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Abstract. First Order Locally Orderless Registration (FLOR) is a scale-
space framework for image density estimation used for defining image
similarity, mainly for Image Registration. The Locally Orderless Reg-
istration framework was designed in principle to use zeroth-order in-
formation, providing image density estimates over three scales: image
scale, intensity scale, and integration scale. We extend it to take first-
order information into account and hint at higher-order information.
We show how standard similarity measures extend into the framework.
We study especially Sum of Squared Differences (SSD) and Normalized
Cross-Correlation (NCC) but present the theory of how Normalised Mu-
tual Information (NMI) can be included.

Keywords: Image Registration · Locally Orderless Images · First Order
Information.

1 Introduction

Image similarity is generally based on zeroth-order information by a scalar to
scalar comparison, e.g. Sum of Squared Differences (SSD), Normalised Cross-
Correlation (NCC) or Mutual Information (MI) [10]. However, images have struc-
ture and they encode information that extends beyond zeroth-order, they do not
look like random noise. MI and NCC do incorporate more than just pixel in-
tensity but very weakly and indirectly. Higher-order information is seldom used
with a few exceptions, notably the normalized gradient fields [6]. We aim to inte-
grate high-order information for registration based on Locally Orderless Images
(LOI) [11] and Locally Orderlles Registration LOR [4].

LOI defines three fundamental scales for estimating a density from an im-
age: the spatial scale, which is the ”classical” scale-space one, the intensity or
information scale, as ”bin scale” and the integration scale, which define the
localisation of the density estimates of intensity distributions. The key is to
’marginalize over the geometry’ and leave only the correspondence of informa-
tion. The locally orderless registration gives us a theoretical platform to perform
this marginalization for scalar-valued images.

Locally Orderless Registration (LOR) [9] explored its application for Mag-
netic Resonance Diffusion-Weighted Imaging (DWI), which are images con-
taining complicated geometries. Indeed, DWI images can be seen as functions
I : Ω × SS2 → R, with Ω an open subset of R3, where SS2 is seen as the space
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of directions (with orientation) in R3. An extra directional scale is added before
building and localizing densities.

In this work we extend the LOI and LOR [5,3,9] framework for images
I : Ω → R, by lifting these images to images I : Ω × SS2 → R, where SS2

this time parametrizes the local orientations of the image I. This is performed
through directional responses of derivatives of Gaussian. Other kernels could be
used, for instance, non-symmetric ones. Lifts to second or higher-order structures
can similarly be defined via higher kernel derivatives. Once the lifting has been
performed, ideas similar to DWI image registration can be used. However, as op-
posed to the DWI case, this lifting comes already with its scale parameter. This
lifting idea is not new, with especially works in the context of image smoothing
and disentangling of directions ([8] and references therein). Tools and end goals
in this work are different: classical Gaussian filters and image registration.

Given two images I and J , the registration problem is to find the transfor-
mation ϕ : R3 → R3 that maps I onto J such that some similarity/dissimilarity
M(I ◦ ϕ, J) is optimized. Registration is an ill-posed problem. Therefore, the
deformation ϕ requires regularization. Typical regularizations use constraints
on the family of admissible transformations e.g. diffeomorphisms. Other alterna-
tives are to enforced local constraints by using additional smoothing (enforcing
scale to the transformation). The LOI and LOR framework provides building
blocks for similarity measures, and do not impose regularisers forms. We use a
very simple ones here.

Organisation and contributions. The paper is organized as follows. First we
review previous work in section 2 and recall the Locally Orderless Imaging and
Locally Orderless Registration frameworks in section 3. Our main contribution,
the extension of the LOI and LOR frameworks to first order information, is pre-
sented in section 4. Registration objective functions are also discussed in this
section. We illustrate the effects first order extensions for SSD and NCC simi-
larities on the quality, and convergence of the registration in section 5. Finally,
we summarise and discuss perspectives in section 5.3.

