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1 A Fully Adaptive Steepest Descent Method ∗

Z.R. Gabidullina

Abstract

For solving pseudo-convex global optimization problems, we present
a novel fully adaptive steepest descent method (or ASDM) without
any hard-to-estimate parameters. For the step-size regulation in an
ε-normalized direction, we use the deterministic rules, which were
proposed in J. Optim. Theory Appl. (2019, DOI: 10.1007/S10957-
019-01585-W). We obtained the optimistic convergence estimates for
the generated by ASDM sequence of iteration points. Namely, the
sequence of function values of iterates has the advantage of the strict
monotonic behaviour and globally converges to the objective function
optimum with the sublinear rate. This rate of convergence is now
known to be the best for the steepest descent method in the non-
convex objectives context. Preliminary computational tests confirm
the efficiency of the proposed method and low computational costs for
its realization.

keywords: pseudoconvex function, steepest descent, normaliza-
tion of descent direction, adaptive step-size, rate of convergence
MSC classes: 90C30, 65K05

1 Introduction

As is broadly known, the development of the original variant of the
steepest descent method (or, briefly, SDM) was pioneered by Cauchy
(1847) for solving systems of homogeneous equations. For solving the
mathematical programs in the other settings, a wide spectrum of vari-
ous kinds of SDM was investigated by researchers over the many years.
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A very useful systematic survey of the existing literature related to the
different variants of SDM can be found, for example, in [1, 2, 3] (see
also the references therein). For an up-to-date survey of the topic, it
is appropriate to refer to [2].

To avoid some conflicts and ambiguities that can be arisen in what
the term "steepest descent method" means in the literature on opti-
mization framework, we will try here to clarify some terminology. A
question can now be addressed. What conditions on an optimization
method ensure that the name SDM is properly used for its character-
izing. The reasons why we have felt the need for such an explanation
are twofold. In a wide range of optimization topics, some gradient
method is usually called a steepest descent method in the case of us-
ing the uniform descent indicated by opposite to the gradient direction.
Although tradition merely associates SDM not only with specific de-
scent directions but with selecting the step-size by exact (or so-called
perfect) line search. At the same time, the wide spectrum of papers
on global optimization utilize the term "steepest descent method" or
modifications of SDM regardless of what strategies is used for the step-
size selection. In this paper, we apply in ASDM the rules of regulating
the step length which are different from the exact (computationally
expensive) line search.

Rather than describing all the various versions of SDM, that re-
searchers have been constructed over the years for the achievement of
the best results, we will occupy our attention only in some relevant
work.

In [4],[5], there were studied the two versions of SDM for functions
being twice differentiable on the Euclidean space. The second of them
provides global convergence at a rate which is eventually superlinear
and possibly quadratic.

In [6], the development, convergence theory and numerical testing
some versions of steepest descent algorithm with adaptive step-size
was presented. All of the algorithms are computationally efficient.
Based on estimates of the Lipschitz constant, there was proved the
convergence of the different variants of SDM to a minimizer or to
a stationary point of objective function. The algorithms have been
tested on real-life artificial neural network applications and the results
have been very satisfactory.

To minimize a continuously differentiable quasiconvex function,
SDM with Armijo’s step-sizes was proposed in [7]. This method gen-
erates a sequence of iterates globally converging to a point at which
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the gradient of the objective function is equal to zero vector.
In [8], there were derived two-point step sizes for SDM by approx-

imating the secant equation. At the cost of storage of an extra iterate
and gradient, these algorithms achieve better performance and cheaper
computation than the classical SDM. By Barzilai and Borwein, there
was proposed the non-monotonic variant of SDM which is superlinearly
convergent for convex quadratic setting in two-dimensional space, and
has quite well behaviour for the case of high-dimensional tasks.

In [9], there is used an idea that a limited memory approach might
be fashioned by using a limited number of eigenvalue estimates. An
improvement of characteristics of SDM has been achieved by the intro-
duction of the Barzilai-Borwein choice of step length, and some other
related ideas. There is suggested a method which is able to take advan-
tage of the availability of a few additional ‘long’ vectors of storage to
achieve a significant improvement in performance, both for quadratic
and non-quadratic objective functions. The sequence of iterates con-
verges to the point for which the gradient of objective function equals
the zero vector.

