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An Integrated Progressive Hedging and Benders
Decomposition with Multiple Master Method to

Solve the Brazilian Generation Expansion Problem
Alessandro Soares, Alexandre Street, Tiago Andrade, and Joaquim Dias Garcia

Abstract—This paper exploits the decomposition structure
of the large-scale hydrothermal generation expansion planning
problem with an integrated modified Benders Decomposition
and Progressive Hedging approach. We consider detailed and
realistic data from the Brazilian power system to represent hourly
chronological constraints based on typical days per month and
year. Also, we represent the multistage stochastic nature of the
optimal hydrothermal operational policy through co-optimized
linear decision rules for individual reservoirs. Therefore, we
ensure investment decisions compatible with a nonanticipative
(implementable) operational policy. To solve the large-scale op-
timization problem, we propose an improved Benders Decom-
position method with multiple instances of the master problem,
each of which strengthened by primal cuts and new Benders cuts
generated by each master’s trial solution. Additionally, our new
approach allows using Progressive Hedging penalization terms
for accelerating the convergence of the method. We show that
our method is 60% faster than the benchmark. Finally, the
consideration of a nonanticipative operational policy can save
7.64% of the total cost (16.18% of the investment costs) and
significantly improve spot price profiles.

Index Terms—Benders decomposition, generation expansion
planning, hydrothermal power system, linear decision rule, pro-
gressive hedging

NOMENCLATURE

Sets and Indices

ω Index representing the operative scenario ω of
the operation problem (subproblem).

Ω Set containing the scenarios ω.
X Set constraining first stage decisions, i.e., invest-

ment decisions and linear decision rule coeffi-
cients.

ℵt,d Set of feasible hourly operating points modeling
ramping and transmission capacity constraints at
stage t and typical day d.

Ṽt Set of hydro operative constraints at stage t.
Λω Feasibility set representing operational con-

straints.
s Index representing an operative scenario selected

to build a primal cut and identifying a master
problem realization, its trial solution, and optimal
value.
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Constants

pω Probability of scenario ω.
Ht,d Number of hours in typical day d, stage (month)

t.
cv Vector of units’ operational costs.
I Vector of investment costs of generation units.
R Incidence matrix allocating hydros’ outflow to

reservoirs according to rivers topology. Element
(i, j) is −1 if hydro j is directly upstream of
hydro i, diagonal elements are 1, and all other
elements are equal to zero.

at(ω) Vector of hydro inflows at stage t and scenario
ω.

L Hydro selection matrix. Element (i, j) is 1 if gen-
erating unit j is associated with hydro reservoir
i, and 0 otherwise.

P Diagonal coefficient matrix with the productivity
of hydro generators.

G Diagonal matrix with maximum generation ca-
pacity of generating units.

A Generator-to-bus incidence matrix. Element
(i, j) is 1 if generator j is at bus i, and 0
otherwise.

B Susceptance matrix of the DC power-flow ap-
proximation.

Dt,d,h(ω) Vector of demand per bus at stage t, typical day
d, hour h and scenario ω.

W,T Matrices modeling first- and second-stage cou-
pling constraints.

I Cost of first-stage variables.
c Cost for all operational variables.
ρ Progressive hedging static parameter.
wks Progressive hedging dynamic parameter.
x̂ks Candidate solution at scenario s in the iteration

k.
πks Dual variable associated to the constraint that

couples the investment and operation problem,
at scenario s and iteration k.

x̄k Average of the first-stage decision from iteration
k − 1.

Decision Variables

gt,d,h(ω) Generation vector at stage t, typical day d, hour
h, and scenario ω.
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xINV Binary vector of investment decisions (existing
generators are modeled as fixed entries equal to
1).

vt(ω) Vector of reservoirs storage at the end of stage t
and scenario ω.

ut(ω) Vector of amount of water used to generate
electricity during stage t and scenario ω.

st(ω) Vector of water spilled during stage t and sce-
nario ω.

v0(ω) Vector of initial storage condition at stage t and
scenario ω.

θt,d,h(ω) Vector of buses’ phase angle at stage t, typical
day d, hour h and scenario ω.

xLDRt Linear decision rule vector of angular coeffi-
cients for stage t.

xLDRt,0 Linear decision rule vector of linear coefficients
per hydro unit for stage t.

Q(·) Real operational cost function.
x Vector of first-stage decision variables compris-

ing the binary investment variables and linear
decision rule coefficients.

y(ω) Vector of decision variable representing all op-
erative variables at scenario ω.

πω Vector of dual variables associated with
operation-investment coupling constraints at
scenario ω, used to build the Benders cuts.

αω Approximation of the real operational cost at
scenario ω.

I. INTRODUCTION

GENERATION expansion planning (GEP) models aim
to minimize the total cost of investment and operation

through a long-term horizon. They bring relevant insights for
market agents and also provide planners and regulators with
valuable information about long-term equilibrium generation
portfolios under the absence of market power abuse [1], [2].
This is especially relevant in hydrothermal power systems,
where important regulatory and economic metrics needed to
induce efficient generation expansion rely on the assessment
of the opportunity cost of water under a long-term investment
and operational equilibrium. For instance, the current regula-
tory guidelines of the Brazilian power system, relies on the
definition of an indicative generation expansion plan to rank
generators’ offers in new generation auctions. This ranking
process is based on a ($/MWh)–cost-benefit metric calculated
with long-run (equilibrium) spot-price scenarios simulated for
the indicative expansion plan. The indicative plan is obtained
by a simplified GEP model that disregards the effect of
short-term uncertainties and constraints as well as the co-
optimization of investment decisions and the nonanticipative
scheduling of reservoirs. For the interested reader, we refer to
[3] for a short paper on the assessment of the cost-benefit
metric in Brazilian new generation auctions, to [4] for a
more comprehensive reading about related energy auctions and
mechanism used in Latin America, and to [5] for the official
2020 expansion-plan report delivered by the Brazilian system
planner.

