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Abstract

The paper treats the problem of optimal distributed control of a Cahn–Hilliard–

Oono system in R
d, 1 ≤ d ≤ 3, with the control located in the mass term and

admitting general potentials that include both the case of a regular potential and

the case of some singular potential. The first part of the paper is concerned with the

dependence of the phase variable on the control variable. For this purpose, suitable

regularity and continuous dependence results are shown. In particular, in the case

of a logarithmic potential, we need to prove an ad hoc strict separation property,

and for this reason we have to restrict ourselves to the case d = 2. In the rest of

the work, we study the necessary first-order optimality conditions, which are proved

under suitable compatibility conditions on the initial datum of the phase variable
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and the time derivative of the control, at least in case of potentials having unbounded

domain.

Key words: Cahn–Hilliard equation, logarithmic potential, regular potential, op-

timal control problem, strict separation property, necessary optimality conditions.

AMS (MOS) Subject Classification: 35K52, 35D35, 49J20, 49K30, 35Q92,

35Q93

1 Introduction

In this paper, we study the following PDE system, referred to in the literature as the
Cahn–Hilliard–Oono (CHO) system (cf. [40–42]), which is of great interest in the study
of pattern formations in phase-separating materials:

∂tϕ+ ǫ(ϕ− ĉ )−∆µ = 0 in Q := Ω× (0, T ), (1.1)

µ = −∆ϕ + f ′(ϕ) in Q, (1.2)

∂νµ = ∂νϕ = 0 on ∂Ω × (0, T ), (1.3)

ϕ(0) = ϕ0 in Ω. (1.4)

Here, Ω is the domain in R
d, 1 ≤ d ≤ 3, where the evolution takes place, and T is

some final time. In (1.3), ∂ν denotes the outward normal derivative on the boundary
∂Ω. In the above equations, the unknowns are ϕ, the order parameter representing the
relative monomer concentration difference, and µ, the chemical potential, while ĉ is a
prescribed mass average, ǫ is a given phenomenological constant, and f ′ is the derivative
of a double-well potential f . Finally, ϕ0 is a given initial datum.

Typical and important examples for f are the so-called classical regular potential and
the logarithmic double-well potential , which are the semiconvex functions given by

freg(r) :=
1

4
(r2 − 1)2 , r ∈ R, (1.5)

flog(r) := (1 + r) ln(1 + r) + (1− r) ln(1− r)− c1r
2 , r ∈ (−1, 1), (1.6)

where c1 > 1 so that flog is nonconvex. Another example is the double obstacle potential ,
where, with c2 > 0,

f2obs(r) := −c2r
2 if |r| ≤ 1 and f2obs(r) := +∞ if |r| > 1. (1.7)

In cases like (1.7), one has to split f into a nondifferentiable convex part (the indicator
function of [−1, 1] in the present example) and a smooth perturbation. Accordingly, one
has to replace the derivative of the convex part by the subdifferential and read (1.2)
as a differential inclusion. The coefficients c1 and c2 are related to the critical absolute
temperature at which the phase separation takes place.

System (1.1)–(1.2) can be seen as a Cahn–Hilliard equation with reaction and turns out
to be useful in several applications such as biological models [33], inpainting algorithms [3],
and polymers [1]. Indeed, taking ǫ = 0, the CHO equation reduces to the classical Cahn–
Hilliard (CH) equation (see [4, 7, 8]). The main feature of (1.1) is that, contrary to the



The Cahn–Hilliard–Oono system with control in the mass term 3

classical CH equation, it does not imply the conservation of total mass. Indeed, integrating
it over Ω and using the boundary and initial conditions (1.3)–(1.4), one finds that

ϕ(t) = ĉ+ e−ǫt(ϕ0 − ĉ) for any t ≥ 0,

where ϕ(t) := 1
|Ω|

∫
Ω
ϕ(t) dx denotes the mean value over Ω at time t. We notice that

we have mass conservation only in the case ϕ0 = ĉ. In all other cases, the time func-
tion ϕ(t) converges exponentially fast to ĉ as t goes to +∞. Hence, the reaction term
present in (1.1) accounts for long-range interactions. Of course, more general terms, in
particular nonlinearities, could be considered (cf., for example, [34], where the nonlocal
CH equation with nonlinear reaction term was analyzed). Moreover, let us notice that the
interest of including reaction terms in CH-type systems is particularly increasing due to
the development of diffuse interface models of tumor growth coupling CH with nutrient
diffusion and other equations. Indeed, in this class of models the parameter ϕ should be
intended as the concentration of the tumor phase, and so, in this case, it is of particu-
lar interest not to have mass conservation, but to observe a possible growth or decrease
of the tumor mass, due to the proliferation or death of cells. In this respect, we may
quote [9–13, 18, 24–27, 36, 43, 44] and the references therein for results on well-posedness,
long-time behavior of solutions, asymptotic analyses, and optimal control, related to tu-
mor growth models. More recently, always in the framework of tumor growth dynamics,
in [32] a generalized CHO equation has been coupled with an Hele–Shaw equation, and
global well-posedness and regularity results have been proved in the 2D case.

The solvability and the existence of global and exponential attractors for the CHO
equation with regular potential (1.5) have been studied in [35], while in [31] the authors
investigated the case of the singular logarithmic type potential (1.6), by establishing some
regularization properties of the unique solution in finite time. Both in 2D and 3D they
proved the existence of a global attractor; moreover, in the 2D case, taking advantage of
their proof of a strict separation property, the authors of [31] also showed the existence of
an exponential attractor and the convergence to a single equilibrium. Finally, the CHO
equation has been coupled with Navier–Stokes systems both in case of regular potentials
[5] and of singular potentials [37].

In the present work, we study a distributed control problem for the system (1.1)–
(1.4), where the term ǫ(ϕ − ĉ ) in (1.1) is replaced by ϕ − u, thus taking ǫ = 1 and
substituting ĉ by a control u which is allowed to be a function of space and time. Having
in mind the application to tumor growth models, the control u could represent a source
of therapy, like, for example, a concentration of cytotoxic drugs introduced in the cells
in order to minimize the volume of the tumor (which is represented by the integral of
ϕ over the domain Ω) or to reach some target tumor distribution at the final time T
of the therapy cycle. About optimal control problems for CH systems, let us mention
some related work. A very general approach for distributed control problems for possibly
fractional equations of CH-type is carried out in the papers [20–22], with an extension of
the analysis to double obstacle potentials like f2obs in (1.7) via deep quench approximation.
The coupling of CH equations in the bulk with dynamic boundary conditions has been
investigated in [14,15,23], and the presence of a convective term with the velocity vector
taken as control has been dealt with in [16,17,19,30] (see also the references in the quoted
contributions).

We now go back to the goal of this paper and observe that, since we are not interested
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in the longtime behavior of the solution, the constants ĉ and ǫ here actually do not play
any significant role, whence we can assume that ǫ = 1 and absorb ĉ in u. Therefore, the
state system under investigation is the following:

∂tϕ+ ϕ−∆µ = u in Q, (1.8)

µ = −∆ϕ + f ′(ϕ) in Q, (1.9)

with the same boundary and initial conditions as before. For our purpose, it is crucial
to study the dependence of the solution on the control variable u. Hence, a major part
of the paper is devoted to the well-posedness of the system and the continuous depen-
dence just mentioned. It must be pointed out that, at least in the case of potentials
having a bounded domain, the control u and the initial datum ϕ0 must satisfy proper
necessary compatibility conditions in order to guarantee the existence of a solution. For
this reason, even well-posedness cannot be deduced from [31] and the existing literature.
Then, we study the control problem. Precisely, we want to minimize the tracking-type
cost functional

J((ϕ, µ), u) :=
α1

2

∫

Q

|ϕ−ϕQ|
2+

α2

2

∫

Ω

|ϕ(T )−ϕΩ|
2+

α3

2

∫

Q

|µ−µQ|
2+

α4

2

∫

Q

|u|2 (1.10)

over the set of admissible controls

Uad := {u ∈ H1(0, T ;H) ∩ L∞(Q) : ‖u‖L∞(Q) ≤ M, ‖∂tu‖L2(Q) ≤M ′}, (1.11)

subject to the system given by (1.8)–(1.9) and (1.3)–(1.4). In (1.10), ϕQ and µQ are
given functions on Q, ϕΩ is a given function on Ω, and αi, i = 1, . . . , 4, are nonnegative
constants (not all zero). In (1.11), M > 0 and M ′ > 0 are prescribed constants as well.
We show the existence of an optimal control. Then the main point is to prove the Fréchet
differentiability of the control-to-state operator between suitable functional spaces, which
allows us to establish first-order necessary optimality conditions in terms of the solution
to the linearized system; the latter is then eliminated by means of the solution to a proper
adjoint problem.

The paper is organized as follows. In the next section, we list our assumptions and
notations and state our results. The proofs of those regarding the well-posedness of
the problem, the continuous dependence of its solution on the control variable, and the
regularity, are given in Sections 3–5. The argument for the existence and the regularity
of the solution is based on the study of proper approximating problems performed in the
first part of Section 4. Finally, the last Section 6 is devoted to the analysis of the control
problem and the corresponding first-order necessary optimality conditions.

2 Statement of the problem and results

In this section, we state precise assumptions and notations and present our results. First
of all, the subset Ω ⊂ R

d with 1 ≤ d ≤ 3 is assumed to be bounded, connected and smooth.
As in the Introduction, ∂ν stands for the normal derivative on Γ := ∂Ω. Moreover, we set
for brevity

Qt := Ω× (0, t) and Qt := Ω× (t, T ) for 0 < t < T , and Q := Ω× (0, T ). (2.1)



The Cahn–Hilliard–Oono system with control in the mass term 5

If X is a Banach space, ‖ · ‖X denotes both its norm and the norm of Xd. The only
exception from this convention on the norms is given by the spaces Lp (1 ≤ p ≤ ∞)
constructed on (0, T ), Ω and Q, whose norms are often denoted by ‖ · ‖p, and by the
space H defined below, whose norm is simply denoted by ‖ · ‖. We put

H := L2(Ω) , V := H1(Ω) and W := {v ∈ H2(Ω) : ∂νv = 0}. (2.2)

Moreover, V ∗ is the dual space of V and 〈 · , · 〉 is the dual pairing between V ∗ and V . In
the following, we work in the framework of the Hilbert triplet (V,H, V ∗). Thus, by also
using the symbol ( · , · ) for the standard inner product of H , we have 〈g, v〉 = (g, v) for
every g ∈ H and v ∈ V . We also use the symbol ( · , · ) for the standard inner product in
any of the product spaces HN for N ∈ N.

Next, we introduce the generalized mean value. We write |Ω| for the measure of Ω
and set

v∗ := |Ω|−1〈v∗, 1〉 for v∗ ∈ V ∗ (2.3)

where 1 denotes the constant function x 7→ 1, x ∈ Ω. More generally, to simplify the
notation, we use the same symbol for the real number a and the associated constant
functions on Ω and Q. It is clear that v∗ is the usual mean value of v∗ if v∗ ∈ H .

Now, we list our assumptions on the structure of our system and the data. For the
potential f , we assume that

f : R → (−∞,+∞] can be split as f = β̂ + π̂, where (2.4)

β̂ : R → [0,+∞] is convex, proper, and l.s.c. with β̂(0) = 0, (2.5)

π̂ : R → R is of class C1, and its derivative is Lipschitz continuous. (2.6)

We set for convenience
β := ∂β̂ and π := π̂ ′, (2.7)

and notice that β is a maximal monotone graph in R × R satisfying 0 ∈ β(0). We use
the symbols D(β) and β◦(r) for the domain of β and the element of β(r) (with r ∈ D(β))

having minimum modulus. We extend the notations β̂, β, D(β) and β◦ to the functionals
and the operators induced on L2 spaces.

Even though the control variable u is fixed when dealing with well-posedness, we
prepare the possibility of letting u vary by introducing an upper bound M in the data.
We assume that

u ∈ L∞(Q), M ∈ [0,+∞) and ‖u‖∞ ≤M, (2.8)

ϕ0 ∈ W with inf ϕ0 and supϕ0 belonging to the interior of D(β), (2.9)

ϕ0 ±M belong to the interior of D(β). (2.10)

Assumption (2.9) is rather strong; its first application and a comment on the last assump-
tion (2.10) are given in the forthcoming Remarks 4.2 and 2.2, respectively.

Let us come to the definition of our notion of solution, which we state in a weak form.
Namely, a solution is a triplet (ϕ, µ, ξ) satisfying the regularity requirements

ϕ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ), (2.11)

µ ∈ L2(0, T ;V ), (2.12)

ξ ∈ L2(0, T ;H), and ξ ∈ β(ϕ) a.e. in Q, (2.13)
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and the following variational equations and initial condition:

〈∂tϕ(t), v〉+

∫

Ω

ϕ(t)v +

∫

Ω

∇µ(t) · ∇v =

∫

Ω

u(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (2.14)
∫

Ω

µ(t)v =

∫

Ω

∇ϕ(t) · ∇v +

∫

Ω

ξ(t)v +

∫

Ω

π(ϕ(t))v

for a.a. t ∈ (0, T ) and every v ∈ V , (2.15)

ϕ(0) = ϕ0 a.e. in Ω . (2.16)

Remark 2.1. We observe that the above variational equations are equivalent to their
time-integrated versions with time dependent test functions, i.e.,

∫ T

0

〈∂tϕ(t), v(t)〉 dt+

∫

Q

ϕ v +

∫

Q

∇ϕ · ∇v =

∫

Q

uv, (2.17)

∫

Q

µv =

∫

Q

∇ϕ · ∇v +

∫

Q

ξv +

∫

Ω

π(ϕ)v, (2.18)

both for every v ∈ L2(0, T ;V ). We also point out that (2.15) can be written as a boundary
value problem. Namely, since ϕ ∈ L2(0, T ;V ) and µ − ξ − π(ϕ) ∈ L2(0, T ;H), it is
equivalent to

ϕ ∈ L2(0, T ;W ), and µ = −∆ϕ + ξ + π(ϕ) a.e. in Q, (2.19)

by elliptic regularity. On the contrary, the analogue for (2.14) would be true only if ∂tϕ
were more regular.