2 Related Work

LOI was originally proposed by Koenderink and van Dorn [11] and describes
the three inherent scales of images: spatial scale, intensity scale, and integration
scale. This notion of images was used to describe image similarity in a variational
framework [7] and formalized into a generalized framework for image registra-
tion and the image similarity measures as LOR in [5]. Some of the groundwork
for LOR as well as the properties of the density estimators used for images in
image registration where investigated in [3], revealing a ’scale imbalance’ in the
partial volume density estimator. The idea of marginalizing over more complex
geometries than Rn was proposed in [9].

The idea of using higher order information for estimation of similarity be-
tween images is not new and normalized gradient fields NGF [6] were one of the
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first. In [15] an extension to the LDDMM using higher order information was
presented.

There are few recent implementations of registration algorithms with NGF.
The most noticeable uses NGF and a Gauss-Newton optimization scheme with
locally rigid constraints [13]. This work was further evaluated on pelvis CT/CBCT
images [12]. A recent first-order information approach adds another metric based
on gradients to the registration cost function with NGF [16]. This metric is de-
fined as the sum of three gradients norms, i.e. the transformed moving image,
the fixed image, and the difference between moving and fixed while offering a
small increase in registration accuracy.

3 Background on Locally Orderless Image Information

3.1 Notations

Ω ⊂ R3 is the spatial domain of the images we use in the sequel. A scalar image
is a function f : Ω → R. We assume that images can be extended out of Ω to R3

– typically by 0 – as it is necessary for convolution. Convolution of two images
I, J : R3 is defined by I ∗ J(x) =

∫
R3 I(y)J(x − y) dy. This actually extends

to the case where one of the images is vector-valued directly. Gσ denotes a 3D
isotropic Gaussian of standard deviation σ.

3.2 Lebesgue Integration and Histograms

Consider a function integrable I : Rn → R. Its integral
∫
I dµ with respect to the

Lebesgue measure µ of Rn, denoted in the sequel as
∫
Rn I(x) dx, can be computed

as the limit over all subdivisions 0 ≤ i0 < · · · < iN ,
∑N−1
n=0 inµ(I−1([in, in+1]).

At the limit, when in+1−in → 0, this can be rewritten as
∫
R ihI(i) di where hI(i)

is the length of isophote I−1(i). The function i 7→ hI(i) is a generalized histogram
of the values of I. Many standard integrals can be rewritten using this form. For
instance

∫
Rn I(x)2 dx =

∫
R i

2hI(i) di. This generalizes to joint histograms: given
two images I, J : Rn → R, (I, J) : Rn → R2, x 7→ (I(x), J(x)) and its integral
can be written as

∫
R2(i, j)hI,J di dj where hI,J is the joint histogram of I and

J . Classical similarities can be rewritten using histograms, for instance, Sum
of Square Differences (SSD):

∫
Rn(I(x) − J(x))2 dx =

∫
R2(i − j)2hI,J(i, j) didj.

Normalised Cross-Correlation, (Normalised) Mutual information, etc. can be
written in terms of image histograms and their normalisations.

3.3 LOI and LOR framework

LOI is a way to map images into local histograms, with three inherent scales:
the spatial or image scale, the intensity scale, and integration scale. The image
or spatial scale σ is used to smooth input images I and obtain Iσ = I ∗ Gσ. A
localised histogram over the values of Iσ is computed as

hI,σβα(i|x) :=

∫
Ω

Pβ(Iσ(y)− i)Wα(y − x) dy (3.1)
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where Pβ is a Parzen window of scale β, which provides the intensity scale and
Wα(x) is an integration window which provides the integration scale α. The
histogram hI,σβα(·|x) is defined over R or at least over an interval Λ containing
the range of values of Iσ. Normalising it, we obtain the image density

pI,σβα(i|x) =
hI,σβα(i|x)∫

Λ
hI,σβα(j|x) dj

. (3.2)

By letting the integration scale α→∞, we obtain global histograms an densities
hI,σβ(i) :=

∫
Ω
Pβ(Iσ(x)− i) dx and pI,σβ(i). This will be the case in this paper.

