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It is well known that enhancement in the primordial scalar perturbations over small scales generates
detectable amplitudes of secondary gravitational waves (GWs), by sourcing the tensor perturbations
at the second order. These stochastic gravitational waves are expected to carry the imprints of
primordial non-Gaussianities. The scalar bispectrum that is typically produced in models of inflation
leading to significant secondary GWs is non-trivial and highly scale-dependent. In this work,
we present a method to account for such general scale-dependent scalar bispectrum arising from
inflationary models in the calculation of the spectral density of secondary GWs. Using this method,
we compute the contributions arising from the scalar bispectrum to the amplitude of secondary
GWs in two specific models of inflation driven by the canonical scalar field. We find that these
non-Gaussian contributions can be highly model dependent and have to be consistently taken into
account while estimating the total amplitude of the secondary GWs. Beyond the models considered,
we emphasize that the method discussed is robust, free from assumptions about the shape of the
bispectrum and generalizes earlier approaches adopted in the literature. We argue that this method
of accounting for the scalar bispectrum shall be helpful in future computations for exotic models
generating larger amplitudes of scalar non-Gaussianities along with significant amount of secondary
GWs.

I. INTRODUCTION

Models of inflation leading to enhanced scalar power over small scales are examined in the context of production
of primordial black holes (PBHs) and the associated secondary gravitational waves (GWs). In these models, modes
of scalar perturbations that have amplitudes large enough to form PBHs, also enhance the tensor perturbations by
sourcing them at the second order. This leads to generation of secondary GWs of strengths detectable in the present
universe (see, for instance, Refs. [1–6] for discussions and constraints). Typical inflationary models considered in this
context that are driven by a canonical scalar field, permit a brief epoch of ultra slow roll amidst an otherwise slow
roll evolution of the inflaton field (see, for instance, Refs. [7–11]). This epoch is known to enhance the amplitude of
curvature perturbations and lead to large amplitudes of scalar power over small scales. The production of PBHs is
exponentially sensitive to the amplitude of scalar power and hence highly dependent on the behavior of the spectrum
around the small range of wavenumbers close to the peak. However, the spectrum of secondary GWs is proportional to
the square of the scalar power spectrum sourcing it. Therefore, it can better capture any feature that may be present
in the scalar power spectrum over a wider range of wavenumbers.

Besides, there have been efforts to quantify the effect of the primordial scalar non-Gaussianity on the predicted
signals of secondary GWs [12–17]. The general approach is to account for corrections in the power spectrum arising due
to the scalar bispectrum through the non-Gaussianity parameter f

NL
. There are usually well-motivated assumptions

made about the shape of f
NL

being local in such calculations. However, in realistic models of inflation, we find that,
though f

NL
is local close to the peak of the scalar power spectrum, it is highly scale dependent over a wide range

of wavenumbers. Moreover, it has been shown that the consistency condition relating the power spectrum and the
bispectrum in the squeezed limit is satisfied in canonical single field models considered in these scenarios [11, 18].
Therefore, it is important to take into account the complete form of the bispectrum in calculating the correction to the
power spectrum and examining the imprints of scalar non-Gaussianity on the secondary GWs.

In this work, we present a method to account for a general, scale-dependent f
NL

, in such a calculation, by reconsidering
the definition of the parameter. This method does not assume any shape or template for f

NL
or the scalar bispectrum.

Nevertheless it is consistent with the previous approaches when the assumptions are invoked, i.e. it reduces to earlier
methods adopted if the f

NL
is assumed to be of a certain shape, say, a local form. This allows us to capture the

complete behavior of the bispectrum along with any non-trivial features that may be present therein and examine
its imprint on the spectrum of GWs generated. We illustrate this method of accounting for scalar bispectrum using
two models as examples. One is a toy model of inflation constructed by adding an artificial dip to the otherwise
smooth potential permitting slow roll evolution of the field [19, 20]. The second is a model of inflation known as
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critical-Higgs inflation which is motivated by Higgs field driving inflation while containing an inflection point in the
potential [21–23]. Both these models serve as interesting examples for a typical scenario of inflation where the field
undergoes an interim epoch of ultra slow roll during its evolution. We calculate the scalar bispectrum in these models
and compute the corresponding correction to the power spectrum. We further compute the non-Gaussian contributions
to the dimensionless spectral energy density of secondary GWs, i.e. ΩGW , generated in these models.

The structure of the paper is as follows. In the next section, we present the generalized definition of the non-
Gaussianity parameter fNL to include a generic scale dependence. We also outline the steps involved in calculating fNL

from the cubic order action of the scalar perturbations. We then arrive at the expression for the correction to be added
to the scalar power spectrum, viz. PC(k) in section III. In section IV, we shall compute the non-Gaussian contributions
to ΩGW arising due to fNL . We shall point out that some of these contributions can be expressed in terms of PC(k).
We present the models for illustration in section V, and compute the power and bi-spectra arising from them. We
shall calculate the corrections to the power spectra using the respective bispectra and compare against the original
spectra. We also obtain an analytical estimate of the correction and compare it against the exact numerical result. We
shall finally evaluate the ΩGW generated from these models due to both Gaussian and non-Gaussian contributions and
compare the amplitudes in each case. We conclude in section VI with a brief summary and outlook.

Before proceeding, let us clarify the notations that shall be used in this work. We work with natural units such
that ~ = c = 1 and set the reduced Planck mass to be M

Pl
= (8πG)−1/2. We shall assume the background to be the

spatially flat Friedmann-Lemâıtre-Robertson-Walker (FLRW) line element described by the scale factor a and the
Hubble parameter H. The Greek letter η shall represent the conformal time coordinate.

II. SCALE DEPENDENT fNL(k1, k2, k3)

In this section, we shall consider the conventional definition of the scalar non-Gaussianity parameter f
NL

and
generalize it to account for a generic scale dependence. The parameter fNL is conventionally defined using the
relation [24, 25]

R(x, η) = RG
(x, η)− 3

5
f
NL

[RG
(x, η)]2 , (1)

where R(x, η) is the curvature perturbation and RG (x, η) is the Gaussian part of R(x, η). Evidently, this definition
assumes fNL to be local, i.e. independent of wavenumbers. Nevertheless, this is often taken as the definition to calculate
the bispectrum even in cases with non-trivial scale dependence. Here, we shall generalize this definition to explicitly
account for the scale dependence in the parameter. For this, we consider the above relation in Fourier space and
redefine f

NL
as a function in Fourier space with wavenumbers as its arguments (for similar efforts in different contexts,

see, Refs. [26, 27]). We can write such a relation as

Rk(η) = RG

k (η)− 3

5

∫
d3k1

(2π)3/2
RG

k1
(η)RG

k−k1
(η) f

NL
[k, (k1 − k),−k1] , (2)

where Rk is the mode function corresponding to the curvature perturbation R, and RG

k denotes the Gaussian part
of Rk. We should mention that the fNL(k1, k2, k3) defined depends only on the magnitude of the three wavevectors in
the argument. We have written the arguments in the integrand above as vectors just to emphasize that by construction
they form a triangular configuration in the space of wavenumbers (i.e. sum of the three vectors vanishes identically),
as is expected of the arguments of the bispectrum. We can also obtain the counterpart of this parameter in real space
by looking at the inverse Fourier transform of the above relation

R(x, η) = RG
(x, η)− 3

5

∫
d3k

(2π)3

∫
d3k1RG

k1
(η)RG

k−k1
(η) f

NL
[k, (k1 − k),−k1] eik·x . (3)

We should note that this equation reduces to the conventional definition of fNL given in Eq. (1), if fNL(k1, k2, k3) turns
out to be scale independent in a given model. Hence our generalization is consistent with the existing approach to
quantify the scalar non-Gaussianity.