Remark 2.2. Let us comment on assumption (2.10). By just taking v = 1/|Ω| in (2.14)
and accounting for (2.16), we have that

d

dt
ϕ(t) + ϕ(t) = u(t) for a.a. t ∈ (0, T ), and ϕ(0) = ϕ0, (2.20)

which yield

ϕ(t) = ϕ0 +

∫ t

0

e−(t−s)u(s) ds for every t ∈ [0, T ]. (2.21)

Since this implies that

|ϕ(t)− ϕ0| ≤ ‖u‖∞ ≤ ‖u‖∞ ≤ M,

assumption (2.10) ensures that ϕ(t) belongs to D(β) for every t ∈ [0, T ]. We observe that
the right-hand side of (2.21) just depends on ϕ0 and u, and a necessary condition for the
existence of a solution is that it remains in D(β) for all times. In particular, if u = 2 and
ϕ0 = 0, it is given by 2(1− e−t) and becomes larger than 1 if t > ln 2, so that no solution
can exist on an interval [0, T ] with T > ln 2 if f is the logarithmic potential (1.6).

We have the following well-posedness result.
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Theorem 2.3. Suppose that the conditions (2.4)–(2.6) on the structure of the system and
(2.8)–(2.10) on the data are fulfilled. Then there exists at least one triplet (ϕ, µ, ξ), with
the regularity conditions (2.11)–(2.13), that solves problem (2.14)–(2.16) and satisfies the
estimate

‖ϕ‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖µ‖L2(0,T ;V ) + ‖ξ‖L2(0,T ;H) ≤ K1 (2.22)

with a constant K1 > 0 that depends only on the structure of the system, Ω, T , the initial
datum, and M .

Furthermore, if ui ∈ L∞(Q), i = 1, 2, are given and (ϕi, µi, ξi) are any corresponding
solutions, then the estimate

‖ϕ1 − ϕ2‖C0([0,T ];V ∗)∩L2(0,T ;V ) ≤ C1

(
‖u1 − u2‖L1(0,T ;V ∗) + ‖u1 − u2‖

1/2

L1(0,T )

)
(2.23)

holds true with a constant C1 > 0 that depends only on the structure of the system, Ω,
T , and an upper bound for ‖ξi‖L1(Q), i = 1, 2. In particular, the solution component ϕ is
uniquely determined. If, in addition, β is single-valued, then also µ and ξ are uniquely
determined.

An improvement of the regularity of the solution can be achieved under stronger
assumptions on the data. Namely, we also assume:

the interior of D(β) contains 0
and the restriction of β to it is a C1 function, (2.24)

u ∈ H1(0, T ;H), M ′ ∈ [0,+∞) and ‖∂tu‖L2(0,T ;H) ≤M ′ , (2.25)

ϕ0 ∈ H3(Ω) . (2.26)

Notice that (2.24) does not imply that β is single-valued (cf. (1.7)) so that uniqueness
for the solution is not guaranteed. However, we can prove the existence of a smoother
solution. Of course, if in addition β is single-valued, then this regularity is ensured for
the unique solution.

Theorem 2.4. In addition to the assumptions of Theorem 2.3, assume that (2.24)–(2.26)
are fulfilled. Then, there exists at least one solution (ϕ, µ, ξ) to (2.14)–(2.16) that also
satisfies both the regularity requirements

ϕ ∈ H1(0, T ;V ) ∩ L∞(0, T ;W ) ∩ C0(Q),

µ ∈ L∞(0, T ;V ) and ξ ∈ L∞(0, T ;H) , (2.27)

and the estimate

‖ϕ‖H1(0,T ;V )∩L∞(0,T ;W )∩C0(Q) + ‖µ‖L∞(0,T ;V ) + ‖ξ‖L∞(0,T ;H) ≤ K2 , (2.28)

with a constant K2 that depends only on the structure of the system, Ω, T , the initial
datum, and the upper bounds M and M ′ appearing in (2.8) and (2.25).

In order to approach the control problem with a possibly singular potential, it is
important to ensure that the solution component ϕ takes its values far away from the
singularities of β. If β is smooth in the interior of its domain, then it is sufficient that
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all values of ϕ belong to a compact interval contained in the interior of D(β). In the
case of an everywhere defined smooth potential like (1.5), the boundedness of ϕ given by
Theorem 2.4 is sufficient. On the contrary, if D(β) is a bounded open interval as in the
case of the logarithmic potential (1.6), then the requested property of ϕ is equivalent to
the boundedness of the solution component ξ. This is related to the boundedness of µ.

Proposition 2.5. Under the assumptions of Theorem 2.3, let (ϕ, µ, ξ) be a solution to
problem (2.14)–(2.16). Then boundedness of ϕ and µ implies boundedness of ξ and the
estimate

‖ξ‖∞ ≤ ‖ϕ+ µ− π(ϕ)‖∞ . (2.29)

In particular, if D(β) is a bounded open interval, then all of the values of ϕ are attained
in a compact interval contained in D(β) that depends only on the shape of β and an upper
bound for the norm of ξ in L∞(Q).

Boundedness of µ is a consequence of (2.27) if d = 1, since V ⊂ L∞(Ω) in this case. If
d ∈ {2, 3}, the problem is open, in general. A natural way to ensure that µ is bounded is
to prove that ∂tϕ belongs to L∞(0, T ;H). Indeed, then (2.14) and elliptic regularity would
yield that µ belongs to L∞(0, T ;W ), and thus to L∞(Q) since W ⊂ L∞(Ω). We cannot
deal with the general case. However, we can prove this result in the two-dimensional case
if f is the logarithmic potential.

Proposition 2.6. Assume that d = 2, that f is the logarithmic potential (1.6), and that
the data satisfy (2.8)–(2.10), (2.24)–(2.26), as well as

ϕ0 ∈ H4(Ω) and ∂ν∆ϕ0 = 0 on Γ . (2.30)

Then the solution (ϕ, µ, ξ) to problem (2.14)–(2.16) also satisfies

∂tϕ ∈ L∞(0, T ;H) ∩ L2(0, T ;W ) , µ ∈ L∞(Q) , ξ ∈ L∞(Q) , (2.31)

as well as
‖∂tϕ‖L∞(0,T ;H)∩L2(0,T ;W ) + ‖µ‖∞ + ‖ξ‖∞ ≤ K3 , (2.32)

with a constant K3 that depends only on Ω, T , the initial datum, and the upper bounds
M and M ′ appearing in (2.8) and (2.25).

Remark 2.7. We point out that under the assumptions of Proposition 2.6 the second
part of Proposition 2.5 provides a compact interval [a, b] ⊂ (−1, 1), which contains all of
the values of ϕ and depends only on Ω, T and the constants M and M ′.

Whenever the potential is smooth in its domain and all of the values of ϕ belong
to a compact interval [a, b] contained in the interior of D(β), then the potential f can
be replaced a posteriori by a potential having a Lipschitz continuous derivative. In this
situation, we can prove a second continuous dependence result.

Theorem 2.8. Assume that the potential f has a Lipschitz continuous derivative. If
ui∈ L∞(Q), i = 1, 2, are two choices of u and (ϕi, µi, ξi) are the corresponding solutions,
then the estimate

‖ϕ1 − ϕ2‖C0([0,T ];H)∩L2(0,T ;W ) + ‖µ1 − µ2‖L2(0,T ;H) ≤ C2 ‖u1 − u2‖L2(0,T ;H) (2.33)

holds true with a constant C2 that depends only on Ω, T , and the Lipschitz constant of f ′.
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The above results prepare the study of the control problem, which consists in mini-
mizing the cost functional (1.10) over the set (1.11) of the admissible controls subject to
the state system, as said in the Introduction. We recall the definitions and make precise
assumptions. The cost functional is given by

J((ϕ, µ), u) :=
α1

2

∫

Q

|ϕ−ϕQ|
2+

α2

2

∫

Ω

|ϕ(T )−ϕΩ|
2+

α3

2

∫

Q

|µ−µQ|
2+

α4

2

∫

Q

|u|2 , (2.34)

where

ϕQ, µQ ∈ L2(Q) , ϕΩ ∈ L2(Ω) ,

and αi ∈ [0,+∞) are not all zero, for i = 1, . . . , 4 . (2.35)

The set of the admissible controls is given by

Uad := {u ∈ H1(0, T ;H) ∩ L∞(Q) : ‖u‖L∞(Q) ≤M, ‖∂tu‖L2(Q) ≤M ′} , (2.36)

where
M, M ′ ∈ [0,+∞) and (2.10) is satisfied. (2.37)

The control problem is the following:

Minimize the cost functional (2.34) over the set (2.36) of admissible

controls subject to the state system (2.14)–(2.16). (2.38)

At this point, it is worth noticing that the cost functional in the form (2.34) is well
defined only if both solution components ϕ, µ are uniquely determined. Under the as-
sumptions of Theorem 2.3, this can only be guaranteed if β is single-valued; otherwise
one has to simplify the cost functional by postulating that α3 = 0. In the situation of
Theorem 2.8, however, this problem does not arise. We have the following existence result.

Theorem 2.9. Suppose that the conditions (2.4)–(2.6), (2.9), and (2.34)–(2.37) are ful-
filled, and assume that either α3 = 0 or β is single-valued. Then the control problem
(2.38) has at least one solution u∗.

The next effort is to find first-order necessary conditions for optimality. To this end,
we have to enlarge Uad in a proper topology and introduce the control-to-state operator S.
We fix R > 0 small enough in order that

ϕ0 ± (M +R), belong to the interior of D(β), (2.39)

and we set

UR := {u ∈ H1(0, T ;H) ∩ L∞(Q) : ‖u‖L∞(Q) < M +R, ‖∂tu‖L2(Q) < M ′ +R}. (2.40)

This is an open neighborhood of Uad in the topology of the first of the Banach spaces we
introduce for later use:

X := H1(0, T ;H) ∩ L∞(Q)

and Y :=
(
C0([0, T ];H) ∩ L2(0, T ;W )

)
× L2(0, T ;H). (2.41)
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In order to continue, we need the functional f to be more regular on the range of the first
component ϕ of the state corresponding to any element u ∈ UR. We first observe that
thanks to (2.39) the results stated above hold true with M and M ′ replaced by M+R and
M ′+R, respectively; in addition, they provide estimates that are uniform with respect to
u ∈ UR. Next, we notice that in some situations it is ensured that there exists a compact
interval [a, b] contained in the interior of the domain of the double well potential f such
that, for every u ∈ UR, the first component ϕ of the corresponding state attains its values
in [a, b]. Namely, as we have seen, this is the case either if, under the assumptions of
Theorem 2.4, f is an everywhere defined smooth potential in any dimension d ∈ {1, 2, 3}
or if the assumptions of Proposition 2.6 are fulfilled (in particular, d = 2 and f is the
logarithmic potential (1.6)).

Therefore, we take the following starting point: there exist a compact interval [a, b]
and a constant K > 0 such that:

f is a function of class C3 in a neighborhood of [a, b]; (2.42)

it holds a ≤ ϕ ≤ b a.e. in Q and max
0≤i≤3

‖f (i)(ϕ)‖∞ ≤ K, whenever (ϕ, µ, ξ),

with ξ = β(ϕ), is a solution to (2.14)–(2.16) for some u ∈ UR. (2.43)

Notice that under the conditions (2.42)–(2.43) also the solution component µ is uniquely
determined so that the control-to-state operator

S : UR → Y, u 7→ S(u) = (ϕ, µ), where (ϕ, µ, β(ϕ)) is the
solution to the state system (2.14)–(2.16) corresponding to u, (2.44)

is well defined on UR.

Based on (2.42)–(2.43), we prove in Theorem 6.3 that S is Fréchet differentiable at
every point u∗ ∈ UR, where the Fréchet derivative is related to the solution to a linear
system obtained from (2.14)–(2.16) by linearization. A standard argument then yields
a necessary condition for optimal controls u∗ ∈ Uad that involves the solution to the
linearized system (Proposition 6.4). As usual, we eliminate the solution to the linearized
system by means of the adjoint state variables (p, q), which satisfy

p ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) and q ∈ L2(0, T ;V ) (2.45)

and solve the adjoint state system

−〈∂tp(t), v〉+

∫

Ω

p(t)v +

∫

Ω

∇q(t) · ∇v +

∫

Ω

f ′′(ϕ∗(t))q(t)v

= α1

∫

Ω

(ϕ∗ − ϕQ)(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (2.46)
∫

Ω

q(t)v =

∫

Ω

∇p(t) · ∇v − α3

∫

Ω

(µ∗ − µQ)(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (2.47)

p(T ) = α2

(
ϕ∗(T )− ϕΩ

)
, (2.48)

where (ϕ∗, µ∗) = S(u∗). Our final result is the following necessary condition for optimality:
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Theorem 2.10. Suppose that the conditions (2.42)–(2.43) are fulfilled, let u∗ ∈ Uad be
an optimal control with associated state (ϕ∗, µ∗) = S(u∗), and assume that

α1ϕQ ∈ L2(0, T ;V ), α2ϕΩ ∈ V, α3µQ ∈ L2(0, T ;V ), (2.49)

∇ϕ∗ ∈ L∞(0, T ;L4(Ω)). (2.50)

Then it holds the variational inequality

∫

Q

p(u− u∗) + α4

∫

Q

(u− u∗) ≥ 0 ∀ u ∈ Uad , (2.51)

where p is the first component of the solution (p, q) to the adjoint problem (2.46)–(2.48).