This construction extends to the definition of joint histograms and densities, at
the heart of Locally Orderless Registration by

hI,J,σβα(i, j|x) :=

∫
Ω

Pβ(Iσ(y)− i)Pβ(Jσ(y)− j)Wα(y − x) dy (3.3)

pI,J,σβα(i, j|x) =
hI,J,σβα(i, j|x)∫

Λ
hI,J,σβα(u, v|x) du dv

(3.4)

and similar formulas in the global case. Single histograms and densities can also
be obtained from them by marginalisation. LOR Image similarities are defined
through single and joint density estimates eq. (3.2) and eq. (3.4). Similarity
measures are defined as

ML(I, J) =

∫
Ω

∫
Λ2

f(i, j, pI,J,σβα(i, j|x)) di dj dx, (3.5)

MG(I, J) =

∫
Λ2

f(i, j, pI,J,σβ(i, j)) di dj (3.6)

with ML built from localised densities and MG from global ones. Among them,
p−linear ones are characterized by f(i, j, p) = g(i, j)p, while nonlinear ones take
more complex forms. We already mentioned in the previous section how SSD can
be simply written using joint histograms. By normalising it, it can be written via
densities (3.4). Another classical similarity, normalised cross-correlation (NCC),
can also easily be written in term of histograms and densities.

NCC(I, J) =

〈
I − Ī , J − J̄

〉
‖I − Ī‖‖J − J̄‖

where Ī and J̄ are the average values of I and J on Ω and the inner product
and norms are L2 ones. The inner product 〈I, J〉 is

∫
R2 ijhI,J(i, j) didj. Replac-

ing hI,J by hI,J;σβα provides its LOI counterpart expression. The average Ī is∫
R ihI(i) di/(

∫
R h(i) di). Again, we replace hI by hI;σβα to obtain its LOI coun-

terpart expression.
To use it in registration, the setting is typically the following. One chooses a

hold on domain D ⊂ R3 large enough, with Ω ⊂ D and mappings ϕ : R3 → R3,
with ϕ ≡ id3 out of D, where id3 is the identity transform. Here, we assume
D = Ω. These transformations are usually of class Ck, k ≥ 1, often more. They
are often, but not always, constrained to be diffeomorphic. A goodness of fit
functional is obtained by evaluation the (dis)similarity ϕ 7→M(I ◦ ϕ, J).
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4 Extension of LOI and LOR to Higher Information

In this section, we introduce a straightforward way to extend the LOI to incor-
porate higher order image information in histogram and density formulations.
We focus on first order, as higher order may be limited in practice because of
the complexity and resulting memory footprint.

4.1 First Order Locally Orderless Registration (FLOR)

In this paper we probe and use first order differential information of an image
I : R3 → R (with effective spatial domain Ω). It is obtained by lifting it to image
Iσ : R3×SS2 → R which encodes gradient responses at different directions in a
straightforward way. The differential dxGσ : R3 → R is, for each x linear, it is
enough to know it on SS2 ⊂ R3.

Iσ(x,v) =

(∫
R3

I(y)d(y−x)Gσ dy

)
v = dx (I ∗Gσ)v (4.1)

This can of course be rewritten as Iσ(x,v) = ∇Iσ(x)Tv. Note that Iσ(x,−v) =
−Iσ(x,v) due to our lifting choice. Using a higher order operator, such as , for
instance, the Hessian of Gaussian ∇2Gσ would allow us to probe second order
structure as a Ĩσ(x,v) = Hess Iσ(x)(v,v).

