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Abstract— Plain reinforcement learning (RL) may be prone
to loss of convergence, constraint violation, unexpected perfor-
mance, etc. Commonly, RL agents undergo extensive learning
stages to achieve acceptable functionality. This is in contrast to
classical control algorithms which are typically model-based. An
direction of research is the fusion of RL with such algorithms,
especially model-predictive control (MPC). This, however, intro-
duces new hyper-parameters related to the prediction horizon.
Furthermore, RL is usually concerned with Markov decision
processes. But the most of the real environments are not time-
discrete. The factual physical setting of RL consists of a digital
agent and a time-continuous dynamical system. There is thus, in
fact, yet another hyper-parameter – the agent sampling time. In
this paper, we investigate the effects of prediction horizon and
sampling of two hybrid RL-MPC-agents in a case study with
a mobile robot parking, which is in turn a canonical control
problem. We benchmark the agents with a simple variant of
MPC. The sampling showed a kind of a “sweet spot” behavior,
whereas the RL agents demonstrated merits at shorter horizons.

I. INTRODUCTION

Reinforcement Learning (RL) shows remarkable perfor-
mance in playground settings of video- and table games
such as Starcraft, chess and Go [1]–[3]. Industry-close ap-
plications appear more challenging to RL due to the lack of
freedom in training [4]–[8]. This may be related to limited
resources and technical constraints. In general, tuning of
RL algorithms is a sensitive matter [9], [10]. Currently,
industry is dominated by classical control-theoretic methods
such as model predictive control (MPC) [11]–[13]. MPC
is widely used in such areas as chemical industry and oil
refining [14]–[17]. Somewhat in contrast to the classical
control, RL is aimed at a learning-based, model-free (in some
configurations) approach. Nevertheless, it is perhaps the
model-based formal guarantees that make classical control
attractive to the industry. In fact, integration of predictive
mechanisms into RL is not new (see, e. g., [18], [19] for a
reward roll-out methodology).

Related work. Up to date, using predictive elements from
a classical control theory to improve RL approaches is an
active area of research. For instance, the promising recent
concept of a so-called RL Dreamer effectively uses image-
based prediction reminiscent to adaptive MPC [20]. Some
model estimation techniques for prediction in the so-called
representational learning were introduced in [21]. In the so-
called differentiable MPC [22], a combination of model-
free and model-based RL elements was suggested. An off-
policy actor-critic deep value MPC combining model-based
trajectory optimization with the value function estimation
was developed in [23]. Another attempt to combine model-
based approach and learning techniques is described in

[24] where a differentiable linear quadratic MPC framework
for a safe imitation learning was proposed. A predictive
scheme was suggested in [25], via an RL agent combined
planning with MPC to learn a forward dynamics model. The
development of this direction has led to the results presented
in [26]. The authors used MPC to learn a cost function
from scratch via high-level objective learning and tested it
on the real ground vehicle. Clearly, integration of prediction
methods in RL is gaining attraction. Therefore, questions of
hyper-parameter effects is of relevance.

Speaking of MPC, it has certain fundamental hyper-
parameters, such as horizon length and prediction step size,
impacting the overall performance [27]–[31]. The current
study focuses on the effects of such hyper-parameters, but
also time discretization step size (in brief, sampling time).
Sampling time may have drastic effects on system stability
[32]–[34]. A stable and optimally tuned system with a contin-
uous controller may be destabilized after time discretization
[35]. When it comes to RL, there is evidence of performance
deterioration of Q-learning under high sampling rates [36].
Authors suggested incorporating the advantage function to
remedy issues of collapsing Q-functions. An adaptive dis-
cretization for model-based RL via an optimistic one-step
value iteration approach was proposed in [37]. However, not
much attention has been paid to the effects of prediction step
size and prediction horizon length parameters in RL.