Remark 2.11. Notice that each of the regularity conditions (2.49) is fulfilled if either
the related αi is equal to 0 or if the associated datum belongs to L2(0, T ;V ) or V . In
the first case, we have no corresponding tracking of the tumor fraction ϕ or the chemical
potential µ, which is inconvenient from the medical viewpoint, while in the second case
we assume the same regularity for the respective target function that the optimal state
(ϕ∗, µ∗) is known to have (Theorem 2.4), which seems to be reasonable.

Throughout the paper, we will repeatedly use Young’s inequality

a b ≤ δ a2 +
1

4δ
b2 for all a, b ∈ R and δ > 0, (2.52)

as well as Hölder’s inequality and the Sobolev inequality related to the continuous embed-
ding V ⊂ Lp(Ω) for p ∈ [1, 6] (since Ω is d-dimensional with d ≤ 3, bounded and smooth).
Furthermore, the embeddings V ⊂ H and H ⊂ V ∗ are compact, so that we obtain from
Ehrling’s lemma the compactness inequality

‖v‖ ≤ δ ‖∇v‖+ Cδ ‖v‖V ∗ for every v ∈ V and δ > 0, (2.53)

with some Cδ > 0 that depends only on Ω and δ.

We also utilize a tool that is widely used in the study of Cahn–Hilliard type equations.
We define

domN := {v∗ ∈ V ∗ : v∗ = 0} and N : domN → {v ∈ V : v = 0} (2.54)

by setting, for every v∗ ∈ domN,

Nv∗ is the unique element of V that satisfies∫

Ω

∇Nv∗ · ∇v = 〈v∗, v〉 for every v ∈ V and Nv∗ = 0 . (2.55)

As Ω is bounded, smooth, and connected, it turns out that (2.55) yields a well-defined
isomorphism, which satisfies

〈u∗,Nv∗〉 = 〈v∗,Nu
∗〉 =

∫

Ω

(∇Nu∗) · (∇Nv∗) for every u∗, v∗ ∈ domN. (2.56)
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Moreover, by also accounting for Poincaré’s inequality

‖v‖2V ≤ CΩ

(
‖∇v‖2 + |v|2

)
for every v ∈ V , (2.57)

where the constant CΩ > 0 depends only on Ω, we see that the function ‖ · ‖∗ : V ∗ →
[0,+∞) defined by the formula

‖v∗‖
2
∗ := ‖∇N(v∗ − v∗)‖

2 + |v∗|
2 = 〈v∗,N(v∗ − v∗)〉+ |v∗|

2 for v∗ ∈ V ∗, (2.58)

is a Hilbert norm on V ∗ that is equivalent to the usual dual norm. It follows that

|〈v∗, v〉| ≤ CΩ‖v∗‖∗‖v‖V for every v∗ ∈ V ∗ and v ∈ V , (2.59)

with the same CΩ as in (2.57) without loss of generality. Finally, notice that

2 〈∂tv∗(t),Nv∗(t)〉 =
d

dt

∫

Ω

|∇Nv∗(t)|
2 =

d

dt
‖v∗(t)‖

2
∗ for a.a. t ∈ (0, T ), (2.60)

for every v∗ ∈ H1(0, T ;V ∗) satisfying v∗ = 0, i.e., v∗(t) = 0 for a.a. t ∈ (0, T ). This kind
of notation is used throughout the paper for time-dependent functions.

We conclude this section by stating a general rule concerning the constants that appear
in the estimates to be performed in the following. The small-case symbol c stands for
a generic constant whose actual values may change from line to line and even within
the same line and depend only on Ω, on the shape of the nonlinearities, and on the
constants and the norms of the functions involved in the assumptions of the statements.
In particular, the values of c do not depend on the parameters ε and n we introduce in
the next sections. A small-case symbol with a subscript like cδ (in particular, with δ = ε)
indicates that the constant may depend on the parameter δ, in addition. On the contrary,
we mark precise constants that we can refer to by using different symbols, e.g., capital
letters like in (2.53).

3 Continuous dependence and uniqueness

In this section, we give the proof of second part of Theorem 2.3 and of Theorem 2.8. As
for the former, we observe that the uniqueness of the the component ϕ of the solution
follows from (2.23) provided that this inequality is proved for every solution (ϕi, µi, ξi)
corresponding to ui for i = 1, 2, according to the statement. Indeed, (2.23) with u1 = u2
implies that ϕ1 = ϕ2. Moreover, if β is single-valued, then we also deduce that ξ1 = ξ2,
and a comparison in (2.15), written for both solutions, yields that µ1 = µ2 as well.

3.1 Continuous dependence, part I

So we just have to prove the inequality (2.23) by assuming that (ϕi, µi, ξi) is any solution
corresponding to ui, i = 1, 2. We set, for convenience,

ϕ := ϕ1 − ϕ2 , µ := µ1 − µ2 , ξ := ξ1 − ξ2 and u := u1 − u2 . (3.1)
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Thus, by noting that (2.14) and (2.20) hold true with the new notations, we can subtract
the latter integrated over Ω from the former and test the resulting equality by N(ϕ− ϕ)
(recall (2.54)–(2.60) for the definition of N and its properties). At the same time, we
write (2.15) for both solutions and test the difference by −(ϕ−ϕ). Then, we sum up and
integrate over (0, t). Since a cancellation occurs, we obtain that

1

2
‖(ϕ− ϕ)(t)‖2∗ +

∫ t

0

‖(ϕ− ϕ)(s)‖2∗ ds+

∫

Qt

|∇(ϕ− ϕ)|2 +

∫

Qt

ξ ϕ

=

∫

Qt

(u− u)N(ϕ− ϕ)−

∫

Qt

ξ ϕ−

∫

Qt

(
π(ϕ1)− π(ϕ2))(ϕ− ϕ).

All of the terms on the left-hand side are nonnegative (the last one by monotonicity). As
for the first term on the right-hand side, we account for (2.21) and notice that ‖ϕ‖∞ ≤
‖u‖L1(0,T ) ≤ c ‖u‖L1(0,T ;V ∗). Hence, with the help of (2.59) we have that

∫

Qt

(u− u)N(ϕ− ϕ) ≤ CΩ

∫ t

0

‖(u− u)(s)‖∗ ‖N(ϕ− ϕ)(s)‖V ds

≤ c

∫ t

0

‖(u− u)(s)‖∗ ‖(ϕ− ϕ)(s)‖∗ ds ≤ c ‖u‖L1(0,T ;V ∗) sup
0≤s≤t

‖(ϕ− ϕ)(s)‖∗

≤
1

4
sup
0≤s≤t

‖(ϕ− ϕ)(s)‖2∗ + c ‖u‖2L1(0,T ;V ∗) .

Next, we have that
∫

Qt

ξ ϕ ≤
(
‖ξ1‖1 + ‖ξ2‖1

)
‖ϕ‖∞ ≤ c

(
‖ξ1‖1 + ‖ξ2‖1

)
‖u‖1 .

Finally, we owe to the Lipschitz continuity of π and the compactness inequality (2.53) to
obtain that

−

∫

Qt

(
π(ϕ1)− π(ϕ2))(ϕ− ϕ) ≤ c

∫

Qt

|ϕ| |ϕ− ϕ|

≤ c

∫

Qt

|ϕ− ϕ|2 + c

∫

Qt

|ϕ| |ϕ− ϕ| ≤ c

∫

Qt

|ϕ− ϕ|2 +

∫ t

0

|ϕ(s)|2 ds

≤
1

2

∫

Qt

|∇(ϕ− ϕ)|2 + c

∫ t

0

‖(ϕ− ϕ)(s)‖2∗ ds+ c ‖u‖2L1(0,T ;V ∗) .

By collecting all these estimates, and ignoring some nonnegative terms on the left-hand
side, we deduce that

1

2
‖(ϕ− ϕ)(t)‖2∗ +

1

2

∫

Qt

|∇(ϕ− ϕ)|2

≤
1

4
sup
0≤s≤t

‖(ϕ− ϕ)(s)‖2∗ + c

∫ t

0

‖(ϕ− ϕ)(s)‖2∗ ds

+ c ‖u‖2L1(0,T ;V ∗) + c
(
‖ξ1‖1 + ‖ξ2‖1

)
‖u‖1 .

By applying Gronwall’s lemma, we conclude that (2.23) holds true with a constant C1 as
in the statement.
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3.2 Continuous dependence, part II

We are going to prove Theorem 2.8. We still use the notations (3.1) regarding ϕ, µ,
and u, and denote the Lipschitz constant of f ′ by L. We write (2.14) and (2.15) for both
solutions and test the differences by ϕ and µ, respectively. Then, when adding an obvious
cancellation occurs, and by Young’s inequality we have that

1

2

∫

Ω

|ϕ(t)|2 +

∫

Qt

|ϕ|2 +

∫

Qt

|µ|2

=

∫

Qt

uϕ+

∫

Qt

(
f ′(ϕ1)− f ′(ϕ2)

)
µ

≤
1

2

∫

Q

|u|2 +
1 + L2

2

∫

Qt

|ϕ|2 +
1

2

∫

Qt

|µ|2 .

Hence, rearranging and using Gronwall’s lemma, we immediately deduce that

‖ϕ‖C0([0,T ];H) + ‖µ‖L2(0,T ;H) ≤ c ‖u‖L2(0,T ;H) ,

with a constant c that only depends on L and T . By applying elliptic regularity to the
difference of (2.15), written for both solutions, we also infer that

‖ϕ‖L2(0,T ;W ) ≤ c ‖µ− (f ′(ϕ1)− f ′(ϕ2))‖L2(0,T ;H)

≤ c
(
‖µ‖L2(0,T ;H) + ‖ϕ‖L2(0,T ;H)

)
≤ c ‖u‖L2(0,T ;H) ,

where c depends on Ω, in addition.

4 Approximation and existence

In this section, we prove the existence part of Theorem 2.3. Our method consists in
approximating the problem at hand and using compactness and monotonicity arguments.

4.1 Approximation

Here, we construct an approximating problem depending on the parameter ε ∈ (0, 1). This

problem is obtained by modifying the formulation of problem (2.14)–(2.16) by replacing β̂

and β by their Moreau-Yosida regularizations β̂ε and βε, respectively (see, e.g., [6, pp. 28

and 39]). Owing also to our assumption (2.5) on β̂, we have that

βε is monotone and Lipschitz continuous with βε(0) = 0, (4.1)

|βε(r)| ≤ |β◦(r)| for every r ∈ D(β), (4.2)

0 ≤ β̂ε(r) =

∫ r

0

βε(s) ds ≤ β̂(r) for every r ∈ R, (4.3)

where we recall that β◦(r) denotes the element of β(r) having minimal modulus. The
solution we look for is a pair (ϕε, µε) enjoying the regularity properties

ϕε ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ), µε ∈ L2(0, T ;V ) (4.4)
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and satisfying

∫

Ω

∂tϕ
ε(t) v +

∫

Ω

ϕε(t)v +

∫

Ω

∇µε(t) · ∇v =

∫

Ω

u(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (4.5)∫

Ω

µε(t)v =

∫

Ω

∇ϕε(t) · ∇v +

∫

Ω

βε(ϕ
ε(t))v +

∫

Ω

π(ϕε(t))v

for a.a. t ∈ (0, T ) and every v ∈ V , (4.6)

ϕε(0) = ϕ0 . (4.7)

Our aim is to solve this approximating problem. In this respect, we have the following
result.

Theorem 4.1. Assume (2.4)–(2.6) on the structure on the system and (2.8)–(2.10) on
the data. Then, for every ε ∈ (0, 1), problem (4.5)–(4.7) has a unique solution (ϕε, µε)
satisfying the regularity properties (4.4).

Uniqueness follows from Section 3.1, since βε satisfies all the properties required for β
and is single-valued. Hence, only the existence of a solution to problem (4.5)–(4.7) has to
be proved. Our argument is based on the discretization of (4.5)–(4.7) by a Faedo–Galerkin
scheme and a priori estimates.

The discrete problem. We introduce the nondecreasing sequence {λj} of the eigen-
values and the complete orthonormal sequence {ej} of corresponding eigenvectors of the
Laplace operator with homogeneous Neumann boundary conditions, that is,

−∆ej = λjej in Ω and ∂νej = 0 on Γ for all j ∈ N, with (ei, ej) = δij

and (∇ei,∇ej) = λi δij for all i, j ∈ N. (4.8)

Next, for n ≥ 1, we introduce the subspace Vn of V by setting

Vn := span{e1, . . . , en}. (4.9)

Then, the sequence {Vn} is nondecreasing, and its union is dense in both V and H . We
observe at once that

λ1 = 0 and the elements of V1 are the constant functions. (4.10)

At this point, we can introduce the discrete problem. Even though it also depends on ε,
we do not stress this in the notation for the solution. We look for a pair (ϕn, µn) satisfying

ϕn, µn ∈ H1(0, T ;Vn), (4.11)

(∂tϕn(t), v) + (ϕn(t), v) + (∇µn(t),∇v) = (u(t), v)

for a.a. t ∈ (0, T ) and every v ∈ Vn, (4.12)

(µn(t), v) = (∇ϕn(t),∇v) + (βε(ϕn(t)), v) + (π(ϕn(t)), v)

for every t ∈ [0, T ] and v ∈ Vn, (4.13)

(ϕn(0), v) = (ϕ0, v) for every v ∈ Vn. (4.14)
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Remark 4.2. We notice that ϕn(0) is the H-projection of ϕ0 on Vn, i.e.,

ϕn(0) =

n∑

j=1

(ϕ0, ej) ej for n = 1, 2, . . . . (4.15)

This and assumption (2.9) have important consequences. The first one is given by the
inequalities

‖ϕn(0)‖ ≤ ‖ϕ0‖ and

‖∇ϕn(0)‖
2 ≤ c

n∑

j=1

|λ
1/2
j (ϕ0, ej)|

2 ≤ c
∞∑

j=1

|λ
1/2
j (ϕ0, ej)|

2 ≤ c ‖ϕ0‖
2
V . (4.16)

Next, since ϕ0 ∈ W , we have that

∞∑

j=1

|λj(ϕ0, ej)|
2 ≤ c ‖ϕ0‖

2
W and

‖ϕ0 − ϕn(0)‖
2
W ≤ c

∞∑

j=n+1

|λj(ϕ0, ej)|
2 → 0 as n→ ∞,

so that ϕn(0) converges to ϕ0 in W , and thus uniformly. By combining with our as-
sumption (2.9) on ϕ0, we deduce that there are elements r′± of the interior of D(β) and
a natural number n0 only depending on β and ϕ0 such that r′− ≤ ϕn(0) ≤ r′+ in Ω for
every n ≥ n0. By accounting for (4.2)–(4.3), we infer that

β̂ε(ϕn(0)) + |βε(ϕn(0))| ≤ sup
r′
−
≤r≤r′+

β̂(r) + sup
r′
−
≤r≤r′+

|β◦(r)| (4.17)

for every n ≥ n0. From now on, it is understood that n ≥ n0 so that (4.17) holds true.

