L2(Ω) and δ3 is a constant. The functions ua, ub are assumed to satisfy

(i)ua, ub ∈W 1,∞(Ω), (ii)ua < ub on Ω̄.
As discussed in Section 1, we then rewrite this optimization problem into a reduced mini-
mization problem involving only the state variable. Analogously to (2.4), the reduced optimal

control problem is to find y∗ ∈ K̃ such that

y∗ = argminy∈K̃

(1

2
A(y, y)− (yd, y)

)
,(5.3)

where the bilinear form A(, ·, ) is same as in (2.5) and set K̃ is defined as

K̃ = {w ∈W :

∫
Ω
w dx ≥ δ3 and ua ≤ −∆w ≤ ub a.e. in Ω}.(5.4)

We assume the following Slater condition: there exists y ∈ W such that
∫
Ω y dx > δ3 and

ua ≤ −∆y ≤ ub. Thus, the closed convex set K̃ is nonempty. The minimizer of (5.3) have the
17



characterization in terms of the solution of the following fourth order variational inequality:
find y∗ ∈ K̃ satisfying

(5.5) A(y∗, w − y∗) ≥
∫
Ω
yd(w − y∗) dx ∀w ∈ K̃.

The following (generalized) Karush-Kuhn-Tucker conditions hold (see [34, 47]): there exist
λ ∈ L2(Ω) and µ ∈ R such that

β

∫
Ω

(∆y∗)(∆w) dx+

∫
Ω
y∗w dx =

∫
Ω
ydw dx−

∫
Ω
λ(∆w) dx+

∫
Ω
µw dx(5.6)

for all w ∈W together with the complementarity conditions

λ ≥ 0 if −∆y∗ = ua,(5.7)

λ ≤ 0 if −∆y∗ = ub,(5.8)

λ = 0 otherwise,(5.9)

µ ≥ 0 if

∫
Ω
y∗ dx = δ3,(5.10)

µ = 0 if

∫
Ω
y∗ dx > δ3.(5.11)

The adjoint state p ∈ H1
0 (Ω) associated to the problem (5.1) -(5.2) is given by∫

Ω
∇p · ∇w dx =

∫
Ω

(y∗ − yd)w dx−
∫
Ω
µw dx ∀ w ∈ H1

0 (Ω).(5.12)

5.1. Discrete Problem. The discretization of (5.3) is to find y∗h ∈ K̃h such that

y∗h = argminyh∈K̃h

[1

2
Ah(yh, yh)− (yd, yh)

]
,(5.13)

where

(5.14) K̃h = {wh ∈Wh :

∫
Ω
wh dx ≥ δ3 and Qhua ≤ Qh(−∆hwh) ≤ Qhub}.

Remark 5.1. Owing to the property (3.6) and (3.4) of Ih, we have IhK̃ ⊂ K̃h.

As in the continuous case, the minimizer of (5.13) can be characterized by the solution of the

following variational inequality: find y∗h ∈ K̃h such that

Ah(y∗h, wh − y∗h) ≥ (yd, wh − y∗h) ∀wh ∈ K̃h.(5.15)

where the bilinear form Ah(, ·, ) is defined in (3.20). It can be easily checked that the discrete
problem (5.15) is well-posed.
The Karush-Kuhn-Tucker conditions for the discrete problem [34, 47] is given as follows: there
exist λh ∈ P0(Th) and µh ∈ R such that

Ah(y∗h, wh) =

∫
Ω
ydwh dx−

∫
Ω
λh(∆hwh) dx+

∫
Ω
µhwh dx, ∀wh ∈Wh(5.16)
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together with the complementary conditions

λh ≥ 0 on T ∈ Th such that QT (−∆y∗h) = QT (ua),(5.17)

λh ≤ 0 on T ∈ Th such that QT (−∆y∗h) = QT (ub),(5.18)

λh = 0 otherwise,(5.19)

µh ≥ 0 if

∫
Ω
y∗h dx = δ3,(5.20)

µh = 0 if

∫
Ω
y∗h dx > δ3.(5.21)

In the following, we derive the reliability estimates of the estimator ηh for the error ‖y∗−y∗h‖h.
For this we introduce the following auxiliary problem: let z̃h ∈W be the solution of

A(z̃h, w) =

∫
Ω
ydw dx+

∫
Ω
λh(−∆hw) dx+

∫
Ω
µhw dx, ∀w ∈W.(5.22)

The well-posedness of (5.22) is ensured by Lax-Milgram lemma [21]. Now, we proceed to
establish the reliability of the error estimator for the error in solution y∗.