Summary. In this study, the sensitivity of three predictive
agents (MPC, a roll-out Q-learning, and the so-called stacked
Q-learning) to the selected hyper-parameters (sampling rate,
prediction step size and prediction horizon length) is inves-
tigated on a canonical example of a wheeled robot with
dynamic steering torque and pulling force, also known as the
extended nonholonomic double integrator [38]–[41]. Such a
system is used in numerous studies for benchmarking [42]–
[46]. Main findings can be summarized as follows. In terms
of the overall tendency for all the methods, too low sampling
time leads to a performance deterioration (in terms of the ac-
cumulated stage cost), which may be explained by too short-
sighted prediction. Increasing the sampling time improves the
performance to a certain point where prediction error starts
to dominate. Increasing the horizon length boosts the effects
of prediction in all the methods and generally leads to a
better performance, although at a higher computational cost.
Speaking of the method comparison, remarkably, the stacked
Q-learning tends to outperform both the MPC and the roll-
out algorithms at shorter horizons. In particular, the stacked
Q-learning achieved more successful robot parking count. It
should be noted here that the roll-out and stacked Q-learning
have similar computational complexity.

ar
X

iv
:2

10
8.

04
80

2v
2 

 [
m

at
h.

D
S]

  2
3 

A
ug

 2
02

1



Notation. Sequences: for any z: {zi|k}Ni = {z1|k, . . . ,
zN |k} = {zk, . . . , zk+N−1}, if the starting index k is
emphasized; otherwise, just {zi}N = {z1, . . . , zN}. If N
in the above is omitted, the sequence is considered infinite.

II. ENVIRONMENT DESCRIPTION

There are three types of the closed-loop setup (agent-
environment, i. e., controller-system), namely, pure discrete,
pure continuous, and hybrid. A pure discrete-time design is
a discrete system with a discretized controller [47]. A pure
continuous-time is a continuous-time system design with a
continuous controller, which is rarely possible unless the
controller is analogue. A hybrid system is a continuous-time
system design with a discretized controller. A continuous-
time system design is more suitable for linear systems since
some important structural properties might be lost after
discretization. The hybrid setting with a continuous-time
environment and a discretized controller is considered as a
more realistic as the other two variants, and is used as the
foundation in this work. Specifically, the following so-called
sample-and-hold setting (S&H), where the control actions
are held constant during δ-intervals, is considered:

D+x = f(x, uδ),

xk := x(kδ),

uδ(t) ≡ uk = κ(xk), t ∈ [kδ, (k + 1)δ] ,

(1)

where D+ is a suitable differential operator, x – state, u –
action, κ – policy, t – time, k ∈ N, δ > 0 – discretization
step. Notice that the agent’s actions are to be optimized
at discrete time steps, which makes the problem tractable,
unlike in a pure continuous setting. In the next sections,
predictive control mechanisms are discussed in relation to
the described S&H setup.

III. PREDICTIVE CONTROL

Prediction horizon effects. In general, control over a pre-
diction horizon may help improve the agent’s performance
and aid system stabilization by using long-term information
about the future states. At the same time, in presence of
model prediction error, the prediction horizon length and
also the prediction step size are subject to careful tuning.
In general, the prediction horizon length refers to a period
starting from the current time to a point until which control
actions are to be optimized. The prediction step size can be
described in the following example: if it is two times bigger
than the sampling time then the state prediction is two times
finer than the sampled control actions. Evidently, higher
prediction horizons lead to higher computational complexity.
(the total number of action sequences to be searched over
increases exponentially with the horizon). At the same time,
too short horizon may lead to a failure to even stabilize the
system. Traditionally, MPC, which is discussed in the next
section, is considered a standard predictive controller.

A. Model Predictive Control

A fairly general optimal control in the S&H setting can
be formulated as follows:

min
{ui}

JOC (x0|{ui}) :=

H∑
i=1

γi−1ρ
(
x̂i|0, ui

)
,

s.t. x̂2|i = Φ(sδ, x̂1|i, ui), x̂1|0 = x0,

D+x = f(x, uδ),

(2)

where ρ is the stage cost (a reward or utility in case of
maximization), JOC is the accumulated stage cost, where γ
is the discounting factor, H is the horizon length which
can be finite (H = N,N ∈ N) or infinite (H = ∞),
s is the prediction step size multiplier, i. e., the prediction
step size is sδ, Φ is a numerical integration scheme, i. e.,
x̂2|i = Φ(δ, x̂1|i, ui) is the predicted state emerging from
x̂1|i after the time δ and under the constant action ui. If
H = ∞, JOC is also known as cost-to-go. The simplest
numerical integration scheme is the Euler one:

x̂2|i := x̂1|i + sδf(x̂1|i, ui). (3)