A step-size formulae, which provides for SDM fast convergence and
the monotone property, was presented in [10]. An algorithm with the
new step-size in even iterations and exact line search in odd iterations
is proposed. Numerical results obtained by the new method confirm
that the the exact solution may be found within three iterations for
the case of two-dimensional problems. For small-scale problems, the
new method is very efficient. A modified version of the new method is
also presented, where the new technique for choosing the step length
is utilized after every two iterations with exact line searches. The
modified algorithm is comparable to the Barzilai-Borwein method for
large-scale tasks and better for small-scale tasks.

In [11], there is investigated a generalized hybrid steepest descent
method and its convergence theory for solving monotone variational
inequality over the fixed point set of a mapping which is not necessar-
ily Lipschitz continuous. This method is used for solving the convex
minimization problem for a smooth convex function whose gradient
is not necessarily Lipschitzian. There is proved that the sequence of
iterates converges strongly to a minimizer x∗.

Full convergence of the steepest descent method with inexact line
searches was proved in [1]. There were considered two of such pro-
cedures and proved, for a convex objective function, convergence of
the whole sequence to a minimizer without any level set boundedness
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assumption and, for one of them, without any Lipschitz condition.
In [2], there was demonstrated how taking into account the spectral

properties of the Hessian matrix, for convex quadratic problems, one
can provide the improvement of the practical behaviour of SDM. This
allows them to obtain computational results comparable with those
of the Barzilai and Borwein algorithm, with the further advantage of
monotonic behaviour.

In [12], there are presented results describing the properties of the
gradient norm for the SDM applied to quadratic objective functions.
There are also made some general observations that apply to nonlinear
problems, relating the gradient norm, the objective function value, and
the path generated by the iterates.

By the method from [3], there is guaranteed the well definedness
of the generated sequence. Under mild assumptions on the multicrite-
ria function, there was justified that each accumulation point (if they
exist) satisfies first-order necessary conditions for Pareto optimality.
Under assumptions of quasi-convexity of the multicriteria function and
non-negativity of the Riemannian manifold curvature, full convergence
of the sequence to a Pareto critical was proved.

The main contributions in this paper are as follows. We propose
a novel fully adaptive steepest descent method with the step length
regulation for solving pseudo-convex unconstrained optimization tasks.
This relaxation algorithm allows one to generate the sequence of iter-
ates {xk}, k = 0, 1, . . . such that the sequence of its function values
{f(xk)}, k = 0, 1, . . . has the advantage of the strict monotonic be-
haviour and converges globally to the objective function optimum with
the following rate O(1/k). This rate is traditionally called the sublin-
ear one. To the best of our knowledge, a convergence rate of O(1/k) is
now known to be the best for SDM in a non-convex objectives context.

The sublinear convergence rate takes place under the following con-
ditions relating the original problem: 1) an objective function f(x) is
pseudo-convex on some convex set D ⊆ R

n (the set D may coin-
cide, for instance, with the Lebesgue set (corresponding to a starting
point of the iterates sequence) of the objective function or with the
whole Euclidean space and etc), 2) the function f(x) is required to
be satisfied to so-called Condition A introduced in [13]. We note that
this condition will be defined explicitly below in Section 2 (see Defini-
tion 2.2).

Here, we underline that, for the execution of ASDM, there is no
need to make use any priori information regarding the auxiliary con-
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stant defined in Condition A. With respect to this fact, the presented
version of ASDM compares favorably with the other variants of SDM
considered above. The fulfillment of Condition A allows us further to
adaptively regulate the step-size without appling any complicated line
search techniques. Indeed, there is no need to use the one-dimensional
exact minimization of the objective function in the selected descent
direction. We apply the two deterministic rules of the step length ad-
justment. These strategies guarantee to determine the step-size by uti-
lizing the finite procedures of diminishing an initial value of a certain
parameter. The latter is a user-selected parameter which is dimin-
ished until a moment when the condition applied for the step length
regulation becomes fulfilled. We notice that the step-size computing
strategies provide the strict relaxation of the objective function at each
iteration. Note that the concept of the objective function relaxation al-
lows to interpret of the relaxation properties of minimization methods.
Due to this interpretation, we can to evaluate how the objective func-
tion value is decreased at each iteration. The event of this value being
diminished on the positive magnitude corresponds to the property of
the strict relaxation which is described by the following inequality:
f(xk) > f(xk+1), k = 0, 1, . . .