A. Relation to the bispectrum

We proceed to establish the relation between the f
NL

(k1, k2, k3) given above and the scalar bispectrum, denoted as
G(k1, k2, k3). Note that the scalar power spectrum P

S
(k) and the bispectrum G(k1, k2, k3) are defined as

〈R̂k1R̂k2〉 =
2π2

k3
P

S
(k1) δ(3)(k1 + k2) , (4a)
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〈R̂k1R̂k2R̂k3〉 = (2π)−3/2G(k1, k2, k3) δ(3)(k1 + k2 + k3) , (4b)

where R̂k is an operator obtained by quantizing the mode function Rk. To express f
NL

(k1, k2, k3) in terms of

G(k1, k2, k3) and P
S
(k), we compute the expectation value of the three point correlation of R̂k. Using the relation

given in Eq. (2), we obtain that

〈R̂k1R̂k2R̂k3〉 = −3

5

∫
d3k′1

(2π)3/2
〈R̂G

k1
R̂G

k2
R̂G

k′
3
R̂G

k3−k′
3
〉

× fNL [k3, (k
′
3 − k3),−k′3] + two permutations. (5)

We should mention that the expectation values are evaluated in a specific initial state, which is assumed to be the
Bunch-Davies vacuum. Also, note that the term in the right hand side of the above expression is the leading order
term in the expansion assuming RG is perturbative. Using Wick’s theorem, we can express the four point function in
the above integral in terms of the P

S
(k) and simplify it to obtain

〈R̂k1R̂k2R̂k3〉 = −3

5

4π4

(2π)3/2
PS(k1)

k31

PS(k2)

k32
δ(3)(k1 + k2 + k3)

×
[
fNL(k3,k2,k1) + fNL(k3,k1,k2)

]
+ two permutations. (6)

We again emphasize that the arguments of f
NL

above are given as wavevectors to remind that they satisfy the
triangularity condition k1 +k2 +k3 = 0. We then use the property of the bispectrum being symmetric in its arguments
[i.e. G(k1, k2, k3) = G(k1, k3, k2)], to relate the f

NL
(k1, k2, k3) constructed to the power and bi-spectra. We hence

obtain the relation

f
NL

(k1, k2, k3) = −10

3

(k1k2k3)3

16π4
G(k1, k2, k3) [k31PS

(k2)P
S
(k3) + two permutations ]−1 . (7)

This turns out to be the conventional relation used in the literature to compute fNL in terms of PS(k) andG(k1, k2, k3) [25,
28–30]. Thus we infer that the fNL(k1, k2, k3) defined in Eq. (2) is compatible with the conventional relation. The
difference in this derivation is that we have explicitly accounted for the scale dependence of the bispectrum in the
non-Gaussianity parameter fNL(k1, k2, k3).

B. Calculation of G(k1, k2, k3) from the cubic order action

Before we proceed to compute the correction to the power spectrum and the non-Gaussian contributions to Ω
GW

due
to f

NL
(k1, k2, k3) discussed above, we shall briefly comment on the calculation of the scalar bispectrum G(k1, k2, k3) in

a given inflationary model. The quantity G(k1, k2, k3), as defined in Eq. (4b), is evaluated in the perturbative vacuum,
at the end of inflation. The bispectrum receives contributions from the third order action governing the curvature
perturbation [24, 31–33]. This action, in the case of a canonical scalar field driven inflation, has six terms bulk terms
apart from boundary terms. Hence there arises six contributions to the bispectrum due to all the bulk terms. There is
also a seventh contribution, arising due to a non-vanishing temporal boundary term, that is typically absorbed using a
field redefinition [34]. The explicit forms of these contributions are as follows [25, 28, 30]:

G(k1,k2,k3) =

7∑
C=1

G
C

(k1,k2,k3)

= M2
Pl

6∑
C=1

[
fk1(ηe) fk2(ηe) fk3(ηe)GC

(k1,k2,k3) + complex conjugate

]
+ G7(k1,k2,k3) . (8)

The terms denoted by G
C

in this expression involve integrals arising from the bulk terms of the third order action. The
seventh term G7 is due to the non-vanishing boundary term mentioned above. The explicit forms of these terms are

G1(k1,k2,k3) = 2 i

∫ ηe

ηi

dη a2 ε21
(
f∗k1 f

′∗
k2 f

′∗
k3 + two permutations

)
, (9a)

G2(k1,k2,k3) = −2 i (k1 · k2 + two permutations)

∫ ηe

ηi

dη a2 ε21 f
∗
k1 f

∗
k2 f

∗
k3 , (9b)

G3(k1,k2,k3) = −2 i

∫ ηe

ηi

dη a2 ε21

(
k1 · k2

k22
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

)
, (9c)
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G4(k1,k2,k3) = i

∫ ηe

ηi

dη a2 ε1 ε
′
2

(
f∗k1 f

∗
k2 f

′∗
k3 + two permutations

)
, (9d)

G5(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

(
k1 · k2

k22
f∗k1 f

′∗
k2 f

′∗
k3 + five permutations

)
, (9e)

G6(k1,k2,k3) =
i

2

∫ ηe

ηi

dη a2 ε31

(
k21 (k2 · k3)

k22 k
2
3

f∗k1 f
′∗
k2 f

′∗
k3 + two permutations

)
, (9f)

G7(k1,k2,k3) = −iM2
Pl

[fk1(ηe) fk2(ηe) fk3(ηe)]

×
[
a2ε1ε2 f

∗
k1(η) f∗k2(η) f ′∗k3(η) + two permutations

]ηe
ηi

+ complex conjugate , (9g)

where in all these equations, fk(η) denotes the mode function satisfying the Bunch-Davies initial condition and f ′k(η)
is the derivative of fk(η) with respect to the conformal time η. The quantities ε1 and ε2 are the first and second slow
roll parameters that capture the background evolution in a given model of inflation. Moreover, the time ηi denotes the
conformal time when the initial conditions are imposed on the modes, while ηe denotes the conformal time close to the
end of inflation.

Using these expressions for the various contributions to the scalar bispectrum, we can evaluate the complete
bispectrum G(k1, k2, k3). Upon evaluating the bispectrum, we can readily obtain the non-Gaussianity parameter
fNL(k1, k2, k3) through the relation given in Eq. (7).

