
Tidal response from scattering and the role of analytic continuation

Gastón Creci,1, ∗ Tanja Hinderer,1 and Jan Steinhoff2

1Institute for Theoretical Physics, Utrecht University,
Princetonplein 5, 3584 CC Utrecht, Netherlands, European Union

2Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute),
Am Mühlenberg 1, 14476 Potsdam-Golm, Germany, European Union

(Dated: October 26, 2022)

The tidal response of a compact object is a key gravitational-wave observable encoding infor-
mation about its interior. This link is subtle due to the nonlinearities of general relativity. We
show that considering a scattering process bypasses challenges with potential ambiguities, as the
tidal response is determined by the asymptotic in- and outgoing waves at null infinity. As an ap-
plication of the general method, we analyze scalar waves scattering off a nonspinning black hole
and demonstrate that the low-frequency expansion of the tidal response reproduces known results
for the Love number and absorption. In addition, we discuss the definition of the response based
on gauge-invariant observables obtained from an effective action description, and clarify the role
of analytic continuation for robustly (i) extracting the response and the physical information it
contains, and (ii) distinguishing high-order post-Newtonian corrections from finite-size effects in a
binary system. Our work is important for interpreting upcoming gravitational-wave data for sub-
atomic physics of ultradense matter in neutron stars, probing black holes and gravity, and looking
for beyond-standard-model fields.
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I. INTRODUCTION

The ever-increasing number of gravitational-wave de-
tections of merging binary systems [1–4] has revealed a
wealth of new insights and provided an unprecedented
tool for fundamental physics, astrophysics, and cosmol-
ogy [5–8]. In particular, gravitational waves encode
unique information about the nature and interiors of
compact objects. During the clean, cumulative binary
inspiral epoch, these imprints arise from spin-induced
deformations and a variety of tidal interactions. Tidal
effects are especially interesting because they correspond
to the excitation of isolated quasinormal modes of the
compact objects driven by the companion’s time-varying
tidal field due to the orbital motion. The dominant tidal
signatures in gravitational waves depend on the objects’
internal structure through a characteristic tidal deforma-
bility parameter, first measured for the binary neutron
star event GW170817 [7]. Determining tidal parameters
such as deformability is of major interest for understand-
ing the long-sought properties of matter at supranuclear
densities in neutron stars [9, 10], probing the nature of
black holes and constraining quantum corrections to their
horizons [11], tests of gravity [12, 13], and looking for
beyond-standard-model fields in the cosmos [14, 15].

In the next years, the gravitational-wave detectors
will continue to increase in sensitivity [16], discovering
more diverse populations of compact objects and per-
forming higher accuracy studies of nearby events. En-
visioned next-generation detectors [17–19] will improve
upon the sensitivity of current instruments by an order
of magnitude and enable precision physics with gravita-
tional waves. To realize this science potential requires
accurate theoretical models, which play a crucial role
since the data analysis cross-correlates templates with
the data [20, 21]. For the events analyzed to date, sys-
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tematic uncertainties in the modeling and interpretation
of the signals have been subdominant compared to the
statistical errors, as far as could be quantified [2]. As the
statistical errors decrease in the near future, however,
shortcomings in the modeling will become more promi-
nent. There is thus an urgent need to address lingering
theoretical challenges that impact our interpretation of
the gravitational wave signals, especially with regard to
finite-size effects.

The relativistic tidal deformability characterizing the
dominant finite-size effects in the gravitational waves is
defined as the ratio of the induced multipolar deforma-
tion of a compact object’s exterior spacetime to the per-
turbing tidal field of the companion [22]. In the static
limit, when the perturbing frequency is far below a mode
resonance [23], it reduces to the relativistic tidal Love
numbers [22, 24]. Its computation is based on perturba-
tion theory for compact objects [23, 25–27], with many
different examples of compact objects studied to date,
e.g. [14, 15, 25, 28–34]. Recent work [35–45] has revealed
a number of intricacies in addressing questions such as:
How are the measurable tidal signatures in gravitational
waves related to the response of a compact object ob-
tained from perturbation theory? Is the tidal deformabil-
ity identically zero for all black holes in general relativity
and four spacetime dimensions?

Despite recent progress, several concerns remain, for
instance, about degeneracies of tidal effects with high
post-Newtonian (PN) order terms describing relativis-
tic corrections to the dynamics of point masses. The
problem is the following, as described in detail in [35].
The tidally induced multipole moments can be defined
from the exterior spacetime of the perturbed compact
object in asymptotically cartesian mass-centered coor-
dinates [46], which is equivalent to other definitions of
spacetime multipole moments [47]. For instance, the
metric component gtt (the analog of the Newtonian grav-
itational potential) has an asymptotic expansion at large
distances r → ∞ from a nonspinning compact object of
the form (1 − gtt) = −2M/r − 3Q/r3 + . . . + E r2 + . . .,
where the omissions denote higher orders in 1/r and r.
The quantity Q is the quadrupole moment contracted
with two copies of a unit vector, and E is the simi-
larly contracted quadrupolar tidal field. The multipole
moments of the object are associated with the asymp-
totically decaying series in 1/r, while the external field
corresponds to the growing terms in r. However, ambi-
guities arise when the two series overlap. For instance,
this occurs when the tidal field is only known to some
order in its PN expansion having the schematic form
E = EN[1 + . . .+ δ5/r

5 +O(r−6)], where EN is the New-
tonian tidal field, and schematically, an nth order PN
correction contributes a power of 1/rn. For a binary sys-
tem, the coefficient δ5 remains unknown at present. A
fractional change in E at O(r−5) introduces a net 1/r3

contribution to the expansion of gtt, thus changing the
multipole moment Q by an amount proportional to δ5.
This degeneracy between PN and multipole effects is dis-

cussed in more detail in [23, 25, 35, 37, 48–50].

In this paper, we clarify that an unambiguous dis-
tinction between finite-size effects and high order PN
corrections is achieved by using analytic continuation.
We show that working in generic spacetime dimensions
and/or multipole moments avoids degeneracies and man-
ifestly separates these two kinds of physical effects. In
addition, we emphasize that potential ambiguities aris-
ing from inspecting the metric in specific coordinates,
as explained above, are avoided by defining the response
based on gauge-invariant quantities such as the binding
energy as a function of frequency or the waveform [35].
In related contexts, though at fixed spacetime dimension
and multipole orders, the binding energy has long proved
useful for identifying multipole moments [48, 51].

The binding energy can be derived from an effective
action, which is a highly useful tool in physics [52, 53],
and in particular for calculating finite-size effects at the
orbital scale [37, 53–58]; for broader review articles see
e.g. [59, 60]. The effective action describes the compact
objects by skeletonized center-of-mass worldlines [61]
augmented with multipole moments. Couplings of the
multipole moments to the ambient spacetime curvature
and possible internal dynamics encapsulate the finite size
effects. An important feature of this approach is that the
information about the object encoded, for instance, in the
values of the coupling coefficients must be matched to a
detailed microphysical description, often based on calcu-
lations in perturbation theory. In this paper, we demon-
strate the advantages of establishing this connection by
recasting the problem into a scattering calculation and
matching the frequency-dependent response, instead of
working with stationary perturbations and specializing
to the static limit as in many previous studies [25–27, 36–
40]. The matching of scattering states enables us to iden-
tify the black hole’s tidal response from in- and outgo-
ing waves at null infinity using double-null Bondi coordi-
nates [62]. These coordinates are defined from light-cone
congruences, whose intrinsic geometric meaning is fur-
ther reviewed in [63].

As a first step toward the more complicated gravita-
tional case we consider here a scalar field model, which
nevertheless captures a number of important features of
potential ambiguities. This scenario has also been stud-
ied in [37, 38], with the differences being that we consider
wave scattering and keep the frequency-dependence in
the response. For black holes, this response also includes
dissipative effects due to absorption, which can also be
described in effective field theory [57, 64–71]. We ver-
ify that the low-frequency expansion of the black hole’s
frequency-dependent scalar tidal response obtained from
scattering recovers the expected results of a vanishing
tidal deformability [37] and the known absorption cross
section [72] at zeroth and linear order in the frequency
respectively.

The frequency-dependent response based on scattering
was also analyzed in the context of neutron stars in [23].
The new aspects of this paper are that we substantially
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expound on the methodology, introduce more rigorous
identifications at null infinity between the microphysical
results and the effective action description, and elaborate
on a number of insights. Complementary aspects of wave
scattering and absorption by compact objects have been
studied in e.g. [73–81].

Recent efforts have also highlighted the convenience
of using analytic continuation to complex angular mo-
mentum for efficiently extracting physical properties of
perturbed black hole spacetimes [82–85]. In this paper,
we further examine the role of analytic continuation both
in the spacetime dimension and the angular momentum
number for the different stages in the calculation of the
tidal response. Notably, we demonstrate that in contrast
to the crucial role of analytic continuation for obtain-
ing the response in stationary scenarios [36–40], using
scattering states might eliminate the need for analytic
continuation to match the coefficients in the effective ac-
tion and the need for high-PN order calculation of ob-
servables. This is advantageous, for instance, for future
numerical calculations of the microscopic response that
capture the full frequency dependence and are applicable
to any compact object.

This paper is organized as follows. We discuss the
gauge-invariant binding energy as a function of frequency
of a binary system in Sec. II, highlighting the crucial role
of analytic continuation in the spacetime dimension and
multipole order to simplify the separation between finite-
size effects and PN corrections to the point-mass dynam-
ics. In Sec. III we calculate the tidal response function
based on the asymptotic scalar wave scattering states ex-
tracted at null infinity. We first set up an effective action
description, which defines the tidal response that is im-
printed in observables, and derive its relation to the in-
and outgoing complex wave amplitudes. Next, we con-
nect these wave amplitudes with the detailed properties
of a perturbed nonspinning black hole computed from
perturbation theory. We elucidate the matching proce-
dures, the role of analytic continuation in the process,
and discuss the advantages of scattering over considering
stationary scenarios for bypassing several subtleties and
giving access to dynamical tides. Section IV summarizes
our results and insights gained from the calculations, and
Sec. V contains the conclusions. The Appendices contain
additional technical details and mathematical identities
used in this work.

The notation and conventions are the following. Greek
letters α, β, . . . denote spacetime quantities, Latin in-
dices i, j, . . . denote spatial components. The notation
for the covariant derivative is ∇µ and for the partial
derivative it is ∂µ. Capital-letter superscripts denote a
string of indices on a symmetric and trace-free (STF) ten-
sor, e.g for a unit vector nL=2 = nij = ninj − 1

3δ
ij , see

[46]. We use the Einstein summation convention on all
types of indices, i.e. repeated indices are summed over.
We work in generic spacetime dimensions d, and use the

shorthand d̂ = D − 2 = d − 3, where D is the number
of spatial dimensions, such that four-dimensional space-

time corresponds to d̂ = 1. We also define ˆ̀= `/d̂, with `
the multipolar order. Throughout the paper, we work in
units where the speed of light is unity but we explicitly
keep the gravitational constant GN .

II. GAUGE-INVARIANT BINDING ENERGY
OF A BINARY SYSTEM

In this section, we discuss how potential ambiguities
– or rather, technical difficulties – in the identification
of tidal deformabilities can arise [25, 26, 35, 37, 49] and
be overcome by using gauge-invariant quantities [35] and
analytic continuation e.g. in dimension or multipolar or-
der [23, 36–40, 86]. Specifically, we demonstrate that
the circular-orbit binding energy connects the tidal de-
formabilities to an observable, while analytic continua-
tion enables discriminating tidal from nontidal PN con-
tributions. For clarity and conciseness of the expressions,
we focus on the static tides and nonspinning objects.

We first consider tidal effects in Newtonian gravity
to derive an explicit effective action for the orbital dy-
namics in arbitrary spacetime dimensions. As in four
dimensions, the action derived in this way depends on
the compact object’s microphysics only through the tidal
deformability. It also describes fully relativistic com-
pact objects at large separation, provided that one in-
terprets the tidal deformability as the relativistic param-
eter [22, 56, 58]. We then discuss tidal effects in the
binding energy in relation to nontidal PN contributions.

A. Expansions of the potential: Multipole and
tidal moments

We consider an extended object (labeled A) and a
point-mass companion (labeled B). The gravitational
potential U is a solution to the D-(spatial)dimensional
Poisson equation:

∇2(D)U = −ΩDG
D
NρD , (2.1)

where ΩD = 2πD/2/Γ(D/2) is the volume of the
(D− 1)-hypersphere, GDN and ρD are the D-dimensional
gravitational constant and mass density respectively,
and ∇2(D) is the D-dimensional Laplacian. In D-

dimensions, the gravitational constant G
(D)
N has dimen-

sions [s]−2[kg]−1[m]D. From now on, we will omit the

label D and use the notation d̂ = D− 2, such that d̂ = 1
corresponds to 3 spatial dimensions. In the exterior of a
single body, the solution of (2.1) reads

UA =
GNMA

d̂|xi − ziA|d̂

+

∞∑
`=2

1

`!

(2`+ d̂− 2)!!

d̂!!

GNQLn
L

|xi − ziA|`+d
, (2.2)
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with ziA the center of mass position of the body A, and
we have separated out the point-mass result in the first
term. The moments QL are the D-dimensional Newto-
nian source multipole moments defined as integrals over
the mass density

QL =

∫
dd̂+2x′ρA(t, x′

i
)(x′ − zA)L. (2.3)

In a binary system, the total potential near the extended
body A also has a contribution from the fact that the
potential due to the companion varies over A’s mass dis-
tribution. The potential felt by A due to the companion
can be expressed as

U ext
A = −

∞∑
`=0

1

`!
(x− zA)LEL , (2.4)

where “ext” indicates that the source is external to the
object. We have also introduced the tidal tensor

EL = GN (−1)`+1 (2`+ d̂− 2)!!

d̂!!

MB

r`+d̂AB

nLAB , (2.5)

where MB is the mass of the companion, rAB denotes the
distance between the bodies, and niAB = (xiA − xiB)/rAB
is a unit vector.

B. Effective action for extended objects in
Newtonian gravity

1. Lagrangian for the binary dynamics

Next, we compute the Lagrangian, L = T − V , with
T = TA + TB and V = VA + VB the kinetic and poten-
tial energy obtained by generalizing the results of [87] to
arbitrary dimensions

TA =
1

2

∫
A

dd̂+2x ρA ż
2
A + T int

A , (2.6a)

VA = −1

2

∫
A

dd̂+2x ρA U
ext
A + V int

A . (2.6b)

Here, T int
A and V int

A are the internal kinetic and potential
energy, which we will specify below. The contributions
from object B are similar to (2.6) but only the point-
mass terms are nonvanishing. Substituting the expan-
sion of the potential (2.4) into (2.6b) and using the defi-

nition (2.3) leads to the d̂-dimensional Newtonian action
with tidal effects

SNewt = SNewt
pm +

∫
dt

[
−
∞∑
`=2

1

`!
QLEL + Lint

A

]
, (2.7)

with SNewt
pm the Newtonian action for point mass dynam-

ics

SNewt
pm =

∫
dt

[
1

2
µv2 +

1

d̂

GNµM

rd̂

]
. (2.8)

Here, µ = MAMB/M and M = MA + MB are the re-
duced and total mass of the binary system, and Lint

A is
the Lagrangian for the internal dynamics of the extended
body.

2. Specializing to the dominant tidal effects

In Newtonian gravity, the internal dynamics of the
multipole moments are directly related to the density
perturbations of the matter, and hence the normal modes
of oscillation of the object. The fundamental (f)-modes
have the strongest tidal couplings, and are described by
the internal Lagrangian1

Lint
A =

1

2`!λ`ω2
0`

[
Q̇LQ̇

L − ω2
0`QLQ

L
]
. (2.9)

The quantities ω0` are the f -mode frequencies, with the
subscript 0 indicating that the mode function has no ra-
dial nodes, and λ` are the tidal deformability coefficients.
In the adiabatic limit that the f -mode frequency ω0`

is much higher than the tidal forcing frequency, which
varies on the orbital timescale, the internal Lagrangian
reduces to

Ladiab
int = − 1

2`!λ`
QLQ

L . (2.10)

The induced multipole moments QL are then related to
the tidal moments EL by the equations of motion

Qadiab
L = −λ`EL. (2.11)

It is important to note that (2.11) is also valid for com-
pact objects in general relativity, when using relativis-
tic definitions of the multipole and tidal moments deter-
mined from the exterior spacetime.

3. Reduced effective action

Using (2.11) to integrate out the multipole degrees of
freedom from the action leads to a reduced action involv-
ing only the orbital quantities as dynamical variables

Sadiab = SNewt
pm +

∫
dt

∞∑
`=2

λ`
2`!
ELEL (2.12)

1 This is analogous to a simple harmonic oscillator with L = T −
V = 1

2
mẋ2 − 1

2
kx2 = 1

2λω2 (ẋ2 − ω2x2) with k/m = ω2 and
k = 1/(`!λ`), where the factor `! comes from the definition of the
tidal deformability. Intuitively, the mass density perturbations
due to a companion induce the multipole moments of a initially
spherical star. If these perturbations oscillate due to normal
modes, the only way they can enter the system is by making
the multipoles oscillate. This is the reason why, in this example,
x2 →

∑
`QLQ

L.
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= SNewt
pm +

∫
dt

∞∑
`=2

1

2`!
λ`Π`

G2
NM

2
B

r2`+2d̂
. (2.13)

To obtain (2.13) we used the identity (see Ap-
pendix A 0 a)

nLnL =
(`+ d̂− 1)!

(2`+ d̂− 2)!!(d̂− 1)!!
, (2.14)

and defined

Π` =
(2`+ d̂− 2)!!(`+ d̂− 1)!

d̂!!d̂!
. (2.15)

The information about the internal structure of the com-
pact object is encoded in the action (2.13) through the
coefficients λ`.