The next step is proving that this problem has a unique solution. To this end, we
represent ϕn and µn in term of the eigenfunctions, i.e.,

ϕn(t) =
n∑

j=1

ϕj
n(t) ej and µn(t) =

n∑

j=1

µj
n(t) ej for every t ∈ [0, T ],

for some functions ϕj
n and µj

n belonging to H1(0, T ). Then, if we consider the column
vectors y := (ϕj

n)j=1,...,n and z := (µj
n)j=1,...,n, equations (4.12)–(4.13) take the form

y′(t) + y(t) + Az(t) = g(t) and z(t) = Ay(t) +G(y(t)),

where A is the diagonal matrix of the first n eigenvalues, g(t) is the column vector with
components (u(t), ej), and G : Rn → R

n is a Lipschitz continuous function. Notice that
g ∈ L2(0, T ;Rn). Hence, by replacing z in the first equation with the help of the second
one and rearranging, since (4.15) provides an initial condition for y, we obtain a well-posed
Cauchy problem for y which has a unique solution y ∈ H1(0, T ;Rn). Then, the second
equation yields that z ∈ H1(0, T ;Rn).
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4.2 Uniform a priori estimates

We perform a number of estimates. We point out that they are based on the properties
(4.1)–(4.3) and thus hold if βε is a possibly different approximation of β. We make this
remark since the estimates we are going to prove here will be used later on for other
purposes with a different βε. Hence, we recall our general rule: the symbol c denotes
(possibly different) constants that do not depend on ε and n.

However, before starting, we remark a consequence of (2.10). We choose δ0 > 0 such
that the interval [ϕ0 −M − δ0, ϕ0 +M + δ0] is included in the interior of D(β). Then, for
some C0 > 0, we have the inequality

βε(r)(r − r0) ≥ δ0|βε(r)| − C0

for every r ∈ R, r0 ∈ [ϕ0 −M,ϕ0 +M ] and ε ∈ (0, 1). (4.18)

This is a generalization of [38, Appendix, Prop. A.1]. The detailed proof given in [28,
p. 908] with a fixed r0 also works in the present case with minor changes.

Preliminary estimate. We notice that, by (4.10), the constant functions belong to Vn
for every n. Hence, we deduce from (4.12) and (4.14) that

d

dt
ϕn(t) + ϕn(t) = u(t) for a.a. t ∈ (0, T ) and ϕn(0) = ϕ0 . (4.19)

As in Remark 2.2 (both the equation and the initial condition are the same here and
there), we conclude that

ϕ0 −M ≤ ϕn(t) ≤ ϕ0 +M for every t ∈ [0, T ]. (4.20)

First uniform estimate. We recall the definition of N and its properties (see (2.54)–
(2.60)) and notice that

v ∈ Vn and v = 0 imply that Nv ∈ Vn . (4.21)

Indeed, both v and w := Nv can be expressed in terms of the eigenfunctions ej , and we
have that

∞∑

n=1

λj(w, ej) ej = −∆w = v =
n∑

j=2

(v, ej) ej .

Hence, (w, ej) = 0 for every j > n (since λj > 0 for j > 1), i.e., w ∈ Vn. Therefore, we
subtract (4.19), multiplied by

∫
Ω
v, from (4.12), write the resulting equality at the time

s and test it by N(ϕn(s)− ϕn(s)). At the same time, we test (4.13) written at the time
s by −(ϕn(s)− ϕn(s)). Then, we sum up and integrate over (0, t) with respect to s. By
accounting for the cancellation that occurs, we obtain that

1

2
‖ϕn(t)− ϕn(t)‖

2
∗ +

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ ds

+

∫

Qt

|∇ϕn|
2 +

∫

Qt

βε(ϕn)(ϕn − ϕn)

=
1

2
‖ϕn(0)− ϕ0‖

2
∗ +

∫

Qt

(u− u)N(ϕn − ϕn)−

∫

Qt

π(ϕn)(ϕn − ϕn) .
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The first three terms on the left-hand side are nonnegative. To treat the last one, we
account for (4.18) and (4.20) and have that

∫

Ω

βε(ϕn(t))(ϕn(t)− ϕn(t)) ≥ δ0 ‖βε(ϕn(t))‖L1(Ω) − c for a.a. t ∈ (0, T ), (4.22)

whence also ∫

Qt

βε(ϕn)(ϕn − ϕn) ≥ δ0‖βε(ϕn)‖L1(Qt) − c .

Let us come to the right-hand side. The first term is estimated from above by using the
H norm. Thus, it is uniformly bounded since ϕn(0) is the H-projection of ϕ0 on Vn. The
next term can be dealt with as follows:

∫

Qt

(u− u)N(ϕn − ϕn) ≤

∫ t

0

‖u(s)− u(s)‖∗‖ϕn(s)− ϕn(s)‖∗ds

≤ c‖u− u‖2L2(0,T ;H) +
1

2

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ds .

By adding and subtracting π(ϕn) in the first factor inside the last integral, and accounting
for the Lipschitz continuity of π, we have that

−

∫

Qt

π(ϕn)(ϕn − ϕn) ≤ c

∫

Qt

|ϕn − ϕn|
2 + c

∫

Qt

|ϕn|
2 + c .

So, we can treat the first integral on the right-hand side with the help of the compactness
inequality (2.53), namely

c

∫

Qt

|ϕn − ϕn|
2 ≤ δ

∫

Qt

|∇ϕn|
2 + cδ

∫ t

0

‖ϕn(s)− ϕn(s)‖
2
∗ds ,

where δ > 0 is arbitrary, and we can use (4.20) for the second one. At this point, we
choose δ > 0 small enough and apply the Gronwall lemma. We conclude that

‖ϕn‖L∞(0,T ;V ∗)∩L2(0,T ;V ) + ‖βε(ϕn)‖L1(Q) ≤ c . (4.23)

Since µn = βε(ϕn) + π(ϕn) by (4.13) tested by 1/|Ω|, we deduce that

‖µn‖L1(0,T ) ≤ c . (4.24)

Second uniform estimate. We test (4.12) by µn and (4.13) by −(∂tϕn+ϕn) and sum
up. Then, an obvious cancellation occurs, and integration over (0, t) leads to

∫

Qt

|∇µn|
2 +

1

2

∫

Ω

|∇ϕn(t)|
2 +

∫

Qt

|∇ϕn|
2 +

∫

Ω

β̂ε(ϕn(t)) +

∫

Qt

βε(ϕn)ϕn

=
1

2

∫

Ω

|∇ϕn(0)|
2 +

∫

Ω

β̂ε(ϕn(0))

+

∫

Qt

uµn −

∫

Ω

π̂(ϕn(t)) +

∫

Ω

π̂(ϕn(0))−

∫

Qt

π(ϕn)ϕn .
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All of the terms on the left-hand side are nonnegative. The first two terms on the right-
hand side can be estimated thanks to (4.16)–(4.17). The same (4.16), along with (2.6),
helps in the second term involving π̂, while the last integral is bounded due to (4.23). It
remains to treat two further terms. By accounting for Young’s inequality, the Poincaré
inequality (2.57), and (4.24), we have that

∫

Qt

uµn =

∫

Qt

u(µn − µn) +

∫

Qt

uµn

≤
1

2

∫

Qt

|∇µn|
2 + c

∫

Qt

|u|2 + |Ω| ‖u‖∞ ‖µn‖L1(0,T ) ≤
1

2

∫

Qt

|∇µn|
2 + c .

Finally, we owe to the quadratic growth of π̂, the compactness inequality (2.53), and
(4.23), to see that

−

∫

Ω

π̂(ϕn(t)) ≤ c

∫

Ω

|ϕn(t)|
2 + c ≤

1

4

∫

Ω

|∇ϕn(t)|
2 + c ‖ϕn(t)‖

2
∗ + c ≤

1

4

∫

Ω

|∇ϕn(t)|
2 + c .

By combining all these estimates, we conclude that

‖∇µn‖L2(0,T ;H) + ‖ϕn‖L∞(0,T ;V ) + ‖β̂ε(ϕn)‖L∞(0,T ;L1(Ω)) ≤ c . (4.25)

Third uniform estimate. We test (4.13) by ϕn(t)−ϕn(t). We have a.e. in (0, T ) that

∫

Ω

|∇ϕn|
2 +

∫

Ω

βε(ϕn)(ϕn − ϕn)

= −

∫

Ω

π(ϕn)(ϕn − ϕn) +

∫

Ω

µn(ϕn − ϕn).

The second term on the left-hand side is estimated from below by (4.22), and the first
term on the right-hand side is uniformly bounded by (4.25) and the Lipschitz continuity
of π. The last term is treated with the help of Poincaré’s inequality:

∫

Ω

µn(ϕn − ϕn) =

∫

Ω

(µn − µn)(ϕn − ϕn)

≤ c ‖ϕn − ϕn‖ ‖∇µn‖ ≤ c ‖∇µn‖ .

By combining, we deduce that

δ0‖βε(ϕn(t))‖L1(Ω) ≤ c ‖∇µn(t)‖+ c , i.e., δ20‖βε(ϕn(t))‖
2
L1(Ω) ≤ c ‖∇µn(t)‖

2 + c

for a.a. t ∈ (0, T ), and (4.25) yields that

‖βε(ϕn)‖L2(0,T ;L1(Ω)) ≤ c ‖∇µn‖L2(0,T ;H) + c ≤ c .

Consequently, at first the mean value βε(ϕn), and then µn, are bounded in L2(0, T ). By
accounting for (4.25) and the Poincaré inequality (2.57), we then conclude that

‖µn‖L2(0,T ;V ) ≤ c . (4.26)
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4.3 Proof of Theorem 4.1

The above estimates provide some weak convergence for both ϕn and µn. However, no
strong convergence can as yet be deduced. Thus, we perform one more a priori estimate,
which is uniform at least with respect to n.

An auxiliary estimate. First, we subtract (4.19), multiplied by
∫
Ω
v, from (4.12).

Then, we test the equality obtained by Nw and (4.13) by −w, where w := ∂t(ϕn − ϕn) +
(ϕn −ϕn). We integrate the resulting equalities over (0, t), rearrange the second one, and
obtain that

∫ t

0

‖∂t(ϕn(s)− ϕn(s)) + (ϕn(s)− ϕn(s))‖
2
∗ ds+

∫

Qt

∇µn · ∇Nw

=

∫

Qt

(u− u)Nw ,

∫

Ω

|∇ϕn(t)|
2 +

∫

Qt

|∇ϕn|
2 +

∫

Ω

β̂ε(ϕn(t))

=

∫

Ω

β̂ε(ϕn(0))−

∫

Ω

π̂(ϕn(t)) +

∫

Ω

π̂(ϕn(0))

+

∫

Qt

(
βε(ϕn) + π(ϕn)

)
(−ϕn + ∂tϕn + ϕn) +

∫

Qt

µnw .

At this point, we sum up and notice that a cancellation occurs due to the definition of N.
Moreover, we owe to (4.19) on both sides, and account for the quadratic growth of π̂, the
linear growth of βε + π, and some of the inequalities (4.16) and (4.17). We obtain that

∫ t

0

‖∂tϕn(s) + ϕn(s)− u(s)‖2∗ ds+

∫

Ω

|∇ϕn(t)|
2 +

∫

Qt

|∇ϕn|
2 +

∫

Ω

β̂ε(ϕn(t))

≤

∫

Qt

(u− u)Nw + c

∫

Ω

|ϕn(t)|
2 + cε

∫

Qt

(
|ϕn|

2 + |u|2
)
+ cε .

Thanks to (4.25) and the assumptions on u, all of the terms on the right-hand side are
under control but the first one. In this respect, we have that

∫

Qt

(u− u)Nw ≤ ‖u− u‖L2(0,T ;H)‖Nw‖L2(0,t;H) ≤ c‖w‖L2(0,t;V ∗)

= c ‖∂tϕn + ϕn − u‖L2(0,t;V ∗) ≤
1

2

∫ t

0

‖∂tϕn(s) + ϕn(s)− u(s)‖2∗ ds+ c .

By combining, rearranging, and noting that ϕn − u is obviously bounded in L2(0, T ;V ∗),
we conclude that

‖∂tϕn‖L2(0,T ;V ∗) ≤ cε . (4.27)

Conclusion. Now, we can let n tend to infinity in the discrete problem. Indeed, the
estimates (4.23) and (4.25)–(4.26) are uniform with respect to n, so that, by also applying
well-known compactness results (for the strong convergence, see, e.g., [45, Sect. 8, Cor. 4]),
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we conclude that there exists a pair (ϕε, µε) such that

ϕn → ϕε weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (4.28)

µn → µε weakly in L2(0, T ;V ) , (4.29)

just for a subsequence, in principle. However, since we prove that the limit (ϕε, µε) is a
solution to (4.5)–(4.7) and we already know that uniqueness holds for this problem, the
whole sequences converge to (ϕε, µε). By Lipschitz continuity, we infer that

βε(ϕn) + π(ϕn) → βε(ϕ
ε) + π(ϕε) strongly in C0([0, T ];H).