III. CORRECTION TO THE POWER SPECTRUM

Having setup a method to account for a generic scale dependence in the non-Gaussianity parameter fNL(k1, k2, k3),
we shall now proceed to compute the non-Gaussian correction to the PS(k) arising due to the bispectrum. To compute

the correction, which we shall call as P
C

(k), we calculate the two point correlation of R̂k, using the relation given in
Eq. (2) as

〈R̂k1R̂k2〉 = 〈R̂G

k1
R̂G

k2
〉+

9

25

∫
d3k′1
(2π)3

∫
d3k′2〈R̂

G

k′
1
R̂G

k1−k′
1
R̂G

k′
2
R̂G

k2−k′
2
〉

× f
NL

(
k1, |k′1 − k1|, k′1

)
f
NL

(
k2, |k′2 − k2|, k′2

)
. (10)

On substituting the definition of power spectrum [cf. Eq. (4a)] and expressing the four point correlation in terms of
the two point correlations as before, the above equation leads to

PM

S
(k) = P

S
(k) +

9

50π
k3
∫

d3k1
PS(k1)

k31

PS(|k − k1|)
|k − k1|3

f2
NL

[k, |k1 − k|, k1] , (11)

where P
S
(k) denotes the original power spectrum corresponding to the Gaussian perturbations RG

and PM

S
(k) denotes

the spectrum with the non-Gaussian correction taken into account. Therefore, we can identify the correction P
C

(k),
that is to be added to the original spectrum PS(k), as

P
C

(k) =
9

50π
k3
∫

d3k1
PS(k1)

k31

PS(|k − k1|)
|k − k1|3

f2
NL

[k, |k1 − k|, k1] . (12)

We should note that there can be additional terms to this correction which involve the irreducible part of the four
point correlation, viz. the trispectrum of scalar perturbations [13, 14, 17]. Such terms shall receive contributions from
higher order terms of the action and hence will be at higher order in perturbations than the terms we are working
with. We believe those terms are beyond the scope of this work. In our analysis we shall restrict ourselves to the terms
of four point correlations reduced in terms of the power spectra.

To simplify the above expression for P
C

(k) we perform a suitable change of variables. Defining a variable u = |k−k1|,
we get

PC(k) =
9

25
k2
∫ ∞
0

dk1
k21
PS(k1)

∫ |k+k1|

|k−k1|

du

u2
PS(u) f2

NL
[k, u, k1] . (13)

Further introducing x = k1/k and y = u/k, we get,

PC(k) =
9

25

∫ ∞
0

dx

∫ |1+x|
|1−x|

dy
PS(kx)

x2
PS(ky)

y2
f2
NL

[k, kx, ky] . (14)



5

Again, we can notice that if f
NL

(k1, k2, k3) turns out to be scale independent we recover the expression for P
C

(k)
that is used in case of a local f

NL
[12–15]. If we use the relation between f

NL
(k1, k2, k3) and the power and bi-spectra

[cf. Eq. (7)], we can write down P
C

(k) explicitly in terms of G(k1, k2, k3) and P
S
(k) as

PC(k) =
4 k12

(2π)8

∫ ∞
0

dx

∫ 1+x

|1−x|
dy

x4y4

P
S
(kx)P

S
(ky)

G2(k, kx, ky)

[
1 + x3

PS(k)

P
S
(kx)

+ y3
PS(k)

P
S
(ky)

]−2
. (15)

We should mention here that, because of the well regulated nature of the integral involved, we shall use Eq. (14) as the
working definition for computing PC(k).

IV. COMPUTATION OF ΩGW ACCOUNTING FOR fNL

Having obtained the correction to the power spectra, P
C

(k), we shall proceed to compute the non-Gaussian
contributions to Ω

GW
. During the computation of Ω

GW
there may arise contributions from f

NL
other than from P

C
(k).

These are referred to as connected contributions in the literature [12, 13, 17]. We should note that there are arguments
in the literature suggesting that these contributions vanish identically when integrated over azimuthal angles involved
in the corresponding integrals [12, 14]. However, detailed calculations suggest that this may not be the case when
accounted for exact dependence of the integrand over these angles appropriately [17]. In this work, we shall compute
all the terms involved while consistently accounting for a scale dependent f

NL
in them. We shall later compare the

respective contributions against the contribution from the original power spectrum to the estimate of Ω
GW

, when we
consider specific models for illustration.

To begin with, let us recall the calculation of the secondary tensor power spectrum in terms of the scalar power
spectrum (for some of the earlier discussions, see Refs. [1, 2]; for some of the recent efforts, see, Refs. [4, 5, 11, 35–38]).
The two point correlation of the secondary tensor perturbation hλk(η) is related to the scalar perturbation Rk as

〈ĥλk1
(η) ĥλ

′

k2
(η)〉 =

16

81

1

k1k2η2

∫
d3p

(2π)3/2

∫
d3p′

(2π)3/2
Qλ(k1, p)Q

λ′
(k2, p

′)

×
[
Ic
(
p

k1
,
|k1 − p|
k1

)
cos (k1 η) + Is

(
p

k1
,
|k1 − p|
k1

)
sin (k1 η)

]
×
[
Ic
(
p′

k2
,
|k2 − p′|

k2

)
cos (k2 η) + Is

(
p′

k2
,
|k2 − p′|

k2

)
sin (k2 η)

]
×〈R̂p R̂k1−p R̂p′ R̂k2−p′〉, (16)

where the functions Ic,s(u, v) arise due to the transfer function relating the Bardeen potential during the radiation
dominated epoch to the primordial curvature perturbation. The form of these functions are described as

Ic(v, u) = − 27π

4 v3 u3
Θ
(
v + u−

√
3
)

(v2 + u2 − 3)2, (17a)

Is(v, u) = − 27

4 v3 u3
(v2 + u2 − 3)

[
4 v u+ (v2 + u2 − 3) log

∣∣∣∣3− (v − u)2

3− (v + u)2

∣∣∣∣] , (17b)

where Θ(z) denotes the theta function. The function Qλ(k, p) arises from the polarization tensor associated with the
tensor modes. It is given by

Qλ(k, p) =

{(
p
k

)2 sin2 θ√
2

cos (2φ), forλ = +,(
p
k

)2 sin2 θ√
2

sin (2φ), forλ = ×,
(18)

where θ is the polar angle and φ is azimuthal angle associated with the wavevector p with k taken along the z-axis. The
four point correlation present in Eq. (16) is the term which shall give rise to Gaussian and non-Gaussian contributions.
On substituting the expression of Rk as given in Eq. (2) in each of the four mode functions of this term, we obtain
a series of terms with different powers of f

NL
. The terms that are independent of f

NL
are evidently the Gaussian

contributions. The terms with higher powers of f
NL

are the non-Gaussian contributions. We shall first obtain the
secondary tensor power spectrum arising from the Gaussian contribution. Focusing on the terms independent of f

NL

and using Wick’s theorem, we can express the four point correlation in terms of the two point correlations. This leads
to the following expression for secondary tensor power spectrum Ph(k, η) in terms of the scalar power spectrum:

Ph(k, η) = 2
16

81

2π2

k2 η2

∫
d3k′

(2π)3
Qλ(k, k′)Qλ(k, k′) I2(k, k′)

k3 P
S
(k′)P

S
(|k − k′|)

k′3 |k − k′|3 , (19)
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where the P
S
(k) denotes the Gaussian part of the scalar power spectrum. We should note that Ph(k, η) is averaged

over the oscillations that occur on small time scales. Hence, the quantity I(k, k′) can be expressed as

I2(k, k′) =

[
I2c
(
k′

k
,
|k − k′|

k

)
+ I2s

(
k′

k
,
|k − k′|

k

)]
. (20)

Notice that the contraction of Q(k, k′) over λ implies summing over both polarizations. Utilizing this expression
of Ph(k, η), we may express the dimensionless spectral energy density of GWs associated with secondary tensor
perturbations in the current universe, viz. ΩGW(k), as [11, 36]

h2 Ω
GW

(k) =
1.38× 10−5

24
(k2 η2)Ph(k, η). (21)

This corresponds to Ω
GW

arising from the Gaussian contribution. As we further compute the non-Gaussian contributions
to Ph(k), we shall utilize the above relation to compute the corresponding Ω

GW
as well.