The fully adaptive character of the presented variant of SDM is
established namely by combining the simultaneous control of adapting
an ε−normalization parameter of the descent direction as well as the
step-size regulation in tandem. We establish the finiteness of all the
procedures for the step-size regulation as well as the adaptation of the
ε−normalization parameter.

Due to all the mentioned properties of ASDM, it seems that the re-
sults of the paper may be potentially useful in various applied domains
covering their theoretical as well as practical aspects (in pseudo-convex
programming, variational inequality problem solving, and many oth-
ers (in particular, data classification techniques and neural networks
simulation)).

The rest of this paper is organized as follows. In Section 2 we
present some preliminaries which are necessary for our convergence
rate analysis of ASDM. In Section 3, there is formulated ASDM and
justified its convergence rate. In Section 4, there are drawn some
conclusions.

5



2 Definitions and Preliminaries

In this paper we aim to to explore the following problem:

min
x∈Rn

f(x), (1)

where f(x) : Rn → R
1 is a continuously differentiable pseudo-convex

function satisfying the so-called Condition A (introduced in [13]) on a
convex set D ⊆ R

n. To solve this problem, we propose a new efficient
algorithm, which has the estimates of the rate of its convergence and
allows one to adaptively regulate both the parameter of an ε−norma-
lization of a descent direction and a step length.

We begin with some notations:

∇f(x) = (
∂f(x)

∂ξ1
,
∂f(x)

∂ξ2
, . . . ,

∂f(x)

∂ξn
)

is the gradient of the function f(x) at the point x = (ξ1, ξ2, . . . , ξn),
x0 stands for a starting point of the iterative consequence {xk}, k ∈ N

generated by minimizing the objective function.
Let ‖ · ‖ stand for the Euclidean norm of a vector in R

n, 〈·, ·〉
stand for the usual inner product, f∗ := min

x∈Rn
f(x), X∗ := {x ∈

R
n : f(x) = f∗}, N = {0, 1, . . .}, 0 be a zero vector of R

n, and p∗k
correspond to a projection of the iterative point xk onto the set X∗,
k ∈ N. In the literature on optimization, p∗k, k ∈ N are sometimes
called accumulation points.

To the extent of our knowledge, the class of smooth pseudo-convex
functions was pioneered by Mangasarian in [14]. The above-mentioned
class represents a generalization of the family of all continuously dif-
ferentiable convex functions.

Definition 2.1 (pseudo-convexity) A function f(x), which is given
and continuously differentiable on an open and convex set G from R

n,
is called pseudo-convex, if there is fulfilled the following implication:

〈∇f(x), y − x〉 ≥ 0 ⇒ f(x) ≤ f(y), ∀x, y ∈ G,

or equivalently,

f(y) < f(x) ⇒ 〈∇f(x), y − x〉 < 0, ∀x, y ∈ G.

In the case of pseudo-convex functions, the necessary and sufficient
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conditions of optimality are established in the following theorem.

Theorem 2.1 (basic first-order conditions for optimality) ([14], p.282)
For the point x∗ ∈ G to furnish the minimum of f(x) over G, it is
necessary and sufficient for all x ∈ G to hold

〈∇f(x∗), x− x∗〉 ≥ 0.

Definition 2.2 (Condition A) We say that a continuous function f(x)
satisfies Condition A on the convex set D ⊆ R

n if there exist a non-
negative symmetric function τ(x, y) and µ > 0 such that

f(αx+ (1− α)y) ≥ αf(x) + (1− α)f(y)− α(1 − α)µτ(x, y),

∀x, y ∈ D, α ∈ [0, 1].