GEP models should take into account the main long- and
short-term characteristics of the system and uncertainties to
enhance the description of operational opportunity costs and
thereby the quality of first-stage decisions [6], [7]. Further-
more, this class of models is usually non-convex due to the
necessity of representing integer investment and operative
decisions. Conventional approaches to solve these large-scale
non-convex stochastic programs are: non-linear programming
(NLP); mixed-integer linear programming (MILP); and de-
composition techniques (such as Benders decomposition). All
of these approaches may be used together with approxima-
tions and assumptions to make the problem computationally
tractable [8]. In this context, the search for more efficient
decomposition algorithms is key for the development of more
realistic expansion planning models.

A wide range of applications on GEP are found in the
literature [9], [10], each of which considering different aspects
and system characteristics. In this work, however, we focus
on the specific challenges of hydrothermal power systems
[11], [12]. In this setting, the main challenge is to consider,
within the expansion problem, an integrated and computation-
ally efficient nonanticipative water-value assessment, a rarely
explored subject in the related technical literature as will be
further depicted. Therefore, hydrothermal-based GEP largely
relies on the co-optimization of investment decisions and long-
term multistage stochastic dispatch policies. Also, there are
several other applications with a similar structure, such as
the maintenance optimization problem [13], for which the
algorithms and ideas exploited in this work are also valid.

A. Energy resource planning models

In energy resource planning literature, [14] solves the invest-
ment and operation problems simultaneously. To reduce the
computational burden and avoid decomposition, the authors
adopt a linear relaxation of investment decisions and propose
a clustering method to reduce the number of hours yet keeping
a chronological representation of externalities. A clustering
algorithm is also proposed in [15], where the author shows
the strategy’s effectiveness comparing clustered problems with
the unclustered version. In [16], the authors propose a novel
optimization problem to minimize the approximation errors
of the typical days. Time clustering schemes are commonly
used in the literature as typical days or weeks. For instance,
[17] uses typical days per month and year, and considers a
deterministic model for long-term planning with a detailed
representation of short-term constraints. In this setting, the
problem can be solved without a decomposition approach.
[11] proposes a hydrothermal-based GEP, using typical days
to represent hourly constraints and scenarios to represent
hydro inflow uncertainties. The authors use the progressive
hedging (PH) technique to decompose the problem scenario-
wise. Several other recent planning models in literature adopt
simplifications to make the investment and operational prob-
lems computationally tractable [18], [19].

Notwithstanding, decomposition methods are largely ap-
plied in this subject. For instance, [20] proposes a decompo-
sition approach where the master consists of a deterministic
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TABLE I
PROPOSED APPROACH COMPARED TO LITERATURE

Approach Representation of
Uncertainties

Hourly
constraints

Operational
policy

Binary investment
decision

Co-optimization of
energy and reserves

Decomposition
Technique

Koltsaklis, N. E. et al. (2015) [17] - X - X X -
Pina, A. et al. (2013) [20] - X - X - Feasibility cuts

Li, J. et al. (2018) [21] XA X - X X Column-and-Constraint
Liu, Y. et al. (2018) [22] X X - - - Progressive Hedging

Thome, F. et al. (2019) [23] X - X X X Benders Decomposition
Proposed approach X X XB X X BDPH

A The uncertainties are represented through robust optimization methods
B The hydro operation policy is represented through linear decision rules

investment problem and the subproblem is a detailed short-
term operational problem that produces feasibility cuts. [21]
addresses uncertainties in the net load by a robust optimization
approach, considering uncertainty in the hourly ramping, but
without other detailed short-term constraints. [22] proposes a
multiscale multistage stochastic model, addressing short-term
constraints and uncertainties, and decomposes the problem
with PH, where the problem is convex (with linear investment
and commitment decisions), which guarantees optimal solu-
tions but may not be as fast as BD. Table I summarizes the
comparison between the proposed approach and the related
energy resource planning literature [17], [20]–[23]. In this
table, symbols ”X” and ”-” indicate whether a particular aspect
is considered or not.

B. Decomposition structures

Deterministic planning models can be solved in a reasonable
amount of time, even considering the co-optimization of in-
vestment and operational decisions. Uncertainty representation
drastically increases the size of the problem, leading to in-
tractability issues, especially when the number of scenarios is
large. This is the case for most real problems. Notwithstanding,
these issues can be especially worsened in the presence of
time-coupling constraints requiring a multistage model to char-
acterize the opportunity costs of operational resources such
as water. Hence, decomposition approaches such as PH [24]
and Benders Decomposition (BD) [25] are frequently used.
PH algorithms guarantee convergence to the optimal solution
when the problem is convex. However, since real expansion
problems have binary investment variables, PH is usually used
as a heuristic to obtain solutions [26]. BD techniques guarantee
optimal solutions when first-stage decisions are mixed integer
and the recourse function is convex. The BD approach was
first proposed in the context of GEP by Campodonico et al.
[27] and is used to solve many real problems [28]–[30] since
the optimal solution is guaranteed in a reasonable amount of
time.

The Progressive Hedging (PH) was proposed by Rockafellar
and Wets [24]. It is a decomposition approach based on the
augmented Lagrangian Relaxation. Watson and Woodruff [31]
describe practical details of PH to a class of large scale
stochastic mixed-integer resource allocation problems. Guo et
al. [32] used the PH to speed up a dual-decomposition-based
algorithm, whereas [33] proposed a PH lower bound for two-
stage and multi-stage stochastic mixed-integer programs.