In the following, the system dynamics D+x = f(x, uδ)
are always meant, but omitted for brevity. Based on H ,
two basic optimal control formalisms are generally known,
namely, Euler-Lagrange and Hamilton-Jacobi-Bellman [48].
Euler-Lagrange formalism possesses a “local” character – it
seeks a controller that optimizes the cost some N steps ahead
starting from the current state. Hamilton-Jacobi-Bellman, in
contrast, is “global” – the goal here is to find a controller
for cost optimization over an indefinite number of future
steps. An infinite horizon may also be interpreted as an open
horizon – a situation, in which the user is unsure of an exact
specification of the horizon. In turn, a finite-horizon optimal
control problem may be interpreted as a computationally
tractable approximation of the infinite-horizon one. MPC
is the de facto scheme for finite-horizon optimal control
problems [49]–[51]. Here, the infinite horizon is cut at some
finite time and an optimal solution is computed for the new
fixed horizon at each time step. Numerous modifications and
a wide variety of techniques for guaranteeing closed-loop
stability of MPC were developed [52], [53]. In the S&H
setting, a simple unconstrained MPC setup can be written
as:

min
{ui|k}Ni

JMPC
(
xk|{ui|k}Ni

)
:=

N∑
i=1

γi−1ρ
(
x̂i|k, ui|k

)
,

s.t. x̂i+1|k = Φ(sδ, x̂i|k, ui|k).
(4)

When requiring constraint satisfaction of the kind xi|k ∈
X, ui|k ∈ U, MPC has the advantage of guaranteed safety
[51]. Also, various schemes for stabilization guarantees are
known [50], [51]. Evidently, a simple MPC controller is
suboptimal, if the suboptimality is meant as the difference
between the factual cost-to-go under the MPC controller
and the optimized cost-to-go (the value function). This is
somewhat in contrast to the philosophy behind RL where an
agent seeks to approximate the value function. In general,



Algorithm 1 roll-out Q-learning

Input: System model, sampling time δ, prediction step multiplier s, prediction horizon N
while true do

Get state xk
Push the current state-action pair into the buffer (experience replay)
Update critic: ϑk := arg min

ϑ
Jck(ϑ) (see eq. 6)

Update actor: {ui|k}Ni := min
{ui|k}Ni

JaRQL

(
xk|{ui|k}Ni ;ϑk

)
=
N−1∑
i=1

γi−1ρ(x̂i|k, ui|k) + Q̂(x̂N |k, uN |k;ϑk), where the state

sequence {x̂i|k}Ni is predicted via, e. g., (3)
Apply the first action from the sequence, namely, u1|k, to the system

end while

enlarging the horizon leads to suboptimality reduction [54].
As mentioned above, careful tuning is required in general.
The next section discusses specifically fusion of MPC-
elements with RL.

IV. FUSION OF RL AND PREDICTIVE CONTROLS

Value iteration Q-learning (QL) actor-critic is chosen here
as the basis for RL algorithms due to its convenience,
although similar derivations could be done for the standard
value and policy iteration. A basic online, model-free, value
iteration, on-policy QL with a neural network critic reads:

uk := arg min
u

Q̂(xk, u;ϑk),

ϑk := arg min
ϑ

1
2

(
Q̂(xk, uk;ϑ)−

Q̂(xk−1, uk;ϑ−)− ρ(xk, uk)
)2
,

(5)

where ϑ is vector of the critic neural network weights to
be optimized, ϑ− is the vector of the weights from the
previous time step, Q̂(•, •;ϑ) – Q-function approximation
parameterized by ϑ. The latter approximation is effectively
the temporal difference (TD) in the value iteration form. It
may be generalized to a custom size experience replay. Let
ek(ϑ) = ϑϕ(xk−1, uk−1)− γϑ−ϕ(xk, uk)− ρ(xk−1, uk−1)
denote the temporal difference at time step k. Then, a more
general critic cost function may be formulated as

Jck(ϑ) =
1

2

k+M−1∑
i=k

e2i (ϑ), (6)

where M is the buffer size.
The roll-out QL (RQL) considered here, given the MPC

background of Section III-A, can be regarded as simply N−
1 horizon MPC with a terminal cost being the Q-function
approximation, namely, its actor reads:

min
{ui|k}Ni

JaRQL

(
xk|{ui|k}Ni ;ϑk

)
:=

N−1∑
i=1

γi−1ρ(x̂i|k, ui|k) + Q̂(x̂N |k, uN |k;ϑk),

s.t. x̂i+1|k = Φ(sδ, x̂i|k, ui|k).