Once the lifting is performed, we can now define local histograms and densi-
ties. They are spatially localised, not directionally.

hI;σβα(i|x) =

∫
R3×SS2

Pβ(Iσ(y,v)− i)Wα(x− y) dv dy (4.2)

pI;σβα(i|x) =
hI;σβα(i|x)∫

Λ
hI;σβα(j|x) dj

(4.3)

where this time Λ is an interval containing the range of Iσ. As in the zeroth
order case, global histograms and densities can be obtained by letting α → ∞.
Given two images I, J : R3 → R, we can lift them to Iσ and Jσ and define joint
histograms and densities

hI,J ;σβα(i, j|x) =

∫
R3×SS2

Pβ(Iσ(y,v)−i)Pβ(Jσ(y,v)−i)Wα(x−y) dv dy (4.4)

pI,J ;σβα(i, j|x) =
hI;Jσβα(i, j|x)∫

Λ2 hI;σβα(u, v|x) du dv
(4.5)

Here again, by letting α→ 0, we obtain global histograms and densities.

4.2 First Order Deformation Model

Let ϕ : R3 → R3 a deformation. By the chain rule, d
dt


t=0

Iσ(ϕ(x + tv)) =

∇Iσ(ϕ(x))TJxϕ(v), with Jxϕ the Jacobian of ϕ. This implies of course that ϕ
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acts on the first order information via its differential. Here comes the problem
that, as we have limited the directional probing space to SS2, there is no guar-
antee that Jxϕ(v) ∈ SS2, let alone non zero. This is however the case if we
restrict ϕ to be a diffeormorphism, and this is what we assume from now. From
its very definition, the mapping of directions at x ∈ Ω is given by

ψx : SS2 → SS2, v 7→ Jxϕ(v)

|Jxϕ(v)|
, (4.6)

This lead to define the action of ϕ1 on the lifted image Iσ(x,v) as

(ϕ.Iσ) (x,v) = |Jxϕ(v)|Iσ(ϕ(x), ψx(v)). (4.7)

It clearly satisfies (ϕ.Iσ) (x,−v) = − (ϕ.I) (x,v), thus respecting the structure
of lifted images. Alternatively, one could consider another first order deformation
model, where the Jacobian scaling factor is ignored, i.e.

(ϕ.Iσ) (x,v) = Iσ(ϕ(x), ψx(v)). (4.8)

This may apply to images of more categorical nature. This can be the case for
two images showing similar anatomical structures, with same tissue density, but
which cannot be registered by a (local) rigid motion.

By using either the local or global histograms and densities, higher order sim-
ilarities M(I,J) are obtained exactly the same way as discussed in the previous
section. Finally one may combine zeroth and first order to get new similarity
measures, and use them in a registration framework via

ϕ 7→M(I ◦ ϕ, J) + λM(ϕ.Iσ,Jσ). (4.9)

4.3 Registration Objectives and Deformations.

The similarities used in this paper are 1) SSD for zeroth and first order infor-
mation, and 2) NCC for zeroth and first order information. Free-form B-spline
deformation models [14] are used, with simple control point grid motion limi-
tation as regularisation. We also use simple translation deformations on some
experiments.

4.4 Implementation

The implementation has been made in PyTorch 1.7.1 and the basis consists
of a Cubic B-spline from which both the image interpolation and deformation
field can be estimated. Analytical Jacobians of both image and deformation has
been implemented which allow us to use the backpropagation of PyTorch and
optimizer for finding the solution. The action of the Jacobian on the directional
derivative have 2 implementations, given by Equation (4.7) and Equation (4.8).

1 Note that this is not stricto senso a group action here.
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The implementations ensures that all scales are consistent and to change image
scale we simply blur the images prior to registration with the desired kernel.
Objectives are optimised using PyTorch Adam implementation. The code runs
both on CPU and GPU; a full 3D registration takes 2-3 minutes on a laptop and
around 1 minute on an RTX3090.

5 Experiments & Results

We conduct 2 main experiments. First we investigate the properties of the 1st-
order information compared to the 0th-order using translation only. Secondly
we show that we can perform 3D non-rigid registration with convincing results.
We have used two 3D T1 weighted magnetic resonance images (MRI) from two
separate individuals for our proof of principle. The images are shown in Figure 1.

5.1 The similarity properties

To illustrate the effects of including higher-order (1st-order) information in the
similarity-measure, we map the 0th-order and 1st-order information as a function
of translation in 2D (x, y)-plane.