Crainic et al. [34] proposed the partial BD, where they add
a subset of constraints and variables to the master problem.
The algorithm we present in this work improves this idea
by considering multiple copies of the master problem, each
of which accounting for primal cuts generated based on
scenario information and new Benders cuts obtained from
each master’s trial solution. Due to the multiplicity of trial
solutions generated by the information of different scenarios,
we use Progressive Hedging penalization terms to increase the
consensus among trial solutions and accelerate our method.

C. Nonanticipative hydrothermal dispatch

The solution of a long-term GEP problem applied to a
hydrothermal power system requires the consideration of a
multistage reservoir operational policy. The main reason for
that is to avoid the threat of optimistically biasing the water
opportunity-cost assessments based on an anticipative opera-
tional model [35], [36]. In other words, we need to consider in
our GEP a decision rule (see [37]) that is as close as possible
to an implementable (nonanticipative) policy to avoid under
investments due to artificially reduced operational costs (based
on optimistic anticipative policies) that will not be achievable
in practice. In this context, the customary two-stage approxi-
mation – in which given the investment decisions, the system
operation follows with perfect (anticipative) information of the
uncertainty realizations (i.e., per scenario) – is not valid as we
demonstrate in our case study.

A nonanticipative operational policy is a rule defining
decision variables of a given period t based on previously
reveled information, i.e., without assuming access to the infor-
mation of uncertainty factors after t. The linear decision rule
(LDR) methodology defines an implementable nonanticipative
policy based on an optimized linear combination of functions
applied to the previously revealed uncertainty scenario. [38]
first proposed the LDR for reservoir management, and this
approach is gaining more and more attention in the literature
(see [39]–[41] and [42]). Notwithstanding, to the best of
the authors knowledge, the consideration of LDR to address
the relevant piece of realism of considering nonanticipative
multistage stochastic dispatch policies within a hydrothermal
GEP model has not being addressed before. Thus, in this
work, we propose a new stochastic hydrothermal GEP with
multistage (nonanticipative) dispatch policy based on LDRs.
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D. Contributions and work organization

The main contributions of this work are threefold:
• A new hydrothermal GEP model considering nonantic-

ipative multistage stochastic dispatch policies through
linear decision rules. Out-of-sample tests based on real
data demonstrate that the consideration of more realistic
nonanticipative dispatch policies has significant impacts
on first-stage investment decisions and subsequent oper-
ation costs and spot-price profiles.

• An improved Benders Decomposition with multiple mas-
ter problems (BDMM) method, each of which strength-
ened by primal cuts based on scenario information and
new Benders cuts generated by each master’s trial solu-
tion.

• Leveraging the diversity of trial solutions our BDMM
method provides, we combine the proposed BDMM with
Progressive Hedging penalization terms to find a con-
sensus among the multiple solutions and accelerate the
proposed method. Therefore, we propose a novel accel-
erated Benders Decomposition with Multiple Masters (a-
BDMM) method based on the Progressive Hedging (PH)
consensus idea.

The remainder of this paper is organized as follows. In
Section II, the GEP problem is introduced and formulated. The
decomposition algorithm is presented as the solution strategy
to solve the problem in Section III. Section IV provides
numerical results illustrating the performance of the proposed
algorithm and an analysis of the anticipative policy in the GEP
formulation. Finally, in Section V final remarks are drawn.

II. THE GENERATION EXPANSION PLANNING MODEL

This section introduces the GEP problem formulation as a
MILP optimization problem, which will be referred to as the
Deterministic Equivalent (DE) problem. We assume a discrete
and finite sample space Ω = {1, .., ω, ...}, in which each
scenario ω is assumed to have a known conditional probability
pω . For the operational variables, we use a LDR to consider
a monthly nonanticipative multistage operational policy under
uncertainty of inflows [42], [43] for the reservoirs.

The system operation constraints and costs are computed
within an hourly resolution based on monthly hydro generation
targets dictated by the LDR. Thus, based on monthly inflow
scenarios and subsequent hydro generation amounts given by
the LDR, the uncertainties of intermittent renewable sources
are used to define the operation of typical (representative) days
within an hourly granularity. In this sense, we approximate
the daily operation within each stage (months) by weekdays,
weekends, and holidays multiplied by their number of hours
per month. Hourly scenarios for renewables are conditionally
generated based on the inflow scenarios to present correlations.

Mathematically, for each month (stage) t ∈ T and scenario
ω ∈ Ω we have: i) strategic stagewise decisions, such as
ut(ω), st(ω), vt(ω), defining the total amount of water used
to generate electricity and spilled during the stage, and the
storage level at the end of the stage; ii) short-term operational
decisions, such as gt,d,h(ω), θt,d,h(ω), defining the hourly
generation and the bus angles for each typical day d ∈ D and

hour h ∈ H of the stage t; iii) constraints linking strategic
and short-term decisions, Put(ω) = L

∑
d,hHt,dgt,d,h(ω);

and iv) xINV and (xLDRt,0 , xLDRt ) representing the investment
decisions and LDR coefficients (first-stage decision vectors).
The proposed model is detailed as follows in expressions (1)-
(10):

min I>xINV +
∑
t,d,h,ω

pωc
>
v Ht,dgt,d,h(ω) (1)

s.t.

gt,d,h(ω) ≤ GxINV ∀t, d, h, ω (2)

ut(ω) = xLDRt,0 + xLDRt at(ω) ∀t, d, h, ω (3)

vt(ω) = vt−1(ω) + at(ω)−R(ut(ω) + st(ω)) ∀t, ω (4)
vT (ω) ≥ v0(ω) ∀t, ω (5)

Put(ω) = L
∑
d,h

Ht,dgt,d,h(ω) ∀t, ω (6)