(7)

The stacked QL (SQL) [55], [56], in turn, can be regarded as
simply MPC with the stage cost substituted for Q-function
approximation. The justification for such a setup may be

done via Lemma 1. It says that the optimal policy from
optimization of a stacked Q-function is essentially the same
as the globally optimal one. First, denote the stacked Q-
function as follows:

Q̄
(
xk, {ui|k}Ni

)
:=

N∑
i=1

Q(xi|k, ui|k).
(8)

With this notation at hand, proceed to the lemma.
Lemma 1: For any xk, it holds that

min
{ui|k}Ni

Q̄
(
xk, {ui|k}Ni

)
=

N∑
i=1

min
ui|k

Q(xi|k, ui|k). (9)

Proof: Let the optimal action sequence for the stacked
Q-learning be denoted as:

{ū∗i|k}
N
i := arg min

{ui|k}Ni
Q̄(xk, {ui|k}Ni )

=

N∑
i=1

Q(xi|k, ui|k),

(10)

The optimal action sequence of the element-wise Q-
function optimization reads:

{u∗i|k}
N
i := {arg min

ui|k

Q(xi|k, ui|k)}i. (11)

Denote the corresponding optimal state sequences as
{x̄∗i|k}

N
i := {x̄∗k, x̄∗k+1, . . . , x̄

∗
k+N−1} for the stacked Q-

learning and {x∗i|k}
N
i := {x∗k, x∗k+1, . . . , x

∗
k+N−1} for the

ordinary one. Notice that the initial state is the same: x̄∗k =
x∗k = xk. By definition the optimal Q-function is equal to
the value function V :

V (x∗i|k) = min
u
Q(x∗i|k, u), (12)

V (x̄∗i|k) = min
u
Q(x̄∗i|k, u). (13)

Denote

V̄ (x̄∗i|k) := Q(x̄∗i|k, ū
∗
i|k). (14)

By the principle of optimality it holds that

V (x̄∗i|k) ≤ V̄ (x̄∗i|k). (15)



Algorithm 2 Stacked Q-learning

Input: System model, sampling time δ, prediction step multiplier s, prediction horizon N
while true do

Get state xk
Push the current state-action pair into the buffer (experience replay)
Update critic: ϑk := arg min

ϑ
Jck(ϑ) (see eq. 6)

Update actor: {ui|k}Ni := min
{ui|k}Ni

JaSQL

(
xk|{ui|k}Ni ;ϑk

)
=

N∑
i=1

Q̂(x̂i|k, ui|k;ϑk), where the state sequence {x̂i|k}Ni is

predicted via, e. g., (3)
Apply the first action from the sequence, namely, u1|k, to the system

end while

But since x∗i|k is the optimal state sequence,

V (x∗i|k) ≤ V (x̄∗i|k). (16)

Thus, V (x∗i|k) ≤ V̄ (x̄∗i|k) and applying sum to the both
parts yields

N∑
i=1

V (x∗i|k) ≤
N∑
i=1

V̄ (x̄∗i|k) = min
{ui|k}Ni

Q̄(xk, {ui|k}Ni ).

(17)
On the other hand, the minimum of the sum is not greater

than the sum of minima:

min
{ui|k}Ni

Q̄(xk, {ui|k}Ni ) ≤
N∑
i=1

V (x∗i|k). (18)

Then, as required,

min
{ui|k}Ni

Q̄(xk, {ui|k}Ni ) =

N∑
i=1

V (x∗i|k) =

N∑
i=1

min
ui|k

Q(xi|k, ui|k).

(19)

Since in practice, Q-functions cannot always be computed
exactly, a temporal-difference-based critic can be employed
to compute approximate stacked Q-function using the tem-
poral difference method (6). This can be done, e. g., using
neural networks. Finally, the stacked QL actor reads:

min
{ui|k}Ni

JaSQL

(
xk|{ui|k}Ni ;ϑk

)
=

N∑
i=1

Q̂(x̂i|k, ui|k;ϑk),

s.t. x̂i+1|k = Φ(sδ, x̂i|k, ui|k).
(20)

The main features of the described algorithms for the
clarity are given in Table I.