C. Tidal effects in the binding energy for circular
orbits

1. Computation of the Newtonian binding energy

As the orbital separation is a coordinate-dependent no-
tion, it is advantageous to express results in terms of
an observable frequency instead. We achieve this by
expressing the velocity as v2 = φ̇2r2 + ṙ2 defining the
orbital frequency Ω, and considering the equations of
motion obtained from (2.13) for stable circular orbits

r̈ = ṙ = φ̈ = 0. We solve these perturbatively for the
radius as a function of the orbital frequency in the form

r(Ω) =

√
x

Ω
(1 + δr), (2.16)

with δr denoting the tidal corrections, where

x = (GN M Ωd̂)
2

(d̂+2) . (2.17)

We find that the tidal correction in (2.16) is given by

δr =

∞∑
`=2

λ`
M2
BΠ`(`+ d̂)

(d̂+ 2)`!µ

G
2
d̂+2

(d̂+1− 2`
d̂

)

N x1+ 2`
d̂

M2(d̂+`)/d̂
. (2.18)

We compute the binding energy as a function of the fre-
quency by reversing the sign of the potential in the La-
grangian (2.13), specializing to circular orbits, and us-
ing (2.16) to eliminate r in favor of Ω, or rather x(Ω).
This leads us to

E(Ω)

µ
= −1

2
x

[
2− d̂
d̂

−
∞∑
`=2

d̂(4ˆ̀+ 3)− 2

(d̂+ 2)(ˆ̀d̂)!
Π`λ`

M2
B

µM2(ˆ̀+1)
x2ˆ̀+1G−2ˆ̀

N

]
, (2.19)

with

ˆ̀= `/d̂. (2.20)

2. Discriminating tidal from post-Newtonian (PN) effects

Having calculated the leading-order tidal effects in the
binding energy (2.19), we now consider how PN cor-
rections will enter into this expression. In four space-
time dimensions, low PN order fractional corrections to
the binding energy scale with integer powers of x =
(GN M Ω)2/3 in units with the speed of light c = 1.
Terms of O(xn) correspond to the n-PN order. This con-
tinues to hold in arbitrary dimensions, as inferred from
the explicit calculations of the 1PN Lagrangian in [88]
when using the generalized frequency-variable x that de-

pends on d̂ from (2.17). In four dimensions, starting at
the fourth PN order, additional terms in the binding en-
ergy of the form x4 ln(x) first appear. These are due to
tail effects associated with the scattering of gravitational
waves off the spacetime curvature produced by the total
mass of the binary and interacting with the system at a
later time. Such tail effects are related to the difference
in the light cones between Schwarzschild and Minkowski
spacetime, as we will discuss in a different context in
Sec. III B. Because wave propagation is very different de-
pending on the number of spacetime dimensions, we ex-
pect that the appearance of the xn ln(x) corrections is not
a generic feature of PN terms. The effect of such high-
order tail terms has not yet been calculated in arbitrary
dimensions, thus the more general dependencies remain
unknown. Irrespective of the exact scalings of higher PN

order effects, it is clear that they are independent of ˆ̀,
in contrast to tidal terms.

Based on the above considerations, the binding en-
ergy with tidal and instantaneous PN corrections has the
schematic form

E(Ω)

E0
∼ 1 +

∞∑
`=2

x1+2ˆ̀
λ` c

tidal
`d̂

+

∞∑
n=2,
n∈Z+

xn cPN
nd̂

+ . . . ,

(2.21)
where E0 is the Newtonian point-mass result from the
first term in (2.19), and ctidal and cPN are coefficients
that depend on the masses, whose explicit form is not
needed here.

In the standard calculations, where (2.21) is specialized

to four spacetime dimension d̂ = 1 and positive integer `,
the tidal terms contribute at orders x5, x7, . . ., while the
PN terms scale as x, . . . x5, . . .. Consequently, at O(x5)
and higher, there are contributions from both tidal and
post-Newtonian terms, where the PN coefficients cPN

5 and
higher are currently not yet known and are challenging to
compute (see, e.g., [89–91]). However, when using ana-

lytic continuation keeping ˆ̀ arbitrary, we see from (2.21)

that tidal terms scale as x(1+2`/d̂), which is manifestly
distinct from the instantaneous PN terms that scale as
xn with positive integers n, irrespective of the dimension
or multipolar number.

We note that instead of using analytic continuation in
ˆ̀, only one of the analytic continuations in d̂ or in ` is
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needed to make the distinction between finite-size and
relativistic point-mass effects. For instance, fixing d̂ = 1
and using analytic continuation in ` is already sufficient
to distinguish tidal terms scaling as x2`+1 from post-5-
Newtonian terms that are expected to scale as x5 and
x5 ln(x). Likewise, specializing to quadrupole tides ` = 2

and keeping d̂ arbitrary leads to tidal terms that scale as

x1+4/d̂, which is distinct from PN scalings that involve
xn with integer n.

The discussion of the tidal signatures in the binding
energy also carries over to the tidal imprints on gravi-
tational wave signals. The imprints in the gravitational
waves can be estimated by using energy balance as re-
viewed in [92]. The energy flux in gravitational waves is
computed in a first approximation from the quadrupole

formula ĖGW ∼
...
Q
T
ij

...
Q
T
ij (see [92] for higher order results),

which depends on the total quadrupole QTij of the binary
system given by the sum of the orbital quadrupole and
the tidally induced quadrupoles. Thus, the energy flux
also depends on QL and hence the tidal response, ex-
cept with different mass-dependent coefficients than in
the binding energy. The combination of these two de-
pendencies on the response ultimately leads to the tidal
signatures in the gravitational waves.

D. Matching the tidal deformability

The above results allow us to explore different avenues
for extracting the tidal deformabilities from the binding
energy of a binary. First, since the circular-orbit binding
energy is a gauge- or coordinate-independent observable,
one can match our EFT result (2.21) to any other re-
sult for this quantity obtained in approaches that com-
prise the full linear tidal response, and solve for the λ`
(see [35] for a similar discussion in terms of the gravi-
tational waveform). A particularly suitable scenario is
the binding energy of a large body tidally deformed by
a small perturber [93–95] computed within the self-force
approach [96, 97]. However, as mentioned above, at a
fixed multipole order ` ∈ N, ` > 1 in four spacetime di-

mensions d̂ = 1, knowledge of the (generally unknown)
nontidal terms at 1 + 2` PN order is required to discrim-
inate the tidal contribution.

While recent progress in the PN expansion [90] on cPN
5

makes such a matching in four spacetime dimensions fea-
sible for the leading order tidal interaction (` = 2) in
the near future, the higher multipole orders would still
require a different approach. Alternatively, analytically
continuing self-force results in the dimension or multi-
pole will manifestly separate tidal terms from nontidal
PN terms, which need not be known explicitly in this
case. The utility of analytic continuation, usually in di-
mension, to facilitate the matching of effective theories
by avoiding high-order computations in the effective the-
ory has long been established [52], and was discussed in
the context of tidal coefficients in [37].

This advantageous feature of analytic continuation,
combined with the use of (gauge-invariant) observables
to extract the tidal information, continues as a main
theme in the remainder of this paper. However, instead of
working with the binding energy or waveform of a binary
system, we consider instead the scattering of dynamical
tidal fields off a single compact object [23, 73, 76] and
the corresponding observables below.

We also note that a small caveat in the distinction be-
tween tidal and PN terms could arise when tidal terms in
the effective theory play the role of counterterms which
cancel divergences in the nontidal PN terms, as discussed
in [37]. This would inevitably entangle the tidal and non-
tidal contributions to (finite) observables, and in partic-
ular lead to scale-dependent tidal coefficients. However,
such a mild form of ambiguity is a well- understood is-
sue in similar contexts in particle physics. That is, in
a given regularization and renormalization scheme, the
(finite part of the) Love number can still be uniquely
matched using analytic continuation arguments [37], in-
cluding its scale dependence. These subtleties are absent
for adiabatic tides in four spacetime dimensions [37] but
play a role for dynamical tides, as seen e.g. in the scale-
dependence of dynamical quadrupoles obtained in [98].

Finally, we comment on slightly different definitions
(or understanding) of the tidal coefficients (or Love num-
bers) used in the literature in relation to the conven-
tion adopted here. As explained in the introduction, the
Love number can be understood as the ratio of coeffi-
cients in the metric with distinct static asymptotic be-
havior [26, 27], hinging on a choice of coordinates. Al-
ternatively, the Love number or more generally the dy-
namical tidal response can be seen as a property of an
effective theory for a compact object such as a coupling
constant in an effective action [25, 37, 57], which is the
convention adopted here. Finally, one may define the
Love number based on observables, in particular relative
to possible (conservative) tidal effects of black holes as
a baseline [35], which ultimately seems most advanta-
geous as unlike the other approaches, it does not suffer
from either a coordinate dependence or a possible scale
(and renormalization-scheme) dependence. Fortunately,
all approaches are equivalent in four spacetime dimen-
sions for the adiabatic tidal Love numbers: the connec-
tion of coefficients in the asymptotic expansion of the
metric to the effective action was derived in [37], which
also provided a proof that the Love numbers of nonspin-
ning black holes vanish, and we recapitulated above the
straightforward connection between tidal contributions
to observables and the effective theory.

III. LOVE NUMBERS FROM SCATTERING

Having established a gauge-invariant definition of the
adiabatic tidal response in Sec. II and its connection with
quantities appearing in an effective action, let us now
work out the case of a fully dynamical tidal response.
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We focus here on the link between the tidal response
in the effective theory and the microphysics of the com-
pact object, which is also advantageous for recovering the
adiabatic case. We make this connection by considering
wave scattering. For simplicity of developing the general
methodology for this scenario, we consider scalar waves.
As before, we work with arbitrary multipole order and di-
mensions, however, we do not specialize to the adiabatic
limit of the response.

We first consider the effective action for scalar tidal
effects [37] and delineate the relation between the body’s
tidal response and the complex amplitudes of the asymp-
totic in- and outgoing scalar waves. To compute these
amplitudes in terms of the detailed properties of the com-
pact object requires going beyond an effective action and
considering the full problem of relativistic scalar pertur-
bations to the compact object. As an explicit example,
we perform this calculation for a Schwarzschild black hole
based on analytical approximations. Finally, we match
the information from the full calculation to the effective
action description based on light cone coordinates at null
infinity and discuss the new insights gained from this ap-
proach. Figure 1 illustrates the information flow we will
trace in this section.

Specifically, the action describing the dynamics of the
scalar field φ is given by [37]

Sφ = −Kφ

2

∫
ddx
√
−g gαβ ∇αφ∇βφ, (3.1)

where, Kφ is a coupling constant and d denotes the num-
ber of spacetime dimensions, together with the usual
Einstein-Hilbert action for the gravitational field

SG =
1

16πGN

∫
ddx
√
−gR, (3.2)

with R the Ricci scalar. The coupling constant Kφ is de-
fined such that it coincides with the coupling constant of
the full theory Sfull

φ = −Kfull
φ /2

∫
ddx
√
−ggαβ∇αφ∇βφ.

Hence Kφ = Kfull
φ .2 We are interested in considering

wavelike solutions to the equations of motion derived
from this action in two different contexts. In the full
problem, we consider the behavior of φ in the space-
time of a Schwarzschild black hole. This describes linear
scalar tidal perturbations of a black hole, since the mod-
ification of the spacetime due to the scalar field (i.e. its
energy-momentum tensor) is quadratic in φ. In an effec-
tive description, the black hole reduces to a point-mass
worldline in flat spacetime with additional nonminimal

2 This generalizes the normalization of [37]. In that work the nor-
malization is chosen to match the scalar field action coming from
the Newtonian potential. However, we consider any type of scalar
perturbation and therefore Kfull

φ will depend on the scalar field

producing the tidal perturbation in the full theory. Note that if
the scalar field in the full theory is the Newtonian potential, we
recover the convention in [37].

A∞in
A∞out

∞rH

Compact object

Matching

Fℓ(ω)

Worldline

Point mass + Mul4pole moments

Full theory 
EFT

Afullin
Afullout

 
CEFTin
CEFTout

Matching

FIG. 1. Schematic calculational process to determine the re-
sponse function F`(ω). The response is defined in an effective
description (EFT) where the compact object is viewed from
large distances and appears as a point mass with multipole
moments. Grey arrows indicate the information flow from the
microphysical properties of the object to the response via the
ratio of in- and outgoing wave amplitudes at infinity. In the
full theory calculations based on relativistic perturbations,
we specialize to a black hole, thus need only the solutions in
the exterior of the horizon rH , and base the matching of the
near-horizon and asymptotic solutions on analytical approx-
imations for Mω � 1. The matching to the effective theory
is achieved by identifying in- and outgoing wave states at in-
finity.

couplings describing the scalar tidal effects. We show
how to extract from these descriptions the tidal response
of the black hole based on scattering states defined at
null infinity.

A. Effective action for scalar tidal effects and
response function in terms of scattering states

In this subsection, we consider a body of mass m per-
turbed by an external massless scalar field φ. The body
responds to the disturbance by developing scalar mul-
tipole moments QL. A similar scenario is also stud-
ied in [37] and [38], which specialized to the static re-
sponse but also included gravitational and vectorial per-
turbations. Here, we are interested in computing the
frequency-dependent response by considering a scatter-
ing process, where φ describes in- and outgoing scalar
waves. As the in- and outgoing states are defined asymp-
totically at null infinity, it is appropriate to formulate the
effective action describing the process in flat spacetime.
We first calculate the identification between the induced
moments QL and the amplitudes of the in- and outgo-
ing wave states. We then compute the response function
F`(ω) characterizing the ratio between the induced tidal
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moments QL and the strength of the tidal perturbation
EL. Specifically, the response function F`(ω) is defined
by

QL(ω) = −F`(ω)EL(ω). (3.3)

Intuitively, and in analogy with the Newtonian gravita-
tional definitions of the tidal field in (2.4), the externally
sourced tidal field EL corresponds to moments of φ that
are nonsingular at the worldline of the compact object
r = 0. Mathematically, this leads to the scalar tidal ten-
sor in (3.3) given by

EL = FP
r→0

∂Lφ(ω). (3.4)

Here, FP
r→0

denotes the finite part as r → 0, which we

understand here simply as its value in dimensional regu-
larization, see Appendix A 0 c.3 The function φ(ω) is the
Fourier transform of the scalar wave

φ(ω) =
1√
2π

∫
dte−iωtφ(t). (3.5)

In general, the response function F`(ω) in (3.3) is com-
plex. In the limit ω → 0, the O(ω0) term is real and
F`(ω) reduces to the static tidal deformability parameter
as the scalar analog of (2.11). By contrast, the next-order
O(ω1) term is imaginary and describes dissipation.

The aim of this subsection is to arrive at an expression
for the response function in terms of the in- and outgoing
wave amplitudes. These amplitudes encode information
on the microphysics of the body m, which we will discuss
in detail in subsequent sections.

1. Effective action and equations of motion

An effective action provides a useful description at
large distances from a stellar object. In this regime,
the object can be described as a point-particle reference
worldline with additional couplings related to tidal ef-
fects, similar to the considerations in Sec. II. The effec-
tive action can be written as

S = Spm + Stidal + Sint + Sφ + SG, (3.6)

where Sφ and SG are given in (3.1) and (3.2) above. The
point-mass (pm) action is given by

Spm = −m
∫
dτ
√
−uµuµ, (3.7)

where τ is an affine parameter and uµ = dzµ/dτ is the
tangent to the worldline zµ(τ).

3 This essentially corresponds to making use of the vanishing of
scaleless momentum-space integrals in dimensional regulariza-
tion. This is not to be confused with Hadamard’s partie finie.

The Lagrangian for the scalar tidal couplings between
tidal moments of the external field ∇Lφ and the body’s
multipole moments is given by

Stidal = −KQ

∫
dτ
√
−uµuµ

∞∑
`=0

1

`!
QL∇Lφ. (3.8)

Here, QL are the multipole moments of the body and
KQ is the coupling constant. Finally, the action Sint

describes the internal dynamics, that is the dynamics of
the multipoles, see (2.9) for a simple example. We are not
specifying it here explicitly, but rather write the solution
to the equations of motion for the multipoles in terms of
the response function (3.3). This equivalently captures
the internal dynamics and more naturally covers the case
of tidal dissipation, as opposed to Sint. For a detailed
derivation we refer to [58].

The equation of motion for the scalar field derived from
the action (3.6) is a sourced wave equation

∇µ∇µφ = Tφ, (3.9)

with Tφ = −(δStidal/δφ)/(Kφ
√
−g) given by

Tφ =
KQ

Kφ

∫
dτ

∞∑
`=0

(−1)`

`!
∇L

[√−uµuµ√
−g

QLδ(d)(xµ − zµ(τ))

]
.

(3.10)
Next, we make several specializations. Analogous to the
calculation of tidal effects in the binding energy, which
only had to be performed to the leading Newtonian order
when analytic continuation is employed, it is sufficient
here to work at linear order in a weak field expansion
and disregard the gravitational interaction between the
point-mass and the scalar field. That is, we work in flat
spacetime, where

√
−g = 1 and the covariant derivatives

reduce to partial derivatives. We also specialize to the
rest frame where uµ = (1, 0, 0, 0), and we can set zµ =
(τ, 0, 0, 0) by re-parameterization invariance. With these
choices, (3.9) becomes

∂µ∂
µφ =

KQ

Kφ

∫
dτ

∞∑
`=0

(−1)`

`!
∂L

[
QL(τ)δ(d)(xµ − zµ(τ))

]
=
KQ

Kφ

∞∑
`=0

(−1)`

`!
∂L

[
QL(t)δ(D)(xi)

]
. (3.11)

where we used that4

δ(d)(xµ − zµ(τ)) = δ(t− z0)δ(D)(xi − zi). (3.12)

Taking the Fourier transform of the right-hand side
of (3.11) with the conventions as in (3.5) and looking
at a fixed frequency leads to

∂µ∂
µφ =

KQ

Kφ

∞∑
`=0

(−1)`

`!
√

2π
QL(ω)eiωt∂Lδ(x

i). (3.13)

4 From now on we omit the superindex D of the Dirac delta.
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Note that in the static case (3.13) reads

∇2φ =
KQ

Kφ

∞∑
`=0

(−1)`

`!
QL∂Lδ(x

i) , (3.14)

and has the solution

φ =
KQ

Ωd̂+1Kφ

∞∑
`=0

1

`!