Agt,d,h(ω) +Bθt,d,h(ω) = Dt,d,h(ω) ∀t, d, h, ω (7)
{gt,d,h(ω), θt,d,h(ω)}h ∈ ℵt,d ∀t, d, ω (8)

{vt(ω), ut(ω), st(ω)} ∈ Ṽt ∀t, ω. (9)

{xINV , xLDRt,0 , xLDRt } ∈ X (10)

We present a compact vector formulation using matrices
defined in the nomenclature section. We omit the sets in which
indexes range for the sake of conciseness1. The objective func-
tion (1) has two parts, the investment cost and the present value
of the expected operational costs. Constraint (2) represents the
relation between investment and operational decisions, i.e.,
a generating unit is only available to produce energy if the
investment cost was paid. Constraint (3) represents the linear
decision rule. In this expression, xLDRt,0 and xLDRt are decision
variables representing the vector of linear and matrix of angu-
lar coefficients defining the LDR, respectively. Hence, turbine
outflows must be affine functions of the inflows. Constraint (4)
describes for each reservoir the water mass balance equation,
where the final volume of each reservoir at the end of stage t is
equal to its initial volume, plus the incoming inflow, minus the
total net water discharged downstream. Note that the matrix
R accounts for the hydro cascades as per its definition in
the nomenclature section. Constraint (5) represents the hydro
operational strategy used to prevent the end-of-horizon effect.
This constraint aims to obligate the model to use only the water
that arrives along the years in the study horizon, representing a
cyclic and sustainable usage of the water resources. Constraint
(6) refers to the hourly hydro generation modeling, where
an average productivity approximation is considered for each
hydro as widely adopted in long-term studies (see relevant
publications in the last three years [36], [45]–[47]). Constraint
(7) refers to the load balance, in which the sum of generation
in each bus plus net energy transfer must match the demand.
Note that power flows are represented by angle differences
multiplied by line sucesptance following the widely used DC
power-flow approximation for the AC network model [45].
Constraint (8) represents other operational constraints, such as

1We refer the interested reader to [44] for an extensive and detailed
formulation of the operational model that is similar to the one used in this
paper.
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ramping constraints and limits on angle differences modeling
transmission lines maximum flow capacity, suppressed to keep
the formulation compact. Constraint (9) represents physical
bounds on the hydro plant variables, such as minimum and
maximum values for water storage, maximum generation
and spillage. Finally, expression (10) represents generic con-
straints on the first-stage variables (investment variables and
coefficients of the linear decisions rules). For the case of
investment variables, (10) allows considering target capacity,
energy policies, and other constraints on investment decisions.
Additionally, it also allows for the consideration of constraints
on the LDR coefficients. Notwithstanding, in this work we
only considered the binary nature of investment decisions.

III. SOLUTION STRATEGY

Problem (1)-(10) provides optimal investment decisions
considering a multistage stochastic operational policy. How-
ever, because we are using a LDR parametrization, the prob-
lem can be formulated as a large-scale multiperiod two-
stage stochastic optimization problem, where the LDR is
estimated as part of first-stage variables. To efficiently solve
this problem, in the next sections, we present a variant of the
Benders decomposition approach. For the sake of simplicity
and didactic purposes, we re-write problem (1)-(10) in a
compact formulation as follows:

min I>x+
∑
ω∈Ω

pωc
>yω (11)

s.t. Wyω − Tx ≤ hω ∀ω ∈ Ω (12)
x ∈ X , yω ∈ Λω ∀ω ∈ Ω, (13)

where, yω is the vector comprising the operational variables
(gt,d,h(ω), θt,d,h(ω), vt(ω), ut(ω), st(ω)); Λw is a set con-
taining the feasibility constraints (4)-(9); x is the vector
comprising the first-stage variables (xINV , xLDRt,0 , xLDRt ); and
constraint (12) couples the first- and second-stage variables
corresponding to (2)-(3).

A. Traditional Benders decomposition

Now we present the traditional Benders decomposition
(TBD) applied to solve problems (11)-(13). We decompose
the problem into master and subproblem problems. The master
selects the first-stage variables (vector x comprising invest-
ment and LDR coefficients), while the subproblem evaluates
the recourse function, Q(x), by solving the operative problem
given x.

So, we start defining the recourse function (the expected
cost of the second-stage) for a given point x as follows:

Q(x) =
∑
ω∈Ω

pωqω(x). (14)

The evaluation of Q(x) can be decomposed per scenario ω
and solved in parallel. For each scenario, qω(x) represents the
second-stage cost and can be calculated as follows:

qω(x) = min c>yω (15)

s.t. Wyω ≤ Tx+ hω :
dual−−−→ πω (16)

yω ∈ Λω, (17)

where πω is the dual of constraint (16), and π>ω T is a
subgradient of qω with respect to x. Then, for a given iteration
k of the algorithm, we run the master problem to obtain a new
trial solution, x̂k, and a lower bound, LBTBD. The master is a
relaxation of problem (1)-(10) because the recourse function is
approximated from below by supporting planes. These planes
are also called Benders cuts and are obtained in previous
iterations of the method. Using the multi-cut method [48], the
master problem of a TBD returns a new trial solution and a
lower bound as follows:

zk, x̂k ← min I>x+
∑
ω∈Ω

pωαω (18)

s.t. αω ≥ qω(x̂j) + (πjω)>T (x− x̂j)
∀ω ∈ Ω, j ∈ [k − 1] (19)

αω ≥ 0 ∀ω ∈ Ω, x ∈ X , (20)

where αω represents the best approximation of the epigraph
of qω until iteration k. Furthermore, hereinafter, we adopt the
notation in which [k − 1] = {1, ..., k − 1} and [0] = ∅. Then,
by solving (15)–(17) for the newly obtained trial solution x̂k,
a new Benders cut can be generated to feed the next iteration
master problem. Additionally, a lower and upper bound can be
assessed to check the optimality GAP of the current solution
as follows:

LBTBD = zk (21)

UBTBD = I>x̂k +Q(x̂k). (22)

If the GAP = UBTBD−LBTBD ≤ ε, then the algorithm stops
and xk is returned as the optimal solution. Otherwise, the k
is incremented, and the master problem is called once again.