For x, y ∈ D ⊆ R
n, we say that some function τ(x, y) is symmetric

if τ(x, y) = τ(y, x), τ(x, x) = 0. Condition A characterizes a suf-
ficiently wide class of functions A(µ, τ(x, y)) . It was demonstrated
in [13],[15, 16] that the functions class A(µ, ‖x − y‖2), in particular,
is broader than C1,1(D) - the commonly known class of functions
whose gradient vectors have Lipschitzian property on the convex set
D ⊆ R

n. By the way, we notice that namely the Lipschitz condition
for gradients of functions being minimized has been determined as the
necessary assumption in justifying the theoretical estimates of the con-
vergence rate for many modern smooth optimization methods. In [16],
there were presented some examples of functions that satisfy Conditi-
on A. For functions from A(µ, τ(x, y)), there also were explored their
main properties and criteria for membership in the studied class. Fur-
thermore, for a smooth function satisfying Condition A on a convex
set D, there was proved in [16] the following remarkable differential
inequality:

f(x)− f(y) ≥ 〈∇f(x), x− y〉 − µτ(x, y). (2)

Theorem 2.2 (relation between two classes of functions) ([17], p.1082)
If D is convex subset of R

n, f(x) ∈ C1,1(D), then f(x) satisfies
Condition A on D with coefficient µ = L/2 and function τ(x, y) =
‖x− y‖2, where L is a Lipschitz constant for the gradient of f(x).

Definition 2.3 (ε−normalized descent direction) For functions from
the class A(µ, ‖x−y‖v), v ≥ 2, a vector s 6= 0 is called an ε−normalized
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descent direction (ε > 0) of the function f at the point x ∈ D ⊆ R
n if

the following inequality is fulfilled:

〈∇f(x), s〉+ ε‖s‖v ≤ 0.

Lemma 2.1 ( ε−normalization) If some descent direction s is not
ε−normalized, then the vector constructed in such a way that s̄ =
ts

ε‖s‖v
is ε−normalized under the condition 0 < t ≤ |〈∇f(x), s〉|.

Proof. By construction, we obviously obtain the following relation:

〈∇f(x), s̄〉+ ε‖s̄‖v =
t

ε‖s‖v
〈∇f(x), s〉+

tv

εv−1‖s‖v(v−1)
=

=
t

ε‖s‖v

[

〈∇f(x), s〉+ t

[

t

ε‖s‖v

]v−2
]

≤ 0,

because

[

t

ε‖s‖v

]v−2

≤ 1. �

Under the condition v = 2, if for some fixed point x ∈ R
n the

vectors z − x are ε−normalized descent directions at the point x,
then it is easy to observe that all the points z ∈ R

n belong to the
n−dimensional ball of radius R = ‖∇f(x)‖/2ε with center at the
point u = x−∇f(x)/2ε.

Set

ζ =

{

(ε · µ−1)1/(v−1), if ε < µ,

1, if ε ≥ µ.

We further study very useful properties of ε−normalized descent di-
rections. These properties provide a strict relaxation of the objective
function in gradient methods.

Lemma 2.2 (main properties of ε−normalized descent directions)
([17], p.1083) Let s be some ε−normalized descent direction for the
function f at the point x where v ≥ 2, f(x) ∈ A(µ, ‖x − y‖v),
then for all β ∈ ]0, 1[ there exists a constant λ̂ = λ̂(β) > 0 (λ̂ =

(1− β)1/(v−1)ζ) such that for all λ ∈
]

0, λ̂
]

it holds

f(x)− f(x+ λs) ≥ −λβ · 〈∇f(x), s〉, (3)

f(x)− f(x+ λs) ≥ λβ · ε‖s‖v. (4)
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For establishing the convergence of the adaptive algorithm, which will
be proposed below, there are needed the inequalities (3)–(4). In partic-
ular, they imply a strict relaxation of the objective function. Namely,
it holds

f(x+ λs) < f(x), ∀λ ∈ (0, (1− β)1/v−1ζ], β ∈ (0, 1).

Based on Lemma 2.2, there can be described the rules of computing
the step-size satisfying (3)–(4). Suppose that s is some ε−normalized
direction of descent for f at the point x. Additionally, let the following
conditions be fulfilled: β ∈ ]0, 1[ , η = (1 − β)1/v−1, î = 1, J (̂i) =
{̂i, î+1, î+ 2, . . .}. Next we need to find i∗ - the least index i ∈ J (̂i)
for which there holds the following inequality:

f(x)− f(x+ ηis) ≥ −ηiβ · 〈∇f(x), s〉, (5)

or the more weak inequality:

f(x)− f(x+ ηis) ≥ ηiβ · ε‖s‖v . (6)

We further set λ = ηi
∗

. In what follows, we have in view that there is
utilized Rule 1 (or Rule 2) when we follow the first (or the second) of
the above-mentioned strategies for calculating the step-size. The step
length determined in accordance with these strategies satisfies (3) or
(4), respectively.