(2`+ d̂− 2)!!

d̂!!

QLn
L

r`+d
, (3.15)

with Ωd̂+1 = 2πd̂/2+1/Γ(d̂/2+1) the volume of the d̂+1-
hypersphere. The prefactor is important when comput-
ing the zero-frequency Love number. The coupling con-
stant will modify the decaying part of the full scalar field
solution and therefore has to be taken into account when
computing the multipole moments as the decaying part
of the scalar perturbation solution at infinity. In the

d̂ = 1 Newtonian case this subtlety is not present be-
cause KQ = 1 and Kφ = 1/Ω2.

Next, we solve for the multipole moments QL in terms
of properties of the in- and outgoing waves of the scat-
tering process. The idea is to explicitly construct the
scattering states, then substitute these solutions into the
left-hand side of (3.13). Upon applying the wave opera-
tor to the solution, only the components of the scattered
waves that depend on the induced multipole moments
will contribute a source term, since the scalar tidal field
is an external, sourcefree field. This enables us to iden-
tify the resulting source terms with the right-hand side
of (3.13) and read off the moments QL.

2. In- and outgoing wave solutions

For simplicity, we start by considering the solutions
with ` = 0 and subsequently generate the solution for
arbitrary multipoles by applying ` STF derivatives. For
` = 0, the source term in (3.13) vanishes. In addition,
the d’Alembertian operator becomes independent of the
angular variables. The equation of motion of the scalar
field (3.13) then reduces to

−∂2
t φ

(0) +
1

rd̂+1
∂r

(
rd̂+1∂rφ

(0)
)

= 0, (3.16)

where φ(0) is the field with ` = 0. Upon decomposing the

field as φ(0) = r−d̂/2fω(r)eiωt, this turns into a Bessel-
type differential equation,

4r2∂2
rfω(r) + 4r∂rfω(r) + rd̂/2−1

[
ω2r2 − d̂2

4

]
fω(r) = 0.

(3.17)

The solution can be constructed using Hankel functions:

φ(0)

eiωt
= C1r

−d̂/2H
(1)

d̂/2
(ωr) + C2r

−d̂/2H
(2)

d̂/2
(ωr), (3.18)

with C1 and C2 constants that are determined by bound-
ary conditions. This solution can be understood as an
outgoing and incoming wave, i.e.

φ
(0)
in = C1r

−d̂/2H
(1)

d̂/2
(ωr)eiωt , (3.19a)

φ
(0)
out = C2r

−d̂/2H
(2)

d̂/2
(ωr)eiωt . (3.19b)

To determine the constants C1 and C2 we consider the
asymptotic behavior r →∞ and fix it such that

lim
r→∞

φ
(0)
in, out ≡ Cin, out

eiω(t±r)

r
1
2 (d̂+1)

. (3.20)

Using the properties of the Bessel functions in (3.19) we
obtain

lim
r→∞

φ
(0)
in, out =

C1, 2

r(d̂+1)/2
eiωt

√
2

πω
e±i(ωr−

1
2π

d̂
2−

1
4π).

(3.21)
Requiring that this matches (3.20) we see that

C1, 2 = Cin, out

√
πω

2
e±i

π
4 (d̂+1). (3.22)

As mentioned above, our aim is to relate the source
term of (3.13) to the source term obtained from the scat-
tering waves solution (3.19), from which we can then de-
termine QL in terms of Cin, out. The in- and outgoing
basis adapted to the physical states is, however, incon-
venient for achieving such an identification directly. It is
simpler to use a basis adapted to the different analytical
behaviors of the solution, and relate the results to the in-
and outgoing states at the end of the calculation. The
external field corresponds to a sourcefree solution that is
everywhere regular and in particular finite near the origin
corresponding to the body’s worldline. The contribution
from the body’s response captures the source of the full
solution and diverges near the worldline, corresponding
to an irregular solution that is singular at the origin.
Hence, working in the basis of regular and irregular so-
lutions disentangles the contributions and corresponding
source terms, similar to the methods for identifying the
Coulomb field of a body [99].

3. Change of basis

The basis of regular and irregular solutions is obtained
from the in- and outgoing solutions by going from the
Hankel functions to the Bessel functions of the first and
second kind defined by

H
(1)

d̂/2
(ωr) = Jd̂/2(ωr) + iYd̂/2(ωr), (3.23a)

H
(2)

d̂/2
(ωr) = Jd̂/2(ωr)− iYd̂/2(ωr). (3.23b)

Inserting this into (3.18) we obtain

φ(0) = φ(0)
reg + φ

(0)
irreg, (3.24)
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where the regular and irregular solutions are given by

φ(0)
reg = Crege

iωt
√

2πω r−d̂/2Jd̂/2(ωr), (3.25a)

φ
(0)
irreg = Cirrege

iωt
√

2πω r−d̂/2Yd̂/2(ωr), (3.25b)

and the coefficients Creg/irreg are related to the constants
Cin/out by

Creg =
(C1 + C2)√

2πω

=
1

2

(
Coute

iπ4 (d̂+1) + Cine
−iπ4 (d̂+1)

)
, (3.26a)

Cirreg =
i (C1 − C2)√

2πω

= i
1

2

(
Coute

iπ4 (d̂+1) − Cine
−iπ4 (d̂+1)

)
. (3.26b)

4. Angular dependence

Having obtained the solutions for the scalar field for
` = 0 we will next apply partial STF derivatives, cor-
responding to a spherical-harmonic decomposition. The
goal is to recover the angular dependence from the ` = 0
solution and relate the physical amplitudes CLin/out to

the regular/irregular basis CLreg/irreg for generic multipo-

lar order `. Therefore, the full solutions for arbitrary
multipolar order ` are given by

φ =

∞∑
`=0

(
CLreg∂Lφ

(0)
reg + CLirreg∂Lφ

(0)
irreg

)
, (3.27)

where φ
(0)
reg/irreg are given in (3.25) and we absorb the

constants Creg/irreg in the coefficients CLreg/irreg. To ob-

tain the coefficients CLin/out in terms of the ` = 0 ampli-

tudes (3.26) we compute the STF derivatives explicitly.
We use the relation [100]

∂Lf(r) = nLr
`

(
1

r

∂

∂r

)`
f(r), (3.28)

and the property for a generic Bessel function Bν(z) of
degree ν [101](

1

z

d

dz

)k
(zνBν(z)) = zν−kBν−k(z), (3.29)(

1

z

d

dz

)k (
z−νBν(z)

)
= (−1)kz−ν−kBν+k(z). (3.30)

Thus,

∂L

(
r−d̂/2Bd̂/2(ωr)

)
= (−1)`nLr

−d̂/2ω`Bd̂/2+`(ωr).

(3.31)

Putting all together we have

φ =

∞∑
`=0

eiωt
√

2πω r−d̂/2ω`nL(−1)`

×
(
CLregJd̂/2+`(ωr) + CLirregYd̂/2+`(ωr)

)
.

(3.32)

Recall that this is the solution for a fixed frequency ω for
which φ(t, r) = φ(ω, r)eiωt/

√
2π, where φ(ω, r) coincides

with the Fourier transform at a fixed frequency.
We now express the field in the incoming and outgoing

basis. In order to do that we obtain the proper asymp-
totic expression of incoming and outgoing waves for ` 6= 0
by proceeding in the same way as above. That is, we ap-
ply STF derivatives to the ` = 0 expression,5

lim
r→∞

φin/out = CLin/out

∂L
(
eiω(t±r))
r

1
2 (d̂+1)

= CLin/outnL(±iω)`
eiω(t±r)

r
1
2 (d̂+1)

. (3.33)

To obtain the incoming and outgoing solutions we invert
Eqs. (3.23), which leads to

Jd̂/2+`(ωr) =
1

2

(
H

(1)

d̂/2+`
(ωr) +H

(2)

d̂/2+`
(ωr)

)
, (3.34a)

Yd̂/2+`(ωr) =
1

2i

(
H

(1)

d̂/2+`
(ωr)−H(2)

d̂/2+`
(ωr)

)
, (3.34b)

and identify the incoming and outgoing solutions with the
first- and second-order Hankel functions, respectively,

φin =

∞∑
`=0

eiωt
√

2πω r−d̂/2ω`nL
(−1)`

2
H

(1)

d̂/2+`
(ωr)

×
(
CLreg − iCLirreg

)
, (3.35)

φout =

∞∑
`=0

eiωt
√

2πω r−d̂/2ω`nL
(−1)`

2
H

(2)

d̂/2+`
(ωr)

×
(
CLreg + iCLirreg

)
. (3.36)

We use the asymptotic behavior of the Hankel func-
tions [101]

Hν(z) ∼
√

2

πz
e±ize∓i

π
4 (2ν+1), (3.37)

5 Note that we are not taking the derivatives on the denominator.
This is because asymptotically we do not expect any dependence
on the multipole order on the radial denominator. This can also
be seen by checking how an angular dependence affects the dif-
ferential equation for the radial part of the field: the angular
eigenvalue `(` + 1) changes the order of the Bessel function but

not the factor rd̂/2, which is the responsible term for the nu-
merator. The best example is the wave equation in three spatial
dimensions.
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where the upper sign applies for H(1) and the lower
sign for H(2). With this, we obtain the generalization
of (3.26) for any multipole order `,

CLreg =
(−1)`

2
i`
[
CLine

iπ4 (d̂+2`+1)

+ (−1)`CLoute
−iπ4 (d̂+2`+1)

]
, (3.38a)

CLirreg =
(−1)`

2
i`+1

[
CLine

iπ4 (d̂+2`+1)

+ (−1)`+1CLoute
−iπ4 (d̂+2`+1)

]
. (3.38b)

5. Tidally induced multipoles

We next compute QL(ω) and its relation to the coef-
ficients Cin/out by noting that QL can be identified from
the source terms in the wave equation, c.f. (3.13). We can
compute this source in terms of Cin/out by applying the
d’Alembertian to the solutions constructed in the previ-
ous subsections. This allows us to read off QL in terms of
the constants. As above, for convenience, we first work
in the regular/irregular basis and transform to the in/out
basis at the end, and also first consider ` = 0, then gen-
erate the angular dependence through STF derivatives.

When applying operators to the solution (3.25), they
must be understood in a distributional sense. The reason
is that as the equation of motion (3.11) indicates, the
source is only defined in a distributional manner. We
will denote the distributional operators with a tilde, e.g.
∇̃2 is the distributional Laplace operator.

We first consider the distributional Laplacian of the
regular solution in (3.25) using the series representation
of the Bessel functions around r = 0 given by [102]

Jν(ωr) =

∞∑
k=0

(−1)k

k!Γ(k + ν + 1)

(ωr
2

)2k+ν

, (3.39)

where the sum is over positive integers k ∈ Z+. Insert-

ing (3.39) with ν = d̂/2 in (3.25) we obtain

∇̃2φ
(0)
reg

Cregeiωt
√

2πω
=

∞∑
k=0

h+
k ∇̃

2
(
r2k
)

= −r−d/2ω2Jd̂/2(ωr), (3.40)

where

h±k (ω) =
(−1)k

k!Γ(k ± d̂
2 + 1)

(ω
2

)2k±d̂/2
. (3.41)

Here, we used the results from Appendix A 0 b for the
distributional Laplacian acting on r−β for any β ∈ R

∇̃2

(
1

rβ

)
=


∇2r−β − 2 d̂ π1+d̂/2

Γ
(

1 + d̂
2

)δ(xi), β = d̂ ∈ Z

∇2r−β β < d̂

,

(3.42)

with β = −2k < d̂. We then used the identity for the
standard Laplacian

∇2rβ = β(β + d̂)rβ−2, (3.43)

with β = 2k and resummed the series into the Bessel
function as per (3.39).

For the Laplacian of the irregular solution (3.25) we

first work with odd values of d̂ and take the limit for
even values at the end using L’Hôpital’s rule [103]. The

Bessel function of the second kind for odd d̂ reads [102]

Yd̂/2(ωr) =
1

sin
(
πd̂
2

) [cos

(
πd̂

2

)
Jd̂/2(ωr)− J−d̂/2(ωr)

]
.

(3.44)

Applying the Laplacian to the irregular solution (3.25)
and using (3.44) yields

sin
(
πd̂
2

)
∇̃2φ

(0)
irreg

Cirregeiωt
√

2πω
= sin

(
πd̂

2

)
∇̃2
[
r−d̂/2Yd̂/2(ωr)

]
= − cos

(
πd̂

2

)
r−d/2ω2Jd̂/2(ωr)− S, (3.45)

where we used (3.40) for the first term, and used the
series expansion (3.39) to define

S =

∞∑
k=0

h−k (ω)∇̃2
(
r2k−d̂

)
, (3.46)

where h−k is given in (3.41). We now compute explicit re-
sults for S. Since the dimension is an arbitrary parameter

d̂ ≥ 1, we split the series into a contribution from positive

and negative powers of r corresponding to k > bd̂/2c and

k < bd̂/2c respectively in (3.46). Here, b. . .c denotes the
floor function. For the positive powers of r, the action
of the distributional Laplacian is the same as the usual
Laplacian. This follows from the second case in (3.42)

with β = d̂− 2k, which for k > d̂/2 is always β < d̂. For
the series involving negative powers of r we use (3.42)

with β = 2k − d̂ and the index k running from k = 0 to

k < bd̂/2c. We see that singular contributions involving
the Dirac-δ only arise when k = 0. The remaining terms
from (3.42) involving the standard Laplacian in the series
recombine with that from the positive powers of r into a
single series over all k. Altogether, this leads to

S =

∞∑
k=0

h−k (ω)∇2
(
r2k−d̂

)

−
bd̂/2c∑
k=0

h−k (ω)
2 d̂ π1+d̂/2

Γ
(

1 + d̂
2

)δk,0δ(xi)
=− r−d/2ω2J−d̂/2(ωr)−

(ω
2

)−d̂/2
4πd̂/2 sin

(
π
d̂

2

)
δ(xi),

(3.47)
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where in the first equality the Kronecker delta δk,0 ac-
counts for the fact that the only nonzero contribution in-
volving δ(xi) arises from k = 0. In the last line of (3.47)
we used

Γ

(
1 +

d̂

2

)
Γ

(
1− d̂

2

)
=

1

sin
(
π d̂2

) πd̂
2
. (3.48)

Inserting the result (3.47) into the Laplacian of the irreg-
ular solution (3.45) leads to

∇̃2φ
(0)
irreg

Cirregeiωt
√

2πω
=
(ω

2

)−d̂/2
4πd̂/2δ(xi)− ω2r−d̂/2Yd̂/2(ωr).

(3.49)

From these results for the Laplacian of the solutions, we
finally compute the action of the d’Alembertian �̃ =
∂̃µ∂̃

µ = −∂2
t + ∇̃2. The time dependencies of the fields

only enter through eiωt, and thus, the term involving sec-

ond time derivatives in �̃ will lead to ω2φ
(0)
reg/irreg. This

cancels with those terms coming from the action of the
Laplacian that are directly proportional to the Bessel
functions in Eqs. (3.40) and (3.49). Consequently, upon
applying the d’Alembertian to the solution all terms pro-
portional to a Bessel function will vanish, and we obtain

�̃φ(0)
reg = 0 , (3.50a)

�̃φ(0)
irreg = Cirrege

iωt8π

(
2π

ω

) d̂−1
2

δ(xi) . (3.50b)

We see that the source term corresponding to the irregu-
lar solution is non-singular for both odd and even values

of d̂.
Having worked out the results (3.50) for ` = 0, the

final step is to obtain the angular dependencies for ar-
bitrary multipole moments. In order to compute the
d’Alembertian of the solution for generic multipolar or-
der we will apply the same strategy as above. This is, we
will apply STF derivatives to the ` = 0 d’Alembertian
and use the commutativity of both operators6,

�̃φ = �̃
(
CLirreg∂Lφ

(0)
irreg + CLreg∂Lφ

(0)
reg

)
= CLirrege

iωt8π

(
2π

ω

) d̂−1
2

∂Lδ(x
i). (3.51)

Next, we use this result to identify how the scalar
multipole moments QL are encoded in the coefficients

6 The commutativity of distributional derivatives can readily be
seen in the Fourier domain, where they correspond to a multi-
plication by the wave vector.

CLreg/irreg. Comparing (3.51) with the wave equa-

tion (3.13), we infer

QL(ω) =
Kφ

KQ
`!(−1)`8π

√
2π

(
2π

ω

) d̂−1
2

CLirreg . (3.52)

6. The response function and its relation to in- and
outgoing wave amplitudes

Let us come back to the calculation of the response
function defined in (3.3). With an expression for the
tidally induced multipoles at hand (3.52), we are missing
an expression for the finite part of the STF derivatives
of φ. Hence we first compute

∂Lφ =

∞∑
k=0

(
CKreg∂L∂Kφ

(0)
reg + CKirreg∂L∂Kφ

(0)
irreg

)
. (3.53)

In order to extract the finite part we directly substitute
the series representation and apply the STF derivatives
to the regular/irregular part. We refer to Appendix A 0 c
for the details of the computation. We obtain that the
finite part of the field determining the tidal tensor defined
in (3.4) is

EL(ω) = eiωt`!π
(ω

2

)d̂/2+1/2+2` (−1)`2`+1

Γ( d̂2 + `+ 1)
CLreg .