Theorem 5.2. Let y∗h and z̃h be the solutions of (5.16) and (5.22), respectively. Then,

‖y∗h − z̃h‖h . ηh,(5.23)

where ηh is defined in (4.1).

Proof. Let φ = z̃h − Ehy∗h ∈ W and φh = Ihφ ∈ Wh, a use of coercive property of the bilinear
form A(·, ·), (5.22) and (5.16) leads to

‖φ‖2h . A(z̃h, φ)−Ah(Ehy
∗
h, φ)

.
∫
Ω
ydφdx+

∫
Ω
µhφdx−Ah(y∗h, φ) +

∫
Ω
λh(−∆hφ) dx

+Ah(y∗h − Ehy∗h, φ)

.
∫
Ω
yd(φ− φh) dx−Ah(y∗h, φ− φh) dx+

∫
Ω
µh(φ− φh) dx

−
∫
Ω
λh(∆h(φ− φh)) +Ah(y∗h − Ehy∗h, φ)

=: I1 + I2 + I3 + I4 + I5.(5.24)

Note that, I1 + I2 + I3 and I5 can be estimated following same arguments as in the Theorem
4.1. Now, it remains to estimate I4. An application of the Cauchy Schwarz inequality and
Lemma 3.1, yields

|I4| .
∑
T∈Th

|
∫
T
λh∆(φh − φ) dx| .

∑
T∈Th

hT |λh‖‖∆(φh − φ)‖L2(T )

.
∑
T∈Th

hT |λh‖|φ|H2(T ) . η5‖φ‖h.

Combining all the estimates together with (5.24), we get

‖φ‖h = ‖z̃h − Ehy∗h‖h . ηh.

An use of the triangle inequality ‖z̃h−y∗h‖h ≤ ‖z̃h−Ehy∗h‖h+‖Ehy∗h−y∗h‖h, in view of Lemma
3.2 leads to the desired estimate. �
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Theorem 5.3. Let y∗ and y∗h be solutions of variational inequalities (5.5) and (5.15), respec-
tively. Then, it holds that

‖y∗ − y∗h‖h .
(
ηh +

∑
T∈Ω1∪Ω2

‖λ‖
1
2

L2(T )

( ∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

) 1
2

+
(∫

Ω1

λ(∆y∗h + ua) dx
) 1

2
+
(∫

Ω2

λ(∆hy
∗
h + ub) dx

) 1
2
)
.

Proof. Set φ = y∗ − Ehy∗h ∈ W and let φh ∈ Wh. As in Theorem 4.1, using coercivity of the
bilinear form A(·, ·), we get

‖y∗ − Ehy∗h‖2h . A(y∗ − Ehy∗h, φ)

= A(z̃h − Ehy∗h, φ) +A(y∗, φ)−A(z̃h, φ).(5.25)

In view of (5.6) and (5.16), the term A(y∗, φ)−A(z̃h, φ) satisfies

A(y∗, φ)−A(z̃h, φ) =

∫
Ω

(λ− λh)(−∆φ) dx+

∫
Ω

(µ− µh)φdx.(5.26)

Following the same arguments as in Theorem 4.1, we obtain∫
Ω

(µ− µh)φdx ≤ 0.(5.27)

Now, to estimate the term
∫
Ω(λ− λh)(−∆φ) dx, we split it as∫

Ω
(λ− λh)(−∆φ) dx =

∫
Ω1

(λ− λh)(−∆φ) dx+

∫
Ω2

(λ− λh)(−∆φ) dx,(5.28)

where Ω1 and Ω2 are discrete control contact sets defined by

Ω1 = {T ∈ Th : QT (−∆y∗h) = QT (ua)},
Ω2 = {T ∈ Th : QT (−∆y∗h) = QT (ub)}.

The first term of the right hand side of equation (5.28) can be estimates as follows.∫
Ω1

(λ− λh)(−∆φ) dx =

∫
Ω1

λh(∆φ) dx−
∫
Ω1

λ(∆φ) dx

=

∫
Ω1

λh(∆y∗ −∆Ehy∗h) dx−
∫
Ω1

λ(∆y∗ −∆Ehy∗h) dx.(5.29)

Using λh ≥ 0, ua ≤ −∆y∗, relation (3.14) and
∑
T∈Ω1

λh

∫
T

(ua +∆hy
∗
h) dx = 0, we find

∫
Ω1

λh(∆y∗ −∆Ehy∗h) dx =

∫
Ω1

λh(∆y∗ + ua) dx−
∫
Ω1

λh(ua +∆Ehy
∗
h) dx

=

∫
Ω1

λh(∆y∗ + ua) dx−
∫
Ω1

λh(ua +∆hy
∗
h) dx

−
∫
Ω1

λh(∆hy
∗
h −∆Ehy∗h) dx

≤ 0.(5.30)
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In view of (5.7) and Lemma 3.2, we have