V. NUMERICAL EXPERIMENTS

All three described setups, namely, MPC, roll-out QL
and stacked QL were studied in numerical experiments with
wheeled robot parking. In every experiment, a set of hyper-
parameters consisting of the horizon length N , prediction
step size multiplier s, and the sampling time δ, was fixed.

An experiment consisted of 30 runs, 600 s long each. The
robot started at a position on a 5 m circle around the origin,
turned away from the latter. The goal was to park the robot at
the origin while achieving a desired orientation. The parking
was considered successful if the robot entered a 50 cm circle
around the origin with a 5 deg tolerance in angle. The
accumulated stage cost, as well as the successful parking
count, were considered the performance metrics. The next
section describes the system dynamics in detail.

A. Environment

As the dynamic system, the three-wheel robot with dy-
namical pushing force and steering torque (a.k.a. ENDI –
extended non-holonomic double integrator) was considered.

In Cartesian coordinates system description is the follow-
ing:

ẋ = v cosα,

ẏ = v sinα,

α̇ = ω,

v̇ =

(
1

m
F

)
,

ω̇ =

(
1

I
M

)
.

(21)

where x – x-coordinate [m], y – y-coordinate [m], α –
turning angle [rad], v – velocity [m/s], ω – angular velocity
[rad/s], F – pushing force [N], M – steering torque [Nm],
m – robot mass [kg], I – robot moment of inertia around
vertical axis [kg m2] (m = 10, I = 1).

B. Simulation

Implementation of MPC, roll-out Q-learning, and stacked
Q-learning were done in a custom python framework
rcognita1, developed specifically for hybrid simulation
of RL agents (Fig. 1).

The stage cost was considered in the following quadratic
form:

ρ = χ>Rχ, (22)

where χ = [y, u], R diagonal, positive-definite.

1https://github.com/AIDynamicAction/rcognita

https://github.com/AIDynamicAction/rcognita


TABLE I: Algorithms intuition

Name Scheme Description

MPC Baseline Finite sum of stage costs without a terminal cost
RQL MPC +QN Finite sum of stage costs with a Q-function as the terminal cost
SQL MPC ∧ QL : r ← Q Finite sum of Q-functions

Fig. 1: Graphical output of the rcognita Python package.

The critic structure was also chosen quadratic as follows:

Q̂(x, u;ϑ) := ϑϕ>(x, u),

ϕ(x, u) := vec (∆u ([x|u]⊗ [x|u])) ,
(23)

where ϑ – critic weights, ϕ – critic activation function,
∆u – operator of taking the upper triangular matrix, vec –
vector-to-matrix transformation operation, [x|u] – stack of
vectors x and u, ⊗ – Kronecker product.

The experimental results are presented below.

VI. RESULTS AND DISCUSSION

It was observed that too low sampling time led to some-
what higher cost which can be explained by a too narrow-
sighted controller. Increasing the sampling time remedies
that issue, but only up to a certain point where prediction
inaccuracies start to dominate, whence the cost grows again
(see Fig. 2). A similar tendency can be observed in terms of
successful parking count (see Fig. 3). As the prediction step
size was increased, it was observed that both the accumulated
stage cost and successful parking count slightly improved.
This may explained by an effective horizon enlargement
(though retaining the resolution). Again, one should be aware
of growing prediction errors while increasing the prediction
step size. As far as the horizon length itself is concerned,
there was a clear tendency of performance improvement with

Fig. 2: Relationship between the accumulated stage cost and
the sampling time. Solid line – average over 30 observations,
shaded area – 95 % confidence level.

higher N . At the horizon length of 5, all the controllers
succeeded to park the robot in all trials.