(3.54)

where we use that φ(ω) =
√

2πe−iωtφ(t) for a fixed fre-
quency ω. With the results of (3.52) and (3.54) we can
compute the response defined by (3.3). Both the tidal
field and the multipoles depend on the tensorial STF co-
efficients CL. They can be converted to scalar quanti-
ties by expressing them in a spherical harmonic basis as
discussed in [46]. This decomposition extends to higher
dimensions, as can be verified using the hyperspherical
harmonics discussed in Sec.III B and the identities in Ap-
pendix A, and is given by

CL =
∑
m

C`mYL`m. (3.55)

Here, YL`m are STF tensors with complex coefficients de-
fined by the relation between spherical harmonics Y`m
and unit vectors through

Y`m = YL`mnL. (3.56)

Taking into account that spherical symmetry implies that
the in/out coefficients C`m are independent of the az-
imuthal number m leads to

CLin/out = C
in/out
`

∑
m

YL`m, (3.57)

The ratio needed in the response can thus be expressed
as

CLin
CLout

=
C in
`

∑
m YL`m

Cout
`

∑
m′ YL`m′

=
C in
`

Cout
`

. (3.58)
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Analogously, by virtue of (3.38),

CLirreg

CLreg

=
C irreg
`

Creg
`

. (3.59)

From (3.3), with (3.52) and (3.54), and using (3.59), we
obtain the response function

F`(ω) = −Q
L

EL
=
Kφ

KQ
F̃`(ω), (3.60)

with

F̃`(ω) = Ξ`
C irreg
`

Creg
`

(3.61)

the normalised response function and

Ξ` = −4πd̂/2

2`

(
2

ω

)d̂+2`

Γ

(
d̂

2
+ `+ 1

)
. (3.62)

In particular, F̃`(ω) will coincide with the definition of
the tidal deformability used in [37], where λ` is indepen-
dent on the coupling constants. However, this definition
differs from [38] due to their different normalizations.
Additionally, we can also set KQ = 1 without loss of
generality. This is because when plugging back (3.3) into

(3.8) we are left with Stidal ∝ Kφ

∫
dτ
∑
`=0 F̃`ELE

L/`!
independently of KQ. Using (3.38) we obtain the re-
sponse function in the in-/outgoing basis

F̃`(ω) = iΞ`

1− 2

1 +
Cin
`

Cout
`
ei
π
2 (d̂+1)

 (3.63)

where Ξ` is given in (3.62). Writing the in-/outgoing
complex amplitudes in terms of a complex scattering
phase δ`, defined by C in

` /C
out
` = e2iδ` , we can rewrite

(3.63) as

F̃`(ω) = −Ξ` tan
[
δ` +

π

4
(d̂+ 1)

]
(3.64)

Note that in deriving the above results for the response
function (3.63), there was no need to assume any analytic

continuation in ` or d̂, except for the fact that the finite
part must be obtained using some regulator.

The values of the coefficients C
in/out
` depend on the

detailed internal structure properties of the body m and
cannot be determined within the effective description.
Instead, they must be computed from the full description
of relativistic perturbations to the compact object under
consideration. In the next subsection, we specialize to
the body being a nonrotating black hole and perform
this perturbation-theory calculation.

B. Amplitudes of the scattering states for a
Schwarzschild black hole

In general, to determine the detailed information about
the compact object contained in the response (3.63) re-
quires solving for relativistic perturbations in the interior
and exterior of the object, matching these solutions, and
extracting the asymptotic scattering states. In the spe-
cial case of black holes, due to the presence of the horizon,
the interior calculations are replaced by considering the
near-horizon solutions, as we discuss below. The case of
a nonspinning black hole is a well-studied example and
enables us to check our results from scattering against
known results in the literature, namely the static re-
sponse function [37] and the absorption cross section [72].
As we study scalar perturbations, the spacetime remains
unaffected and our analysis focuses on the scalar field
equations.

We first calculate the behavior of the field near the
horizon. In this regime, there is no closed-form solution
to the perturbation equations, though in four spacetime
dimensions a highly useful series expansion known as the
MST solution [104] is available. Here, we also make use
of analytical approximations valid for Mω � 1, where M
is the mass of the black hole but work only to the leading
order. Next, we consider the perturbation equations in
the asymptotic limit of distances much larger than the
size of the black hole, rH/r � 1, where rH corresponds
to the horizon. These solutions describe waves propagat-
ing along the Schwarzschild light cones. The last step
in this subsection is to connect the detailed information
about the tidal response from the near-horizon regime to
the amplitudes of the asymptotic waves, both computed
within the relativistic perturbation framework. This is
accomplished through matched asymptotic expansions,
specifically by considering the near-horizon solutions in
the limit rH/r � 1 and the asymptotic wave solution for
ωr � 1. We show that these two asymptotic expansions
overlap and perform the matching of the coefficients.

1. Scalar wave perturbations to a Schwarzschild black hole

We start by obtaining the equation of motion of the

scalar field on the d̂-dimensional Schwarzschild back-
ground using the action for the scalar-field dynamics
given in (3.1). In Schwarzschild coordinates, the space-
time is described by the metric

ds2 = −f(r)dt2 +
1

f(r)
dr2 + r2dΩd̂+1, (3.65)

where r2Ωd̂+1 denotes the surface element on a (d̂ + 1)-
dimensional hypersphere and

f(r) = 1−
(rH
r

)d̂
. (3.66)

Here, rH is the Schwarzschild radius corresponding to the
black hole’s horizon. Because the spacetime is static and
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spherically symmetric, we make the following ansatz for
the decomposition of the field

φ =
∑
`m

∫
dω

eiωt√
2π

ψω`(r)

α(r)
Y`m(Ω) , (3.67)

where due to spherical symmetry ψω`m(r) = ψω`(r) and
we have introduced

α(r) = r(d̂+1)/2, (3.68)

which absorbs the radial dependence of the volume el-

ement
√
−g ∝ rd̂+1 into the field. We substitute the

ansatz (3.67) into the action (3.1). For convenience we
choose Kφ = Kfull

φ = 1. Note that for this choice of

coupling constant the response is simply F`(ω) = F̃`(ω).
Using the metric (3.65) in (3.1) we obtain

Sφ = −1

2

∑
`m

∑
`′m′

∫
dωdω′α2dtdrdΩd̂+1

×

[
f

(
∂r
ψ∗ω′`′

α

)(
∂r
ψω`
α

)
ei(ω−ω

′)t

2π
Y`mY

∗
`′m′ −

ωω′

f
φφ∗

+
ei(ω−ω

′)t

2πα2
ψ∗ω′`′ψω`g

Ω′Ω∇Ω′Y
∗
`′m′∇ΩY`m

]
, (3.69)

where we used that φ is a real field such that φ(t) = φ∗(t).

Here, gΩΩ′ = r−2δΩΩ′ and the functions Y`m(Ω) are the
hyperspherical harmonics having the properties [105]∫

dΩd̂+1g
Ω′Ω∇Ω′Y

∗
`′m′∇ΩY`m

= − 1

r2

∫
dΩd̂+1Y

∗
`′m′∇2Y`m

=
d̂2 ˆ̀(ˆ̀+ 1)

r2

∫
dΩd̂+1Y

∗
`′m′Y`m , (3.70)

where ˆ̀ was defined in (2.20). Using (3.70) leads to the
action

Sφ = −1

2

∑
`m

∑
`′m′

∫
dω

∫
dω′

[∫
dt
ei(ω−ω

′)t

2π

]

×

{∫
dr

[(
− ω ω′

f
+
d̂2 ˆ̀(ˆ̀+ 1)

r2

)
ψ∗ω′`′ψω`

+ fα2

(
∂r
ψ∗ω′`′

α

)(
∂r
ψω`
α

)]}[∫
dΩd̂+1Y

∗
`′m′Y`m

]
.

(3.71)

This simplifies upon using the normalizations∫
dt
ei(ω−ω

′)t

2π
= δ(ω − ω′) , (3.72)∫

dΩd̂+1Y
∗
`′m′Y`m = δ``′δmm′ . (3.73)

Further, the last term inside the curly brackets in (3.71)
simplifies when writing out the derivatives, using integra-
tion by parts and omitting the total derivative, and can
be written as∫

drfα2

(
∂r
ψ∗ω′`′

α

)(
∂r
ψω`
α

)
=

∫
dr

[
f∂rψ

∗
ω`∂rψω` +

∂r (f∂rα)

α
ψ∗ω`ψω`

]
. (3.74)

With these simplifications, the action (3.71) reduces to

Sφ = −1

2

∑
`m

∫
dω

∫
dr

{
f∂rψ

∗
ω`∂rψω`

+

[
d̂2 ˆ̀(ˆ̀+ 1)

r2
− ω2

f
+
∂r (f∂rα)

α

]
ψ∗ω`ψω`

}
.

(3.75)

The equations of motion derived from this action read

∂r (f∂rψω`)

−

[
d̂2 ˆ̀(ˆ̀+ 1)

r2
− ω2

f
+
∂r (f∂rα)

α

]
ψω` = 0 . (3.76)

It is convenient to transform the radial Schwarzschild co-
ordinate r to the tortoise coordinate r∗, which is known
to lead to the simplest representation of the equations
of motion in this problem. The tortoise coordinate is
defined by

dr∗ =
1

f(r)
dr, ∂r =

1

f(r)
∂∗r . (3.77)

In terms of this coordinate, the action (3.75) takes the
form

Sφ = −1

2

∑
`m

∫
dω

∫
dr∗[∂r∗ψ

∗
ω`∂r∗ψω`

+ (V` − ω2)ψ∗ω`ψω`] , (3.78)

with the potential V` given by

V` =f

[
d̂2 ˆ̀(ˆ̀+ 1)

r2
+
∂r (f∂rα)

α

]
. (3.79)

The equation of motion of the scalar field derived from
the action (3.78) reads

∂2
r∗ψω` − (V` − ω2)ψω` = 0 . (3.80)

This equation has no closed-form analytic solution for
generic dimensions and generic frequency. Solutions are
only available in the special cases of four spacetime di-
mensions [104] and in the zero-frequency limit [37]. For
our purposes, it will be sufficient to consider the asymp-
totic solutions close to the horizon and at large distances
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from the black hole, as we discuss next. The near-
horizon solutions provide the information on the detailed
properties of the perturbed black hole in the strong-field
regime, while the asymptotic behavior at large distances
determines the matching to the effective description of
Sec. III A. This information flow will be traced in detail
through the calculations in the next subsections.

2. Boundary conditions

An important preliminary to the analysis of wave solu-
tions is to identify the appropriate boundary conditions.
As stressed in [36], the proper treatment of the bound-
ary conditions is crucial in order to unambiguously iden-
tify the tidal and multipolar contributions. We start by
considering the solutions to (3.80) in the limit r → ∞,
which is equivalent to r∗ → ∞. It this regime, the po-
tential (3.79) gives a negligible contribution, and the so-
lutions are of the form

lim
r→∞

ψω`(r
∗) = A∞` ine

iωr∗ +A∞` oute
−iωr∗ . (3.81a)

Here, the terms with A∞` in/out represent an incom-

ing/outgoing wave at infinity, as can be seen by using
the radial part (3.81a) in the full solution (3.67).Recall
that, although we have not included a subindex ω for sim-
plicity, A∞` in/out still has a dependence on the frequency.

Near the horizon, r → rH or equivalently r∗ → −∞
implies from (3.66) that f → 0. Since the potential (3.79)
is proportional to f it also vanishes. Thus, the general so-
lutions in the near-horizon limit are also waves, however,
due to the nature of the horizon, there can be no out-
going solutions. The boundary condition at the horizon
is that the outgoing components vanish and only purely
incoming waves remain

lim
r→rH

ψω`(r
∗) = AH` ine

iωr∗ . (3.81b)

We will use these boundary conditions in determin-
ing explicit solutions in these two asymptotic regimes,
starting with the near-horizon limit, and working in the
approximation Mω � 1. In this section, M denotes the
mass of the black hole. The near-horizon region is then
characterized by r− rH � 1/ω, while far from the black
hole r−rH �M . Once we compute our solutions in these
regimes we will be able to perform a matched asymptotic
expansion where these two regimes overlap.

3. Near-horizon solution

As we will be interested in matching the near-horizon
information with the asymptotics at large distances from
the black hole, it is convenient to work with the equa-
tion of motion in the usual Schwarzschild coordinates
from (3.75). It is also useful to perform a rescaling of

the field

ψω`(r) = αRω`(r). (3.82)

We substitute (3.82) into (3.75) and specialize to the limit
r − rH � 1/ω. This leads to the equation of motion

frd̂+1∂r

(
frd̂+1R′ω`(r)

)
−
(
r2d̂fd̂2 ˆ̀(ˆ̀+ 1)− ω2r2d̂+2

H

)
Rω`(r) = 0 ,

(3.83)

where we have used that close to the horizon ωr ∼ ωrH .
To cast the differential equation in a solvable form we

change coordinates to using f defined in (3.66) as the
dependent variable. Applying this change of variable
to (3.83) leads to

f(1− f)R′′ω`(f) + (1− f)R′ω`(f)

−

[
ˆ̀(ˆ̀+ 1)

(1− f)
− r2

Hω
2

d̂2

(
1− f
f

)]
Rω`(f) = 0 .

(3.84)

This differential equation can be transformed into a hy-
pergeometric differential equation by expressing the field
as

Rω`(f) = f i
ωrH
d̂ (1− f)

ˆ̀+1Gω`(f), (3.85)

which leads to

0 =f(f − 1)G′′ω`(f)−
[
c+ − f(2b` + c+)

]
G′ω`(f)

+ b` a
+
` Gω`(f), (3.86)

with

a±` = ˆ̀+ 1± 2irHω

d̂
, b` = ˆ̀+ 1

c± = 1± 2irHω

d̂
. (3.87)

The solution Gω`(f) to (3.86) is a combination of hy-
pergeometric functions 2F1(a+

` , b`; c
+; f), where we fol-

low the conventions of [102]. In general the second-order
differential equation (3.86) has two linearly independent
solutions, and the general solution is a linear combination
of them. However, special cases of the coefficients (3.87)
lead to degeneracies between the two solutions. Specifi-
cally, the degeneracy occurs when any of the coefficients
a+
` , b` or the differences (c+−a+

` ), (c+− b`) are integers.
As the frequency ω is generic, we see from (3.87) that

degeneracies arise from integer values for b` when ˆ̀ is a

half-integer, and also from (c+−a+
` ) when ˆ̀ is an integer.

We will start with the case ˆ̀ integer and then distinguish
two different analytic continuations of the same solution

for ˆ̀ half- and non-integer.

For ˆ̀∈ Z the degenerate solution is given by [106][102]

Gω`(f) = (1− f)2ˆ̀+1
2F1

(
−ˆ̀, 1− a−` ; c+, f

)
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= (1− f)2ˆ̀+1

ˆ̀∑
n=0

(ˆ̀)n(1− a−` )n
(c+)n

fn

n!
, (3.88)

where c+ was defined in (3.87) and

(y)n =
Γ(y + n)

Γ(y)
. (3.89)

denotes the Pochhammer symbol [103].

When ˆ̀ is not an integer, the solution is given by [102]

Gω`(f) = e2π
ωrH
d̂ f−i

ωrH
d̂ AH` out 2F1

(
a−` , b`; c

−
ω ; f

)
+AH` in 2F1

(
a+
` , b`; c

+; f
)
, ˆ̀ 6∈ Z, (3.90)

where a±` , b`, c
± were defined in (3.87).

Using the horizon boundary condition of no outgoing
waves, which implies AH` out = 0, we obtain for the full
radial function (3.85)

Rω`(r) = AH` in f
i
rHω

d̂ (1− f)
ˆ̀+1

2F1

(
a+
` , b`; c

+; f
)
, ˆ̀ 6∈ Z.
(3.91)

4. Asymptotic wave solutions at distances much larger than
the black hole’s size

Having obtained the results for the behavior of the
near-horizon solutions for scalar perturbations of a black
hole, we proceed by establishing its link to the asymptotic
wave solutions obtained in the regime rH/r � 1. We
introduce the parameter

ε ≡ rH
r
, (3.92)

and analyze the equation of motion (3.80) to first order
in ε. We choose to work with r∗ since the equation of mo-
tion reduces to a Schrödinger-like equation (3.80), which
in the limit r∗ → ∞ reduces to a wave equation with
solution (3.81a).

To connect with the near-horizon solution requires
solving for the relation between r and r∗. We choose

to work perturbatively in εd̂ instead of ε since it is other-
wise not possible to expand 1/f in the definition (3.77).

Working perturbatively to linear order in εd̂ we obtain

r = r∗

(
1 +

ε∗d̂

d̂− 1
+O[(ε∗d̂)2]

)
, (3.93)

where we have defined

ε∗ = ε |r=r∗ , (3.94)

with ε given by (3.92).
It is interesting to note the simplicity of the result

in (3.93) for arbitrary dimensions. This is in contrast

with the result for d̂ = 1, where a logarithm appears in
the relation between r and r∗ in Schwarzschild spacetime:

r = r∗
(

1− ε∗ log(r∗) +O(ε∗2)
)
, (3.95)

where one has to apply L’Hôpital’s rule to (3.93) and

take the limit d̂ → 1 together with the small-size limit
rH → 0,

lim
rH→0

lim
d̂→1

d
dd̂
ε∗d̂

d
dd̂

(d̂− 1)
= lim
rH→0

(ε∗ log(rH)− ε∗ log(r∗))

= −ε∗ log(r∗) . (3.96)

Here ε is defined in (3.92) and we have kept only the
leading order term.