Further, there should be attentionally explored the case when s
is the ε−normalized direction of descent, but it is not µ−normalized
(this case is possible only for ε < µ). Under the assumption that
0 < ε < µ, for the event of choosing λ according to Rule 1 or Rule 2,
we demonstrate that the step length is bounded from below. This
evidently yields that the described procedures of diminishing the step-
size are finite.

Lemma 2.3 (exact lower estimate of the step length)([17], p.1084) If
(b) f(x) ∈ A(µ, ‖x− y‖v), v ≥ 2,
(c) 0 < ε < µ, β ∈ ]0, 1[ ,
(d) s− is an ε−normalized descent direction of the function f at the
point x, but it is not µ−normalized,
(e) i∗ is the smallest index i = 1, 2, . . . , for which there is fulfilled the
condition of Rule 1 or Rule 2, λ = ηi

∗

;
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Then the following estimate holds:

λ >
(

εµ−1 · (1− β)2
)1/(v−1)

> 0.

Remark 2.1 (exact lower estimate of the constant µ) Due to Lemma
2.3, there comes immediately the following estimate:

µ > ε · (1− β)2λ1−v. (7)

Later, the estimate (7) will be utilized in ASDM for adaptive regula-
tion of the parameter for the ε−normalization of the descent direction.

3 Adaptive Steepest Descent Algorithm

and its Convergence

This section is aimed at providing the principles of selecting the ε−nor-
malization parameter for the descent direction. We note that these
principles are universal and may be utilized for developing the vari-
ous adaptive algorithms with normalized descent directions (see, for
instance, [17]).

The method convergence for the fixed parameter ε (in the case of
an arbitrary ratio of the parameter ε and the value of µ in Condition
A) follows from the convergence of the adaptive variant of SDM. We
notice that generally saying the constant µ is unknown beforehand. In
practice, the selection of the ε values close to the µ value is therefore
decisive for the algorithm convergence. If one chooses the too small
parameter ε, then, according to Rule 1 and Rule 2, this may imply
significant diminishing the step-size. In the case of selecting the un-
justifiably large value of ε, the convergence of the adaptive algorithm
may be slowed down. Consequently, it is expedient to evaluate the pa-
rameter ε in the process of executing the algorithm. The inequalities
(5)–(7) allow us to make an adjustment to the value ε by increasing
it if the previous choice was unsuccessful. Now, we specify further
details of a procedure for pointwise adapting the parameter ε during
the iterative implementation of the algorithm.
For the iterate xk of the adaptive algorithm, let εk > 0 be the value
of a parameter for an ε−normalization of descent direction. Let sk be
an ε−normalized descent direction of the function f at xk; the itera-
tive step-size λk is chosen in accordance with one of the Rules 1–2.
Suppose that ik is the least index i ∈ J (̂i), for which there is fulfilled
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the condition of selecting the iteration step-size for x = xk, ε = εk,
s = sk. According to Lemma 2.2, if ik = î, then for implementing
the next - (k + 1)−th iteration it is expedient to remain unchanged
the value of the normalization parameter, i.e. to put εk+1 = εk.
During the process of dropping the step-size, let the verified condi-
tion (5) (or condition (6)) be fulfilled for ik > î. Then, according to
(7), there should be increased the current value of the parameter for
the ε−normalization of the descent direction, for example, as follows:
εk+1 = εk · ζk. Regardless of what rule is chosen for computing the
step-size, here we have

ζk = (1− β)1−ik . (8)

The fact that µ is finite implies that after the finite number of in-
creases, the value of the parameter ε can exceed µ and cease to vary.
Suppose that j > 0 is the number of iteration, on which it is fulfilled
εj ≥ µ. One then has εk ≥ εj ≥ µ, ∀k ≥ j. In this event, after some
iteration (j ≥ 0 the adaptive algorithm starts to be implemented with
the fixed constant for the ε−normalization of a descent direction. We
emphasize that beginning with the j−th iteration, the step-size be-
comes unchanged: λk = η, ∀k ≥ j. At that time, for computing the
iterative step length, one needs only one calculation of the objective
function value at the point xk + ηsk (for verifying the fulfillment of
the condition applied for selecting the step-size).