Since ϕn(0) converges to both ϕε(0) and ϕ0 in H , the initial condition (4.7) is satisfied,
and it remains to prove that the equations (4.5)–(4.6) are satisfied as well. It suffices to
verify that (ϕε, µε) solves the corresponding integrated versions with time dependent test
functions in L2(0, T ;V ), i.e.,

∫

Q

∂tϕ
ε v +

∫

Q

ϕεv +

∫

Q

∇µε · ∇v =

∫

Q

uv

for every v ∈ L2(0, T ;V ) , (4.30)∫

Q

µεv =

∫

Q

∇ϕε · ∇v +

∫

Q

βε(ϕ
ε)v +

∫

Ω

π(ϕε)v

for every v ∈ L2(0, T ;V ) . (4.31)

To this end, we fix m for a while and take any Vm-valued step function w. Then, if n ≥ m,
the choice v = w(t) is admissible in both (4.12) and (4.13). By testing the equations and
integrating over (0, T ), we obtain (4.30)–(4.31) for (ϕn, µn) with this test function, and
letting n tend to infinity we have the same for (ϕε, µε). Since w and m are arbitrary,
the equations (4.30)–(4.31) also hold with any V∞-valued step function, where V∞ is the
union of all the subspaces Vm. As V∞ is dense in V , the set of these step functions is
dense in L2(0, T ;V ), and we immediately conclude.

4.4 Proof of Theorem 2.3

Since the estimates of Section 4.2 are uniform with respect to n and ε, they are preserved
in the limit as n tends to infinity, and we have that

‖ϕε‖L∞(0,T ;V ) + ‖µε‖L2(0,T ;V ) + ‖β̂ε(ϕ
ε)‖L∞(0,T ;L1(Ω)) ≤ c . (4.32)

However, we need some further estimates.

Fourth a priori estimate. From (4.30) it easily follows that

∣∣∣∣
∫

Q

∂tϕ
ε v

∣∣∣∣ ≤
(
‖ϕε‖L∞(0,T ;H) + ‖∇µε‖L2(0,T ;H) + ‖u‖L2(0,T ;H)

)
‖v‖L2(0,T ;V )

for every v ∈ L2(0, T ;V ),
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whence the estimate (4.32) implies that

‖∂tϕ
ε‖L2(0,T ;V ∗) ≤ c . (4.33)

Fifth a priori estimate. We test (4.6) by βε(ϕ
ε(t)) and integrate over (0, T ). We

obtain that ∫

Q

β ′
ε(ϕ

ε)|∇ϕε|2 +

∫

Q

|βε(ϕ
ε)|2 =

∫

Q

(
µε − π(ϕε)

)
βε(ϕ

ε) .

By accounting for (4.3), the Lipschitz continuity of π, and (4.32), we immediately con-
clude that

‖βε(ϕ
ε)‖L2(0,T ;H) ≤ c . (4.34)

Conclusion. We deduce that

ϕε → ϕ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V )

and strongly in C0([0, T ];H) , (4.35)

µε → µ weakly in L2(0, T ;V ) , (4.36)

βε(ϕ
ε) → ξ weakly in L2(0, T ;H) , (4.37)

as ε tends to 0 (at least for a subsequence εk tending to 0), where (ϕ, µ, ξ) is a solution to
problem (2.14)–(2.16). By virtue of the estimates (4.32)–(4.33) and compactness results,
we see that (4.35)–(4.37) hold true for some triplet (ϕ, µ, ξ). Then, in view of (4.7), it
turns out that (2.16) is satisfied, and we can take the limit in (4.30)–(4.31) to obtain
(2.17)–(2.18). It remains to show that ξ ∈ β(ϕ) a.e. in Q, but this follows from the strong
convergence of ϕε, the weak convergence of βε(ϕ

ε), and a well-known property of the
Yosida approximation (see, e.g., [2, Prop. 2.2, p. 38]). Thus, the proof of Theorem 2.3 is
complete.

5 Regularity and separation

This section is devoted to the proofs of Theorem 2.4 and Propositions 2.5 and 2.6. Hence,
it is understood that the assumptions of the corresponding statements are in force.

5.1 Regularity

In order to prove Theorem 2.4, we make a preliminary remark. Since β is a C1 function
in the interior of its domain, we can prove an estimate for the derivative β ′

ε of the Yosida
approximation. By the definition of βε, we have that

βε(r) ∈ β(r − εβε(r)) for every r ∈ R. (5.1)

Assume now that r belongs to the interior of D(β). Then the same is true for r− εβε(r),
and it holds that |r− εβε(r)| ≤ |r|. Indeed, by supposing, e.g., that r > 0, it follows that
βε(r) ≥ 0 whence r−εβε(r) ≤ r. But we also have that r−εβε(r) ≥ 0 since βε(0) = 0 and
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βε is Lipschitz continuous with Lipschitz constant 1/ε. This proves the second assertion.
The first one follows since [0, r] is included in the interior of β (recall (2.24)). Therefore,
(5.1) becomes an equation, and s = βε(r) is the function implicitly defined by the equation
β(r− εs)− s = 0. Since (∂/∂s)(β(r− εs)− s) ≤ −1, βε is differentiable and its derivative
is given by

β ′
ε(r) =

β ′(r − εβε(r))

1 + εβ ′(r − εβε(r))
.

Hence, we deduce that

|β ′
ε(r)| ≤ sup

s∈[a,b]

|β ′(s)| for every r ∈ [a, b] , (5.2)

whenever [a, b] contains 0 and is included in the interior of D(β).

Regularity estimate. To be completely rigorous, we come back to the Faedo–Galerkin
scheme and notice that we can assume ϕn and µn to be of class C1. Indeed, u belongs
to H1(0, T ;H), and we can suppose that βε is of class C1 since it could be replaced by
a regularization of it having the same properties in the whole procedure developed so
far (see, e.g., [29, formulas (3.5–6)]). We denote the Lipschitz constant of π by L, set
L′ := L+ 1, and test (4.12) by ∂tµn + L′ ∂tϕn. At the same time, we differentiate (4.13)
and test the resulting equation by −(∂tϕn + ϕn). Then, we sum up, integrate over (0, t),
and notice that a cancellation occurs. Thus, we obtain that

1

2

∫

Ω

|∇µn(t)|
2 + L′

∫

Qt

|∂tϕn|
2 +

L′

2

∫

Ω

|ϕn(t)|
2

+

∫

Qt

|∇∂tϕn|
2 +

1

2

∫

Ω

|∇ϕn(t)|
2 +

∫

Qt

β ′
ε(ϕn)|∂tϕn|

2 +

∫

Qt

ϕn β
′
ε(ϕn)∂tϕn

=
1

2

∫

Ω

|∇µn(0)|
2 +

L′

2

∫

Ω

|ϕn(0)|
2 +

1

2

∫

Ω

|∇ϕn(0)|
2

+

∫

Qt

u ∂tµn + L′

∫

Qt

u ∂tϕn − L′

∫

Qt

∇µn · ∇∂tϕn

−

∫

Qt

π′(ϕn)|∂tϕn|
2 −

∫

Qt

ϕn π
′(ϕn)∂tϕn . (5.3)

All of the terms on the left-hand side are nonnegative but the last one. To treat it, we
introduce γ, γ̂ : R → R by setting

γ(r) := r β ′
ε(r) and γ̂(r) :=

∫ r

0

γ(s) ds for r ∈ R,

and notice that γ̂ is nonnegative. Hence, we have that

∫

Qt

ϕn β
′
ε(ϕn)∂tϕn =

∫

Ω

γ̂(ϕn(t))−

∫

Ω

γ̂(ϕn(0)) ≥ −

∫

Ω

γ̂(ϕn(0)) .

On the other hand, by assuming that n is large enough as we did to obtain (4.17), and
owing to (5.2), we can estimate, at first ‖β ′

ε(ϕn(0))‖∞ and then ‖γ̂(ϕn(0))‖∞, uniformly
with respect to n and ε. Let us come to the right-hand side. While the second and third
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terms can easily be estimated by means of (4.16), the first one needs some work. We
write (4.13) at t = 0 and test it by −∆µn(0). We obtain that

∫

Ω

|∇µn(0)|
2 =

∫

Ω

{
∇(−∆ϕn(0)) +

(
β ′
ε(ϕn(0)) + π′(ϕn(0)

)
∇ϕn(0)

}
·∇µn(0) .

By arguing as in Remark 4.2, we see that ‖∇(−∆ϕn(0))‖ ≤ c ‖ϕ0‖H3(Ω). Moreover,
‖β ′

ε(ϕn(0))‖∞ has been already estimated, and ϕn(0) is uniformly bounded in V by (4.16).
Therefore, by the Schwarz inequality it is clear that

‖∇µn(0)‖ ≤ c . (5.4)

Let us proceed and treat the first integral involving u. By integrating by parts, and
then owing to the Poincaré and Young inequalities and our assumption on u, we have for
every δ > 0 that

∫

Qt

u ∂tµn =

∫

Ω

u(t)µn(t)−

∫

Ω

u(0)µn(0)−

∫

Qt

∂tu µn

=

∫

Ω

u(t)(µn(t)− µn(t))−

∫

Ω

u(0)(µn(0)− µn(0))−

∫

Qt

∂tu(µn − µn)

+

∫

Ω

u(t)µn(t)−

∫

Ω

u(0)µn(0)−

∫

Qt

∂tu µn

≤ δ

∫

Ω

|∇µn(t)|
2 +

∫

Ω

|∇µn(0)|
2 +

∫

Qt

|∇µn|
2

+M |Ω| |µn(t)|+M |Ω| |µn(0)|+ |Ω|

∫ T

0

|µn(s)|
2 ds+ cδ . (5.5)

Since (5.4) has been established, we just have to estimate µn pointwise. We observe that
testing (4.13) by 1/|Ω| and using (4.25) yields that

|µn(t)| ≤ |Ω|−1‖βε(ϕn(t))‖1 + c (5.6)

for every t ∈ [0, T ]. On the other hand, we can test (4.13) by ϕn(t)− ϕn(t), and account
for (4.22), the Poincaré inequality, and (4.25), to have that

δ0 ‖βε(ϕn(t))‖1 ≤

∫

Ω

(µn(t)− µn(t))(ϕn(t)− ϕn(t))−

∫

Ω

π(ϕn(t))(ϕn(t)− ϕn(t)) + c

≤ c ‖∇µn(t)‖+ c .

By combining, we deduce that

|µn(t)| ≤ c ‖∇µn(t)‖+ c for every t ∈ [0, T ]. (5.7)

Hence, by also accounting for (4.25) and (5.4), we have that

M |Ω| |µn(t)| ≤ δ

∫

Ω

|∇µn(t)|
2 + cδ ,

|µn(0)| ≤ c

∫

Ω

|∇µn(0)|
2 + c ≤ c and

∫ T

0

|µn(s)|
2 ds ≤ c

∫

Q

|∇µn|
2 + c ≤ c ,
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and (5.5) yields ∫

Qt

u ∂tµn ≤ 2δ

∫

Ω

|∇µn(t)|
2 + cδ .

Next, we have

L′

∫

Qt

u ∂tϕn − L′

∫

Qt

∇µn · ∇∂tϕn ≤ δ

∫

Qt

|∂tϕn|
2 + δ

∫

Qt

|∇∂tϕn|
2 + cδ ,

as well as

−

∫

Qt

π′(ϕn)|∂tϕn|
2 −

∫

Qt

ϕn π
′(ϕn)∂tϕn ≤ L

∫

Qt

|∂tϕn|
2 + δ

∫

Qt

|∂tϕn|
2 + cδ .

By combining all these estimates and (5.3), recalling that L′ = L + 1, and choosing δ
small enough, we conclude that

‖∇µn‖L∞(0,T ;H) + ‖∂tϕn‖L2(0,T ;V ) ≤ c . (5.8)

By also accounting for (5.7), we have that

‖µn‖L∞(0,T ;V ) ≤ c . (5.9)

Conclusion. At this point we can let n tend to infinity and conclude that

‖ϕε‖L∞(0,T ;V ) + ‖∂tϕ
ε‖L2(0,T ;V ) + ‖µε‖L∞(0,T ;V ) ≤ c , (5.10)

where (ϕε, µε) is the solution to the approximating problem (4.5)–(4.7) (see Section 4.3).
Moreover, testing (4.6) by βε(ϕ

ε(t)) for a.a. t ∈ (0, T ), and then using the elliptic regularity
theory, we easily infer that

‖βε(ϕ
ε(t))‖ ≤ ‖µε(t)− π(ϕε(t))‖ ≤ c and ‖ϕε(t)‖W ≤ c for a.a. t ∈ (0, T ),

whence
‖βε(ϕ

ε)‖L∞(0,T ;H) + ‖ϕε‖L∞(0,T ;W ) ≤ c .

Now, we conclude. Indeed, by letting ε tend to zero along a proper subsequence, we
obtain that the solution (ϕ, µ, ξ) given by (4.35)–(4.37) has the expected regularity and
satisfies estimate (2.28) with a constant K2 as in the statement.

5.2 The separation property

In this section, we prove our results regarding the separation property. Our proof of
Proposition 2.5 is based on a simple consideration on an elliptic problem. For a given
g ∈ H , let us consider the problem of finding a pair (z, ζ) ∈ V ×H satisfying
∫

Ω

zv+

∫

Ω

∇z ·∇v+

∫

Ω

ζv =

∫

Ω

gv for every v ∈ V and ζ ∈ β(z) a.e. in Ω . (5.11)

Since β is maximal monotone, this problem has a unique solution, and its solution is the
weak limit in V ×H of (zε, βε(zε)), where zε ∈ V solves

∫

Ω

zεv +

∫

Ω

∇zε · ∇v +

∫

Ω

βε(zε)v =

∫

Ω

gv for every v ∈ V . (5.12)
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For the reader’s convenience, we give a short detail on our last claim. Since βε is monotone
and βε(0) = 0, by testing (5.12) first by zε, and then by βε(zε), we immediately obtain that

‖zε‖V ≤ ‖g‖ and ‖βε(zε)‖ ≤ ‖g‖ .