−
∫
Ω1

λ(∆y∗ −∆Ehy∗h) dx =

∫
Ω1

λ(∆Ehy
∗
h −∆y∗) dx

=

∫
Ω1

λ(∆Ehy
∗
h −∆hy

∗
h) dx+

∫
Ω1

λ(∆hy
∗
h + ua) dx

−
∫
Ω1

λ(∆hy
∗ + ua) dx

.
∑
T∈Ω1

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx.(5.31)

Combining (5.29),(5.30) and (5.31), we get∫
Ω1

(λ− λh)(−∆φ) dx .
∑
T∈Ω1

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx.(5.32)

Repeating the similar arguments, we estimate the second term of the right hand side of equation
(5.28) ∫

Ω2

(λ− λh)(−∆φ) dx .
∑
T∈Ω2

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω2

λ(∆hy
∗
h + ub) dx.(5.33)

A use of (5.32) and (5.33) in (5.28) yields∫
Ω

(λ− λh)(−∆φ) dx .
∑

T∈Ω1∪Ω2

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx

+

∫
Ω2

λ(∆hy
∗
h + ub) dx.(5.34)

Combining (5.26), (5.27) and (5.34), we have

A(y∗, φ)−A(z̃h, φ) .
∑

T∈Ω1∪Ω2

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx

+

∫
Ω2

λ(∆hy
∗
h + ub) dx.

Using the continuity of bilinear form and the Young’s inequality in (5.25) leads to

‖y∗ − Ehy∗h‖2h .
(
‖z̃h − Ehy∗h‖2h +

∑
T∈Ω1∪Ω2

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx+

∫
Ω2

λ(∆hy
∗
h + ub) dx

)
.(5.35)

Finally, a use of triangle inequality, (5.35), Theorem 5.2 and Lemma 3.2 gives

‖y∗ − y∗h‖2h .
(
η2h +

∑
T∈Ω1∪Ω2

‖λ‖L2(T )

∑
e∈ET

1

he

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥2
L2(e)

+

∫
Ω1

λ(∆y∗h + ua) dx+

∫
Ω2

λ(∆hy
∗
h + ub) dx

)
.

This completes the proof.
�
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We would like to remark here that, in Theorem 5.3 the estimate is not a genuine a posteriori
error estimate because of the presence of λ in the right hand side, but it is useful in realizing
the asymptotic convergence of the adaptive algorithm. Now, following the idea of Lemma 4.3
and Theorem 4.2, we can estimate the error in Lagrange multipliers, hence we state the result
omitting details of the proof.

Lemma 5.4. It holds that,

|µ− µh|+ ‖λ− λh‖L2(Ω) . ηh.

The following local efficiency estimates can be proved using bubble function techniques as in
Theorem 4.4.

Theorem 5.5. There exists a positive constant C > 0 depending on the shape regularity of Th
such that

h2T ‖yd + µh − y∗h‖L2(T ) . ‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T ) +Osc(yd;T ) ∀T ∈ Th,

βh−1/2e

∥∥∥ [[∂y∗h
∂n

]] ∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

)
+Osc(yd; Te) ∀e ∈ E ih,

βh1/2e

∥∥∥∥∥
[[
∂2y∗h
∂n2

]] ∥∥∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

)
+Osc(yd; Te) ∀e ∈ E ih,

βh3/2e

∥∥∥∥∥
[[
∂(∆y∗h)

∂n

]] ∥∥∥∥∥
L2(e)

.
∑
T∈Te

(
‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T )

)
+Osc(yd; Te); ∀e ∈ E ih,

hT |λh| . ‖y∗ − y∗h‖2,T + h2T ‖µ− µh‖L2(T ) + ‖λ− λh‖L2(T ) +Osc(yd;T ) ∀T ∈ Th,

where ‖w‖2,T := β|w|H2(T ) + h2T ‖w‖L2(T ) for any w ∈ H2(Ω, Th), Osc(yd;T ) := h2T ‖yd −
ȳd‖2L2(T ) with ȳd := 1

|T |
∫
T yd dx and Te denotes the union of elements sharing the edge e.