Algorithm.

Step 0. Initialization. Select x0 ∈ R
n, β ∈ ]0, 1[ , ε0 > 0. Set the

iteration counter k to 0.
Step 1. For the objective function f(x), calculate the gradient vector
at xk. Verify the optimality criterion:
if ∇f(xk) = 0, then terminate the algorithm implementation (since xk
is a solution of the problem (1)). Otherwise, set pk = −∇f(xk),

sk =







pk, if 〈∇f(xk), pk〉+ εk‖pk‖
v ≤ 0,

tkpk
εk‖pk‖v

=
pk

εk‖pk‖v−2
, othewise.

Here tk = |〈∇f(xk), pk〉| = ‖∇f(xk)‖
2.

Step 2. Let ik be the least index i ∈ J (̂i) for which there holds the
condition from Rule 1 or Rule 2 when x = xk, s = sk, ε = εk. Set
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λk = ηik .
Step 3. Compute the next iterate xk+1 = xk + λksk.
Step 4. Update εk+1 = ζkεk. Set k = k + 1 and go to Step 1.

Clearly, there should be applied the same rule for choosing the
step-size at each iteration point.

Remark 3.1 (verification of the descent direction) Let s̄k = ‖pk‖.
The vector sk generated by the algorithm is the ε−normalized descent

direction. This is obvious when sk = s̄k. In the case of sk =
tks̄k

εk‖s̄k‖v
,

Lemma 2.1 confirms that sk is also ε− normalized. In addition, it
clearly holds ‖sk‖ ≤ ‖s̄k‖. Really,

‖sk‖ =







‖s̄k‖, if 〈∇f(xk), s̄k〉+ εk‖s̄k‖
v ≤ 0,

tk
εk‖s̄k‖v−1

< ‖s̄k‖, otherwise,

because
tk

εk‖s̄k‖v
=

−〈∇f(xk), s̄k〉

εk‖s̄k‖v
< 1.

Suppose that {xk} is the sequence generated by ASDM. To explore
the rate convergence of ASDM for the pseudo-convex setting, it is
necessary to establish a criterion of global optimality for a solution.
Usually, we do not know beforehand the optimum value of the function
being minimized. Therefore, it is crucial to work out directly the
stopping criterion of ASDM for the pseudo-convex setting. We note
that the set D in the formulation of the next theorem may coincide,
for instance, with the Lebesgue set of the function f(x) at the point
x0 ∈ R

n or with the whole space.

Theorem 3.1 (constructive measure of optimality for ASDM) Let f(x)
be a continuously differentiable pseudo-convex function on some con-
vex set D ⊆ R

n, X∗ ⊂ D. Then, for the fulfillment of the equality
f(xk) = f∗, xk ∈ D, k = 1, 2, . . . , it is sufficient to hold

∇f(xk) = 0. (9)

Proof. The equality (9) obviously yields that 〈∇f(xk), x − xk〉 =
0,∀x ∈ D. By definition of a pseudo-convex function, we then have
f(xk) ≤ f(x), ∀x ∈ D. Since X∗ ⊂ D, this is what we want to prove.
�
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Further, we assume that xk /∈ X∗, ∀k = 0, 1, . . . With the pur-
pose of investigating the convergence of optimization methods in the
pseudo-convex setting, there is usually described in the literature on
optimization an auxiliary numeric sequence {θk} as follows:

θk > 0, 0 < θk · (f(xk)− f(x∗)) ≤ 〈∇f(xk), xk − x∗〉, x∗ ∈ X∗, k ∈ N.
(10)

By the definition of pseudo-convex functions, there must exist such
values θk. For instance, in the case of a continuously differentiable
convex function, it holds θk = 1, k = 0, 1, . . . The estimates of elements
of the sequence {θk} were studied, for instance, in [13, 16].

Before formulating the theorem on the convergence of the sequence
{xk} constructed by ASDM to a solution of problem (1), there should
be reminded the following well-known fact related to convergence of
some special numeric sequence.