Then, letting ε tend to zero, we have weak convergence in V and strong convergence in
H for zε, and weak convergence in H for βε(zε), so that the limiting pair of (zε, βε(zε))
solves (5.11).

Lemma 5.1. Assume that g ∈ L∞(Ω). Then,

ζ ∈ L∞(Ω) and ‖ζ‖∞ ≤ ‖g‖∞ . (5.13)

Proof. For k ∈ N, we introduce ζk ∈ V ∩ L∞(Ω) by setting

ζk := min{k,max{βε(zε),−k}}

and take v = |ζk|
p−2ζk in (5.12), where p > 2 is arbitrary. Since zεζk ≥ 0, ∇zε · ∇ζk ≥ 0

and βε(zε)ζk ≥ |ζk|
2, by also applying the Hölder and Young inequalities, we obtain that

‖ζk‖
p
p ≤

∫

Ω

zε|ζk|
p−2ζk +

∫

Ω

∇zε · ∇(|ζk|
p−2ζk) +

∫

Ω

βε(zε)|ζk|
p−2ζk =

∫

Ω

g|ζk|
p−2ζk

≤ ‖g‖p ‖|ζk|
p−2ζk‖p′ ≤

1

p
‖g‖pp +

1

p′
‖|ζk|

p−2ζk‖
p′

p′ =
1

p
‖g‖pp +

1

p′
‖ζk‖

p
p ,

whence ‖ζk‖p ≤ ‖g‖p. By letting k tend to infinity, we deduce that βε(zε) is bounded
and that ‖βε(zε)‖∞ ≤ ‖g‖∞. Thus, {βε(zε)} has a weak star limit in L∞(Ω) as ε ց 0.
Since it converges to ζ weakly in L2(Ω), we infer that this limit is ζ . Therefore, due to
the weak star lower semicontinuity of the L∞ norm, we obtain (5.13).

Proof of Proposition 2.5. We rearrange (2.15) and apply the lemma by choosing, for
a.a. t ∈ (0, T ), z = ϕ(t) and g = ϕ(t) + µ(t)− π(ϕ(t)), so that ζ = ξ(t). Hence

ξ(t) ∈ L∞(Ω) and ‖ξ(t)‖∞ ≤ ‖ϕ(t) + µ(t)− π(ϕ(t))‖∞ for a.a. t ∈ (0, T ),

that is, (2.29) is valid. The last claim of the statement easily follows. Indeed, if D(β)
is a bounded open interval, then by maximal monotonicity we have that β◦ tends to
infinity at the end-points of D(β). Hence, there exists a compact interval [a, b] such that
|β◦(r)| > ‖ξ‖∞ for every r ∈ D(β) \ [a, b]. Since ξ ∈ β(ϕ) a.e. in Q, we also have that
|ξ| ≥ |β◦(ϕ)| a.e. in Q, whence ϕ ∈ [a, b] a.e. in Q. �

Let us come to the separation property in dimension d = 2, i.e., Proposition 2.6,
whose assumptions are understood to be in force. In our proof, we employ some ideas
and methods from [31], but our argument is rather different. First, we need a new
approximation βε of β, since the Yosida regularization does not seem to be suitable for
our purpose.

New regularization. In the case of the logarithmic potential (1.6), we can choose

β(r) = ln
1 + r

1− r
for r ∈ D(β) = (−1, 1),
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and define β̂ accordingly in order that β̂(0) = 0. Since β is odd, for ε ∈ (0, 1) we define
βε to be the odd function on R that satisfies

βε(r) = β(r) for 0 ≤ r ≤ 1− ε,

βε(r) = β(1− ε) + β ′
ε(1− ε)(r − (1− ε)) for r > 1− ε,

so that βε is of class C1 and (4.1)–(4.2) are satisfied. We observe that βε enjoys some
additional regularity: indeed, β ′

ε is piecewise Lipschitz continuous and globally continuous,

thus Lipschitz continuous. Moreover, if β̂ε is the primitive of βε that vanishes at the origin,
(4.3) is satisfied, too. In the previous sections, we have used one further property of the
Yosida regularization. Namely, we had to guarantee that ξ ∈ β(ϕ) by knowing that ϕε and
βε(ϕ

ε) converge to ϕ and ξ strongly in L2(Q) and weakly in L2(Q), respectively. This still
holds for the new βε, since for every v, w ∈ H with w ∈ β(v) (i.e., |v| < 1 and w = β(v)
a.e. in Ω) there exist {vε} such that vε and βε(vε) strongly converge in H to v and w,
respectively. Indeed, one can take vε := min{1 − ε,max{vε,−1 + ε}} and observe that
the Lebesgue dominated convergence theorem can be applied since it holds a.e. in Ω that
vε → v, βε(vε) → β(v), |vε| ≤ |v|, and |βε(vε)| ≤ |β(v)|. All this ensures that the solution
(still termed (ϕε, µε), of course) to the new approximating problem (4.5)–(4.7) converges
to the unique solution to the original problem in the sense of (4.35)–(4.37) as ε tends to
zero. Hence, new uniform estimates for the new (ϕε, µε, βε(ϕ

ε)) provide corresponding
estimates for (ϕ, µ, ξ).

Two inequalities. We first prove that

β ′
ε(r) ≤ 2 e|βε(r)| for every r ∈ R. (5.14)

It suffices to consider positive values of r. If r < 1− ε, then we have that

β ′
ε(r) = β ′(r) =

2

(1− r)(1 + r)
≤ 2

1 + r

1− r
= 2 eβ(r) = 2 eβε(r).

If r ≥ 1− ε, then we have that

β ′
ε(r) = β ′(1− ε) =

2

ε(2− ε)
≤

2

ε
= 2 e− ln ε ≤ 2 eln(2−ε)−ln ε = 2 eβ(1−ε) ≤ 2 eβε(r).

Hence, (5.14) is valid.

Now, we prove that, for every p ≥ 1, there exist two positive constants κ and κ′

such that

rs eps ≤
1

2
s2 eps + eκr + κ′ for every r, s ≥ 0. (5.15)

To prove this claim, consider the function ψ : R → (−∞,+∞] defined by ψ(s) :=
(1 + s) ln(1 + s) − s if s > −1 and extended by 1 and +∞ at s = −1 and for s < −1,
respectively. Then, ψ is convex and l.s.c., and a direct computation easily shows that its
conjugate function is given by ψ∗(r) = er − r − 1 for r ∈ R. Then, the Young inequality
r′s′ ≤ ψ(s′) + ψ∗(r′) holds true for every r′, s′ ∈ R. In particular, if r, s ≥ 0 and δ > 0,
then we have that

rs eps ≤ ψ(δ seps) + ψ∗(r/δ) ≤ ψ(δ seps) + er/δ .
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On the other hand, we also have that

ψ(δs eps) ≤ (1 + δs eps) ln(1 + δs eps)

≤ (1 + δs eps) ln(eps + δs eps) = (1 + δs eps)(ps+ ln(1 + δ s))

≤ (1 + δs eps)(ps+ δs) = s(p+ δ) + δ(p+ δ)s2 eps

≤ δ s2 +
(p+ δ)2

4δ
+ δ(p+ δ)s2eps ≤ δ(1 + p+ δ)s2eps +

(p+ δ)2

4δ
.

Then, (5.15) follows if we choose δ > 0 such that δ(1 + p + δ) = 1/2, and set κ := 1/δ
and κ′ := (p+ δ)2/(4δ).

The basic estimate. Here is the most important change with respect to [31], since we
come back to the discrete problem (4.12)–(4.14) instead of directly dealing with problem
(2.14)–(2.16). We can take advantage of all of the estimates of Section 4.2. First, we
notice that βε + π is a C1 function and recall that u ∈ H1(0, T ;H). It follows that ϕn

and µn are functions in H2(0, T ;H). Then, we can differentiate both (4.12) and (4.13)
with respect to time and test the resulting inequalities by ∂tϕn and ∆∂tϕn, respectively.
If we sum up and integrate by parts and over (0, t), then a cancellation occurs, and we
obtain that

1

2

∫

Ω

|∂tϕn(t)|
2 +

∫

Qt

|∂tϕn|
2 +

∫

Qt

|∆∂tϕn|
2

=
1

2

∫

Ω

|∂tϕn(0)|
2 +

∫

Qt

∂tu ∂tϕn +

∫

Qt

(β ′
ε + π′)(ϕn) ∂tϕn∆∂tϕn . (5.16)

We estimate the first term on the right-hand side later on. The next term can be treated
in an obvious way by the Young inequality, while the last one needs some work. We
have that

∫

Qt

(β ′
ε + π′)(ϕn) ∂tϕn ∆∂tϕn ≤

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖3 ‖∂tϕn(s)‖6 ‖∆∂tϕn(s)‖ ds

≤
1

4

∫

Qt

|∆∂tϕn|
2 +

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖

2
3 ‖∂tϕn(s)‖

2
6 ds ,

and we have to estimate the last integral. We have a.e. in (0, T ) that

‖∂tϕn‖
2
6 ≤ c ‖∂tϕn‖

2
V ≤ c

(
|∂tϕn|

2 +

∫

Ω

|∇∂tϕn|
2
)

≤ c+ c
∣∣∣
∫

Ω

∂tϕn(−∆∂tϕn)
∣∣∣ ≤ c+ c ‖∂tϕn‖ ‖∆∂tϕn‖ ,

and we deduce that

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖

2
3 ‖∂tϕn(s)‖

2
6 ds

≤ c

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖

2
3

(
c+ c ‖∂tϕn(s)‖ ‖∆∂tϕn(s)‖

)
ds
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≤ c

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖

2
3 ds

+
1

4

∫

Qt

|∆∂tϕn|
2 + c

∫ t

0

‖(β ′
ε + π′)(ϕn(s))‖

4
3 ‖∂tϕn(s)‖

2 ds

≤ c

∫ t

0

(
‖β ′

ε(ϕn(s))‖
2
3 + 1

)
ds

+
1

4

∫

Qt

|∆∂tϕn|
2 + c

∫ t

0

(
1 + ‖β ′

ε(ϕn(s))‖
4
3

)
‖∂tϕn(s)‖

2 ds .

By combining these estimates with (5.16) and applying the Gronwall lemma, we con-
clude that

‖∂tϕn‖
2
L∞(0,T ;H) + ‖∆∂tϕn‖

2
L2(0,T ;H)

≤ c
(
‖∂tϕn(0)‖

2 + ‖∂tu‖
2
L2(0,T ;H) + ‖β ′

ε(ϕn)‖
2
L2(0,T ;L3(Ω)) + 1

)
×

× exp
(
c

∫ T

0

(
1 + ‖β ′

ε(ϕn(s)‖
4
3

)
ds
)
,

whence also

‖∂tϕn‖
2
L∞(0,T ;H) + ‖∆∂tϕn‖

2
L2(0,T ;H)

≤ c
(
‖∂tϕn(0)‖

2 + ‖β ′
ε(ϕn)‖

2
L2(0,T ;L3(Ω)) + 1

)
e
c ‖β′

ε(ϕn)‖4
L4(0,T ;L3(Ω)) . (5.17)

In order to let n tend to infinity, we have to estimate the H norm of ∂tϕn(0). To this
end, we set ε0 := (1 − ‖ϕ0‖∞)/2, assume that ε ≤ ε0, and recall that ϕn(0) converges
uniformly to ϕ0 (see also Remark 4.2). Hence, we can assume n large enough in order that
‖ϕn(0)‖ ≤ 1−ε0. On the other hand, (βε+π)(r) = f(r), the whole logarithmic potential,
for |r| ≤ 1 − ε0, and f is smooth in (−1, 1). Therefore, (βε + π)(ϕn(0)) = f(ϕn(0)) is as
smooth as ϕn(0) (i.e., as the eigenfunctions ej), and, for 0 ≤ s ≤ 4, the norm of f(ϕn(0))
in Hs(Ω) can be uniformly estimated by the corresponding norm of ϕn(0), thus by the
norm of ϕ0, due to our further assumption (2.30) (see Remark 4.2 once more). At this
point, we start estimating. We test (4.12) and (4.13), written with t = 0, by ∂tϕn(0) and
∆∂tϕn(0), respectively, and sum up. Since the terms involving µn(0) cancel each other,
with the help of some integrations by parts we obtain that

‖∂tϕn(0)‖
2 =

∫

Ω

|∂tϕn(0)|
2

=

∫

Ω

(
u(0)− ϕn(0)

)
∂tϕn(0) +

∫

Ω

∇ϕn(0) · ∇∆∂tϕn(0) +

∫

Ω

f(ϕn(0))∆∂tϕn(0)

=

∫

Ω

{
u(0)− ϕn(0)−∆2ϕn(0) + ∆(f(ϕn(0))

}
∂tϕn(0)

≤ c ‖∂tϕn(0)‖ .

