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A differential relation between the energy and electric charge of a dyon
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Abstract

The differential relation between the energy and electric charge of a dyon is derived. The relation expresses
the derivative of the energy with respect to the electric charge in terms of the boundary value for the temporal
component of the dyon’s electromagnetic potential. The use of the Hamiltonian formalism and transition
to the unitary gauge make it possible to show that this derivative is proportional to the phase frequency of
the electrically charged massive gauge fields forming the dyon’s core. It follows from the differential relation
that the energy and electric charge of the non-BPS dyon cannot be arbitrarily large. Finally, the dyon’s
properties are investigated numerically at different values of the model parameters.
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1. Introduction

Electrically charged solitons exist in both (2+1)-
dimensional [1–12] and (3 + 1)-dimensional [13–
26] gauge field models. The (2 + 1)-dimensional
field models permitting the existence of electrically
charged solitons include the Chern–Simons gauge
term [27–29], and therefore their gauge fields are
topologically massive, resulting in the short-range
electric field. In contrast, the three-dimensional
electrically charged solitons possess a long-range
electric field because the corresponding (3 + 1)-
dimensional field models include only the Maxwell
gauge term, leading to the massless gauge fields.
The three-dimensional electrically charged soli-

tons can be both topological [13–17] and nontopo-
logical [18–26] type. The properties of these two
types of solitons are substantially different. The
existence of the electrically charged nontopologi-
cal solitons is due to the presence of the conserved
Noether (electric) charge and the special form of the
self-interaction potential of scalar fields. The basic
property of the nontopological soliton is that its
field configuration is a stationary (saddle or mini-
mum) point of the total energy functional at a given
fixed value of the Noether charge [30–32]. This
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property results in the differential relation between
the energy and the Noether charge of the nontopo-
logical soliton, which, in turn, determines a number
of the soliton’s properties.
On the other hand, the existence of the topo-

logical solitons, including the electrically charged
ones, is due to the topological nontriviality of their
field configurations, which prevents the transitions
of topological solitons into the states with the lower
energy. In particular, the presence of a potential
term is not a necessary condition for the existence of
topological solitons [33]. The best known example
of the three-dimensional topological solitons pos-
sessing an electric charge is the dyon solution [13]
of the Georgi–Glashowmodel [34]. In this Letter we
derive the differential relation between the energy
and electric charge of this dyon solution. We also
ascertain that the differential relation determines a
number of properties of the dyon. In particular,
we show that it does not allow the existence of the
non-BPS dyons possessing the arbitrary large elec-
tric charge and energy.

2. Lagrangian and field equations of the

model

The Lagrangian density of the Georgi–Glashow
model is

L = −1

4
F a
µνF

a µν +
1

2
(Dµφ

a) (Dµφa)−V (φ) , (1)
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where

F a
µν = ∂µA

a
ν − ∂νA

a
µ − eǫabcAb

µA
c
ν (2)

is the non-Abelian field strength,

Dµφ
a = ∂µφ

a − eǫabcAb
µφ

c (3)

is the covariant derivative of the Higgs field φ, and

V (φ) =
λ

4

(

φaφa − v2
)2

(4)

is the self-interaction potential of the Higgs field φ.
In Eqs. (2) – (4), e is the gauge coupling constant, λ
is the self-interaction coupling constant of the Higgs
field, and v is the Higgs field vacuum expectation
value. The field equations of model (1) have the
form

DνF
a µν + eǫabcφbDµφc = 0, (5)

DµD
µφa + λ

(

φbφb − v2
)

φa = 0, (6)

and the symmetric energy-momentum tensor is

Tµν = −F a
µρF

a ρ
ν + (Dµφ

a) (Dνφ
a) (7)

+ ηµν

[

1

4
F a
ρτF

a ρτ − 1

2
(Dρφ

a) (Dρφa) + V (φ)

]

,

where ηµν = diag(+1,−1,−1,−1) is the metric ten-
sor.

In model (1), finite energy field configurations
must satisfy the asymptotic condition lim

r→∞
|φ| = v,

which is equivalent to the mapping of the infinitely
distant space sphere S2

∞ to the vacuum sphere
S2
vac : |φ| = v. It is well known that the map-

pings S2 → S2 are split into different topologi-
cal classes, which are characterised by the integer
winding number n according to the sphere’s sec-
ond homotopy group π2

(

S2
)

= Z. In the topolog-
ical sector with the winding number n = 1, model
(1) has the two well known topological soliton solu-
tions: the ’t Hooft–Polyakov monopole [35, 36] and
Julia–Zee dyon [13]. Both the ’t Hooft–Polyakov
monopole and Julia–Zee dyon possess the minimum
possible magnetic charge g = 4π/e. At the same
time, the electric charge of the ’t Hooft–Polyakov
monopole is equal to zero, whereas that of the dyon
is nonzero. When the electric charge tends to zero,
the dyon field configuration smoothly goes into the
’t Hooft–Polyakov monopole.