I

(a) Target (b) Source

Fig. 1: A Slice of the target and source image used for our experiments

Our first experiment shows how the information from the images using SSD
and NCC respectively appears in the simple case where the deformation ϕ is a
pure translation in 2D, for an MRI compared with itself. As Figure 2 illustrates,
the similarity in the 1st-order information has a significantly steeper slope close
to the optimum, compared to that of the 0th-order information for both SSD
and NCC. This indicates that including 1st-order information may improve reg-
istration close to the optimum. However, when comparing 2 different images in
Figure 3 we observe that multiple minima exist with 1st-order only, and that
0th-order has a better and a wider basin of attraction. Furthermore NCC seems
to be more suitable compared to SSD. Therefore a combination of 0th-order,
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1st-order information and NCC seems more appropriate for image registration
applications.

(a) NCC of 0th (b) NCC of 1st

(c) SSD of 0th (d) SSD of 1st

Fig. 2: The self similarity of the 0th and 1st order image information for NCC
and SSD respectively under translation in 2D around the identity.

5.2 Non-rigid registration

We perform 3 non-rigid registrations of the source and the target using only
1st-order information and using only 0th-order information and a combination
of both respectively. We used a free-form deformation cubic B-spline [14] with
5 voxel spacing between the knots and evaluation points for every second voxel.
We discretized the 1st-order information with 26 normalized directions, pointing
to each neighbouring voxel in a 3× 3× 3 local grid. We weighted 0th-order and
1st-order terms by the ratio between the number evaluation of the 0th-order and
the 1st-order ( 1

26
). As can be seen from the convergence plots (Figure 4), this

ratio will align both gradient information and intensity information, in contrast
to optimizing only the 0th-order or the 1st-order information.

The final registration results are shown in Figure 5. We have used both
formulations from eq. (4.7), with Jacobian normalisation, and eq. (4.8), without
Jacobian normalisation. As Figure 5 shows, the results are quite convincing, and
the difference between the two is very small. However, in this MRI registration
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(a) NCC of 0th (b) NCC of 1st

(c) SSD of 0th (d) SSD of 1st

Fig. 3: The similarity of the 0th- and 1st-order image information for NCC and
SSD respectively under translation in 2D around the identity for the source and
target image. Clearly, multiple local minima exist in the 1st-order information,
in contrast to 0th-order that only has one.

(a) NCC of 0th (b) NCC of 1st

Fig. 4: Convergence plot of NCC for 0th- and 1st-order similarities, separately,
as function of iterations. The experiment was performed optimizing only for
0th-order information, only 1st-order information and both with weight between
0th- and 1st-order terms as the ratio of the number of evaluation-orientations
( 1
26

). Note how the 1st-order appears to also maximize the 0th-order and how
1st-order fails to maximize the gradient information.
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case, the version not including scaling seems to be more suitable compared to
SSD.

5.3 Discussion and Limitations

The experiments presented in the previous section illustrate the gain obtained
by including 1st-order information, but also some limitations. First, it is clear
from our experiments that 1st-order information itself is not sufficient to make
a proper registration in our setup. Figure 6 shows it clearly, where the registra-
tion of the image is inferior and suffers from undesirable deformations. Another
point is that experiment here only serve as a proof of principle, and future work
will include a thorough comparison over multiple large data sets similar to [10].
Furthermore, we will extend the work to use diffeomorphisms like previous meth-
ods, such as: Symmetric Normalization [1] or the Collocation for Diffeormorphic
Deformations [2]. Finally, we will include an evaluation of information theory
metrics and the exploration of all the scales presented in the formulation.

6 Conclusion

We introduced a framework for including higher-order information into image
similarity and illustrated the application in image registration. We have shown
that the method is able to match both 0th− and 1st − order information us-
ing SSD and NCC. The framework allows us to use all admissible measures
from the LOR framework. We have shown that the framework is able to deliver
high-quality non-rigid registration and that it has the potential to improve the
accuracy of image registration in general.
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(d) Difference. (e) Difference.
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