At this point, we are ready to let n tend to infinity in (5.17). Indeed, by recalling (4.28)
and applying, e.g, [45, Sect. 8, Cor. 4]), we have that ϕn converges to ϕε strongly in
C0([0, T ];L3(Ω)). Since β ′

ε is Lipschitz continuous, this implies that β ′
ε(ϕn) converges to
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β ′
ε(ϕ

ε) in the same topology. As a consequence, the norm of β ′
ε(ϕn) in Lp(0, T ;L3(Ω))

converges to the corresponding norm of β ′
ε(ϕ

ε) for p = 2 and p = 4, so that, taking the
limit in (5.17), we obtain an inequality. Then, by estimating the above norms with the
norm in L∞(0, T ;L3(Ω)), we conclude that

‖∂tϕ
ε‖2L∞(0,T ;H) + ‖∆∂tϕ

ε‖2L2(0,T ;H)

≤ c
(
1 + ‖β ′

ε(ϕ
ε)‖2L∞(0,T ;L3(Ω))

)
e
c ‖β′

ε(ϕ
ε)‖4

L∞(0,T ;L3(Ω)) . (5.18)

Conclusion of the proof of Proposition 2.6. Our aim is to derive a bound in
L∞(0, T ;H) for ∂tϕ. To this end, we estimate the right-hand side of (5.18). Here, we fol-
low [31] rather closely. We set ϕε

k := min{k,max{ϕε,−k}} and Ψε(r) := βε(r)e
3|βε(r)| for

r ∈ R and observe that v = Ψε(ϕ
ε
k(t)) is admissible in (4.6) for a.a. t ∈ (0, T ). Therefore,

a.e. in (0, T ) we have that

∫

Ω

Ψ′
ε(ϕ

ε
k)∇ϕ

ε · ∇ϕε
k +

∫

Ω

βε(ϕ
ε)Ψε(ϕ

ε
k) =

∫

Ω

gεΨε(ϕ
ε
k) ,

where, for brevity, we have set gε = µε − π(ϕε). Since Ψ′
ε is nonnegative, ∇ϕε · ∇ϕε

k =
|∇ϕε

k|
2 a.e., and βε(ϕ

ε)βε(ϕ
ε
k) ≥ |βε(ϕ

ε
k)|

2 a.e., we deduce that

∫

Ω

|βε(ϕ
ε
k)|

2 e3|βε(ϕε
k
)| ≤

∫

Ω

gεΨε(ϕ
ε
k) .

We estimate the right-hand side using the inequality (5.15) with p = 3, r = |gε|, and
s = |βε(ϕ

ε
k)| and have that

∫

Ω

gεΨε(ϕ
ε
k) ≤

∫

Ω

|gε| |βε(ϕ
ε
k)|e

3|βε(ϕε
k
)| ≤

1

2

∫

Ω

|βε(ϕ
ε
k)|

2 e3|βε(ϕε
k
)| +

∫

Ω

(
eκ|gε| + κ′

)
.

On the other hand, by observing that (1− r2)er ≤ e for every r ∈ R, we also have that

∫

Ω

e3|βε(ϕε
k
)| ≤ 9

∫

Ω

|βε(ϕ
ε
k)|

2e3|βε(ϕε
k
)| + c .

By combining all this with (5.14), we infer that

∫

Ω

|β ′
ε(ϕ

ε
k)|

3 ≤ c

∫

Ω

e3|βε(ϕε
k
)| ≤ c

∫

Ω

eκ|gε| + c .

At this point, we recall the Trudinger inequality (see, e.g., [39])

∫

Ω

e|v| ≤ CΩ e
CΩ ‖v‖2

V for every v ∈ V ,

which holds since we are supposing that d = 2, and where the constant CΩ only depends
on Ω. Hence, we conclude that

∫

Ω

|β ′
ε(ϕ

ε
k)|

3 ≤ c

∫

Ω

eκ|gε| + c ≤ c eκ
2CΩ‖µε−π(ϕε)‖2V a.e. in (0, T ) .
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By accounting for (4.32) and (5.10), in addition we infer that

‖β ′
ε(ϕ

ε
k)‖L∞(0,T ;L3(Ω)) ≤ c , whence also ‖β ′

ε(ϕ
ε)‖L∞(0,T ;L3(Ω)) ≤ c .

At this point, we can take the limit in (5.18) and deduce that ∂tϕ and ∆∂tϕ belong to
L∞(0, T ;H) and L2(0, T ;H), respectively. Therefore, ∂tϕ belongs to L2(0, T ;W ). More-
over, elliptic regularity in (2.14) implies that µ belongs to L∞(0, T ;W ) ⊂ L∞(Q). Since
π(ϕ) is bounded, too, by applying Proposition 2.5, we obtain that ξ is bounded. This
concludes the proof of (2.31). Furthermore, it is clear that (2.32) holds true as well, with
a constant K3 as in the statement. Thus, the proof of Proposition 2.6 is complete.

6 The control problem

In this section, we investigate the optimal control problem (2.38). We remark that we
will use some notations already utilized in the previous sections with a different meaning
(e.g., ξ in the linearized system introduced later on). However, no confusion can arise.

6.1 Proof of Theorem 2.9

We assume first that α3 = 0 in which case the cost functional is independent of the
solution variables µ, ξ. By Theorem 2.3, the mapping Uad ∋ u 7→ ϕ is well defined, and
thus also the cost functional. Now we pick any minimizing sequence {((ϕn, µn, ξn), un)}
for the optimal control problem, that is, in particular, (ϕn, µn, ξn), where ξn ∈ β(ϕn),
satisfies (2.14)–(2.16) with right-hand side u = un for all n ∈ N. Owing to (2.36) and
the global estimate (2.22), we may without loss of generality assume that there are limits
ϕ, µ, ξ, u such that

un → u weakly star in H1(0, T ;H) ∩ L∞(Q), (6.1)

ϕn → ϕ weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W )

and strongly in C0([0, T ];H), (6.2)

µn → µ weakly in L2(0, T ;V ), (6.3)

ξn → ξ weakly in L2(0, T ;H), (6.4)

where the strong convergence in (6.2) follows from, e.g., [45, Sect. 8, Cor. 4]. Obviously, we
have that u ∈ Uad. Now, by also recalling Remark 2.1, we can pass to the limit as n→ ∞
in the state system (2.14)–(2.16), written with right-hand side un, to see that (ϕ, µ, ξ)
solves (2.14)–(2.16) with right-hand side u. In view of (6.4) and the strong convergence
stated in (6.2), and since the extension of β to L2(Q) is maximal monotone, a standard
argument then yields that ξ ∈ β(ϕ). The pair ((ϕ, µ, ξ), u) is thus admissible for (2.38),
and the weak sequential lower semicontinuity properties of the cost functional yield that
it is a minimizer.

Suppose now that β is single-valued, in which case the cost functional is well defined
also if α3 > 0. Then the above line of argumentation can obviously be repeated, only that
ξn = β(ϕn) and ξ = β(ϕ) in this case. The assertion is thus proved. �
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6.2 Fréchet differentiability of the control-to-state operator

In this section, we show the Fréchet differentiability of the control-to-state S introduced
in (2.44). To this end, we recall the definition of UR given in (2.40) and the assump-
tions (2.42)–(2.43) which are assumed to hold throughout the remainder of this section.
Observe that they are fulfilled in the case d = 3 for everywhere defined smooth poten-
tials and in the case d = 2 for the logarithmic potential (1.6) under the assumptions of
Proposition 2.6.

Now let some u∗ ∈ UR be fixed and (ϕ∗, µ∗) = S(u∗) be the associated state. We then
consider the corresponding linearized system, that is, given h ∈ X, we seek a pair (ξ, η)
satisfying

ξ ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) and η ∈ L2(0, T ;V ) , (6.5)

〈∂tξ(t), v〉+

∫

Ω

ξ(t)v +

∫

Ω

∇η(t) · ∇v =

∫

Ω

h(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (6.6)∫

Ω

η(t)v =

∫

Ω

∇ξ(t) · ∇v +

∫

Ω

f ′′(ϕ∗(t))ξ(t)v

for a.a. t ∈ (0, T ) and every v ∈ V , (6.7)

ξ(0) = 0 . (6.8)

We have the following result.

Lemma 6.1. Suppose that the conditions (2.42)–(2.43) are fulfilled, and let u∗ ∈ UR be
given with associated state (ϕ∗, µ∗) = S(u∗). Then the system (6.6)–(6.8) has for every
h ∈ X a unique solution (ξ, η) with the regularity (6.5). Moreover, the linear mapping
h 7→ (ξ, η) is continuous from X into Y.

Proof. The existence proof is similar to that for the state system, and we just provide
a sketch, leaving the details to the reader. Indeed, the system (6.6)–(6.8) has the same
structure for (ξ, η) as the state system (2.14)–(2.16) for (ϕ, µ), only that we have zero
initial conditions here and the term f ′′(ϕ∗)ξ in place of β(ϕ)+π(ϕ) (recall that β is single-
valued). We thus may argue as in Section 4: one approximates the system (6.6)–(6.8) by
a Faedo–Galerkin scheme using the eigenfunctions (4.8) and the subspaces (4.9). Since
the term f ′′(ϕ∗)ξ, where f ′′(ϕ∗) ∈ L∞(Q), is much easier to handle than the nonlinearities
β and π, similar, but in comparison with the state system considerably simpler, a priori
estimates can be performed on the Faedo–Galerkin system, yielding the bound (compare
(2.22))

‖ξn‖H1(0,T ;V ∗)∩L∞(0,T ;V )∩L2(0,T ;W ) + ‖ηn‖L2(0,T ;V ) ≤ c ∀n ∈ N.

Using compactness arguments, we can pass to the limit as n→ ∞ in the Faedo–Galerkin
system on a subsequence in order to establish the existence result.

We only prove that the mapping h 7→ (ξ, η) has the asserted continuity property. To
this end, let h ∈ X be fixed and (ξ, η) be an associated solution to (6.6)–(6.8) with the
regularity (6.5). We then insert v = ξ in (6.6) and v = η in (6.7), add the resulting
identities, and integrate over (0, t) for arbitrary t ∈ (0, T ]. After a cancellation of two
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terms, we then obtain that

1

2
‖ξ(t)‖2 +

∫

Qt

|ξ|2 +

∫

Qt

|η|2 =

∫

Qt

h ξ −

∫

Qt

f ′′(ϕ∗) ξ η

≤
1

2

∫

Qt

|η|2 + c

∫

Qt

(|ξ|2 + |h|2) .

Now observe that, by virtue of continuous embedding, we obviously have that ξ ∈
C0([0, T ];H). Therefore, Gronwall’s lemma yields that

‖ξ‖C0([0,t];H) + ‖η‖L2(0,t;H) ≤ c ‖h‖L2(0,t;H) for all t ∈ [0, T ]. (6.9)

Finally, applying elliptic regularity theory to (6.7), we may also conclude that

‖ξ‖L2(0,t;W ) ≤ c ‖h‖L2(0,t;H) for all t ∈ [0, T ]. (6.10)

With this, the asserted continuity property is shown. Finally, it is easily seen that the
inequality (6.9) also implies the uniqueness of the solution: indeed, by using linearity, if
(ξ, η) solves (6.6)–(6.8) with h = 0, then (6.9) implies that ξ = η = 0.

Remark 6.2. The existence proof sketched above yields that a unique solution to (6.6)–
(6.8) with the regularity (6.5) also exists if we only have h ∈ L2(Q) and that also in this
situation the continuity property shown above is valid.

We now show the following Fréchet differentiability result.

Theorem 6.3. Suppose that the conditions (2.42)–(2.43) are fulfilled, and let u∗ ∈ UR be
given with associated state (ϕ∗, µ∗) = S(u∗). Then the operator S is Fréchet differentiable
at u∗ as a mapping from X into Y, and the Fréchet derivative DS(u∗) ∈ L(X,Y) acts
as follows: for every h ∈ X, the value DS(u∗)(h) is given by the solution (ξ, η) to the
linearized system (6.6)–(6.8).

Proof. Since u∗ ∈ UR, it follows that there is some Λ > 0 such that u∗+h ∈ UR whenever
‖h‖X ≤ Λ. In the following, we only consider such perturbations h ∈ X. In the remainder
of this proof, we denote by the small-case symbol c constants that may depend on the
data of the system but not on the choice of h ∈ X with ‖h‖X ≤ Λ. We then define

(ϕh, µh) := S(u∗ + h), yh := ϕh − ϕ∗ − ξh, zh := µh − µ∗ − ηh, (6.11)

where (ξh, ηh) denotes the unique solution to the linearized system (6.6)–(6.8). We then
have

yh ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), zh ∈ L2(0, T ;V ). (6.12)

Now, by virtue of Lemma 6.1, the linear mapping h 7→ (ξh, ηh) is continuous between
X and Y. According to the definition of Fréchet differentiability, it therefore suffices to
construct a function G : (0,Λ) → (0,∞) that satisfies limλց0G(λ)/(λ

2) = 0 and

‖(yh, zh)‖2Y ≤ G(‖h‖∞) . (6.13)
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We are going to show that we may choose G(λ) = ĉ λ4 with some sufficiently large ĉ > 0.

Next, it is easily seen, using Taylor’s theorem with integral remainder, that (yh, zh) is
a solution to the system

〈∂ty
h(t), v〉+ (yh(t), v) + (∇zh(t),∇v) = 0, for a.a. t ∈ (0, T ) and all v ∈ V , (6.14)

(zh(t), v) = (∇yh(t),∇v) + (f ′′(ϕ∗(t)) yh(t), v) + (Rh(t)(ϕh(t)− ϕ∗(t))2, v),

for a.a. t ∈ (0, T ) and all v ∈ V , (6.15)

yh(0) = 0 a.e. in Ω, (6.16)

with the remainder

Rh(t) :=

∫ 1

0

(1− s) f ′′′(ϕ∗(t) + s (ϕh(t)− ϕ∗(t))) ds .