Altogether, we find that the limit of the radial solution

for generic d̂ and ˆ̀ vanishes. This means that the ε∗

corrections do not introduce any divergence and therefore
we can safely use the flat space solution with ε∗ = 0. This
also confirms the flat-space approximation used in the

effective theory side when d̂ and ˆ̀ are generic complex
numbers. Using that in this limit ε∗ = 0, the asymptotic
wave solution for distances much larger than the size of
the black hole will be given by (3.80) with f = 1 and
r∗ = r,

Rω`(r) =r−d̂/2
(
A∞` regJd̂/2+`(ωr) +A∞` irregYd̂/2+`(ωr)

)
,

(3.97)

where we have chosen the regular/irregular basis rather
than the in/out states. If we now look at the boundary
condition at infinity (3.81a), we see that, given r = r∗, is
the same as in (3.20).

5. Determining the imprint of the black hole’s properties in
the scattering amplitudes

To complete the calculation of the response function we
next compute the ratio A∞` in/A

∞
` out in terms of properties

of the perturbed black hole using matched asymptotic
expansions. Specifically, we will consider the asymptotic
expansion of the near-horizon solution (3.91) for large 1/ε
and of the asymptotic solution (3.97) for ωr � 1. The
near-horizon region is r − rH � 1/ω, while the far-zone
region is r− rH �M . The matching is performed where
the two asymptotic expansions overlap, and with the use

of analytic continuation in ˆ̀; see Fig. 1 for an illustration
of the process.

We note that only the in- and outgoing solutions are
well-defined physical states. However, as in Sec. III A, it
is easier to compute the ratio of the wave amplitudes in
the regular/irregular basis, with A∞ω` irreg/A

∞
ω` reg under-

stood as constants defined by (3.38).
We first consider the asymptotic expansion of the so-

lution (3.97) for ω(r − rH) = ωr(1 − ε) ∼ ωr � 1. The
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limiting behavior of the Bessel functions is given by [101]

lim
z�1

Jν(z)→
(z

2

)ν 1

Γ[ν + 1]
, (3.98)

lim
z�1

Yν(z)→ −
(z

2

)−ν Γ[ν]

π
. (3.99)

The radial solution (3.97) thus becomes

lim
ωr�1

Rω`(r) =−A∞ω` irreg

(ω
2

)− d̂2 (2ˆ̀+1) Γ(p)

π
r−d̂(ˆ̀+1)

+A∞ω` reg

(ω
2

) d̂
2 (2ˆ̀+1) 1

Γ(p+ 1)
rd̂

ˆ̀
,

(3.100)

with

p =
d̂

2
(2ˆ̀+ 1). (3.101)

Next, we consider the asymptotic expansion of the

near-horizon solutions in the limit ε→ 0, with f = 1−εd̂.
The degenerate solution (3.88) for integer arguments be-
haves as [102]

lim
ε→0

Rω`(r) ∝
(

1

ε

)d̂ˆ̀

, ˆ̀∈ Z (3.102)

This contains only positive powers of r corresponding to
growing, regular solutions; a decaying, irregular compo-
nent is absent. Thus, we conclude that AH` irreg = 0 in the
limit ε→ 0.

The solution for non-integer ˆ̀ is given by (3.91). Since
we have to take the limit ε → 0, or equivalently f → 1,
it is useful to use hypergeometric linear transformations
in order to change the argument of the hypergeomet-
ric function from f to 1 − f . This is useful given that

2F1(a, b; c, 0) = 1. Since none of the parameters a, b, c
are integers, the linear transformation reads [106]

2F1(a, b; c;x) = (1− x)−a−b+c
Γ(c)Γ(a+ b− c)

Γ (a) Γ(b)

× 2F1(c− a, c− b;−a− b+ c+ 1; 1− x)

+
Γ(c)Γ(c− a− b)
Γ(c− a)Γ(c− b) 2F1(a, b; a+ b− c+ 1; 1− x) .

(3.103)

Substituting the linear transformation into (3.91) and
taking the limit f → 1 with (1− f) = ε fixed yields

lim
ε→0

Rω`(r) = AH` in

Γ(−2ˆ̀− 1)Γ(c+)

Γ(−ˆ̀)Γ(1− a−` )
εd̂(ˆ̀+1)

+AH` in

Γ(2ˆ̀+ 1)Γ(c+)

Γ(b`)Γ(a+
` )

(
1

ε

)d̂ˆ̀

, ˆ̀ 6∈ Z,Z/2 (3.104)

We next consider the case where ˆ̀ is half-integer. The
solution for this case is also given by (3.91). For the case

ˆ̀∈ Z/2, c− a− b = −m = −2ˆ̀− 1 is a negative integer
and the linear transformation (3.103) develops a pole.
The linear transformation is then computed by analytic
continuation and is given by [102][106]

2F1(a, b; a+ b−m;x) = (1− x)−m
Γ(m)Γ(a+ b−m)

Γ (a) Γ(b)

×
m−1∑
n=0

(b−m)n(a−m)n
(1−m)nn!

(1− x)n

+ (−1)m
Γ(a+ b−m)

Γ(a−m)Γ(b−m)

∞∑
n=0

(a)n(b)n
(n+m)!n!

× [κ′′n − log(1− x)] (1− x)n . (3.105)

where

κ′′n = ψ(1+m+n)+ψ(1+n)−ψ(a+n)−ψ(b+n) (3.106)

and

ψ(x) =
Γ′(x)

Γ(x)
(3.107)

is the digamma function. Substituting into (3.91) yields

Rω`(r)

AH` inf
iωrH/d̂

=
Γ(2ˆ̀+ 1)Γ(c+)

Γ(a+
` )Γ(b`)

×
2ˆ̀∑
n=0

(−ˆ̀)n(1− a−` )n

(−2ˆ̀)nn!
(1− f)n−

ˆ̀

+
(−1)2ˆ̀+1Γ (c+)

Γ(1− a−` )Γ(−ˆ̀)

∞∑
n=0

(a+
` )n(b`)n

(n+ 2ˆ̀+ 1)!n!

× [κ′′n − log(1− f)] (1− f)n+ˆ̀+1, ˆ̀∈ Z/2. (3.108)

Extracting the dominant powers of ε and 1/ε in the two
series in (3.108) we obtain

lim
ε→0

Rω`(r) = AH` inf
i
rHω

d̂
Γ(2ˆ̀+ 1)Γ(c+)

Γ(a+
` )Γ(b`)

(
1

ε

)d̂ˆ̀

+ . . .

+AH` inf
i
rHω

d̂
(−1)2ˆ̀+1Γ(c+)

Γ(1− a−` )Γ(−ˆ̀)(2ˆ̀+ 1)!

×
[
κ′′0 − d̂ log (ε)

]
εd̂(ˆ̀+1) + . . . , ˆ̀∈ Z/2, (3.109)

where the dots denote higher positive or negative pow-
ers of ε. The appearance of the logarithm is in agree-
ment with [37] and [38], where they argue that it is a
consequence of a classical renormalization group flow of
general relativity. However, as discussed below, we will

work with generic, real values of ˆ̀ and only in the end

take the limit ˆ̀→ Z/2. When taking this limit we obtain
a logarithm of rH , and no r-dependent coefficients.

As we will be interested only in a matching to the lead-
ing order, where the two asymptotics we are considering
manifestly exhibit an overlap, it will not be necessary
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to introduce scaled matching coordinates. Hence, we can
substitute back our definition of ε given in (3.92) into the
near-horizon solutions (3.104) and (3.109). Next, we can
directly perform the matching of the near-horizon solu-
tion and the asymptotic solution by considering the co-

efficients in front of each radial dependence, i.e. r−d̂(ˆ̀+1)

and rd̂
ˆ̀
. For generic ˆ̀∈ R, not an integer or half-integer,

this matching yields

A∞` irreg

A∞` reg

= −
π (ωrH/2)

d̂(2ˆ̀+1)
Γ(−2ˆ̀− 1)Γ(b`)Γ(a+

` )

Γ(−ˆ̀)Γ(2ˆ̀+ 1)Γ(p)Γ(p+ 1)Γ(1− a−` )
,

(3.110)
with p given in (3.101), a±` and b` defined in (3.87),
and ε given in (3.92). Note that when specializing

to integer ˆ̀ at the level of the matching, one obtains

that (3.110) is zero. Half-integer ˆ̀ leads to a different
functional form of this ratio, similar to the static case

discussed in [37, 38]. This arises because for integer ˆ̀, the
hypergeometric function characterizing the near-horizon
solution becomes the degenerate solution (3.88), while
for half-integers it develops poles (3.109). The prob-
lems with considering these singular cases directly are

avoided by using analytic continuation in ˆ̀. Keeping ˆ̀

generic enables us to work with the finite, well-behaved
result (3.110), and the singular cases are obtained by

carefully taking the limits ˆ̀→ Z and ˆ̀→ Z/2 of the
final, generic results.

Note that in the case of static tides, one essentially
only has the near-horizon part of the solution, making
it more difficult to extract gauge-invariant information
asymptotically. Here instead we can make the connec-
tion to gauge-invariant scattering data based on in- and
out-going wave solutions. This is also a more physical
setup, since even for adiabatic tides the frequency of the
tidal field is never exactly zero in an astrophysical envi-
ronment.

C. Matching to the skeletonized effective action
description

In this section, we address the final step in obtain-
ing the tidal response function of a black hole by con-
necting the information about the perturbed black hole
contained in the scalar-wave amplitudes as computed in
Sec. III B with the definition of the response function
from Sec. III A. This requires an identification between
the asymptotic waves in Schwarzschild and Minkowski
spacetimes. To facilitate this link in a coordinate-
invariant manner, we will base the identification on the
geometry of light cones, as discussed below.

1. Identification of the null infinities of Schwarzschild and
Minkowski spacetimes

To connect with the effective action from Sec. III A
requires the limit of the perturbative calculations from
Sec. III B when the black hole is viewed from distances
much larger than its size and shrinks to nearly a point,
rH → 0. When taking this limit we recover an asymptot-
ically nearly flat spacetime. In the effective action dis-
cussed in Sec. III A, we assumed a Minkowksi spacetime
for simplicity. In general there would be corrections to
the metric potentials in powers of 1/r. In principle, these
should be included and must match to the Schwarzschild
asymptotics near null infinity. Here, we only capture the
leading-order behavior in this regime, which will be suf-
ficient for our purposes.

To make the asymptotic identification between the
Schwarzschild and Minkowski spacetimes we use double-
null coordinates u, v. For Schwarzschild spacetime, they
are defined by

du = dt− 1

f
dr = dt− dr∗, (3.111a)

dv = dt+
1

f
dr = dt+ dr∗. (3.111b)

In Minkowski spacetime, these coordinates reduce to u =
t−r and v = t+r. Such coordinates are adapted to radial
null geodesics and therefore along the light cones. Since
light cones have an intrinsic geometric meaning and are
invariant objects asymptotically, this set of coordinates
enables a robust identification between the incoming and
outgoing solutions both in the effective theory and the
black hole perturbation calculations.

We first discuss the solutions in the effective theory
expressed in null coordinates. The asymptotic solutions
for in- and outgoing waves were obtained in (3.33). The
characteristic are exactly along u, v, and thus, the depen-
dence on (t ± r) can immediately be transformed to the
null coordinates using their flat-space definition. This
yields

lim
r→∞

φ(u, v) =
CLinnL(iω)`eiωv

r(u, v)
d̂+1
2

+
CLoutnL(−iω)`eiωu

r(u, v)
d̂+1
2

,

(3.112)

with r(u, v) = (v − u)/2 in flat space.
For the Schwarzschild case, it is easiest to consider

the asymptotic form of the equations of motion instead
of transforming the solutions. Instead of the previous
ansatz (3.67), we now decompose the scalar field as

φ =
∑
`m

χ`m(u, v)Y`m(Ω). (3.113)

Substituting this ansatz into the action (3.1) and us-
ing the metric (3.65) transformed to null coordinates
through (3.111) leads to the following equation of mo-
tion for χ(u, v)
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Full (Schwarzschild)

ℐ+

ℐ−

ℋ+

ℐ+

ℐ−

 rH → 0

EFT (flat)

ℐ+

ℐ−

ℐ+

FIG. 2. Penrose diagrams illustrating the asymptotic iden-
tification of null infinities (I ±) of the Schwarzschild space-
time in the limit that the size of the black hole rH shrinks
to zero and the Minkowski spacetime we use in the effective
description. The matching is performed using double null co-
ordinates adapted to the light cones.

2rd̂+1∂u∂vχ+ ∂v

(
rd̂+1

)
∂uχ+ ∂u

(
rd̂+1

)
∂vχ

+ 2frd̂−1d̂2 ˆ̀(ˆ̀+ 1)χ = 0, (3.114)

where r = r(u, v) is defined through (3.111) and u =
t − r∗, v = t + r∗. In the limit ε → 0 where the black
hole shrinks to a point or equivalently r →∞, the factor
f in the second line of (3.114) becomes unity (f → 1).
For large r, the most dominant term in the differential
equation (3.114) is the first one, and has a form identical
to the flat-space wave equation in null coordinates. Thus,
we can write down the solution to (3.114) in terms of in-
and outgoing spherical waves in the asymptotic regime
ε→ 0 as

lim
ε→0

φ ∼
∑
`m

A∞` in

eiωv

r(u, v)
d̂+1
2

+A∞` out

eiωu

r(u, v)
d̂+1
2

Y`m(Ω).

(3.115)
As discussed in Sec. III B, for ε → 0 we also have that
r∗ → r. This implies that the light cones and corre-
spondingly the u, v coordinates of the Schwarzschild and
Minkowski spacetime coincide asymptotically for ε = 0.
To this first approximation we are considering, we can
identify both the future and past null infinities between
the effective and Schwarzschild descriptions, and use this
to relate the results of the two different calculations. Fig-
ure 2 illustrates this reasoning. As mentioned above, in
general, higher-order corrections would be included in
this identification. Thus, using the conversion of the co-
efficients from the STF to the spherical harmonic basis
from (3.57) in (3.112), applying the identity (3.56), and
comparing with (3.115) leads to the trivial identification

C` in/out = A∞` in/out , (3.116)

where C` in/out are the coefficients of the effective field
theory solution and A∞` in/out are the coefficients of the

asymptotic solution in the Schwarzschild spacetime.

With this identification, we can compute the coeffi-
cients in the full theory via analytical methods such as
matched asymptotic expansion (facilitated by analytic
continuation), or via numerical methods. We note that
the amplitudes A∞` in/out need not be obtained in generic

dimension, which may indeed be computationally unfea-
sible for rotating compact objects and/or numerical ap-
proaches. However, when matching the asymptotic waves
in four spacetime dimensions, the background spacetime
curvature must be taken into account, as indicated by the
logarithm in (3.95) which introduces an infrared-singular
contribution to the phase. The double-null coordinates
streamline the matching by absorbing such contributions,
making the agreement of the infrared/asymptotic physics
between full and effective theory manifest.

2. Explicit results for the response function

With the above results, we can compute the explicit
expression for the frequency-dependent response func-
tion of the black hole to scalar tidal perturbations. We

first obtain the response for generic ˆ̀, and verify that
in the static limit ω → 0 this agrees with previous re-
sults [37, 38]. We then discuss the special singular cases

when ˆ̀ is integer, which is relevant for four spacetime di-
mensions, and half-integer by carefully taking the limits
of the general result.

The response is obtained by substituting (3.110)
into (3.63), which yields

F`(ω) =
22−`πd̂/2+1r

d̂(2ˆ̀+1)
H Γ(b`)Γ(−2ˆ̀− 1)Γ(a+

` )

Γ(−ˆ̀)Γ(2ˆ̀+ 1)Γ(p)Γ(1− a−` )
,

(3.117)

where we use ` = ˆ̀d̂, and the parameters a±` and p are
defined in (3.87) and (3.101). This expression can be
simplified by using the Legendre multiplication formula
for the gamma functions [101],

Γ(2z) = π−1/222z−1Γ(z)Γ(z +
1

2
) , (3.118)

which leads to

Fˆ̀(ω) =
π
d̂
2 +1Γ(−ˆ̀− 1

2 )Γ(a+
` )r

d̂(2ˆ̀+1)
H

2(4+d̂)ˆ̀Γ(ˆ̀+ 1
2 )Γ(p)Γ(1− a−` )

. (3.119)

We now consider the limit ω → 0 of (3.119), which yields
the static Love numbers. Using the reflection formula
[101]

Γ(z)Γ(1− z) =
π

sin(πz)
, (3.120)
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it holds

Γ
(
−ˆ̀− 1

2

)
Γ(−ˆ̀)

=
Γ(ˆ̀+ 1)

Γ
(

ˆ̀+ 3
2

) tan(π ˆ̀) . (3.121)

Substituting (3.121) into (3.119) and using (3.101) yields

Fˆ̀(ω) =
π
d̂
2 +1Γ2(`+ 1)r

d̂(2ˆ̀+1)
H tan(π ˆ̀)

2(4+d̂)ˆ̀Γ
(
d̂
2 (2ˆ̀+ 1)

)
Γ(ˆ̀+ 1

2 )Γ(ˆ̀+ 3
2 )

,

(3.122)

in agreement with [37]. As discussed in [37], this ex-

pression has poles for specific values of ˆ̀, which play
the role of counterterms in the effective action. That
is, though we based the matching on a calculation in the
effective theory in a flat background, we can extract in-
formation about poles appearing at higher orders (curved
background) in the effective theory through analytic con-
tinuation, which is an impressive display of its power.