As to the non-Gaussian contributions to Ph(k), there shall be terms arising from the four point correlation of
Eq. (16) that contain f2

NL
and f4

NL
. Let us first consider the terms at the level of f2

NL
. These terms can be understood

as arising when we introduce f
NL

, as defined in Eq. (2), in two of Rk terms of the four point correlation. This gives

rise to three types of contributions to Ph(k), which we shall refer to as P(2−1)
h (k),P(2−2)

h (k) and P(2−3)
h (k). The exact

expressions that describe these three contributions are given by

P(2−1)
h (k) = 25

16

81

9

25

(2π2)2

(2π)6
1

k2 η2

×
∫

d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2) I(k, q1) I(k, q2)

× k3 PS
(q2)P

S
(|q2 + k|)P

S
(|q1 − q2|)

q32 |q2 + k|3 |q1 − q2|3
× fNL(q1, q2, |q1 − q2|) fNL(|k − q1|, |q2 − q1|, |k + q2|), (22a)

P(2−2)
h (k) = 25

16

81

9

25

(2π2)2

(2π)6
1

k2 η2

∫
d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q1) I2(k, q1)

× k3 PS(|k − q1|)PS(q2)PS(|q1 − q2|)
q32 |k − q1|3 |q1 − q2|3

f2
NL

(q1, q2, |q1 − q2|)

= 25
16

81

(2π2)

(2π)3
1

k2 η2

×
∫

d3q1Q
λ(k, q1)Qλ(k, q1) I2(k, q1) k3

P
C

(q1)P
S
(|k − q1|)

q31 |k − q1|3
, (22b)

P(2−3)
h (k) = 25

16

81

9

25

(2π2)2

(2π)6
1

k2 η2

×
∫

d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2) I(k, q1)I(k, q2)

× k3 PS(q1)PS(q2)PS(|k − q1 + q2|)
q31 q

3
2 |k − q1 + q2|3

× f
NL

(|k − q1|, q2, |k − q1 + q2|) fNL
(|k + q2|, q1, |k1 − q1 + q2|). (22c)

We should note that the numerical factors preceding the integrals have been retained in their specific forms to give
an idea of the origin of these terms. For instance, the powers of 2 arise from the various possible configurations of
wavenumbers corresponding to a contribution. The fraction 9/25 arises from the factor of 3/5 present in the definition
of f

NL
, whereas the factors of 2π arise from the definition of power spectrum and the Fourier transformations.

Besides, we have used the definition of PC(k) in P(2−2)
h (k) to reduce the first expression and obtain Eq. (22b)

[cf. Eq. (14)]. Such a simplification is not possible with P(2−1)
h (k) or P(2−3)

h (k). It is useful to note that one can
construct Feynman diagrams to represent these integrals (see, for instance, Refs. [13, 16, 17]). If we identify the

diagrams with the above integrals, we find that P(2−1)
h (k) arises from what is called the C-type diagram, whereas

P(2−3)
h (k) arises from the Z-type diagram. The term P(2−2)

h (k) arises from what is known as the hybrid diagram (see,
App. A for a discussion on these diagrams). The difference between the integrals presented here and the corresponding
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ones in the literature is the dependence of f
NL

over wavenumbers. As mentioned earlier, it has been argued that the

terms P(2−1)
h (k) and P(2−3)

h (k) shall vanish when integrated over the azimuthal angles and it is only the P(2−2)
h (k)

term that survives [12, 14]. However, it was later shown that P(2−1)
h (k) and P(2−3)

h (k) do not necessarily vanish when
the angular dependences are appropriately accounted for [17].

Next, we shall consider contributions to Ph(k) at the level of f4
NL

. These terms can be understood as arising from
fNL in all four of Rk in the four point function in Eq. (16). In such a case, we obtain three contributions, which we

shall call P(4−1)
h (k),P(4−2)

h (k) and P(4−3)
h (k). The expressions describing these contributions are given by

P(4−1)
h (k) = 27

16

81

(
9

25

)2
(2π2)3

(2π)9
1

k2 η2

∫
d3q1

∫
d3q2Q

λ(k, q1)Qλ(k, q2)

×I(k, q1) I(k, q2) k3
∫

d3q′2
P

S
(|k − q1 + q2 − q′2|)
|k − q1 + q2 − q′2|3

×PS
(q′2)P

S
(|q2 − q′2|)PS

(|q1 + q′2|)
q′2

3 |q2 − q′2|3| q1 + q′2|3
× fNL(q1, | − q′2|, |q1 + q′2|) fNL(|k − q1|, |k − q1 + q2 − q′2|, |q′2 − q2|)
× fNL(q2, q

′
2, |q2 − q′2|) fNL(|k + q2|, |q1 − k − q2 + q′2|, | − q1 − q′2|) (23a)

P(4−2)
h (k) = 27

16

81

(2π2)

(2π)3
1

k2 η2

∫
d3q1Q

λ(k, q1)Qλ(k, q1) I2(k, q1) k3
P

C
(q1)P

C
(|k − q1|)

q31 |k − q1|3
, (23b)

P(4−3)
h (k) = 27

16

81

(
9

25

)2
(2π2)3

(2π)9
1

k2 η2

∫
d3q1

∫
d3q′1Q

λ(k, q1) I(k, q1)

× k3 PS(q′1)PS(|q1 − q′1|)PS(|k − q1 + q′1)

q′1
3 |q1 − q′1|3 |k − q1 + q′1|3

×fNL(q1, q
′
1, |q1 − q′1|) fNL(|k − q1|, | − q′1|, |k − q1 + q′1|)

×
∫

d3q2Qλ(k, q2) I(k, q2)
P

S
(|q′1 − q1 − q2|)
|q′1 − q1 − q2|3

× f
NL

(q2, |q1 + q2 − q′1|, |q′1 − q1|) fNL
(| − k − q2|, |q′1 − q1 − q2|, |q1 − k − q′1|). (23c)

Once again, we have retained the numerical factors to understand the origin of these factors. Also, we have used

the definition of PC(k) to reduce the expression of P(4−2)
h (k) in terms of PC(k) [cf. Eq. (14)]. This is known as the

reducible contribution. The other two terms, viz. P(4−1)
h (k) and P(4−3)

h (k), cannot be rewritten in terms of PC(k) and
they correspond to so-called non-planar and planar Feynman diagrams, respectively (cf. App. A; for a discussion in
this context, also see Ref. [17]).

We can now utilize Eq. (21) to compute the ΩGW arising from each of these non-Gaussian contributions as well as the
Gaussian contribution, and compare them against one another. However, we should note here that, the terms denoted

as P(2−i)
h (k), containing f2

NL
, involve computation of six dimensional integrals and the terms denoted as P(4−i)

h (k),

containing f4
NL

, involve performing nine dimensional integrals. Evidently, when we need to compute such integrals
numerically, simpler methods such as the Boole’s rule on a grid based sampling can be disadvantageous. Also, in such
conventional methods, one will require enormous number of sampling points to achieve reasonable level of convergence
of integrals in higher dimensions. Hence, one should resort to Monte-Carlo method of integration which circumvents
the issue of dimensionality with reasonable number of points [39]. Moreover, at each point of these integrals we
require the power spectra and f

NL
to be evaluated, with their respective dependences on wavenumbers. Therefore,

arriving at numerical estimates of these non-Gaussian contributions for a case of inflation driven by non-trivial
potentials is a computationally intensive exercise. There has been an earlier attempt in the literature to compute these
contributions [17]. But, we should point out that, in such efforts, the computations involved using analytical templates
for the power spectra, such as the Dirac delta function or a lognormal function. Also, the f

NL
was assumed to be of

local form with a given amplitude and without any scale dependence. Hence, the computation of integrals in such cases
is relatively easier. However, in this work we compute both the power spectra and the f

NL
numerically from the action

governing the perturbations for a given model of interest. Therefore, the computation becomes significantly more
intensive and hence takes considerably more time and processing power. Due to this complexity in computation and
constraints in implementation, in this work, we shall restrict ourselves to calculating the non-Gaussian contributions

up to the level of f2
NL

, i.e. terms denoted as P(2−i)
h .
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V. MODELS FOR ILLUSTRATION

In this section, we shall illustrate the calculation of the correction to the scalar power spectrum and the non-Gaussian
contributions to ΩGW due to a generic fNL(k1, k2, k3) using two models of inflation. These models serve as good
examples of a typical scenario of inflation leading to generation of secondary GWs of significant strengths. These
models permit a brief epoch of ultra slow roll leading to enhancement of scalar power over small scales. These scalar
perturbations source the secondary tensor perturbations and hence amplify the strength of secondary GWs over
frequencies corresponding to those scales.