Lemma 3.1 (sublinear rate of convergence for numeric sequences)
([18], p.102) If a numeric sequence {ak} is such that

ak ≥ 0, ak − ak+1 ≥ q · a2k, k = 1, 2, . . . ,

where q is some positive constant, then the following estimate holds:

ak ∼ O(1/k),

i.e. there will be found a constant
q1 > 0 such that 0 ≤ ak ≤ q1 · k

−1, k = 1, 2, . . .

The next auxiliary lemma is needed for the purpose of proving the
convergence theorem. This lemma establishes the upper bound for the
adapted values of the normalization parameter for each iteration.

Lemma 3.2 (boundedness of adapted values of the normalization pa-
rameter) ([17], p.1088) If
(b1) f(x) ∈ A(µ, ‖x − y‖v), v ≥ 2,
(c1) sk is the εk−normalized descent direction,
(d1) ik is the least index i ∈ J (̂i) for which there holds one of the con-
ditions (5) or (6) under the assumptions that s = sk, x = xk, ε = εk,
λk = ηik ,
(e1) {xk} is some iterative sequence constructed by the rule:

xk+1 = xk + λksk, k ∈ N,
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(f1) ε0 > 0, εk+1 = εk · (1− β)1−ik , k ∈ N.

Then it is fulfilled εk ≤ ε̄, ∀k ∈ N, where ε̄ = max

{

ε0,
µ

1− β

}

> 0.

The next two universal theorems provide the possibility of evaluating
the expected decrease of the objective function value when one uses
the εk−normalized direction of descent and step-size chosen according
to one of the above-described rules (Rule 1 or Rule 2). Here we speak
of these next two theorems as universal ones in the sense that their
formulation and proof do not depend on concrete algorithms. Indeed,
there are important only the facts that all of the descent directions are
normalized and the step-size is regulated by Rule 1 or Rule 2. For the
proof details of these theorems, we refer the interested reader to [17].

Theorem 3.2 (estimate of the magnitude of decreasing the objective
function value when the step length is selected according to Rule 1)([17],
p.1089) If
(b2) the conditions (b1), (c1), (e1) and (f1) of Lemma 3.2 are ful-
filled,
(c2) ik is the smallest index i ∈ J (̂i) for which there is fulfilled
the condition (5) with x = xk, s = sk, ε = εk, λk = ηik , η =
(1− β)1/(v−1), β ∈ ]0, 1[.

Then there will be found a constant C̄ > 0 such that for all k ∈ N

the following relation holds:

f(xk)− f(xk+1) ≥ −C̄ · 〈∇f(xk), sk〉 ≥

− C̄ · (〈∇f(xk), sk〉+ εk‖sk‖
v), (11)

where C̄ = min {C1, C2} , C1 = β(1− β)1/(v−1),

C2 =
(

(1− β)2ε0/µ
)1/(v−1)

β.

Theorem 3.3 (estimate of the magnitude of decreasing the objective
function value when the step length is selected according to Rule 2)([17],
p.1089) Let
(b3) the conditions (b1), (c1), (e1) and (f1) of Lemma 3.2 be fulfilled,
(c3) the values of the iterative step-size λk, ∀k ∈ N be determined
using (6). Then there will be found a constant C̄ > 0 such that for all
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k ∈ N the inequality (11) holds with the following constants:

C̄ = min {C1, C2} , C1 = β(1− β)1/(v−1),

C2 =
(

ε0µ
−1(1− β)2

)1/(v−1) (
1 + ε0µ

−1(1− β)β−1
)−1

.

Theorem 3.4 (sublinear rate of convergence of ASDM) If
(b4) f(x) is a continuously differentiable pseudo-convex function on
the convex set D ⊆ R

n (X∗ ⊂ D) satisfying Condition A with some
constant µ and a function τ(x, y) = ‖x− y‖v, v ≥ 2,
(c4) a numeric sequence {θk}, which is defined by (10), satisfies the
condition: ∃θ > 0 such that θk ≥ θ, ∀k,
(d4) there exists a constant γ > 0 such that ‖∇f(x)‖ ≤ γ < ∞,
∀x ∈ D,
(e4) the Lebesgue set of the function f(x) at the point x0 ∈ R

n, which
is denoted by M(f, x0) := {x ∈ R

n : f(x) ≤ f(x0)}, is bounded,
(g4) a step-size λk, k ∈ N is chosen according to one of the rules
(Rule 1 or Rule 2).
Then the sequence {xk}, k ∈ N converges weakly , i.e.

f(xk)− f∗ ∼ O(1/k),

or equivalently, there exists a constant C3 > 0 such that it holds

f(xk)− f∗ ≤ C3 · k
−1.