Having confirmed that the static limit of the re-
sponse (3.119) reproduces previous results, we next ex-

amine the full frequency-dependence in the limit ˆ̀→ Z
relevant for four dimensions. Using the definitions of a±`
from (3.87) and the identities

Γ
(
a+
`

)
= Γ

(
1 +

2irHω

d̂

) ˆ̀∏
k=1

(
k +

2irHω

d̂

)
, (3.123)

Γ
(
1− a−`

)
=

Γ
(

1 + 2irHω

d̂

)
2irHω

d̂
(−1)ˆ̀∏ˆ̀

k=1

(
k − 2irHω

d̂

) (3.124)

in (3.119) leads to

Fˆ̀∈Z(ω) = iω
(−1)

ˆ̀
2π

d̂
2 +1Γ

(
−ˆ̀− 1

2

)
r
d̂(2ˆ̀+1)+1
H

2(d̂+4)ˆ̀d̂Γ
(

ˆ̀+ 1
2

)
Γ (p)

×
ˆ̀∏

k=1

(
k2 +

4r2
Hω

2

d̂2

)
. (3.125)

Finally, we consider the special case that ˆ̀→ Z/2. In
this case the response function (3.117) diverges due to the

presence of simple poles in Γ(−2ˆ̀−1). We can solve this

issue, as done similarly in [37], by expanding in 2ˆ̀= n−ε
with n an integer and ε → 0 a small parameter, which
isolates the finite contribution. We use the property of
the Γ function [103]

Γ(−k + ε) =
(−1)k

k!ε
+O(ε0) (3.126)

for any integer k. In the response (3.119), the factor

Γ(−2ˆ̀−1) appears together with r
d̂(2ˆ̀+1)
H = r2ˆ̀d̂

H rd̂H . The

first of these can be written as r2ˆ̀d̂
H = r

(n−ε)d̂
H = rnd̂H r−εd̂H .

The last factor here must be included when considering
the limit ε→ 0 of the divergences in the response. Intro-
ducing the cutoff scale Λ, and defining r̂H = rH/Λ, the
expansion of the relevant pieces of the response in this
limit truncated at O(ε0) is then given by

Γ(−n− 1 + ε)r̂−d̂εH =
(−1)2ˆ̀+1

(2ˆ̀+ 1)!

1

ε

[
1− εd̂ log (r̂H)

]
= −d̂ log (r̂H)

(−1)2ˆ̀+1

(2ˆ̀+ 1)!
+

(−1)2ˆ̀+1

(2ˆ̀+ 1)!

1

ε
. (3.127)

Hence, only the first term is finite in the limit ε→ 0 and
should be considered to describe the response function,
while the divergent part should be interpreted as a coun-
terterm in the action [37].7 With this convention, the

response function for half-integer ˆ̀ reads

Fˆ̀∈Z/2(ω)

Λ2d̂(ˆ̀+1)
=

(−1)2ˆ̀
22−`d̂ πd̂/2+1r̂

2d̂(ˆ̀+1)
H Γ(b`)Γ(a+

` ) log(r̂H)

Γ(2ˆ̀+ 2)Γ(−ˆ̀)Γ(2ˆ̀+ 1)Γ(p)Γ(1− a−` )

+
(−1)2ˆ̀+122−` πd̂/2+1r̂

2d̂(ˆ̀+1)
H Γ(b`)Γ(a+

` )

Γ(2ˆ̀+ 2)Γ(−ˆ̀)Γ(2ˆ̀+ 1)Γ(p)Γ(1− a−` )

1

ε
.

(3.128)

3. Love numbers and absorption encoded in the response

From (3.125) one can see that when ˆ̀and d̂ are integer
numbers, the real part of the response function vanishes
at all orders in ω within the approximation Mω � 1.
Hence, for a four-dimensional nonrotating black hole, not
only the static Love number vanishes, but the entire real
part of the response function,

<{Fˆ̀∈Z(ω)} = 0 . (3.129)

Furthermore, we can also compute the absorption cross

section and compare with the result from [72] for d̂ = 1

and ˆ̀ = ` = 0. The definition of the partial absorption
cross section is given by

σ`abs =
π

ω2
(2`+ 1)

(
1−

∣∣∣∣Aout

Ain

∣∣∣∣2
`

)
. (3.130)

Using (3.38) for ` = 0 we obtain

σ`=0
abs = 16M2π , (3.131)

in agreement with the literature. On the other hand, the

response function for d̂ = 1 and ˆ̀= 0 reads

Fˆ̀=0(ω) = −4r2
H iπω = −16M2iπω . (3.132)

7 An explicit systematic construction of the internal action Sint

in terms of modes degrees of freedom as in [107] might provide
a cleaner split between the dynamical mode response and coun-
terterms.
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This result suggests that, in the spirit of [57] and the op-
tical theorem, the absorption cross section and the imag-
inary part of the response function are proportional8,∣∣∣={F`,d̂=1(ω)}

∣∣∣ =
(2`− 1)!!

ω2`−1
σabs . (3.133)

One has to take the absolute value of the imaginary part
because the terms with odd powers of the frequency will
have a different sign depending on the chosen convention
of the Fourier transform.

For generic spacetime dimensions and multipolar or-
der, it holds

<{Fˆ̀(ω)} = 0 ⇐⇒ =
{
C in
`

Cout
`

ei
π
2 (d̂+1)

}
= 0 (3.134)

={Fˆ̀(ω)} = 0 ⇐⇒
∣∣∣∣ C in

`

Cout
`

∣∣∣∣2 = 1 . (3.135)

We discuss an analogy with optics in Sec. IV.

IV. SUMMARY AND DISCUSSION

An important quantity for gravitational wave signa-
tures of the nature and internal structure of compact
objects is its response to tidal perturbations. The re-
sponse is operationally defined by the imprints on gauge-
invariant observables, such as the binding energy as a
function of frequency or the ratio of in- and outgoing
wave amplitudes at null infinity. These observables are
directly computed from an effective action describing the
physics at large distances from the object, where it is
modeled as a center-of-mass worldline augmented with
multipole moments. At that level, the response is de-
fined mathematically as the ratio between the induced
multipole moments QL to the tidal field EL, specifically

QL(ω) = −F`(ω)EL(ω). (4.1)

Here, the function F`(ω) is the complex frequency-
dependent response function and all quantities are de-
fined in frequency domain. In the case of scalar per-
turbations, the tidal field is given by EL = FP

r→0
∂Lφ(ω),

where φ is the scalar field.
Extracting the response function from gauge-invariant

observables of a binary system and in particular discrim-
inating its effects from (unknown) higher PN point-mass
corrections is subtle yet important to avoid biases in the
interpretation. The required distinction can be accom-
plished in a rigorous way through analytic continuation
in the number of spacetime dimensions and/or multipole
orders. Consequently, tidal effects can be unambiguously

8 We noticed a typo in a previous version of this paper when com-
paring with the results in [108].

determined without having to carry out high-order PN
calculations.

A highly useful framework for computing gauge invari-
ant quantities in a binary system is an effective action
description, where the compact objects are reduced to
center-of-mass worldlines with multipole moments. The
tidal response imprinted in observables such as the bind-
ing energy or gravitational waves is thus directly related
to quantities appearing in the effective action, for in-
stance coupling coefficients. Relating the effective ac-
tion to detailed properties of the compact object requires
matching calculations. In particular, one must compute
the induced multipoles QL defined in the spacetime out-
side the object for a given microphysical model of its
internal structure, and relate the result to the quantities
appearing in the effective action. To avoid ambiguities in
the matching, it is highly advantageous to establish the
link between the perturbative description and the effec-
tive action by considering wave scattering states defined
at null infinity instead of a stationary setup as in stan-
dard approaches.

In scalar wave scattering, the scalar tidal response
function is related to the ratio of amplitudes of in-
and outgoing waves Cin/Cout defined at null infinity of
Minkowski spacetime by

F`(ω) = KφF̃`(ω) . (4.2)

Here Kφ is the scalar field coupling constant

Sφ = −Kφ

2

∫
ddx
√
−g gαβ ∇αφ∇βφ, (4.3)

related to that of the full theory such that Kφ = Kfull
φ ,

and F̃`(ω) the normalised response function

F̃`(ω) = iΞ`

1− 2

1 +
Cin
`

Cout
`
ei
π
2 (d̂+1)

 (4.4)

or, introducing the complex phase shift δ` defined via
C in
` /C

out
` = e2iδ` ,

F̃`(ω) = −Ξ` tan
[
δ` +

π

4
(d̂+ 1)

]
, (4.5)

with

Ξ` = −4πd̂/2

2`

(
2

ω

)d̂+2`

Γ

(
d̂

2
+ `+ 1

)
. (4.6)

This result is similar to the frequency-dependent re-
sponse in optics, with the analog of response being the
refractive index of a material. An imaginary refractive
index corresponds to absorption of light and a change
in amplitude. By contrast, in the absence of absorption,
the refractive index encodes a phase shift of the light and
leads to refraction of incident light beams.

The identification of the in- and out scattering states at
null infinity of the Minkowski and Schwarzschild space-
times is made rigorous by basing it on the geometry of
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the light cones. This reveals that there is a one-to-one
correspondence between the in- and outgoing wave am-
plitudes

Cin

Cout
|Minkowski=

A∞in
A∞out

|Schwarzschild . (4.7)

The above results are valid in general for scalar pertur-
bations to any compact object in GR. The connection to
the microphysical properties, however, requires specializ-
ing to a particular kind of compact object.

For a Schwarzschild black hole, it is possible to per-
form analytical calculations that trace the information
flow from the perturbed black hole to regions far from it
in the limit Mω � 1. Matched asymptotic expansions
reveal that the response function is given by

F`(ω) = W`d̂


Γ(ˆ̀+ 1 + 2iωrH/d̂)

Γ(−ˆ̀+ 2iωrH/d̂)
, ˆ̀ 6∈ Z,Z/2

2irHω(−1)
ˆ̀

d̂

∏ˆ̀

k=1

(
k2 +

4r2Hω
2

d̂2

)
, ˆ̀∈ Z

(4.8)
with

W`d̂ =
π
d̂
2 +1r

d̂(2ˆ̀+1)
H Γ

(
−ˆ̀− 1

2

)
2(4+d̂)ˆ̀Γ

(
ˆ̀+ 1

2

)
Γ
(
d̂
2 (2ˆ̀+ 1)

) (4.9)

More generally, to go beyond the case of black holes
such as (rotating) neutron stars the calculations requires
full numerical studies of the perturbative problem, which
can readily be incorporated into the formalism.

Further insights into the information contained in the
black hole’s response function (4.8) are revealed by con-
sidering limiting cases of particular interest. First, for in-

teger ˆ̀, which applies for four spacetime dimensions, and
any frequency within our approximations, the real part
of the response (4.8) vanishes, hence, the Love numbers
are zero, and the purely imaginary terms for ` = 0 reduce
to the known absorption properties of a black hole [72].
Second, in the static limit ω → 0, the response (4.8) re-
duces to the Love numbers for arbitrary dimensions and
multipoles considered in [37, 38].

Considering wave scattering to calculate Love numbers
as done here rather than following the standard approach
of working within a stationary setting has two major
advantages. (i) Scattering involves imposing boundary
conditions both at the horizon and at infinity. The im-
portance of including both of these boundary conditions
was shown in [36]. Specifically, this bypasses the gauge
ambiguities discussed in other studies (e.g. discussed
in [35]), which solely consider the near-horizon solution
and identify the Love number in terms of the ratio be-
tween the growing and decaying solutions for the metric.
(ii) By contrast, the waves extracted at null infinity are
described by gauge-invariant complex amplitudes, which
provide the most convenient identification between the

wave solutions of the compact-object perturbation cal-
culations and the skeletonized effective description. In
particular, formulating the results in terms of double null
coordinates, which have an intrinsic geometric meaning,
leads to a clear identification between the two descrip-
tions. One important point to note is that the scalar case
we worked out in detail avoids some additional subtleties
that we expect to arise in the gravitational case. For in-
stance, we expect the identification of null infinities to
only be fixed up to the remaining freedom of supertrans-
lations characterized by the BMS symmetry group [62].

The scattering calculations also lead to deeper insights
into the necessity and utility of analytic continuations in

the multipolar order ` and the dimension d̂ for different
stages of the calculations. Notably, analytic continua-
tions

1. immediately distinguish finite size effects from
post-Newtonian point-mass terms in quantities
characterizing a binary system. Thus, tidal con-
tributions can be unambiguously identified without
requiring simultaneous knowledge of the high-order
PN point-mass terms having the same scaling with
frequency.

2. have no impact on determining the response func-
tion in terms of the wave amplitudes. This is an
advantage of considering scattering rather than sta-
tionary perturbations.

3. in generic dimension d̂ greatly simplify the calcu-
lations. For instance, in the definition of the tor-
toise coordinate r∗(r), a logarithm is present for

d̂ = 1, i.e. 3 + 1-dimensional spacetime, which in-
troduces computational subtleties. As discussed in
Sec. III B, in generic dimensions this relationship is
simple, e.g. asymptotically for rH → 0 it becomes

(r− r∗) ∼ (rH/r
∗)d̂r∗+ . . .. For four spacetime di-

mensions, the limit is (r− r∗) ∼ −rH log(r∗) + . . ..
Thus, it is convenient to work with the simpler gen-
eral case and obtain the special cases at the end,
similar to the utility of analytic continuations in
dimensions in other contexts.

4. in generic multipolar order ` are ubiquitous in ana-
lytical black hole perturbation calculations for link-
ing the near-horizon behavior to the asymptotic
quantities, e.g. [104]. The reason is that for in-
teger values of ` the two independent near-horizon
solutions are degenerate and the single solution is
regular, thereby preventing the identification of the
imprints due to the black hole’s response from the
irregular solution. Analytic continuation to com-
plex angular momentum numbers ` has also been
of great use in related contexts [82–85].
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V. CONCLUSIONS AND OUTLOOK

In this paper, we addressed several subtleties and con-
cerns about tidal Love numbers of compact objects. We
first considered the problem of identifying the Love num-
bers in a binary system. We showed that using the
gauge-invariant binding energy as a function of frequency
for circular orbits, and working in arbitrary dimensions
and/or multipolar order, it is straightforward to disen-
tangle high PN order point-particle contributions from
finite size effects. We also made explicit the connection
between this gauge-invariant energy and tidal coupling
coefficients in an effective action.

Next, we calculated the tidal coupling coefficients and
the information about the detailed properties of per-
turbed compact objects they contain using scattering.
This has several advantages over considering stationary
perturbations, such as working with quantities defined at
null infinity, taking into account all boundary conditions,
and gaining insights into the need for and convenience of
analytic continuations for different stages of the calcu-
lations. We demonstrated the methodology in detail by
performing the calculations for scalar perturbations to
a Schwarzschild black hole, without specializing to the
low-frequency limit as done in most previous works. We
showed that our method recovers known results for the
tidal Love numbers and absorption of a black hole in lim-
iting cases.

Our results represent the basis for a number of future
directions. For instance, an important next step is to
consider gravitational perturbations. A major simplifi-
cation arising in the scalar case was that the spacetime
remained the background black hole spacetime through-
out, which will no longer be true in the gravitational case.
Another avenue for future work is to compute the re-
sponse numerically. This would enable going beyond the
cases where analytical asymptotic expansion are avail-
able, for instance generic rotating compact objects. Our
work will be important for future high-precision stud-
ies of neutron stars and black holes with gravitational
waves, and interpreting the information on fundamental
physics encoded in the signals. Further, the methodology
established in this paper will also be useful for comput-
ing response functions for exotic compact objects and
compact objects in alternative theories of gravity, which
will yield important information for tests of gravity and
beyond-standard-model physics.
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Appendix A: Appendix

a. Contraction of STF unit vectors in d̂ dimensions

In this appendix we derive the relation (2.14), i.e. the
contraction of two STF unit vectors in any number of

dimensions d̂ ≥ 1. From [109] we derive the following

result for d̂ dimensions

nL =

[`/2]∑
k=0

(2`− 2k + d̂− 2)!!

(2`+ d̂− 2)!!

[
δ2kñL−2k + sym

]
. (A1)

where “sym” stands for the remaining symmetric terms
and we denote non-STF unit vectors by a tilde ñL. Upon
contracting with a different STF unit vector and using
that n′Ln

L = ñ′Ln
L,

n′Ln
L = ñ′Ln

L

=

[`/2]∑
k=0

(2`− 2k + d̂− 2)!!

(2`+ d̂− 2)!!

[
δ2kñL−2k + sym

]
ñ′L

=

[`/2]∑
k=0

`!

(`− 2k)!(2k)!!

(2`− 2k + d̂− 2)!!

(2`+ d̂− 2)!!
µL−2k
nn′ . (A2)

where we define µnn′ ≡ ñ · ñ′ and in the last equality we
contracted all the Kronecker deltas. Next, using the se-
ries representation of the D dimensional Legendre Poly-
nomial,

P
(D)
` (µnn′) =

∞∑
k=0

(−1)k
(2`− 2k + d̂− 2)!!

(`− 2k)!(2k)!!(d̂− 2)!!
µL−2k
nn′

(A3)

we obtain

n′Ln
L =

`!

(2`+ d̂− 2)!!

×
[`/2]∑
k=0

(2`− 2k + d̂− 2)!!

(`− 2k)!(2k)!!

(
(d̂− 2)!!

(d̂− 2)!!

)
µL−2k
nn′

=
`!(d̂− 2)!!

(2`+ d̂− 2)!!
P

(d̂)
` (µnn′) . (A4)

If ñ′ = ñ, we have µnn′ = 1 and therefore

nLn
L =

`!(d̂− 2)!!

(2`+ d̂− 2)!!
P

(d̂)
` (1)

=
(`+ d̂− 1)!(d̂− 2)!!

(2`+ d̂− 2)!!(d̂− 1)!

=
(`+ d̂− 1)!

(2`+ d̂− 2)!!(d̂− 1)!!
. (A5)

where we have used that (d̂− 1)! = (d̂− 1)!!(d̂− 2)!! and
[110]

P
(d̂)
` (1) =

(`+ d̂− 1)!

`!(d̂− 1)!
. (A6)
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Remarkably, this result is valid for d̂ ≥ 1 and reduces to

the known four-dimensional values for d̂ = 1.

b. Distributional Laplacian

From [111], the (spatial) D dimensional distributional
partial derivative of any homogenous function f(x) of
degree λ, i.e. a function such that f(ax) = aλf(x) for
a > 0, is given by

∂̃if(x) =∂if(x) +
(−1)k

k!