The first model we shall consider is inflation driven by a potential which has a dip introduced to it by hand. Such
scenarios where a bump or a dip introduced in a rather smooth potential have been discussed in the literature in the
context of PBH formation [19, 20]. Though it may not be well motivated or immediately realized from a high energy
theory, it is a toy model that helps achieve a brief epoch of ultra slow roll during inflation and hence enhance the
scalar power. Here we shall work with such a toy model consisting of a dip added to the well known potential of
Starobinsky model. The form of this potential shall be

V (φ) = V0

[
1− exp

(
−
√

2

3

φ

M
Pl

)]2 {
1− λ exp

[
−1

2

(
φ− φ0

∆φ

)2
]}

, (24)

where clearly the first part is the potential corresponding to Starobinsky model, while the second part in curly braces
is the Gaussian shaped dip located at φ0 having a coupling strength λ and a width ∆φ . The values of the parameters
involved are set to be V0 = 2.25 × 10−10M4

Pl
, λ = 2.58 × 10−3, φ0 = 4.25M

Pl
and ∆φ = 2.8 × 10−2M

Pl
. With the

initial value of φi = 5.6M
Pl

, we achieve about 81 e-folds of inflation with the epoch of ultra slow roll occurring at
around 50 e-folds from the beginning, as the field crosses and evolves beyond φ0. We shall refer to this model as SMD,
standing for Starobinsky model with a dip.

Another model we shall consider to illustrate our arguments is a model known as critical-Higgs inflation [21–23].
This model arises when the Higgs field is non-minimally coupled to gravity. The effective potential in this scenario
contains a point of inflection which leads to an epoch of ultra slow roll thereby enhancing the scalar power. The
potential describing this model can be written as

V (φ) = V0

[
1 + a (ln z)

2
]
z4

[1 + c (1 + b ln z) z2]
2 , (25)

where the quantity z = φ/µ. We shall choose the values of the parameters to be µ = 1M
Pl

and V0 = 1.5× 10−8M4
Pl

.
The other parameters involved are related to each other through the inflection point zc as follows:

a =
4

1 + c z2c + 2 log(zc)− 4 log2(zc)
, (26a)

b = 2
1 + c z2c + 4 log(zc) + 2 c z2c log zc

c z2c [1 + c z2c + 2 log(zc)− 4 log2(zc)]
. (26b)

We have set {c, zc} = {2.850, 0.784} and arrived at {a, b} using these values. For these values of the model parameters,
and with an initial value of field φi = 6.0M

Pl
, we achieve about 66 e-folds of inflation. The epoch of ultra slow roll

occurs at around 31 e-folds from the beginning of evolution as the field crosses the inflection point at 0.784M
Pl

. We
shall denote this model as CHI.

The scalar power spectra arrived at from these models are presented in the left panel of Fig. 1. The power over
small scales have been amplified by several orders due to the ultra slow roll epochs in these models. The parameters
that we have worked with ensure that the spectra are COBE normalized over the CMB scales. However, we should
mention that the predictions of nS and r over these scales have some tension with the constraints on these parameters
arrived at by Planck [41]. This issue is known in case of models with enhancement of power over small scales and the
tension with data is larger if the peak is closer to CMB scales [10, 11]. Moreover, the rise in power occurs close to the
range of scales that can be probed by the effect of spectral distortion in CMB [42–44]. Hence there is a possibility
of constraining these models against data from future missions probing this effect with improved sensitivity [45]. In
this work, we shall focus on the generation of secondary GWs due to the rise in power over small scales and the
contributions due to scalar bispectrum.

We first compute the amplitude and behavior of secondary GWs generated from these two models due to Gaussian
contribution. We present the observable quantity of interest, viz. the dimensionless energy density of secondary GWs,
Ω

GW
as a function of frequency f . The spectrum of Ω

GW
(f) has been plotted for our models of interest in the right

panel of Fig. 1. The peak in these spectra occur at around 106 Mpc−1 for the choices of parameter values we have
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FIG. 1. The scalar power spectra (on the left) and the corresponding ΩGW generated (on the right) in the models of interest
are presented here (SMD in red and CHI in blue). For the values of parameters chosen for these models, we observe that the
peaks of these spectra occur at around 106 Mpc−1. This leads to the maximum amplitudes of associated ΩGW occur at around
10−9 Hz. The various constraint and sensitivity curves corresponding to current and upcoming GW missions are presented as
shaded regions of different colors at the top of the plot of ΩGW (on the right). The intersection of ΩGW curve of CHI with the
sensitivity regions of SKA and BBO indicate predictions for the corresponding future detectors. The intersection of the ΩGW

curve of SMD with PTA indicates the possibility of arriving at constraints on the associated model parameters by comparing
with the NANOGrav data [40].

worked with. The peak produced in the case of SMD is sharper than in the model of CHI. We also plot the constraint
and sensitivity curves from various current and upcoming observational missions (see Ref. [3] and the associated
web-page for the sensitivity curves of various missions). We find that the maximum amplitude of the Ω

GW
generated is

over the range corresponding to PTA and SKA surveys and the curve due to SMD already intersects with the PTA
constraint. This indicates possible constraining and ruling out of regions in the parameter space determining the dip
in the potential using the NANOGrav data [40, 46].

Our primary objective in this work is to examine the possible imprints of the scalar non-Gaussianity on the power
spectra and on the Ω

GW
(f) in these models. Hence, we begin by calculating the correction to the power spectrum by

the procedure discussed earlier in section III. We first compute the scalar bispectrum for the models. We evaluate all
the contributions arising from the third order action governing the scalar perturbations and arrive at the complete
form of the scalar bispectra G(k1, k2, k3) [cf. Eqs. (8) and (9)] for each of the models. We then use the relation given
in Eq. (7), to obtain the associated fNL(k1, k2, k3). This fNL(k1, k2, k3) is then substituted into Eq. (14), to finally
arrive at the correction to the power spectrum PC(k). Since the bispectra for the models of interest are not easy to
evaluate analytically, we perform this calculation numerically.