B. The Benders Decomposition with multiple master problems

In this section, we present our proposed BDMM method.
Firstly, we make S = |S| copies of the master problem (18)-
(20), i.e., in each iteration of our BDMM method we define
one master problem for each s ∈ S . Secondly, each master
problem, now indexed by s, instead of considering only Ben-
ders cuts, also considers the second-stage primal constraints
associated with a given scenario s. It is worth highlighting that
S could be generated based on different clustering strategies.
Hence, we will develop our method for a general set S.
However, in this paper, we will use S = Ω, which may lead
us to interpret the multiple masters as a stochastic master
problem. Then, we end up with S = |Ω| master problems,
each of which differing from each other by a (stochastic)
primal cut related to a given scenario. Furthermore, due to the
multiplicity of master problems, multiple (S) trial solutions
are also generated. Therefore, for each one of the S newly
generated points {xks}s∈S , the multi-cut approach generates
|Ω| new cuts, each of which approximating one function in
{qω(·)}ω∈Ω. Consequently, in each master problem s of a
given iteration k, a total of S · |Ω| Benders cuts are considered
for each previous iterations. Thus, the s–master problem and
the associated lower bound and trial solution are defined as
follows:
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zks , x̂
k
s ← min I>x+

∑
ω

pωαω (23)

s.t. αω ≥ qω(x̂js′) + (πjω,s′)
>T (x− x̂js′)

∀ω ∈ Ω, s′ ∈ S, j ∈ [k − 1] (24)

αs ≥ c>ys (25)
Wys − Tx ≤ hs (26)
ys ∈ Λs (27)
x ∈ X . (28)

Note that traditional Benders cuts are built based on local-
dual information of the recourse problem, thereby providing
the master problem with loose linear approximations of the
recourse function. The primal cut defined by (25)–(27), on
the other hand, provides a much richer polyhedral information
about the second stage to the master problem. This improve-
ment proposed in this work is inspired by the success of
column-and-constraint-generation algorithms applied to robust
optimization, where few primal cuts are actually needed to
support the optimal decisions (see [49]). Furthermore, the
number of Benders cuts in (24) is S times greater than in the
TBD method, which significantly improves the description of
the recourse function.

After solving the S instances of the master problem, we
have {zks , x̂ks}s∈S . Because all values in {zks }s∈S are valid
lower bounds for the problem, an improved Benders lower
bound can be calculated based on the maximum among all
values, i.e.,

LBBDMM = max
s∈S
{zks }. (29)

A similar approach can be used to improve the upper bound.
By evaluating the recourse function on each x̂ks , we get S new
candidates for upper bounds, {I>x̂ks +Q(x̂ks)}s∈S . Thus, we
can select the lowest upper bound, i.e., we define

UBBDMM = min
s∈S
{I>x̂ks +Q(x̂ks)}, (30)

and store the solution associated with the best upper bound,
x̂k(s∗), as the best trial solution at iteration k. A comparison
with the best solution found so far is also advisable to keep
the global best solution at hand.

Finally, note that a lower and upper bound comparison
between the TBD and the proposed BDMM is not directly
possible because the two methods should follow different
paths. However, it is clear that the BDMM provides tighter
approximations in every master problem since the first itera-
tion. The improvement in lower bounds comes at the cost of a
higher computational effort. The tradeoff between improving
the lower bound assessment and the additional computational
effort will be depicted in our Case Study Section. Leveraging
the diversity of trial solutions our BDMM method provides,
in the next section, we propose a novel acceleration scheme.

C. Accelerating convergence of the Benders Decomposition
with multiple masters

Now we present a new consensus scheme based on the PH
method to accelerate our BDMM. To do that, we add the PH

penalty terms in the master problem formulation (23)-(28).
So, we rewrite the master problem (23)-(28) as problem (31)-
(32), adding the terms related to the augmented Lagrangian
relaxation following the PH approach (see [33]).

x̂ks ← min I>x+
∑
ω

pωαω+

ρ

2
‖x− x̄k‖2+wk>s (x− x̄k) (31)

s.t. Constraints (24)–(28). (32)

Then, after solving the S master problems, following the
BDMM approach, wks is updated following the sub-gradient
method, i.e.,

wk+1
s = wks + ρ(x̂ks − x̄k) (33)

where x̂ks is the solution of the problem (31)-(32) from the
iteration k and scenario s, and x̄k is the average of all the S
trial solutions obtained with (31)-(32) at iteration k.