∂̃k

∂̃x`1 ∂̃x`2 . . . ∂̃x`k
δ(x)

×
∮
SD−1

dSnif(x′)x′`1 . . . x`k (A7)

where the derivative with a tilde means a distributional
derivative and k = −λ − D + 1 > 0. Since we will use
this formula to compute derivatives of inverse powers, we
will make the definition α ≡ −λ such that k = α −D +
1. In particular we want to compute the distributional
Laplacian of r−α, so we begin by computing the first
derivative,

∂̃i

(
1

rα

)
=∂i

(
1

rα

)
+

(−1)α−D+1

(α−D + 1)!
∂̃α−D+1δ(x)

×
∮
SD−1

dSn′i
(

1

r′α

)
x′`1 . . . x′`α−D+1 .

(A8)

The closed surface integral is given by∮
SD−1

dS ′n′i
(

1

r′α

)
x′i1 . . . x′α−D+1

=

∮
SD−1

dΩD−1r
′D−1n′in′`1 . . . n′`α−D+1

(
1

r′D−1

)
=

∮
SD−1

dΩD−1n
′in′`1 . . . n′`α−D+1

=
(D − 2)!!

α!!
ΩD−1δ{i`1...δ`α−D`α−D+1}δα−D,2n (A9)

where we introduced the Kronecker delta δα−D,2n with n
an integer to account for the fact that α − D has to be
even and we used the well-known property∮

SD−1

dS ′n′i1 . . . x′i2m

=
(D − 2)!!

(D + 2m− 2)!!
ΩD−1δ{i`1...δ`2m−1`2m} , (A10)

with ΩD−1 = 2πD/2/Γ(D/2). The first distributional
derivative is, taking into account that k > 0,

∂̃i

(
1

rα

)
= ∂i

(
1

rα

)
+

(−1)α−D+1

(α−D + 1)!

(D − 2)!!

α!!
ΩD−1δ{i`1...δ`α−D`α−D+1}

× δα−D,2nΘ(α−D + 1)∂̃α−D+1δ(x) . (A11)

Now we can compute the second derivative,

∂̃j ∂̃i

(
1

rα

)
= ∂̃j∂i

(
1

rα

)
+

(−1)α−D+1

(α−D + 1)!

(D − 2)!!

α!!
ΩD−1δ{i`1...δ`α−D`α−D+1}

× δα−D,2nΘ(α−D + 1)∂̃j ∂̃α−D+1δ(x), (A12)

with

∂̃j∂i

(
1

rα

)
= ∂j∂i

(
1

rα

)
− α (−1)α−D+2

(α−D + 2)!
∂̃α−D+2δ(x)

×
∮
SD−1

dSn′j
(

ni

r′α+1

)
x′`1 . . . x′`α−D+2 . (A13)

where we used that k = α+ 1−D+ 1 = α−D+ 2 since

∂i

(
1

rα

)
= −α 1

rα+1
ni . (A14)

The angular integral is given by∮
SD−1

dSn′j
(

ni

r′α+1

)
x′`1 . . . x′`α−D+2

=

∮
SD−1

dΩD−1n
′jn′in′`1 . . . n′`α−D+2

=
(D − 2)!!

(α+ 2)!!
ΩD−1δ{ij...δ`α−D+1`α−D+2}δα−D,2n , (A15)

such that

∂̃j ∂̃i

(
1

rα

)
= ∂j∂i

(
1

rα

)
+

(−1)α−D+1

(α−D + 1)!

(D − 2)!!

α!!
ΩD−1δ{i`1...δ`α−D`α−D+1}

× δα−D,2nΘ(α−D + 1)∂̃j ∂̃α−D+1δ(x)

− α (−1)α−D+2

(α−D + 2)!

(D − 2)!!

(α+ 2)!!
ΩD−1δ{ij...δ`α−D+1`α−D+2}

×Θ(α−D + 2)δα−D,2n∂̃α−D+2δ(x) . (A16)

Now, in order to obtain the Laplacian we just have to
contract the indices, or equivalently introduce a Kro-
necker delta. When doing that, we will have to contract
the Kronecker delta with other symmetrized Kronecker
deltas that will give the same contribution. Specifically,

δijδ{ij...δ`α−D+1`α−D+2} = δijδijδ{`1`2 . . . δ`α−D+1`α−D+2}

+ δijδ{i`1δj`2 . . . δ`α−D+1`α−D+2}/ij

= D(α−D + 1)δ`1`2 . . . δ`α−D+1`α−D+2

+ δij2(α−D + 1)!δi`1δj`2 . . . δ`α−D+1`α−D+2
(A17)
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where /ij means all combinations but the one with ij.
The factors in front of the unsymmetrized deltas come
from taking as many combinations of 2 of free indices and
dividing by the number of Kronecker deltas one can form
with those indices (for instance the first term of (A17), is

(α−D+2)!/(2!(α−D)!)×2/(α−D+2)). So far we have
treated the case α−D+ 2 > 0. In order to compute the
limiting case one should go back to (A12) and just keep
the first term with α = D− 2. Finally, the distributional
Laplacian of r−α for generic dimensions is given by

∇̃2

(
1

rα

)
=



∇2

(
1

rα

)
+

(−1)α+D−3

(α−D + 2)!

(D − 2)!!

(α+ 2)!!
δα−D,2nΩD−1∇̃2δ(x)

×
[
2(α−D + 1)! (αΘ(α−D + 2) + (α+ 2)Θ(α−D + 1)) + αD(α−D + 1)Θ(α−D + 2)

]
, α > D − 2

∇2

(
1

rα

)
− (D − 2)ΩD−1δ(x) , α = D − 2

∇2

(
1

rα

)
, α < D − 2

(A18)

Recall that in the main text we use d̂ = D − 2 instead of D.

c. Extracting the finite part of the tidal term

In order to compute the response function we have to
extract the finite part of the tidal term, ∂Lφ. For that,
we will directly substitute the series representation of the
Bessel functions and apply the STF derivatives and their
identities. From (3.27) we obtain

∂Lφ =

∞∑
k=0

(
CKreg∂L∂Kφ

(0)
reg + CKirreg∂L∂Kφ

(0)
irreg

)
, (A19)

where

∂L∂Kφ
(0)
reg = eiωt

√
2πω ∂L∂K

(
r−d̂/2Jd̂/2(ωr)

)
,

(A20a)

∂L∂Kφ
(0)
irreg = eiωt

√
2πω ∂L∂K

(
r−d̂/2Yd̂/2(ωr)

)
.

(A20b)

We begin with the regular piece,

∂L∂K

(
r−d̂/2Jd̂/2(ωr)

)
(A21)

=

∞∑
m=0

(−1)m

m!Γ(m+ d̂
2 + 1)

(ω
2

)2m+d̂/2

∂L∂K
(
r2m

)
.

(A22)

In order to obtain the finite part we have to take 2m =
`+ k derivatives. Using (A14) of [112],

∂P
(
r2j
)

= 0 if j = 0, 1, 2, . . . , p− 1 (A23)

implies that in order to have a non-zero result 2m =
` + k ≥ ` and 2m = ` + k ≥ k. Therefore, the only

possible choice is ` = k for which m = `. Using (A13)
and (A12) of [112],

∂P (rκ) =
κ!!

(κ− 2p)!!
nP rκ−p , (A24)

∂iXP = p δi<ipXP−1> , (A25)

yields

∂L∂L
(
r2`
)

= (2`)!!∂L
(
nLr

`
)

= `!(2`)!! . (A26)

Hence,

FP
r→0

∂L∂K

(
r−d̂/2Jd̂/2(ωr)

)
=

`! 2`(−1)`

Γ( d̂2 + `+ 1)

(ω
2

)2`+d̂/2

,

(A27)

where we have used that (2`)!! = 2``!. Similarly, we can
compute the finite part of the irregular solution. Recall
that the Bessel function of the second kind reads

Yd̂/2(ωr) =
1

sin
(
πd̂
2

) [cos

(
πd̂

2

)
Jd̂/2(ωr)− J−d̂/2(ωr)

]
.

(A28)

The first term is proportional to the regular solution and
therefore we will focus on the second term,

∂L∂K

(
r−d̂/2J−d̂/2(ωr)

)
(A29)

=

∞∑
m=0

(−1)m

m!Γ(m− d̂
2 + 1)

(ω
2

)2m−d̂/2
∂L∂K

(
r2m−d̂

)
.

(A30)
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Now the condition to have a non-zero result reads 2m−
d̂ = ` + k. Using (A23) implies 2m − d̂ = ` + k ≥ ` and

2m− d̂ = `+ k ≥ k and therefore m = d̂/2 + `. Plugging
(A26) back into (A29) yields

FP
r→0

∂L∂K

(
r−d̂/2J−d̂/2(ωr)

)
(A31)

=
`! 2`(−1)` cos

(
πd̂
2

)
Γ( d̂2 + `+ 1)

(ω
2

)2`+d̂/2

, (A32)

where given that m = d̂/2 + ` is an integer and d̂ can be
odd or even,

(−1)d̂/2 = cos

(
πd̂

2

)
. (A33)

Combining (A27) and (A31) into (A28) yields

FP
r→0

∂L∂Kφ
(0)
irreg ∝ FP

r→0
∂L∂K

(
r−d̂/2Yd̂/2(ωr)

)
= 0 .

(A34)

We can now compute the frequency-dependent tidal field

EL(ω) = FP
r→0

∂Lφ(ω) = CLreg FP
r→0

∂L∂Lφ
(0)
reg(ω)

=eiωt`!π
(ω

2

)d̂/2+1/2+2` (−1)`2`+1

Γ( d̂2 + `+ 1)
CLreg . (A35)

where we use that φ(ω) =
√

2πe−iωtφ(t) for a fixed fre-
quency ω.

[1] B. P. Abbott et al. (LIGO Scientific, Virgo), GWTC-
1: A Gravitational-Wave Transient Catalog of Compact
Binary Mergers Observed by LIGO and Virgo during
the First and Second Observing Runs, Phys. Rev. X 9,
031040 (2019), arXiv:1811.12907 [astro-ph.HE].

[2] R. Abbott et al. (LIGO Scientific, Virgo), GWTC-2:
Compact Binary Coalescences Observed by LIGO and
Virgo During the First Half of the Third Observing Run,
Phys. Rev. X 11, 021053 (2021), arXiv:2010.14527 [gr-
qc].

[3] R. Abbott et al. (LIGO Scientific, VIRGO), GWTC-
2.1: Deep Extended Catalog of Compact Binary Co-
alescences Observed by LIGO and Virgo During the
First Half of the Third Observing Run, (2021),
arXiv:2108.01045 [gr-qc].

[4] R. Abbott et al. (LIGO Scientific, KAGRA, VIRGO),
Observation of Gravitational Waves from Two Neutron
Star–Black Hole Coalescences, Astrophys. J. Lett. 915,
L5 (2021), arXiv:2106.15163 [astro-ph.HE].

[5] R. Abbott et al. (LIGO Scientific, Virgo), Tests of gen-
eral relativity with binary black holes from the second
LIGO-Virgo gravitational-wave transient catalog, Phys.
Rev. D 103, 122002 (2021), arXiv:2010.14529 [gr-qc].

[6] R. Abbott et al. (LIGO Scientific, Virgo), Population
Properties of Compact Objects from the Second LIGO-
Virgo Gravitational-Wave Transient Catalog, Astro-
phys. J. Lett. 913, L7 (2021), arXiv:2010.14533 [astro-
ph.HE].

[7] B. P. Abbott et al. (LIGO Scientific, Virgo), GW170817:
Measurements of neutron star radii and equation
of state, Phys. Rev. Lett. 121, 161101 (2018),
arXiv:1805.11581 [gr-qc].

[8] B. P. Abbott et al. (LIGO Scientific, Virgo, 1M2H, Dark
Energy Camera GW-E, DES, DLT40, Las Cumbres Ob-
servatory, VINROUGE, MASTER), A gravitational-
wave standard siren measurement of the Hubble con-
stant, Nature 551, 85 (2017), arXiv:1710.05835 [astro-
ph.CO].

[9] Reaching for the horizon: The 2015 long range plan for
nuclear science (2015).

[10] N. P. E. C. Committee, The NuPECC long range plan
2017: perspectives in nuclear physics (2017).

[11] L. Barack et al., Black holes, gravitational waves and
fundamental physics: a roadmap, Class. Quant. Grav.
36, 143001 (2019), arXiv:1806.05195 [gr-qc].

[12] K. Yagi and N. Yunes, I-Love-Q Relations in Neutron
Stars and their Applications to Astrophysics, Gravita-
tional Waves and Fundamental Physics, Phys. Rev. D
88, 023009 (2013), arXiv:1303.1528 [gr-qc].

[13] D. D. Doneva and G. Pappas, Universal Relations and
Alternative Gravity Theories, Astrophys. Space Sci.
Libr. 457, 737 (2018), arXiv:1709.08046 [gr-qc].

[14] V. Cardoso and P. Pani, Testing the nature of dark com-
pact objects: a status report, Living Rev. Rel. 22, 4
(2019), arXiv:1904.05363 [gr-qc].

[15] V. De Luca and P. Pani, Tidal deformability of dressed
black holes and tests of ultralight bosons in extended
mass ranges, (2021), arXiv:2106.14428 [gr-qc].

[16] B. P. Abbott et al. (KAGRA, LIGO Scientific, Virgo),
Prospects for observing and localizing gravitational-
wave transients with Advanced LIGO, Advanced Virgo
and KAGRA, Living Rev. Rel. 23, 3 (2020).

[17] M. Bailes et al., Gravitational-wave physics and astron-
omy in the 2020s and 2030s, Nature Rev. Phys. 3, 344
(2021).

[18] M. Maggiore et al., Science Case for the Einstein Tele-
scope, JCAP 03, 050, arXiv:1912.02622 [astro-ph.CO].

[19] D. Reitze et al., Cosmic Explorer: The U.S. Contribu-
tion to Gravitational-Wave Astronomy beyond LIGO,
Bull. Am. Astron. Soc. 51, 035 (2019), arXiv:1907.04833
[astro-ph.IM].

[20] B. P. Abbott et al. (LIGO Scientific, Virgo), A guide
to LIGO–Virgo detector noise and extraction of tran-
sient gravitational-wave signals, Class. Quant. Grav. 37,
055002 (2020), arXiv:1908.11170 [gr-qc].

[21] C. Cutler and E. E. Flanagan, Gravitational waves
from merging compact binaries: How accurately can
one extract the binary’s parameters from the inspiral
wave form?, Phys. Rev. D 49, 2658 (1994), arXiv:gr-
qc/9402014.

https://doi.org/10.1103/PhysRevX.9.031040
https://doi.org/10.1103/PhysRevX.9.031040
https://arxiv.org/abs/1811.12907
https://doi.org/10.1103/PhysRevX.11.021053
https://arxiv.org/abs/2010.14527
https://arxiv.org/abs/2010.14527
https://arxiv.org/abs/2108.01045
https://doi.org/10.3847/2041-8213/ac082e
https://doi.org/10.3847/2041-8213/ac082e
https://arxiv.org/abs/2106.15163
https://doi.org/10.1103/PhysRevD.103.122002
https://doi.org/10.1103/PhysRevD.103.122002
https://arxiv.org/abs/2010.14529
https://doi.org/10.3847/2041-8213/abe949
https://doi.org/10.3847/2041-8213/abe949
https://arxiv.org/abs/2010.14533
https://arxiv.org/abs/2010.14533
https://doi.org/10.1103/PhysRevLett.121.161101
https://arxiv.org/abs/1805.11581
https://doi.org/10.1038/nature24471
https://arxiv.org/abs/1710.05835
https://arxiv.org/abs/1710.05835
https://doi.org/10.1051/epn/2017403
https://doi.org/10.1051/epn/2017403
https://doi.org/10.1088/1361-6382/ab0587
https://doi.org/10.1088/1361-6382/ab0587
https://arxiv.org/abs/1806.05195
https://doi.org/10.1103/PhysRevD.88.023009
https://doi.org/10.1103/PhysRevD.88.023009
https://arxiv.org/abs/1303.1528
https://doi.org/10.1007/978-3-319-97616-7_13
https://doi.org/10.1007/978-3-319-97616-7_13
https://arxiv.org/abs/1709.08046
https://doi.org/10.1007/s41114-019-0020-4
https://doi.org/10.1007/s41114-019-0020-4
https://arxiv.org/abs/1904.05363
https://arxiv.org/abs/2106.14428
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1038/s42254-021-00303-8
https://doi.org/10.1038/s42254-021-00303-8
https://doi.org/10.1088/1475-7516/2020/03/050
https://arxiv.org/abs/1912.02622
https://arxiv.org/abs/1907.04833
https://arxiv.org/abs/1907.04833
https://doi.org/10.1088/1361-6382/ab685e
https://doi.org/10.1088/1361-6382/ab685e
https://arxiv.org/abs/1908.11170
https://doi.org/10.1103/PhysRevD.49.2658
https://arxiv.org/abs/gr-qc/9402014
https://arxiv.org/abs/gr-qc/9402014


27

[22] E. E. Flanagan and T. Hinderer, Constraining neutron
star tidal Love numbers with gravitational wave detec-
tors, Phys. Rev. D 77, 021502 (2008), arXiv:0709.1915
[astro-ph].

[23] S. Chakrabarti, T. Delsate, and J. Steinhoff, New per-
spectives on neutron star and black hole spectroscopy
and dynamic tides, (2013), arXiv:1304.2228 [gr-qc].

[24] A. E. H. Love, The Yielding of the Earth to Disturb-
ing Forces, Proceedings of the Royal Society of London
Series A 82, 73 (1909).