In terms of the algorithm comparison, some interesting
phenomena could be noticed. First of all, both the roll-out
and stacked QL generally outperformed MPC at shorter sam-
pling times and horizons. Fig. 5 in turns shows far superior
successful parking compared to MPC. These observations
support the idea that integration of learning elements into
classical controller, e. g., in the form of RL, is beneficial. In
theory, the Q-function captures the performance of the agent
over an infinite horizon. It seems logical that approximating
the Q-function sufficiently well may yield better control
actions than optimizing a plain sum of stage costs. The fol-
lowing hint could be made: predictive RL is more beneficial
than MPC at shorter horizons. This is because as the horizon
length grows, predictive RL becomes indistinguishable from
MPC (see Fig. 6), while both simply approach the globally
optimal controller. One should be aware of the computational
complexity though.

Roughly, it can be described as follows. Denote the MPC
complexity (in terms of optimizing JMPC) by O (ΨMPC(N))
for some function ΨMPC of the horizon length (in particular,
the complexity is exponential in N ). Then, the complexities
of the roll-out and stacked QL are both O(ΨMPC(N)) +



Fig. 3: Successful parking count depending on the sampling
time.

Fig. 4: Relationship between the accumulated stage cost and
the prediction step size multiplier. Solid line – average over
30 observations, shaded area – 95 % confidence level.

O (ΓQL(M,nϕ)) where ΓQL describes the complexity of the
critic update (in terms of optimizing Jc), M is the experience
replay size and nϕ is the number of critic weights.

A final note should be made about the difference in perfor-
mance between the roll-out and stacked QL. Remarkably, the
latter significantly outperformed the former at a short horizon
(N=3), both in terms of the accumulated stage cost and
successful parking count. This may be explained in a similar
manner as above, when comparing RL with MPC. Namely,
learning elements of RL are more beneficial at shorter
horizons. Notice that the roll-out QL “retains” more from
MPC than its stacked counterpart. At longer horizons, such
a structure of the roll-out QL becomes more beneficial than
the stacked QL. Notice also that nominally both QL methods
have the same complexity. However, taking into account
better performance of the stacked QL at shorter horizons,
the practical complexity of the stacked QL may even be

Fig. 5: Successful parking count depending on the prediction
step size.

Fig. 6: Relationship between the accumulated stage cost and
the prediction horizon length. Solid line – average over 30
observations, shaded area – 95 % confidence level.

considered lower than that of the roll-out variant. That is,
the stacked QL may achieve a comparable performance to
the roll-out QL with a longer horizon.

VII. CONCLUSION

As learning-based control becomes ever more attractive, it
faces ever more challenges in industry, where, traditionally,
such controllers as MPC are recognized due to their formal
guarantees. Reinforcement learning slowly transitions from
playgrounds like videogames into more challenging envi-
ronments. On this path, it seems unavoidable that some of
the well-established classical machinery, such as predictive
control, can be made use of in RL. This is supported, in
particular, by the attractive trend of fusion of MPC and RL.
The current study was generally dedicated to this topic and
considered a particular, yet fairly popular, control problem
of parking of a mobile robot by MPC and RL. The influence
of the prediction- and sampling-related hyperparameters,



Fig. 7: Successful parking count tuning the prediction hori-
zon length.

namely, the prediction horizon step and length sizes, and the
sampling time, was investigated. It was generally observed
that RL-based controllers appeared more efficient than MPC
at shorter horizon lengths, where the learning-based elements
dominated. Predictive RL, like the herein studied stacked Q-
learning, may be considered a viable solution in terms of
fusion of classical controllers and RL agents.
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K. McKinney, O. Smith, T. Schaul, T. Lillicrap, K. Kavukcuoglu,
D. Hassabis, C. Apps, and D. Silver, “Grandmaster level in StarCraft II
using multi-agent reinforcement learning,” Nature, vol. 575, no. 7782,
pp. 350–354, 2019.

[4] C. Li, “Deep reinforcement learning,” in Reinforcement Learning for
Cyber-Physical Systems. Chapman and Hall/CRC, 2019, pp. 125–
154.

[5] K. Krauth, S. Tu, and B. Recht, “Finite-time analysis of approximate
policy iteration for the linear quadratic regulator,” in Advances in
Neural Information Processing Systems, 2019, pp. 8514–8524.

[6] Z. Yang, Y. Chen, M. Hong, and Z. Wang, “Provably global conver-
gence of actor-critic: A case for linear quadratic regulator with ergodic
cost,” in Advances in Neural Information Processing Systems, 2019,
pp. 8353–8365.