To obtain a lower bound, however, we have to solve the
following modified version of the problem, which considers
only the simple Lagrangian relaxation (without the quadratic
terms):

ζks = min I>x+
∑
ω

pωαω + wk>s (x− x̄k) (34)

s.t. Constraints (24)–(28). (35)

Thus, the lower bound can be calculated as follows:
Theorem 1. Problem (11)-(13) admits the following lower
bound:

LBa-BDMM =

S∑
s=1

psζ
k
s . (36)

Although slightly different, the proof to Theorem 1 goes very
much like that provided in [33]. Therefore, for the sake of
conciseness, we omit the proof here. Finally, the upper bound
remains unchanged and follows expression (30). The proposed
a-BDMM algorithm is summarized as follows:

Algorithm 1 The proposed a-BDMM method
1: Initialization (ρ← input)
2: k ← 0, GAP k ← +∞, wk

s ← 0 ∀s ∈ S
3: while GAP k > ε do
4: k ← k + 1
5: for each s ∈ S (computed in parallel) do
6: Solve master problem (31)–(32) and store xks
7: for each ω ∈ Ω: compute qw(xks ) and store πk

ω,s

8: Solve problem (34)–(35) and store ζks
9: end for

10: Compute:
11: x̄k ←

∑
s∈S

psx̂
k
s

12: LBk
a-BDMM ←

S∑
s=1

psζ
k
s

13: UBk
a-BDMM ← min

s∈S
{I>x̂ks +Q(x̂ks )}

14: GAP k ← UBk
a-BDMM − LBk

a-BDMM

15: wk+1
s ← wk

s + ρ(x̂ks − x̄k)

16: end while
17: Return solution with the lowest UB so far
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IV. CASE STUDY - THE BRAZILIAN POWER SYSTEM

This section will study the proposed a-BDMM method to
solve the GEP for the Brazilian power system. The Brazilian
power system is interconnected by a transmission network
comprising 50 transmission lines connecting subsystems. The
system has 550 thermal plants, 150 renewable plants, 200
hydro plants, 10 batteries, and 35 buses. We considered
monthly stages (time steps), with three typical days per stage
(week, weekend, and critical days), each of which comprised
of 24 hours. For each hydro unit, an affine policy with 24
coefficients is considered. The database configuration is based
on a joint work of the system planning company (representing
the Brazilian Energy Ministry) and private companies (market
players and consulting companies) to study the impact of the
large integration of renewables in the Brazilian system [50].
The main assumptions are:
• The PDE 2026 final system configuration is used as a

starting point (see in [5]).
• A target year is used where the demand is considered

to be twice the demand of 2017, which amounts to 166
GW/1200 TWh (peak/annual energy).

• Annualized investment costs for the target year are used.
The complete data set used in this work can be found at
[51]. The complexity of the co-optimization of discrete in-
vestment decisions and long-term hydrothermal operational
actions (optimal reservoir management) requires improved
methods to enable assessments with large details from both
long- and short-term uncertainties. Therefore, we compare the
proposed a-BDMM method against the TBD, the BDMM,
and the deterministic-equivalent (DE) formulation (11)-(13)
solved directly through a MILP algorithm. We compare the
algorithm in terms of number of iterations and computational
time. The analyses include 10 instances considering 5, 10,
..., 50 scenarios in Ω representing uncertainties in renewable
generation, hydro inflows, and demand. Furthermore, we also
analyze the effects of the nonanticipativity constraints in the
expansion planning.

We used the following relevant parameters for the algorithm:
GAP tolerance of 0.1%; the maximum number of Benders it-
erations equal to 200; 12 stages representing months; and three
typical days (weekdays, weekend days, and a critical day) for
each stage. Because the proposed method significantly benefits
from parallelism, we used the same computational resources
to compare all methods. We used the Xpress solver (FICO,
optimizer version 34.01) and an Amazon EC2 c5.12xlarge
computer (48 processors and 96 GB of RAM).

It is relevant to highlight that vector x comprises very dif-
ferent components, with different images and different weights
in the original objective function (11). While investment de-
cisions are binary and already appear in the original objective
function weighted by investment costs, LDR coefficients are
real numbers and do not participate in the original objective
function. Therefore, in our implementation, we modified the
penalization term ρ

2‖x − x̄
k‖2 from expression (31) to con-

sider different penalty weights for components in xINV and
(xLDRt,0 , xLDRt ). Therefore, we used the following quadratic
penalty term:

1

2
‖xINV − xINV ‖2diag(I)+

1

2
‖xLDRt − xLDRt ‖2+

1

2
‖xLDRt,0 − xLDRt,0 ‖2, (37)

where, ||x||2P= x>Px, when P is the identity we omit the
subscript. diag(·) converts a vector into a diagonal matrix.
Hence, the first term is weighted by investment costs I. In
this context, the quadratic deviation of investment decisions is
penalized with half of their original weight (investment costs),
whereas deviations of LDR coefficients are penalized with
ρ = 1. This selection strategy constitutes a selection rule that
improved the algorithm’s efficiency (in terms of iterations) for
all tested instances.

In the following sections, we analyze the performance, in
terms of iterations and computational time, of the proposed
method for different instance sizes, and the impact of nonantic-
ipativity in the investment decisions, total cost and spot prices.

A. Analysis of the decomposition algorithm

Table II summarizes some macro results of the proposed
a-BDMM method for some selected instances. The number of
constraints and variables are referring to the size of the DE
version of the problem (instance (11)-(13)).

TABLE II
RESULTS OF THE PROPOSED ALGORITHM FOR SOME INSTANCES

(IDENTIFIED BY THE NUMBER OF SCENARIOS CONSIDERED)

|Ω| 15 25 30 50
Constraints (106) 17.5 29.2 35.0 58.4
Variables (106) 24.5 40.8 49.2 81.6
Execution time (min) 28 65 120 206
Number of iterations 36 33 37 31
Upper bound (M$) 71,423 57,087 42,600 30,036
Lower bound (M$) 71,359 57,053 42,562 30,012
Optimality GAP (%) 0.09 0.06 0.09 0.08

Table III shows, for each instance and method, the number
of iterations required to achieve a GAP of 0.1%. Note that the
number of iterations required by the proposed BDMM method
is always smaller than that required by the TBD. Furthermore,
the a-BDMM method further reduced this number, showing
that the PH consensus scheme is effective in reducing the
number of Benders loops needed to achieve the required
GAP. Indeed, the a-BDMM required, on average (over all
instances), 53% fewer iterations than the BDMM and 68%
fewer iterations than the TBD. So, results show that the
proposed a-BDMM method outperforms the benchmarks in
terms of Benders iterations needed to solve the GEP for the
Brazilian power system.