[25] T. Damour and A. Nagar, Relativistic tidal proper-
ties of neutron stars, Phys. Rev. D 80, 084035 (2009),
arXiv:0906.0096 [gr-qc].

[26] T. Binnington and E. Poisson, Relativistic theory of
tidal Love numbers, Phys. Rev. D 80, 084018 (2009),
arXiv:0906.1366 [gr-qc].

[27] T. Hinderer, Tidal Love numbers of neutron stars, As-
trophys. J. 677, 1216 (2008), arXiv:0711.2420 [astro-
ph].

[28] V. Cardoso, E. Franzin, A. Maselli, P. Pani, and G. Ra-
poso, Testing strong-field gravity with tidal Love num-
bers, Phys. Rev. D 95, 084014 (2017), [Addendum:
Phys.Rev.D 95, 089901 (2017)], arXiv:1701.01116 [gr-
qc].

[29] J. P. Pereira, M. Bejger, N. Andersson, and F. Gittins,
Tidal deformations of hybrid stars with sharp phase
transitions and elastic crusts, Astrophys. J. 895, 28
(2020), arXiv:2003.10781 [gr-qc].

[30] T. Hinderer, B. D. Lackey, R. N. Lang, and J. S. Read,
Tidal deformability of neutron stars with realistic equa-
tions of state and their gravitational wave signatures
in binary inspiral, Phys. Rev. D 81, 123016 (2010),
arXiv:0911.3535 [astro-ph.HE].

[31] R. Ciancarella, F. Pannarale, A. Addazi, and A. Mar-
ciano, Constraining mirror dark matter inside neu-
tron stars, Phys. Dark Univ. 32, 100796 (2021),
arXiv:2010.12904 [astro-ph.HE].

[32] S. Han and A. W. Steiner, Tidal deformability with
sharp phase transitions in (binary) neutron stars, Phys.
Rev. D 99, 083014 (2019), arXiv:1810.10967 [nucl-th].

[33] S. Postnikov, M. Prakash, and J. M. Lattimer, Tidal
Love Numbers of Neutron and Self-Bound Quark Stars,
Phys. Rev. D 82, 024016 (2010), arXiv:1004.5098 [astro-
ph.SR].

[34] N. Sennett, T. Hinderer, J. Steinhoff, A. Buonanno,
and S. Ossokine, Distinguishing Boson Stars from Black
Holes and Neutron Stars from Tidal Interactions in
Inspiraling Binary Systems, Phys. Rev. D 96, 024002
(2017), arXiv:1704.08651 [gr-qc].

[35] S. E. Gralla, On the Ambiguity in Relativistic Tidal
Deformability, Class. Quant. Grav. 35, 085002 (2018),
arXiv:1710.11096 [gr-qc].

[36] H. S. Chia, Tidal Deformation and Dissipation of Ro-
tating Black Holes, (2020), arXiv:2010.07300 [gr-qc].

[37] B. Kol and M. Smolkin, Black hole stereotyping:
Induced gravito-static polarization, JHEP 02, 010,
arXiv:1110.3764 [hep-th].

[38] L. Hui, A. Joyce, R. Penco, L. Santoni, and
A. R. Solomon, Static response and Love num-
bers of Schwarzschild black holes, JCAP 04, 052,
arXiv:2010.00593 [hep-th].

[39] A. Le Tiec, M. Casals, and E. Franzin, Tidal Love Num-
bers of Kerr Black Holes, Phys. Rev. D 103, 084021
(2021), arXiv:2010.15795 [gr-qc].

[40] A. Le Tiec and M. Casals, Spinning Black Holes
Fall in Love, Phys. Rev. Lett. 126, 131102 (2021),
arXiv:2007.00214 [gr-qc].

[41] E. Poisson, Compact body in a tidal environment:
New types of relativistic Love numbers, and a post-
Newtonian operational definition for tidally induced
multipole moments, Phys. Rev. D 103, 064023 (2021),
arXiv:2012.10184 [gr-qc].

[42] J.-W. Kim and M. Shim, Quantum corrections to tidal
Love number for Schwarzschild black holes, (2020),
arXiv:2011.03337 [hep-th].

[43] L. Hui, A. Joyce, R. Penco, L. Santoni, and A. R.
Solomon, Ladder Symmetries of Black Holes: Implica-
tions for Love Numbers and No-Hair Theorems, (2021),
arXiv:2105.01069 [hep-th].

[44] P. Charalambous, S. Dubovsky, and M. M. Ivanov,
Hidden Symmetry of Vanishing Love, (2021),
arXiv:2103.01234 [hep-th].

[45] E. Poisson, Tidally induced multipole moments of a non-
rotating black hole vanish to all post-Newtonian orders,
(2021), arXiv:2108.07328 [gr-qc].

[46] K. S. Thorne, Multipole Expansions of Gravitational
Radiation, Rev. Mod. Phys. 52, 299 (1980).

[47] Y. Gürsel, Multipole moments for stationary systems:
The equivalence of the Geroch-Hansen formulation and
the Thorne formulation, General Relativity and Gravi-
tation 15, 737 (1983).

[48] P. Pani, L. Gualtieri, A. Maselli, and V. Ferrari, Tidal
deformations of a spinning compact object, Phys. Rev.
D 92, 024010 (2015), arXiv:1503.07365 [gr-qc].

[49] T. Damour and O. M. Lecian, On the gravitational
polarizability of black holes, Phys. Rev. D 80, 044017
(2009), arXiv:0906.3003 [gr-qc].

[50] E. E. Flanagan, General relativistic coupling between
orbital motion and internal degrees of freedom for in-
spiraling binary neutron stars, Phys. Rev. D 58, 124030
(1998), arXiv:gr-qc/9706045.

[51] F. D. Ryan, Gravitational waves from the inspiral of a
compact object into a massive, axisymmetric body with
arbitrary multipole moments, Phys. Rev. D 52, 5707
(1995).

[52] H. Georgi, Effective field theory, Ann. Rev. Nucl. Part.
Sci. 43, 209 (1993).

[53] W. D. Goldberger, Les Houches lectures on effec-
tive field theories and gravitational radiation, in Les
Houches Summer School - Session 86: Particle Physics
and Cosmology: The Fabric of Spacetime (2007)
arXiv:hep-ph/0701129.

[54] W. D. Goldberger and I. Z. Rothstein, An Effective field
theory of gravity for extended objects, Phys. Rev. D 73,
104029 (2006), arXiv:hep-th/0409156.

[55] D. Bini, T. Damour, and G. Faye, Effective action ap-
proach to higher-order relativistic tidal interactions in
binary systems and their effective one body description,
Phys. Rev. D 85, 124034 (2012), arXiv:1202.3565 [gr-
qc].

[56] J. Steinhoff, T. Hinderer, A. Buonanno, and A. Tarac-
chini, Dynamical Tides in General Relativity: Effec-
tive Action and Effective-One-Body Hamiltonian, Phys.
Rev. D 94, 104028 (2016), arXiv:1608.01907 [gr-qc].

[57] W. D. Goldberger and I. Z. Rothstein, Dissipative ef-
fects in the worldline approach to black hole dynamics,
Phys. Rev. D 73, 104030 (2006), arXiv:hep-th/0511133.

https://doi.org/10.1103/PhysRevD.77.021502
https://arxiv.org/abs/0709.1915
https://arxiv.org/abs/0709.1915
https://arxiv.org/abs/1304.2228
https://doi.org/10.1098/rspa.1909.0008
https://doi.org/10.1098/rspa.1909.0008
https://doi.org/10.1103/PhysRevD.80.084035
https://arxiv.org/abs/0906.0096
https://doi.org/10.1103/PhysRevD.80.084018
https://arxiv.org/abs/0906.1366
https://doi.org/10.1086/533487
https://doi.org/10.1086/533487
https://arxiv.org/abs/0711.2420
https://arxiv.org/abs/0711.2420
https://doi.org/10.1103/PhysRevD.95.084014
https://arxiv.org/abs/1701.01116
https://arxiv.org/abs/1701.01116
https://doi.org/10.3847/1538-4357/ab8aca
https://doi.org/10.3847/1538-4357/ab8aca
https://arxiv.org/abs/2003.10781
https://doi.org/10.1103/PhysRevD.81.123016
https://arxiv.org/abs/0911.3535
https://doi.org/10.1016/j.dark.2021.100796
https://arxiv.org/abs/2010.12904
https://doi.org/10.1103/PhysRevD.99.083014
https://doi.org/10.1103/PhysRevD.99.083014
https://arxiv.org/abs/1810.10967
https://doi.org/10.1103/PhysRevD.82.024016
https://arxiv.org/abs/1004.5098
https://arxiv.org/abs/1004.5098
https://doi.org/10.1103/PhysRevD.96.024002
https://doi.org/10.1103/PhysRevD.96.024002
https://arxiv.org/abs/1704.08651
https://doi.org/10.1088/1361-6382/aab186
https://arxiv.org/abs/1710.11096
https://arxiv.org/abs/2010.07300
https://doi.org/10.1007/JHEP02(2012)010
https://arxiv.org/abs/1110.3764
https://doi.org/10.1088/1475-7516/2021/04/052
https://arxiv.org/abs/2010.00593
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.103.084021
https://arxiv.org/abs/2010.15795
https://doi.org/10.1103/PhysRevLett.126.131102
https://arxiv.org/abs/2007.00214
https://doi.org/10.1103/PhysRevD.103.064023
https://arxiv.org/abs/2012.10184
https://arxiv.org/abs/2011.03337
https://arxiv.org/abs/2105.01069
https://arxiv.org/abs/2103.01234
https://arxiv.org/abs/2108.07328
https://doi.org/10.1103/RevModPhys.52.299
https://doi.org/10.1007/BF01031881
https://doi.org/10.1007/BF01031881
https://doi.org/10.1103/PhysRevD.92.024010
https://doi.org/10.1103/PhysRevD.92.024010
https://arxiv.org/abs/1503.07365
https://doi.org/10.1103/PhysRevD.80.044017
https://doi.org/10.1103/PhysRevD.80.044017
https://arxiv.org/abs/0906.3003
https://doi.org/10.1103/PhysRevD.58.124030
https://doi.org/10.1103/PhysRevD.58.124030
https://arxiv.org/abs/gr-qc/9706045
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1103/PhysRevD.52.5707
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://doi.org/10.1146/annurev.ns.43.120193.001233
https://arxiv.org/abs/hep-ph/0701129
https://doi.org/10.1103/PhysRevD.73.104029
https://doi.org/10.1103/PhysRevD.73.104029
https://arxiv.org/abs/hep-th/0409156
https://doi.org/10.1103/PhysRevD.85.124034
https://arxiv.org/abs/1202.3565
https://arxiv.org/abs/1202.3565
https://doi.org/10.1103/PhysRevD.94.104028
https://doi.org/10.1103/PhysRevD.94.104028
https://arxiv.org/abs/1608.01907
https://doi.org/10.1103/PhysRevD.73.104030
https://arxiv.org/abs/hep-th/0511133


28

[58] S. Chakrabarti, T. Delsate, and J. Steinhoff, Effec-
tive action and linear response of compact objects in
Newtonian gravity, Phys. Rev. D 88, 084038 (2013),
arXiv:1306.5820 [gr-qc].

[59] M. Levi, Effective Field Theories of Post-Newtonian
Gravity: A comprehensive review, Rept. Prog. Phys.
83, 075901 (2020), arXiv:1807.01699 [hep-th].

[60] R. A. Porto, The effective field theorist’s approach
to gravitational dynamics, Phys. Rept. 633, 1 (2016),
arXiv:1601.04914 [hep-th].

[61] W. G. Dixon, Dynamics of extended bodies in general
relativity. I. Momentum and angular momentum, Proc.
Roy. Soc. Lond. A 314, 499 (1970).

[62] H. Bondi, M. G. J. van der Burg, and A. W. K. Metzner,
Gravitational waves in general relativity. 7. Waves from
axisymmetric isolated systems, Proc. Roy. Soc. Lond. A
269, 21 (1962).

[63] L. Blanchet, G. Compère, G. Faye, R. Oliveri, and
A. Seraj, Multipole expansion of gravitational waves:
from harmonic to Bondi coordinates, JHEP 02, 029,
arXiv:2011.10000 [gr-qc].

[64] R. A. Porto, Absorption effects due to spin in the world-
line approach to black hole dynamics, Phys. Rev. D 77,
064026 (2008), arXiv:0710.5150 [hep-th].

[65] S. Endlich and R. Penco, Effective field theory approach
to tidal dynamics of spinning astrophysical systems,
Phys. Rev. D 93, 064021 (2016), arXiv:1510.08889 [gr-
qc].

[66] S. Endlich and R. Penco, A Modern Approach to Su-
perradiance, JHEP 05, 052, arXiv:1609.06723 [hep-th].

[67] W. D. Goldberger, A. Ross, and I. Z. Rothstein, Black
hole mass dynamics and renormalization group evolu-
tion, Phys. Rev. D 89, 124033 (2014), arXiv:1211.6095
[hep-th].

[68] W. D. Goldberger and I. Z. Rothstein, Horizon radiation
reaction forces, JHEP 10, 026, arXiv:2007.00731 [hep-
th].

[69] W. D. Goldberger, J. Li, and I. Z. Rothstein, Non-
conservative effects on spinning black holes from
world-line effective field theory, JHEP 06, 053,
arXiv:2012.14869 [hep-th].

[70] W. D. Goldberger and I. Z. Rothstein, An Effective
Field Theory of Quantum Mechanical Black Hole Hori-
zons, JHEP 04, 056, arXiv:1912.13435 [hep-th].

[71] W. D. Goldberger and I. Z. Rothstein, Virtual Hawk-
ing Radiation, Phys. Rev. Lett. 125, 211301 (2020),
arXiv:2007.00726 [hep-th].

[72] D. N. Page, Particle Emission Rates from a Black
Hole: Massless Particles from an Uncharged, Nonrotat-
ing Hole, Phys. Rev. D 13, 198 (1976).

[73] S. Bernuzzi, A. Nagar, and R. De Pietri, Dynamical ex-
citation of space-time modes of compact objects, Phys.
Rev. D 77, 044042 (2008), arXiv:0801.2090 [gr-qc].

[74] T. Stratton and S. R. Dolan, Rainbow scattering of
gravitational plane waves by a compact body, Phys.
Rev. D 100, 024007 (2019), arXiv:1903.00025 [gr-qc].

[75] J. Chen, H. Liao, Y. Wang, and T. Chen, Absorption
and scattering of scalar wave from Schwarzschild black
hole surrounded by magnetic field, Eur. Phys. J. C 73,
2395 (2013), arXiv:1111.0825 [gr-qc].

[76] Y. F. Bautista, A. Guevara, C. Kavanagh, and J. Vines,
From Scattering in Black Hole Backgrounds to Higher-
Spin Amplitudes: Part I, (2021), arXiv:2107.10179
[hep-th].

[77] T. Stratton, L. C. S. Leite, S. R. Dolan, and L. C. B.
Crispino, Series reduction method for scattering of pla-
nar waves by Kerr black holes, Phys. Rev. D 102,
044025 (2020), arXiv:2004.10773 [gr-qc].

[78] L. C. S. Leite, S. R. Dolan, and L. C. B. Crispino,
Absorption of electromagnetic and gravitational waves
by Kerr black holes, Phys. Lett. B 774, 130 (2017),
arXiv:1707.01144 [gr-qc].

[79] S. R. Dolan and T. Stratton, Rainbow scattering in the
gravitational field of a compact object, Phys. Rev. D
95, 124055 (2017), arXiv:1702.06127 [gr-qc].

[80] S. R. Dolan, Geometrical optics for scalar, electromag-
netic and gravitational waves on curved spacetime, Int.
J. Mod. Phys. D 27, 1843010 (2017), arXiv:1806.08617
[gr-qc].

[81] J. A. Pons, E. Berti, L. Gualtieri, G. Miniutti, and
V. Ferrari, Gravitational signals emitted by a point
mass orbiting a neutron star: Effects of stellar structure,
Phys. Rev. D 65, 104021 (2002), arXiv:gr-qc/0111104.

[82] M. Ould El Hadj, T. Stratton, and S. R. Dolan, Scatter-
ing from compact objects: Regge poles and the complex
angular momentum method, Phys. Rev. D 101, 104035
(2020), arXiv:1912.11348 [gr-qc].

[83] A. Folacci and M. Ould El Hadj, Alternative description
of gravitational radiation from black holes based on the
Regge poles of the S-matrix and the associated residues,
Phys. Rev. D 98, 064052 (2018), arXiv:1807.09056 [gr-
qc].

[84] A. Folacci and M. Ould El Hadj, Regge pole de-
scription of scattering of gravitational waves by a
Schwarzschild black hole, Phys. Rev. D 100, 064009
(2019), arXiv:1906.01441 [gr-qc].

[85] A. Folacci and M. Ould El Hadj, Regge pole descrip-
tion of scattering of scalar and electromagnetic waves
by a Schwarzschild black hole, Phys. Rev. D 99, 104079
(2019), arXiv:1901.03965 [gr-qc].

[86] J. Steinhoff, Spin and quadrupole contributions to the
motion of astrophysical binaries, Fund. Theor. Phys.
179, 615 (2015), arXiv:1412.3251 [gr-qc].

[87] J. E. Vines and E. E. Flanagan, Post-1-Newtonian
quadrupole tidal interactions in binary systems, Phys.
Rev. D 88, 024046 (2013), arXiv:1009.4919 [gr-qc].

[88] V. Cardoso, O. J. C. Dias, and P. Figueras, Gravita-
tional radiation in d>4 from effective field theory, Phys.
Rev. D 78, 105010 (2008), arXiv:0807.2261 [hep-th].

[89] D. Bini, T. Damour, and A. Geralico, Novel approach
to binary dynamics: application to the fifth post-
Newtonian level, Phys. Rev. Lett. 123, 231104 (2019),
arXiv:1909.02375 [gr-qc].
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