We present the behavior of this parameter, in Fig. 2, for both the models of interest in various limits of the
configuration of wavenumbers, viz. , the squeezed limit (k3 → 0, k1 = −k2), equilateral limit (k1 = k2 = k3 = k) and
the flattened limit (k1 = k2 = k, k3 = 2 k). The parameter exhibits non-trivial behavior close to the wavenumber
corresponding to the peak in the power spectra. The behavior is smoother over scales farther from the peak in the
spectra. We also present the density plot of fNL around the peak in the power for these models in Fig 3. We find that
fNL is largely local in its behavior around the peak. We should note that the value of fNL is lesser than unity over this
range of wavenumbers close to the peak. However, we notice deviation from these local values as we move further
from the peak, i.e. k3 takes values smaller than k1. We should mention here that there arises a sharp spike in the
fNL(k1, k2, k3) at the point where there is a sharp downward spike in the power spectrum, occurring before the rise and
the peak in the range of wavenumbers. This indicates power spectrum reaching very small values. Hence, quantities
such as f

NL
(k1, k2, k3) or the scalar spectral index n

S
(k) that contain power spectrum in their denominators of their

definitions, may incur spuriously large values at this wavenumber. Therefore, care should be taken when dealing with
such anomalous values. In our calculation, we have regulated the value of f

NL
around the region by introducing a

cutoff of 10. This implies that any value of |f
NL
| which is larger than 10 is taken to be 10.

A. Calculation of the correction

With f
NL

(k1, k2, k3) thus computed, we can obtain the correction to the spectrum P
C

(k) for both the models. Before
we proceed to perform the integrals numerically, we consider the Eq. (14) and attempt to arrive at a rough analytical
estimate of the P

C
(k).
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FIG. 2. We present the non-Gaussianity parameter fNL(k1, k2, k3) for the two models of interest (SMD in left and CHI in right)
in various limits, viz. squeezed limit (on the top), equilateral limit (in the middle) and the flattened limit (in the bottom panel).
We see that the fNL(k1, k2, k3) has non-trivial scale dependence and it is important to capture its complete behavior while
computing the corrections to the power spectrum. There are rather large values of fNL(k1, k2, k3) occurring at the wavenumbers
corresponding to the location of the sharp downward spike in the power spectra of respective models. As mentioned earlier, these
spuriously large values should be dealt with caution and have to be regulated while using fNL(k1, k2, k3) in further calculations.
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FIG. 3. The density plots of the scalar non-Gaussianity parameter fNL(k1, k2, k3) illustrating its behavior in a general
configuration of wavenumbers around a given value of k1 is presented for models of interest. The parameter obtained from SMD
is plotted on the left, while the parameter from the model of CHI on the right. The behavior is evidently dependent on the
value of k1, which for both the models is taken to be k1 = 106 Mpc−1, corresponding to the wavenumber close to the peak in the
spectra. We find that the fNL(k1, k2, k3) in these models are highly local in shape just around the peak in the spectra. The value
of the parameter is roughly −0.5 in case of SMD, whereas in case of CHI, it turns out to be around −0.04. As we move away
from the peak, with values of k3 � k1, we see that the fNL starts deviating from the local shape and growing larger in value.

Let kpeak denote the wavenumber corresponding to the peak in the power spectrum. We know that the maximum
amplitude of the integrand occurs around the region where x = kpeak/k or y = kpeak/k or x = y = kpeak/k. We
illustrate the range of the integrals involved and the points where the maximum contribution arises from in Fig. 4. We
shall describe the sharp peaking behavior of the power spectrum by approximating its form around the peak using a
Dirac delta function as

PS(k) = PS(kpeak) δ(ln(k)− ln(kpeak)) . (27)

Using this approximation, we proceed to compute the dominant contributions to the integrals. We perform the integral
over x in Eq. (14) to obtain that

PC(k) =
9

25

(
k

kpeak

)
PS(kpeak)

∫ 1+kpeak/k

|1−kpeak/k|

dy

y2
PS(ky) f2

NL
(k, kpeak, ky) (28)

Now we shall consider the two regimes in wavenumbers, viz. k < kpeak and k > kpeak. For the case of k < kpeak, the
integrand receives contribution only from the point P3 marked in Fig. 4. Due to the narrow range of the integral over
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FIG. 4. The range of integration involved in calculating PC(k) [cf. Eq. (14)] is plotted in logarithmic scale. The shaded region
marks the region covered by the limits of the integrals. We mark the three points P1, P2 and P3 at which the integrals derive
maximum contribution when there is a localized peak in the power spectrum. The region around the points P1 and P2 contribute
for k > kpeak and the region around P3 contributes for k < kpeak. It is also worth noting that, due to the symmetry of the
integrand over the variables x and y the contributions from P1 and P2 turn out to be equal to one another. For the case of
k ∼ kpeak the integrand receives the maximum contribution from the wide region around x = y = 1.

y, we may approximate ky ' kpeak in the arguments of P
S

and f
NL

. So, the above integral over y simplifies to

P
C

(k) ' 9

25

(
k

kpeak

)
[P

S
(kpeak) f

NL
(k, kpeak, kpeak)]

2
∫ 1+kpeak/k

|1−kpeak/k|

dy

y2

=
18

25

(
k

kpeak

)3

[PS(kpeak)fNL(k, kpeak, kpeak)]
2
, (29)

where we have used the fact that kpeak/k > 1. It is interesting to note the combination of wavenumbers appearing in the
argument of f

NL
. We know that k < kpeak. Hence, f

NL
(k, kpeak, kpeak) denotes that the parameter has to be evaluated

in the squeezed limit of the configuration of wavenumbers. This further simplifies the expression because we know
that the consistency condition relating the f

NL
and the scalar spectral index n

S
(k) is obeyed in these models [11, 18].

Therefore, we utilize the consistency relation i.e.

fNL(k, kpeak, kpeak) =
5

12
[nS(kpeak)− 1] . (30)

Here, strictly speaking, [n
S
(kpeak)− 1] vanishes identically since it is the slope of the spectrum at its peak. However,

we shall take it to be a small non-vanishing value close to the peak in the spectrum for the purpose of our calculation.
Therefore expression for P

C
(k) reduces to

P
C

(k) =
1

8

(
k

kpeak

)3

{P
S
(kpeak) [n

S
(kpeak)− 1]}2 . (31)

We find that P
C

(k) shall be proportional to k3 over the scales with k < kpeak.
We then consider the case of k > kpeak. For these wavenumbers, there arise contributions from two points, P1 and

P2 as marked in Fig. 4. We shall first evaluate the contribution at P1 using the approximation of the spectrum in
Eq. (27). The expression for PC(k) becomes

P
C

(k) ' 9

25

(
k

kpeak

)
P

S
(kpeak)P

S
(k)f2

NL
(k, kpeak, k)

∫ 1+kpeak/k

|1−kpeak/k|

dy

y2

=
18

25
PS(kpeak)PS(k)f2

NL
(k, k, kpeak) , (32)

where we have used the smallness of kpeak/k. We again note that the arguments of fNL suggest that it is evaluated
in the squeezed limit but now with kpeak acting as the squeezed mode. Hence we shall make use of the consistency
relation again, where

f
NL

(k, k, kpeak) =
5

12
[n

S
(k)− 1] . (33)
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This reduces the expression for P
C

(k) to

PC(k) =
1

8
PS(kpeak)PS(k) [nS(k)− 1]

2
. (34)

Due to the fact that the form of the integral in Eq. (14) remains unchanged under the exchange of x and y, the
contribution from the point P2 shall be the same as given above. So, we have the total value of P

C
(k) for k > kpeak to

be

PC(k) =
1

4
PS(kpeak)PS(k) [nS(k)− 1]

2
. (35)

We find that P
C

(k) over this regime of k > kpeak shall be proportional to P
S
(k) with no explicit scale dependence.