Table III also shows that the DE converges faster than the
TBD and the proposed BDMM as long as the computer’s
memory is enough to address the problem. However, for
larger instances in which MILP solvers fail to address the
DE, Benders’ approaches are still capable of providing high-
quality solutions. Notwithstanding, it is important to highlight
that the proposed a-BDMM breaks this pattern, achieving the
required GAP faster than all methods for the larger eight out
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of ten tested instances. After considering 25 scenarios, the
DE method fails to load the problem. Additionally, the same
pattern observed for the number of iterations was observed for
the computational time. The BDMM outperformed the TBD,
and the a-BDMM outperformed the BDMM. Indeed, the a-
BDMM is, on average (over all instances), 46% faster than the
BDMM and 60% faster than the TBD. PH did not converge
to the target gap after 500 minutes, thus we omitted PH from
table III.

TABLE III
NUMBER OF ITERATIONS AND COMPUTATIONAL TIME FOR DIFFERENT

INSTANCE SIZES AND METHODS

Number of Benders loops (iterations) Execution time (in minutes)
|Ω| TBD BDMM a-BDMM TBD BDMM a-BDMM DE
5 176 78 34 29 17 11 7

10 132 82 33 48 33 17 11
15 136 89 36 88 59 28 31
20 125 83 36 132 88 46 59
25 113 83 33 193 142 65 -
30 101 72 37 276 203 120 -
35 87 64 34 287 226 135 -
40 73 61 32 252 237 131 -
45 88 70 33 356 320 163 -
50 78 63 31 443 407 206 -

For comparison purposes, the algorithm a-BDMM presented
a total execution time of 206 minutes for the 50-scenario
instance, where 21% (44 minutes) was used to solve the master
problems and 79% (162 minutes) to solve the subproblems.

Finally, Figure 1 and Figure 2 compare the convergence over
time of the a-BDMM, BDMM, and TBD, for the instance
with 50 scenarios. It’s clear that the convergence of the a-
BDMM outperforms the BDMM and TBD. Also, after 1 hour
of running time, the GAP values are: 9.76% for the a-BDMM;
53.15% for the BDMM; and 490% for the TBD. The GAP
after 2 hours decreases to: 1.59% for the a-BDMM; 11.75% for
the BDMM; and 68.3% for the TBD. These results corroborate
the superiority of our proposed method to solve the GEP for
the Brazilian system.

Fig. 1. Lower and upper bound for each algorithm

B. Benefits of a nonanticipative operational policy

This section analyzes the benefits of considering a multi-
stage (nonanticipative) operational policy when deciding the

Fig. 2. Log of absolute GAP for each algorithm

investment plans for the Brazilian power system. To do that,
we consider two cases:

Nonanticipative policy – We solve problem (11)-(13) with
the a-BDMM algorithm and |Ω50|= 50 scenarios (the same
case study analyzed in Section IV-A). The operational results
obtained in the optimization will be referred to as in-sample.
Then, we fix the optimal value obtained for x∗ and evaluate
Q(x∗) with |Ω1000|= 1000 scenarios (i.e., we evaluate the
operational part of the problem, (14), with one thousand
unseen scenarios). These results will be referred to as ”out-
of-sample”.
Anticipative policy – We solve the same problem (11)-(13),
disregarding the nonanticipative constraints (3) for |Ω|= 50.
In this context, we are considering an anticipative approx-
imation for the hydrothermal dispatch costs when deciding
the generation investment plans. Then, as in the previous
case (Nonanticipative), we will provide results for both in-
sample and out-of-sample cases. However, in order to assess
the benefit of a multistage nonanticipative operational policy
when making investment decisions in hydrothermal power
systems, the out-of-sample analysis must be carried out based
on an implementable (nonanticipative) policy. To do that,
we fix the optimal investment part of the solution found
with the anticipative approximation, i.e., xINV ∗A , load the
nonanticipative constraints to the in-sample problem, and solve
it again to define xLDR∗(xINV ∗A ). Then, with the complete
first-stage vector, x∗A = [xINV ∗A xLDR∗(xINV ∗A )], we evaluate
the out-of-sample operational cost. To do that, we use the same
1000 scenarios used in the out-of-sample evaluation of the
Nonanticipative policy.

Notwithstanding, it is clear that the Anticipative policy is
motivated by its lower computational burden. In this case
study, the in-sample optimization of the Nonanticipative policy
took 206 min, whereas the Anticipative case took 68 minutes.
Therefore, this work aims to highlight the benefits of consid-
ering a nonanticipative operational policy to justify its higher
computational times. In our comparison, we used the following
metrics:
• Expected total cost – assessed with out-of-sample nonan-

ticipative operational results.
• Regret – measured as the difference between the in-
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sample and out-of-sample expected total cost.
• The average spot price – assessed with out-of-sample

operational results.
• The 95th-percentile of the spot price – assessed with out-

of-sample operational results.
• The average uncertainty level of spot price – assessed

with out-of-sample operational results. This metric is

defined as (see [52]):
1

|T |

|T |∑
t=1

(
Q95%
t −Q5%

t

)
, where

Qα%
t represents the α% quantile of a given variable at

stage t.
• The time variability of the spot price – assessed with

out-of-sample operational results. This metric is defined

as (see [52]):
1

|T |−1

∑
ω∈Ω1000

pω
|T |∑
t=2

∣∣∣∣πt,ω − πt−1,ω

πt−1,ω

∣∣∣∣.
• Value of the nonanticipative policy – the difference be-

tween the expected total cost, assessed with out-of-sample
operational results, of the Anticipative and Nonantici-
pative policies, i.e., V NAP = I>x∗A + QΩ1000

(x∗A) −
(I>x∗ +QΩ1000

(x∗)).