Observe that ϕ∗ + s(ϕh − ϕ∗) ∈ [a, b] almost everywhere in Q for all s ∈ [0, 1], and thus

‖Rh‖∞ ≤ c for all h ∈ X satisfying ‖h‖X ≤ Λ. (6.17)

Also, we conclude from (2.33) in Theorem 2.8 that the estimate

‖ϕh − ϕ∗‖C0([0,t];H)∩L2(0,t;W ) + ‖µh − µ∗‖L2(0,t;H) ≤ C2 ‖h‖L2(0,T ;H) (6.18)

is valid for all t ∈ (0, T ] and all admissible perturbations h. Furthermore, taking v = 1 in
(6.14) and accounting for (6.16), we immediately see that

yh(t) = 0 for all t ∈ [0, T ]. (6.19)

Therefore, we may insert v = N(yh)(t) in (6.14) and v = −yh(t) in (6.15), add the resulting
identities, and integrate over time. Noting an obvious cancellation, we then obtain that

1

2
‖yh(t)‖2∗ +

∫ t

0

‖yh(s)‖2∗ ds +

∫

Qt

|∇yh|2

= −

∫

Qt

f ′′(ϕ∗) |yh|2 −

∫

Qt

Rh (ϕh − ϕ∗)2 yh =: I1 + I2, (6.20)

with obvious meaning. Now, owing to (2.43) and by virtue of the compactness inequality
(2.53), we have that

I1 ≤ c

∫ t

0

‖yh(s)‖2 ds ≤
1

4

∫

Qt

|∇yh|2 + c

∫ t

0

‖yh(s)‖2∗ ds . (6.21)

Moreover, by also using Young’s and Hölder’s inequalities, (6.18), and (6.17), we see that

I2 ≤ c

∫ t

0

‖(ϕh − ϕ∗)(s)‖4 ‖(ϕ
h − ϕ∗)(s)‖2 ‖y

h(s)‖4 ds

≤ c ‖ϕh − ϕ∗‖C0([0,t];H)

∫ t

0

‖(ϕh − ϕ∗)(s)‖V ‖yh(s)‖V ds

≤ c ‖h‖L2(0,t;H) ‖ϕ
h − ϕ∗‖L2(0,t;V ) ‖y

h‖L2(0,t;V )

≤
1

4

∫

Qt

|∇yh|2 + c

∫ t

0

‖yh(s)‖2∗ ds + c‖h‖4L2(0,T ;H) . (6.22)
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Combining (6.20)–(6.22) with Gronwall’s lemma, we thus have shown that

‖yh‖2L∞(0,t;V ∗)∩L2(0,t;V ) ≤ c ‖h‖4L2(0,T ;H) for all t ∈ [0, T ]. (6.23)

The next step is to insert v = yh(t) in (6.14) and v = zh(t) in (6.15), add the resulting
equations, and integrate over time. This yields the identity

1

2
‖yh(t)‖2 +

∫

Qt

|yh|2 +

∫

Qt

|zh|2

=

∫

Qt

f ′′(ϕ∗) yh zh +

∫

Qt

Rh (ϕh − ϕ∗)2 zh := I3 + I4 . (6.24)

Clearly, by (2.43) and Young’s inequality we have that

I3 ≤
1

4

∫

Qt

|zh|2 + c

∫

Qt

|yh|2 . (6.25)

Moreover, also using (6.17), (6.18), and Hölder’s inequality, we find that

I4 ≤ c

∫ t

0

‖(ϕh − ϕ∗)(s)‖∞ ‖(ϕh − ϕ∗)(s)‖2 ‖z
h(s)‖2 ds

≤
1

4

∫

Qt

|zh|2 + c ‖ϕh − ϕ∗‖2C0([0,t];H)

∫ t

0

‖(ϕh − ϕ∗)(s)‖2W ds

≤
1

4

∫

Qt

|zh|2 + c ‖h‖4L2(0,T ;H) . (6.26)

Now recall that yh ∈ C0([0, T ];H). Thus, combining (6.24)–(6.26) with Gronwall’s lemma,
and invoking (6.23), we have finally shown that

‖yh‖2C0([0,T ];H)∩L2(0,T ;V ) + ‖zh‖2L2(0,T ;H) ≤ c0 ‖h‖
4
L2(0,T ;H) ,

with a sufficiently large constant c0 > 0. Since ‖h‖L2(0,T ;H) ≤ T 1/2 |Ω|1/2 ‖h‖∞, the
condition (6.13) is fulfilled with G(λ) = ĉλ4 and ĉ = T 2 |Ω|2 c0. The assertion is thus
proved.

6.3 Necessary conditions for optimality

In this section, we establish first-order necessary optimality conditions for the optimal
control problem. Using Theorem 6.3 and the chain rule, a standard argument yields the
following result.

Proposition 6.4. Suppose that the conditions (2.42)–(2.43) are fulfilled, and let u∗ ∈ Uad

be an optimal control with associated state (ϕ∗, µ∗) = S(u∗). Then it holds the variational
inequality

α1

∫

Q

(ϕ∗ − ϕQ)ξ + α2

∫

Ω

(ϕ∗(T )− ϕΩ)ξ(T ) + α3

∫

Q

(µ∗ − µQ)η

+ α4

∫

Q

u∗(u− u∗) ≥ 0 ∀ u ∈ Uad , (6.27)

where (ξ, η) is the unique solution to the linearized system (6.6)–(6.8) with h = u− u∗.



36 Colli — Gilardi — Rocca — Sprekels

As usual, we now eliminate the variables (ξ, η) from (6.27) by means of the solution
(p, q) to the associated adjoint system, which is given by (2.46)–(2.48). We have the
following result.

Lemma 6.5. Suppose that the conditions (2.42)–(2.43) are fulfilled, let u∗ ∈ Uad be an
optimal control with associated state (ϕ∗, µ∗) = S(u∗), and assume that the regularity
conditions (2.49)–(2.50) are satisfied. Then the adjoint system (2.46)–(2.48) has a unique
solution (p, q) such that

p ∈ H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ), q ∈ L2(0, T ;V ). (6.28)

Proof. Again, we employ a Faedo–Galerkin approximation with the eigenfunctions defined
in (4.8) and the n-dimensional subspaces Vn from (4.9). We then look for functions

pn(x, t) =

n∑

i=1

pin(t)ei(x), qn(x, t) =

n∑

i=1

qin(t)ei(x),

that solve the final value problem

(−∂tpn(t), v) + (pn(t), v) + (∇qn(t),∇v) = −(f ′′(ϕ∗(t))qn(t), v) + (g1(t), v)

for a.a. t ∈ (0, T ) and every v ∈ Vn , (6.29)

(qn(t), v) = (∇pn(t),∇v)− (g3(t), v)

for a.a. t ∈ (0, T ) and every v ∈ Vn , (6.30)

(pn(T ), v) = (g2, v) for every v ∈ Vn , (6.31)

where, owing to the regularity of (ϕ∗, µ∗) and (2.49),

g1 = α1(ϕ
∗ − ϕQ) ∈ L2(0, T ;V ), g2 = α2(ϕ

∗(T )− ϕΩ) ∈ V,

g3 = α3(µ
∗ − µQ) ∈ L2(0, T ;V ). (6.32)

Now observe that, by taking v = ei in (6.30) and recalling (4.8), we have that

qin(t) = λip
i
n(t)− (g3(t), ei) for 1 ≤ i ≤ n.

Therefore, if we insert v = ei, 1 ≤ i ≤ n, in (6.29), then we obtain a standard ter-
minal value problem for an explicit linear system of ordinary differential equations in
the unknowns p1n, . . . , p

n
n in which all of the coefficient functions belong to L2(0, T ).

By Carathéodory’s theorem (applied backward in time), it has a unique solution in
H1(0, T ;Rn) that specifies pn. At the same time, inserting ei, 1 ≤ i ≤ n, in (6.30),
we recover (q1n, . . . , q

n
n) ∈ L2(0, T ;Rn), which in turn specifies qn. Hence, the system

(6.29)–(6.31) has a unique solution (pn, qn) ∈ H1(0, T ;Vn)× L2(0, T ;Vn).

We now derive a priori estimates. First, we insert v = pn in (6.29) and v = qn in
(6.30), add the results, and integrate over (t, T ] where t ∈ [0, T ). Noting a cancellation of
two terms and recalling the notation introduced in (2.1), we then arrive at the identity

1

2
‖pn(t)‖

2 +

∫

Qt

|pn|
2 +

∫

Qt

|qn|
2

=
1

2
‖pn(T )‖

2 −

∫

Qt

f ′′(ϕ∗) pn qn +

∫

Qt

g1 pn −

∫

Qt

g3 qn . (6.33)
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Applying Young’s inequality, we see that the three integrals on the right-hand side are
bounded by an expression of the form

c +
1

2

∫

Qt

|qn|
2 + c

∫

Qt

|pn|
2,

and the first summand is bounded since ‖pn(T )‖
2 = (pn(T ), g2) ≤ ‖pn(T )‖ ‖g2‖, that is,

‖pn(T )‖ ≤ ‖g2‖. Therefore, applying Gronwall’s lemma backward in time, we obtain from
(6.33) the estimate

‖pn‖L∞(0,T ;H) + ‖qn‖L2(0,T ;H) ≤ c ∀n ∈ N. (6.34)

In the second estimate, we take v = −∆pn in (6.29) and v = −∆qn in (6.30) to obtain
the identity

1

2
‖∇pn(t)‖

2 +

∫

Qt

|∇pn(t)|
2 +

∫

Qt

|∇qn|
2

=
1

2
‖∇pn(T )‖

2 +

∫

Qt

∇g1 · ∇pn −

∫

Qt

∇g3 · ∇qn −

∫

Qt

∇(f ′′(ϕ∗) qn) · ∇pn

:= I1 + I2 + I3 + I4, (6.35)

with obvious meaning. Since g1, g3 ∈ L2(0, T ;V ), Young’s inequality implies that for
every δ > 0 (which has yet to be chosen) we have that

I2 + I3 ≤ δ

∫

Qt

(
|∇pn|

2 + |∇qn|
2
)
+ cδ. (6.36)

Moreover, we have, as seen above, ‖pn(T )‖ ≤ ‖g2‖. Also, by the same token, and since
∆pn(T ) ∈ Vn,

‖∇pn(T )‖
2 = (pn(T ),−∆pn(T )) = (g2,−∆pn(T )) = (∇g2,∇pn(T )),

which implies that ‖∇pn(T )‖ ≤ ‖g2‖V and thus I1 ≤ c.

Finally, using the Young and Hölder inequalities, as well as (2.50), we obtain that

I4 = −

∫

Qt

f ′′(ϕ∗)∇qn · ∇pn −

∫

Qt

f ′′′(ϕ∗) qn ∇ϕ
∗ · ∇pn

≤ δ

∫

Qt

|∇qn|
2 + cδ

∫

Qt

|∇pn|
2 + c

∫ T

t

‖qn(s)‖4 ‖∇ϕ
∗(s)‖4 ‖∇pn(s)‖2 ds

≤ 2δ

∫

Qt

|∇qn|
2 + δ

∫

Qt

|qn|
2 + cδ

∫

Qt

|∇pn|
2. (6.37)

Combining (6.35)–(6.37), choosing δ = 1/4, and using (6.34) and Gronwall’s lemma, we
have thus shown that

‖pn‖L∞(0,T ;V ) + ‖qn‖L2(0,T ;V ) ≤ c ∀n ∈ N. (6.38)

But then we may insert v = −∆pn(t) in (6.30), and Young’s inequality and elliptic
regularity yield that

‖pn‖L2(0,T ;W ) ≤ c ∀n ∈ N. (6.39)
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In our last step, we prove that

‖∂tpn‖L2(0,T ;V ∗) ≤ c ∀n ∈ N. (6.40)

To this end, we recall that Vn contains the constant functions, so that (6.29) yields

−
d

dt
pn + pn = −f ′′(ϕ∗)qn + g1 . (6.41)

By taking advantage of (6.31) and (6.34) for qn, we deduce that

‖pn‖H1(0,T ) ≤ c ∀n ∈ N. (6.42)

By combining (6.29) with (6.41), and setting for brevity

ρn := −f ′′(ϕ∗)qn + f ′′(ϕ∗)qn + g1 − g1 ,

we deduce that

−
(
∂t(pn − pn), v

)
+ (pn − pn, v) + (∇qn,∇v) = (ρn, v)

a.e. in (0, T ), for every v ∈ Vn.

Recalling (4.21) and (2.55), we can test the above identity by −N(∂t(pn − pn)) and ob-
tain that

∫ T

t

‖∂t(pn − pn)(s)‖
2
∗ ds+

1

2
‖(pn − pn)(t)‖

2
∗

=
1

2
‖(pn − pn)(T )‖

2
∗ −

∫ T

t

〈∂t(pn − pn)(s), qn(s)〉ds−

∫

Qt

ρn N(∂t(pn − pn)).

On account of (6.31) and (6.38), Young’s inequality, and the properties of N, we see that
the whole right-hand side is bounded by

1

2

∫ T

t

‖∂t(pn − pn)(s)‖
2
∗ ds+ c ,

and we we infer that {∂t(pn − pn)} is bounded in L2(0, T ;V ∗). Then, (6.40) follows on
account of (6.42).

At this point, we conclude from (6.38)–(6.40) the existence of limit points (p, q) such
that, at least for a subsequence labelled again by n,

pn → p weakly star in H1(0, T ;V ∗) ∩ L∞(0, T ;V ) ∩ L2(0, T ;W ) , (6.43)

qn → q weakly in L2(0, T ;V ) . (6.44)

It is then a standard matter to conclude that (p, q) is a solution to (2.46)–(2.48). We
may allow ourselves to leave this simple argument and the proof of uniqueness to the
reader.
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Proof of Theorem 2.10. We insert v = p(t) in (6.6) and v = −q(t) in (6.7), add the
resulting equations, and integrate over [0, T ]. Using the properties of the adjoint system
(2.46)–(2.48), we then obtain that

0 =

∫ T

0

〈∂tξ(t), p(t)〉 dt +

∫

Q

(
ξp+∇η · ∇p− hp

)
+

∫

Q

(
−ηq + f ′′(ϕ∗)ξq +∇ξ · ∇q

)

=

∫ T

0

〈−∂tp(t), ξ(t)〉 dt +

∫

Q

ξ
(
p+ f ′′(ϕ∗)q

)
+

∫

Q

∇ξ · ∇q +

∫

Q

(
−ηq +∇η · ∇p

)

−

∫

Q

hp +

∫

Ω

ξ(T )p(T )

=

∫

Q

(
α1(ϕ

∗ − ϕQ)ξ + α3(µ
∗ − µQ)η − hp

)
+ α2

∫

Ω

(ϕ∗(T )− ϕΩ)ξ(T ) .

Substitution of this identity with h = u − u∗ in (6.27) yields the variational inequality
(2.51). �
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