6. Numerical Assessments

In this section, we perform numerical experiments to illustrate the performance of the error
estimators derived in Section 4 and Section 5. For this, we have considered four examples.
The data of first example is for the purely integral state constraints, the second one is based
on the purely integral control constraint, the third example consists of the integral state and
integral control constraints and the last example concerns the integral state and pointwise
control constraints. The discrete problem is solved using the primal-dual active set method
[5, 6, 7, 34]. For the adaptive refinement, we use the following paradigm

SOLVE −→ ESTIMATE −→MARK −→ REFINE

We compute the discrete state using the primal-dual active set algorithm in step ’SOLVE’.
Thereafter in step ’ESTIMATE’, we compute the error estimator on each element T ∈ Th and
use Dörfler marking strategy with parameter θ = 0.3 to mark the elements for refinement.
Finally, a new adaptive mesh is obtained by performing refinement using the newest vertex
bisection algorithm. Below, we consider various test examples.
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Example 6.1. This example consists of the integral state constraints as active constraints [58].
Here, we solve the following problem on Ω = (0, 1)2 with β = 1.

min
y∈K

{1

2
‖y − yd‖2L2(Ω) +

β

2
‖u‖2L2(Ω),

s.t.

−∆y = f + u in Ω,

y = 0 on ∂Ω,∫
Ω y dx ≥ δ2 and

∫
Ω u dx ≥ δ1,

(6.1)

with the exact solution and the data as

p = sin(2πx1)sin(2πx2) +
3

8
sin(2πx1)sin(4πx2),

y = p,

yd = y +∆p− 0.4,

f = −∆y − u,
δ2 = −0.4,

δ1 = 0,

u = max{p̃+ βδ̃1, 0} − p,

where p̃ =
∫
Ω p dx∫
Ω 1 dx

and δ̃1 = δ1∫
Ω 1dx

.

Figure 1a depicts convergence behavior of the error and the estimator with respect to the
increasing number of degrees of freedom (DoFs). From this figure, it is evident that both

error and error estimator converge with optimal rate (1/
√
DoFs). Figure 1a also ensures the

reliability of the error estimator. Figure 1b shows the efficiency indices, ensuring that the error
estimator is efficient.

(a) Error and Estimator (b) Efficiency Index

Figure 1. Error, estimator and efficiency index for Example 6.1
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Example 6.2. In this example [24], we consider the optimal control problem (6.1) with purely
integral control constraints given on the domain Ω = (0, 1)× (0, 1) with β = 1 as follows

p = sin(πx1)sin(πx2),

y = 2π2p+ yd

yd = 0,

f = 4π4p+ p− 4

π2
,

δ2 = 100,

δ1 = 0,

u = max{p̃+ βδ̃1, 0} − p,

where p̃ =
∫
Ω p dx∫
Ω 1 dx

and δ̃1 = δ1∫
Ω 1dx

.

For this example, the convergence behavior of the error and estimator is shown in Figure 2a,
which confirms that both error and estimator converges optimally and also that the estimator
is reliable. The efficiency of the estimator is ensured by efficiency index depicted in Figure 2b.

(a) Error and Estimator (b) Efficiency Index

Figure 2. Error, estimator and efficiency index for Example 6.2
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Example 6.3. In this example, we consider the OCP (6.1) with integral state and integral
control constraints on the domain Ω = (−1, 1)× (−1, 1) with the following data [60]:

y =
−1

2π2
sin(πx1)sin(πx2),

p = sin(πx1)sin(πx2),

yd = −(2π2 +
1

2π2
)sin(πx1)sin(πx2)− 0.6,

f = 0,

δ2 = 0,

δ1 = 0,

β = 1,

u = −p+max{p̃+ βδ̃1, 0},

where p̃ =
∫
Ω p dx/

∫
Ω 1 dx and δ̃1 = δ1/

∫
Ω 1 dx.

We plot the convergences histories for the error and the error estimator in Figure 3a and the
efficiency index in Figure 3b. These figures validates the reliability and efficiency of the error
estimator together with the optimal convergence.

(a) Error and Estimator (b) Efficiency Index

Figure 3. Error, estimator and efficiency index for Example 6.3

Example 6.4. In this example, we consider the problem (5.1)-(5.2) with integral state and
pointwise control constraints. The idea of this example is taken from [38]. Therein, the domain
Ω = (0, 1)× (0, 1) and the exact solution is not known.

yd = 10(sin(πx1) + sin(πx2)),

β = 0.01,

δ3 = 0,

ua = 0 and ub = 30.
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The behavior of error estimator is illustrated in Figure 4a confirming the optimal convergence
and realibility of the error estimator. The adaptive mesh at a certain refinement level is
depicted in Figure 4b.

(a) Estimator (b) Adaptive mesh

Figure 4. Estimator and adaptive mesh for Example 6.4
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