If the spectrum turns nearly scale invariant away from the peak over large wavenumbers, then we can expect a
corresponding P

C
(k) with nearly constant amplitude. In summary, we have the analytical estimate of P

C
(k) to be

P
C

(k) =


1

8

(
k

kpeak

)3

{PS(kpeak)[nS(kpeak)− 1]}2 , for k < kpeak ,

1

4
P

S
(kpeak)P

S
(k) [n

S
(k)− 1]

2
, for k > kpeak .

(36)

Having obtained these analytical expressions, we proceed to compute the exact numerical estimates of P
C

(k). We
shall briefly discuss certain aspects of numerical evaluation of the integrals involved. The integral is evaluated ensuring
that the regime of x = kpeak/k and y = kpeak/k are well sampled. Due to the wide range of the integral over x, the
integration is performed over log scale. The limits are chosen such that the range of integration is centered at kpeak/k
and spans two decades on either side of the point. For given values of kx and ky, the power spectra is evaluated
numerically. Besides, each point of this x–y plane provides a triangular configuration of wavenumbers for which
f
NL

(k, kx, ky) is evaluated numerically. This is the most time consuming part of the calculation. Once computed, the
integrand is summed over to obtain P

C
(k). The exercise is repeated for complete range of wavenumbers.

B. Calculation of non-Gaussian contributions to ΩGW

The behavior of P
C

(k) may give us an idea of the effect of f
NL

on the scalar power spectrum. It may further give us
an insight about the amplitude of one of the non-Gaussian contributions to Ω

GW
[cf. Eqs. (22)]. Having obtained the

PC(k) in the models of interest, we proceed to compute the non-Gaussian contributions P(2−i)
h to the ΩGW in these

cases.
At the outset, we should note that, the non-trivial dependence of fNL over different combination of wavenumbers in

P(2−1)
h (k), P(2−2)

h and P(2−3)
h (k) do not allow us to easily obtain an analytical estimate as we did for P

C
(k). Hence,

as mentioned earlier, we numerically perform these integrals involved using the Monte-Carlo method of integration.
Let us now mention a few details about the procedure. We first identify the region of maximum amplitude of the
integrands in the range of integration, for a given wavenumber k. Interestingly, we find that the integrands have
maximum values around the wavenumber kpeak, if the wavenumber of interest k < kpeak, while they peak around k
if k > kpeak. We also find that the nature of integrands are very localized in the range of k allowing us to set the
range of integrals to be two decades on either side of the peaks of the integrands. The respective angular integrals
are performed over the entire range viz. cos θi ∈ [−1, 1] and φi ∈ [0, 2π]. During the performance of integration, each
point corresponds to numerical evaluation of a combination of power and bi-spectra with their appropriate arguments
of wavenumbers. The computation of f

NL
at each point of integration is the time consuming part of this process. The

integrals were performed using 105 points and checked for convergence.

We should also note an interesting property of these contributions. The integrand describing P(2−2)
h (k) is positive

definite and hence the contribution shall be positive. However, the integrand characterizing the contributions P(2−1)
h (k)

and P(2−3)
h (k) can be negative, because of their dependence over the polar angles (as noted earlier in Ref. [17]). This

property should be accounted for while comparing them against Ω
GW

obtained from the Gaussian contribution.

C. Results

First, we present the P
C

(k), obtained both the analytically and numerically, against the original spectra, P
S
(k), in

Fig. 5. We observe that P
C

(k) is smaller than the original P
S
(k) particularly around the peak and over the range
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FIG. 5. The original scalar power spectra PS(k) (as solid lines) and the non-Gaussian corrections PC(k) due to the bispectrum
(as dashed lines) have been plotted here for the models of interest, viz. SMD (on the left) and CHI (on the right). Evidently,
the PC(k) computed is lower in amplitude than PS(k). We have also plotted the analytical estimate of PC(k) for these two
models (as dotted lines). The analytical estimate matches the numerical behavior better in the case of SMD than CHI since the
spectrum is more sharply peaked in the first model than in the second model. The complete spectrum corrected for PC(k) shall
effectively be the same as the original PS(k), particularly around kpeak and over k > kpeak.

k > kpeak. There appears a region close to the dip in the spectrum where P
C

(k) is greater than P
S
(k). This is mainly

due to the sharp spike occurring in f
NL

that we mentioned earlier. But apart from this effect, there arises no significant
correction to the original power spectrum. Moreover, the analytical estimate fairly mimics the exact numerical behavior
of P

C
(k). The behavior of k3 over large scales and near scale invariance over small scales is well captured in the

numerical result thereby assuring the validity of the analytical estimates over wavenumbers far from the peak. The
match is better for the model SMD. This can be understood because its spectrum is closer in resemblance to the Dirac
delta function used in the analytical calculation. The original spectrum PS(k) in case of CHI has a rather broad peak
with slower descent over the range of wavenumbers. This behavior leads to the difference between numerical and
analytical estimates of PC(k) around the peak in this model. However, for k > kpeak, the analytical estimate matches
better even in case of such a broad peak. The rugged nature of the numerical result is due to the limited number of
points taken for evaluation over the range of wavenumbers.

We present the behavior of the non-Gaussian contributions to Ω
GW

at the level of f2
NL

, viz. due to P(2−i)
h (k), in

Fig. 6. We focus particularly around the peak amplitude of Ω
GW

and find that the non-Gaussian contributions are
significant for SMD. These contributions dominate the Ω

GW
from the Gaussian spectrum for wavenumbers k ≤ kpeak.

However, they become sub-dominant for k > kpeak. In case of CHI, the non-Gaussian contributions become briefly
comparable over the range of k ' kpeak. But they are sub-dominant for wavenumbers k < kpeak as well as k > kpeak.
Thus, we learn that the behavior of ΩGW arising from non-Gaussian contributions are highly model dependent and
significant in case of power spectrum with highly localized behavior around the peak. However, as we move farther
from the peak, these contributions become lesser in amplitude compared to the Gaussian contribution. Therefore,
these models illustrate that the non-Gaussian contributions to ΩGW have to be computed and consistently accounted
for, especially around the peak of the spectral density.

VI. CONCLUSION

There have been attempts in the literature to account for scalar non-Gaussianity in the calculation of the spectral
density of the secondary GWs, Ω

GW
(f), for specific cases of f

NL
assuming certain shapes or limits of the bispectrum.

In this work, we have presented a method to account for a general scalar bispectrum with non-trivial scale dependence
in such a calculation. We have presented the correction to the scalar power spectrum that may arise due to the scalar
bispectrum. We have also attempted an analytical estimate of the correction to be expected from models with a
localized peak in the power spectrum. We have found that it is the squeezed limit of f

NL
that contributes the most to

the correction for wavenumbers away from the peak in the power spectrum. We have then presented the non-Gaussian
contributions to Ω

GW
(f) that arise due to f

NL
. We have computed terms that are reducible in terms of P

C
(k) as well

as those that are not reducible so. We have consistently accounted for the scale dependence of f
NL

, arising from the
modified definition of the parameter, in computing these contributions.