Proof. Clearly, f(p∗k) = f∗, f(xk) > f(p∗k), ∀k ∈ N. By definition
of pseudo-convex functions, it is fulfilled 〈∇f(xk), p

∗

k − xk〉 < 0. Ac-
cording to the assertions of Theorems 3.2–3.3, regardless of whether
Rule 1 will be selected for calculating the step-size or Rule 2, there
may be found a constant C̄ > 0 such that the inequality (11) holds
for all k ∈ N. Choose the subset of indices N1 ⊂ N such that sk = pk,

k ∈ N1. One then has sk =
pk

εk‖pk‖v−2
∀k ∈ N2 = N\N1. For all

k ∈ N1, we have the estimate:

f(xk)− f(xk+1) ≥ −C̄ · 〈∇f(xk), sk〉 = C̄ · ‖∇f(xk)‖
2.

From Lemma 3.2, due to (11), for all k ∈ N2, it follows the relation

f(xk)− f(xk+1) ≥ −C̄ · 〈∇f(xk), sk〉 =

−C̄

εk‖pk‖v−2
· 〈∇f(xk), pk〉 ≥

C̄

ε̄γv−2
‖∇f(xk)‖

2.
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Thus, for all k ∈ N, one has arrived at the inequality

f(xk)− f(xk+1) ≥ C̃ · ‖∇f(xk)‖
2, (12)

where C̃ = C̄min

{

1,
1

ε̄γv−2

}

. By virtue of the condition (e4),

diamM(f, x0) = sup{‖x− y‖, x, y ∈ M(f, x0)} = η̄ < +∞.

Therefore, we immediately have the following estimate

‖∇f(xk)‖
2 ≥ ‖∇f(xk)‖

2‖xk − p∗k‖
2 ·

1

η̄2
≥

1

η̄2
· 〈∇f(xk), xk − p∗k〉

2.

Consequently, for all k ∈ N from (10), (12), and (c4) it follows

f(xk)−f(xk+1) ≥
C̃

η̄2
·〈∇f(xk), xk−p∗k〉

2 = C3 ·(f(xk)−f(p∗k))
2, (13)

where C3 = θ2
C̃

η̄2
. Due to Lemma 3.1, the latter implies that the

sequence {xk}, k ∈ N is weakly convergent to a solution of (1), since
there holds the following estimate for the convergence rate:

f(xk)− f∗ ≤ C−1
3 k−1. �

Remark 3.2 There is no a need to strictly require the fulfillment of
the condition (b4) of Theorem 3.4 in the whole space R

n. For instance,
it is sufficient to have that D = M(f, x0), where x0 is a starting point
for ASDM. Besides, there may simply be chosen some convex set for
which it holds X∗ ⊂ D.

Preliminary computational tests confirm the efficiency of the proposed
method and the strict monotone property of the used step-size rules.
These tests show that the results of minimization depends on the user-
selected parameters of ASDM such as β and ε. We also observe that
at each iteration (after the first one) there is needed only one function
and gradient evaluation. Our preliminary experiments has demon-
strated the ability of ASDM to lead to the minimum neighborhood at
low computational costs.
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4 Conclusions

We proposed a fully adaptive variant of the steepest descent method.
There are used some novel rules for the calculation of the step length
in which the iteration step-size is regulated additionally by an adapta-
tion of the ε−normalization parameter for the descent direction. The
finiteness of all the procedures of adaptive controlling both the param-
eter of an ε−normalization of a descent direction and a step length was
established. For the problem of unconstrained minimizing a smooth
pseudo-convex function, we justified the sublinear rate of the conver-
gence for the adaptive variant of the steepest descent method.

One of the motivating ideas was that of using in the future the
adaptive steepest descent method to solve the problems of sets separa-
tion (by minimizing the error function) and related problems of data
mining (in particular, neural network classification of data).
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