Table IV shows the in-sample and out-of-sample costs for
both Anticipative and Nonanticipative policies. Table IV shows
that the anticipative policy, albeit 10,364M$ cheaper than
the Nonanticipative when analyzed with in-sample results, is
actually 6,579M$ (or 8.27%) more expensive when analyzed
with out-of-sample results. This difference defines the benefit
or value of considering a Nonanticipative policy when making
the investment decisions: V NAP = 86, 116 − 79, 537 =
6, 579M$ in absolute terms, or 7.64% of the total cost and
16.18% of the investment cost obtained with the Anticipative
policy. The difference between what was expected when
optimizing and what we got when actually implementing the
solutions defines the regret metric, which values 20,679 M$
(or 24% of the total cost and 50.85% of the investment cost
obtained with the anticipative operational policy).

TABLE IV
IMPACT OF THE STOCHASTIC POLICY IN TERMS OF TOTAL COST

In-sample results

Policy Investment cost
(M$)

Operational cost
(M$)

Total cost
(M$)

Anticipative 40,662 24,775 65,437
Nonanticipative 42,646 33,155 75,801

Difference -1,984 -8,380 -10,364
Out-of-sample results

Policy Investment cost
(M$)

Operational cost
(M$)

Total cost
(M$)

Anticipative 40,662 45,454 86,116
Nonanticipative 42,646 36,891 79,537

Difference -1,984 8,563 6,579

Figure 3 shows the 90% confidence interval for the spot
price for both policies. Since both cases considered intercon-
nections between areas, the spot prices for each of the regions
are exactly the same. This figure shows that the investments
made under an anticipative policy, when actually operating
the system, produce much higher and uncertain spot prices.
Furthermore, Table V shows the metrics presented at the

beginning of this section. We can see that, besides being
8.27% more expensive, the non-implementable policy brings
higher spot price on average and for high quantiles, higher
volatility (uncertainty level) and higher temporal variability.
Additionally, the deficit risk for the Nonanticipative policy
achieved a 0% probability in the out-of-sample, while the
Anticipative policy exhibited several scenarios with deficit as
shown in Figure 4.

These results are consistent with the results obtained in
previously reported works where simplifications were used
in the opportunity cost assessment [7], [36]. In this work,
however, we extend this idea to the expansion planning level.

Fig. 3. 90% confidence interval of energy spot prices for both Antecipative
and Nonanticipative policies

Fig. 4. Variability and amount of deficit for the Anticipative policy

V. CONCLUSIONS

This work presented a novel Benders Decomposition with
multiple master (BDMM) problems. We show that the pro-
posed method significantly improves the performance of the
traditional Benders decomposition by using different parallel
master problems, each of which considering a primal cut
associated with a given scenario. Furthermore, we also propose
a novel acceleration approach for our BDMM (a-BDMM). The
proposed approach is based on the consensus idea behind the
Progressive Hedging method and is capable of significantly
reducing convergence times when applied to the hydrothermal
generation expansion planning problem.

In this work, we studied the Brazilian hydrothermal power
system, which highly relies on the assessment of the oppor-
tunity cost of water through multistage nonanticipative opera-
tional policies. We show that the consideration of a multistage
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TABLE V
OUT-OF-SAMPLE METRICS FOR THE TEMPORAL INCONSISTENCY

Policy Total costs
(M$)

Regret
(M$)

Average spot
price (R$/MWh)

95th-percentile of
the spot price (R$/MWh)

Average uncertainty level
of the spot price (R$/MWh)

Time variability
of the spot price (%)

Anticipative 86,116 20,679 335.4 900.9 1276.7 105
Non Anticipative 79,537 3,736 156.2 542.9 478.0 65

Difference 6,579 16,943 179.2 358.0 798.7 40

nonanticipative policy, rather than the less computationally
intensive anticipative approximation, brings relevant benefits
to the optimal investment decisions. The proposed a-BDMM
has shown to be crucial for solving the large-scale Brazilian
case.

Based on realistic data from the Brazilian power system (see
[51] based on [50]), the case studies presented in this work
allow us to convey the following concluding remarks:

• The proposed BDMM method outperforms the traditional
Benders decomposition benchmark in both the number of
iterations (30% on average) and computational time (23%
on average) under the same computational resources.

• The proposed a-BDMM method outperforms the BDMM
in both number of iterations (53% on average) and
computational time (46% on average). So, the proposed a-
BDMM outperforms the traditional Benders decomposi-
tion in terms of the number of iterations (68% on average)
and computational time (60% on average).

• The proposed a-BDMM can solve large-scale instances
of the Brazilian expansion planning problem consider-
ing the co-optimization of discrete investment decisions
and nonanticipative (multistage stochastic) long-term hy-
drothermal operational actions to manage reservoir levels.

• The value of considering the nonanticipative hydrother-
mal operational policy (multistage dispatch under uncer-
tainty) when deciding the investment plans is 6,579 M$,
i.e., 16.18% of the investment costs obtained with the
Antecipative policy.

• Regarding the spot price profile, the consideration of a
nonanticipative operational policy brings other benefits
in comparison to the anticipative counterpart, namely,
(i) a reduction of 53.4% on the expected annual prices,
(ii) a reduction of 39.7% on the 95th-percentile of the
annual prices, (iii) a reduction of 62.6% on the price
uncertainty metric; and (iv) a reduction of 38% on the
temporal variability metric.

• The regret of considering an anticipative (non-
implementable) operational policy in the expansion
problem is 20,679 M$, which is 51% of the investment
cost.
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