We then illustrated our method using two models of inflation. These are models driven by canonical scalar fields
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FIG. 6. We present the non-Gaussian contributions to ΩGW arising due to fNL (as dashed lines), against the original Gaussian
contribution (as solid lines) for the models SMD (on left) and CHI (on right), focusing over the range of frequencies containing

the maximum amplitude. The contributions arising from the terms P(2−1)
h (k) (in green), P(2−2)

h (k) (in cyan), P(2−3)
h (k) (in

lime) are presented for both the models of interest.

that permit brief epochs of ultra slow roll and hence lead to significant amplitudes of secondary GWs. We have
computed the correction to the power spectrum arising from f

NL
and find that it is largely sub-dominant to the

original power spectrum. Moreover, the analytical estimate of the correction agrees fairly well with the exact numerical
estimate in these cases. We have then computed the non-Gaussian contributions to the Ω

GW
(f) and compared them

against the Gaussian contribution. We have computed these contributions up to the level of f2
NL

. We have found
that the non-Gaussian contributions are non-trivial and slightly different from the shape of the original Ω

GW
(f). The

non-Gaussian contributions arising in the case of SMD have been found to dominate the original amplitudes of Ω
GW

(f)
around the frequencies corresponding to the wavenumber kpeak containing the peak in the power spectrum, as well
as smaller wavenumbers, i.e. over k < kpeak. But, these contributions decrease farther from the peak and become
sub-dominant to the Gaussian contribution for wavenumbers with k > kpeak. In the case of CHI, the non-Gaussian
contribution become briefly comparable to and dominant over the Gaussian contribution around kpeak, but remain
sub-dominant farther from kpeak on either side. Since the models serve as examples typical models of inflation that
are considered in this context of generation of secondary GWs, we can argue that the non-Gaussian contributions
arising from fNL may turn out to be significant, particularly around the peak amplitude of ΩGW . Hence, they have to
be computed and accounted for in the estimates of ΩGW .

Besides, we should emphasize that the method used for calculation has its value in being able to capture the complete
behavior of fNL(k1, k2, k3) in any non-trivial scenario of inflation. Moreover, the analytical estimate of the correction
to the power spectrum, PC(k), serves as a good approximation for the exact estimate, without directly computing the
bispectrum. This greatly reduces the time taken for the calculation of fNL and provides a quick estimate of PC(k)
to be expected from just the shape of the spectrum for any model with a peak in its scalar power. Importantly, the
non-negligible levels of non-Gaussian contributions to ΩGW obtained in these models indicate the necessity to capture
the exact scale dependence of fNL as presented in this method.

As to the caveats of this work, we should mention that we have restricted the computation of non-Gaussian
contributions to ΩGW up to terms involving f2

NL
due to the complexity of numerical implementation. We are currently

working on addressing the complexity and accounting for terms involving f4
NL

in the calculation. Secondly, there arises
a spike like behavior in the shape of f

NL
[cf. Fig. 2]. This occurs due to the presence of P

S
(k) in the denominator of

the expression of f
NL

in terms of power and bi-spectra [cf. Eq. (7)]. As P
S
(k) reaches extremely small values, this

spike occurs and it has to be regulated to a finite value during the computation. This has an effect in our results
as one may see a corrugated shape of P

C
(k) computed using f

NL
. Hence, to avoid such artefacts in computation, it

may be preferable to modify this method to utilize the bispectrum directly in the calculation of P
C

(k) as well as the
non-Gaussian contributions to Ω

GW
. We are presently working on these issues.

In summary, we argue that the method we have discussed is a robust way to account for the exact form of primordial
scalar non-Gaussianity at the level of three point correlation in the calculation of Ω

GW
arising from models of inflation.

Since we infer a significant non-Gaussian contribution to Ω
GW

in the models considered, it would be interesting to
employ this method for non-canonical models that can potentially produce larger amplitudes and different shapes of
scalar non-Gaussianities. Such scenarios may even lead to significant non-Gaussian corrections to the power spectra
along with large non-Gaussian contributions to Ω

GW
. Moreover there are efforts to account for the contribution of higher
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order non-Gaussianities, such as the trispectrum, to the secondary tensor power spectrum. It would be interesting to
explore the effects of non-Gaussianities with non-trivial scale dependence in such higher order calculations.
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Appendix A: Feynman diagrams for non-Gaussian contributions to ΩGW

In order to understand various non-Gaussian contributions to the secondary GWs, one can construct Feynman
diagrams representing these contributions (see, for instance, Refs. [13, 16, 17]). In this appendix, we shall define the
elements constituting these diagrams and present the diagrams corresponding to the contributions we discussed in
Sec. IV.

The basic elements that we shall be using for the diagrams are the scalar power spectrum P
S
(k), secondary tensor

power spectrum Ph(k), the scalar non-Gaussianity parameter f
NL

(k1, k2, k2) and the correction to the scalar power
spectrum P

C
(k). These diagrams are presented in Fig. 7. Note that the diagram representing the secondary tensor

power spectrum Ph(k) indicates that it is a one loop correction to the primary tensor power spectrum, due to the
interaction between the tensor and scalar perturbations at the second order. The functions I(k, k′) and Qλ(k, k′)
arising out of the transfer function and polarization tensor, can be accounted at the vertices connecting the secondary
tensor and scalar modes in the diagram of Ph(k). The diagram of f

NL
(k1, k2, k2) represents the interaction of scalar

perturbations Rk at the cubic order. Further, the diagram of P
C

(k) indicates that it is a one loop correction to the

FIG. 7. The Feynman diagrams representing the scalar power spectrum PS(k1) (on top left), secondary tensor power spectrum
Ph(k1) (on top right) are presented. We also present the diagrams for the scalar non-Gaussianity parameter fNL(k1, q1, |k1− q1|)
(on bottom left) and the correction to the scalar power PC(k1) (on bottom right). We use solid lines to represent the scalar
mode Rk and dashed-dotted line to represent the secondary tensor mode hk.
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FIG. 8. The Feynman diagrams representing the non-Gaussian contributions at the level of f2
NL

are presented. The term denoted

as P(2−1)
h (k) corresponds to the C-type diagram (on top left) and the term denoted as P(2−2)

h (k) corresponds to the diagram

known as the hybrid type (on top right). The term denoted as P(2−3)
h (k) corresponds to the Z-type diagram (at the bottom).

FIG. 9. The Feynman diagrams representing the non-Gaussian contributions at the level of f4
NL

are presented. The term denoted

as P(4−1)
h (k) corresponds to non-planar diagram (on top left). Note that the dotted arrows are scalar modes that meet outside

the plane of the diagram. The term denoted as P(4−2)
h (k) corresponds to the diagram known as reducible term (on top right).

The term denoted as P(4−3)
h (k) corresponds to the planar diagram (at the bottom).

scalar power spectrum P
S
(k) due to such cubic order interaction. It involves two vertices of f

NL
and hence we readily

infer that P
C

(k) shall be proportional to f2
NL

. Using these elements we can construct the diagrams for higher order
contributions to secondary tensor power spectrum Ph(k) due to scalar non-Gaussianity. These shall be higher order
loop diagrams arising due to introduction of the vertex of f

NL
in each arm of the loop in the diagram of Ph(k).

The diagrams representing non-Gaussian contributions to Ph(k) at the level of f2
NL

, P(2−i)
h (k), are presented in

Fig. 8. These diagrams arise due to the introduction of f
NL

in two of the four arms of the loop in the diagram of Ph(k).
They are called as C-type, hybrid and Z-type diagrams [17].
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The diagrams representing non-Gaussian contributions to Ph(k) at the level of f4
NL

i.e. P(4−i)
h (k), are presented in

Fig. 9. These diagrams arise when we introduce of f
NL

in all the four arms of the loop in the diagram of Ph(k). They
are called as non-planar, reducible and planar diagrams [17].
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