[7] Y. Park, R. Rossi, Z. Wen, G. Wu, and H. Zhao, “Structured policy
iteration for linear quadratic regulator,” in International Conference
on Machine Learning. PMLR, 2020, pp. 7521–7531.

[8] S. Kakade, A. Krishnamurthy, K. Lowrey, M. Ohnishi, and W. Sun,
“Information theoretic regret bounds for online nonlinear control,”
arXiv preprint arXiv:2006.12466, 2020.

[9] J. Kober, J. A. Bagnell, and J. Peters, “Reinforcement learning in
robotics: A survey,” The International Journal of Robotics Research,
vol. 32, no. 11, pp. 1238–1274, 2013.

[10] Y. Li, X. Chen, and N. Li, “Online optimal control with linear dy-
namics and predictions: Algorithms and regret analysis,” in Advances
in Neural Information Processing Systems, 2019, pp. 14 887–14 899.

[11] W. R. van Soest, Q. P. Chu, and J. A. Mulder, “Combined feedback
linearization and constrained model predictive control for entry flight,”
Journal of Guidance, Control, and Dynamics, vol. 29, no. 2, pp. 427–
434, 2006.

[12] S. Kouro, P. Cortes, R. Vargas, U. Ammann, and J. Rodriguez, “Model
predictive control—a simple and powerful method to control power
converters,” IEEE Transactions on Industrial Electronics, vol. 56,
no. 6, pp. 1826–1838, 2009.

[13] Y. Ma, F. Borrelli, B. Hencey, B. Coffey, S. Bengea, and P. Haves,
“Model predictive control for the operation of building cooling sys-
tems,” IEEE Transactions on Control Systems Technology, vol. 20,
no. 3, pp. 796–803, 2012.

[14] S. Qin and T. A. Badgwell, “A survey of industrial model predictive
control technology,” Control Engineering Practice, vol. 11, no. 7, pp.
733–764, 2003.

[15] D. Hrovat, S. Di Cairano, H. E. Tseng, and I. V. Kolmanovsky, “The
development of model predictive control in automotive industry: A
survey,” in 2012 IEEE International Conference on Control Applica-
tions, 2012, pp. 295–302.

[16] M. L. Darby and M. Nikolaou, “Mpc: Current practice and challenges,”
Control Engineering Practice, vol. 20, no. 4, pp. 328 – 342, 2012,
special Section: IFAC Symposium on Advanced Control of Chemical
Processes - ADCHEM 2009.

[17] M. G. Forbes, R. S. Patwardhan, H. Hamadah, and R. B. Gopaluni,
“Model predictive control in industry: Challenges and opportunities,”
IFAC-PapersOnLine, vol. 48, no. 8, pp. 531 – 538, 2015, 9th IFAC
Symposium on Advanced Control of Chemical Processes ADCHEM
2015.

[18] D. P. Bertsekas and D. A. Castanon, “Rollout algorithms for stochastic
scheduling problems,” Journal of Heuristics, vol. 5, no. 1, pp. 89–108,
1999.

[19] D. P. Bertsekas, “Dynamic programming and suboptimal control: A
survey from ADP to MPC,” European Journal of Control, vol. 11, no.
4-5, pp. 310–334, 2005.

[20] D. Hafner, T. Lillicrap, J. Ba, and M. Norouzi, “Dream to control:
Learning behaviors by latent imagination,” International Conference
on Learning Representations, 2020.

[21] Z. Guo, A. B. Pires, G. M. Azar, B. Piot, F. Altché, J.-B. Grill, and
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[55] P. Osinenko, T. Göhrt, G. Devadze, and S. Streif, “Stacked adap-
tive dynamic programming with unknown system model,” IFAC-
PapersOnLine, vol. 50, no. 1, pp. 4150–4155, 2017.

[56] L. Beckenbach, P. Osinenko, T. Gohrt, and S. Streif, “Constrained and
stabilizing stacked adaptive dynamic programming and a comparison
with model predictive control,” in 2018 European Control Conference
(ECC). IEEE, 2018, pp. 1349–1354.


	I Introduction
	II Environment description
	III Predictive control
	III-A Model Predictive Control

	IV Fusion of RL and predictive controls
	V Numerical experiments
	V-A Environment
	V-B Simulation

	VI Results and discussion
	VII Conclusion
	References