The field configuration of the dyon is described
by the spherically symmetric ansatz

Aa0 = navj (r) , (8a)

Aai = ǫaimnm 1− u (r)

er
, (8b)

φa = navh (r) , (8c)

where na = xa/r. We now introduce the dimen-
sionless radial variable ρ = mV r, where mV = ev is
the mass of the electrically charged gauge bosons.
Then, the ansatz functions u (r), j (r), and h (r) will
satisfy the system of nonlinear differential equations
of the second order:

u′′ (ρ)− u(ρ)
(

u(ρ)2 − 1
)

ρ2
(9)

−
(

h(ρ)2 − j(ρ)2
)

u(ρ) = 0,

j′′ (ρ) +
2

ρ
j′ (ρ)− 2

ρ2
u(ρ)2j(ρ) = 0, (10)

h′′ (ρ) +
2

ρ
h′ (ρ)− 2

ρ2
u(ρ)2h(ρ) (11)

+ κ
(

1− h(r)2
)

h(r) = 0,

where the dimensionless parameter κ = λe−2, and
the prime indicates the derivative with respect to
ρ. Substituting ansatz (8) into the expression for
the T00 component of symmetric energy-momentum
tensor (7) and integrating it over the space, we ob-
tain the expression for the energy of the dyon

E = mM

∞
∫

0

[

u′ (ρ)2

ρ2
+

1

2

(

h′ (ρ)
2
+ j′ (ρ)

2
)

+

(

u (ρ)2 − 1
)2

2ρ4
+

(

h (ρ)2 + j (ρ)2
)

u (ρ)2

ρ2

+
κ

4

(

1− h (ρ)2
)2

]

ρ2dρ, (12)

where mM = 4πve−1 is the mass of the BPS
monopole [14].
The regularity of the dyon solution at r = 0 and

the finiteness of dyon energy (12) lead us to the
boundary conditions for the ansatz functions:

j(0) = 0, lim
ρ→∞

j(r) = c, (13a)

u(0) = 1, lim
ρ→∞

u(r) = 0, (13b)

h(0) = 0, lim
ρ→∞

h(r) = 1, (13c)

where c is a finite value. It follows from Eqs. (9)
and (13) that at large ρ, the ansatz function
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u(ρ)∞ exp
[

−
(

1− c2
)1/2

ρ
]

. Hence, the limiting
value c of the ansatz function j(ρ) must satisfy the
condition |c| < 1.
The Higgs field (8c) is not invariant under the

initial SU(2) gauge group of model (1), but it re-
mains invariant under the U(1) gauge subgroup
that corresponds to local rotations around the unit
vector na = xa/r in the isospace. This leads to
the existence of the long-range gauge field that can
be described by the field strength tensor Fµν =
v−1φaF a

µν . The corresponding intensities of the
electric and magnetic fields of the dyon are

Ei = v−1F a
0iφ

a = −ev2j′ni (14)

and

Bi = (2v)
−1

ǫijkF
a
jkφ

a = ev2
1− u2

ρ2
ni, (15)

respectively. We define the electric (magnetic)
charge of the dyon QE (QM ) as the flux of the elec-
tric (magnetic) field through the infinitely distant
sphere S2

∞ and obtain the expressions

QE =

∮

S2
∞

d2SnEn = −4π

e
lim
ρ→∞

ρ2j′ (ρ)

= −8π

e

∫ ∞

0

j(ρ)u(ρ)2dρ (16)

and

QM =

∮

S2
∞

d2SnBn =
4π

e
. (17)

To obtain the second line in Eq. (16), we use

Gauss’s law (10) written in the form
(

ρ2j′
)′

= 2ju2.
The dyon’s energy (12) can be written as the sum

of terms

E = E(E) + E(B) + E(G) + E(P ), (18)

where

E(E) = mM

∞
∫

0

[

1

2
j′ (ρ)

2
+

u (ρ)
2
j (ρ)

2

ρ2

]

ρ2dρ

= −1

2
vcQE (19)

is the electric field’s energy,

E(B) = mM

∞
∫

0

[

u′ (ρ)2 +
(u (ρ)

2 − 1)2

2ρ2

]

dρ (20)

is the magnetic field’s energy,

E(G) = mM

∞
∫

0

[

1

2
h′ (ρ)

2
+

h (ρ)
2
u (ρ)

2

ρ2

]

ρ2dρ

(21)
is the gradient part of the soliton’s energy, and

E(P ) = mM

∞
∫

0

[

1

4
κ
(

1− h (ρ)
2
)2

]

ρ2dρ (22)

is the potential part of the soliton’s energy. Any
solution of Eqs. (9) – (11) satisfying boundary con-
ditions (13) is a stationary point of the action
S =

∫

Ld3xdt. However, the Lagrangian density
(1) does not depend on time if the field configura-
tions are those of ansatz (8). Hence, any solution
of Eqs. (9) – (11) and (13) is a stationary point of
the Lagrangian

L =

∫

Ld3x = E(E) − E(B) − E(G) − E(P ). (23)

After the scale transformation ρ → κρ of the ar-
gument of the solution, the Lagrangian L becomes
a function of the scale parameter κ. Note that this
transformation is valid because Gauss’s law (10) re-
mains true even after the rescaling ρ → κρ. Since
the function L(κ) has a stationary point at κ = 1,
its derivative vanishes at this point: dL/dκ|

κ=1 =
0. It can easily be shown that E(E) → κ

−1E(E),
E(B) → κE(B), E(G) → κ

−1E(G), and E(P ) →
κ
−3E(P ) under the rescaling ρ → κρ. Using this

fact and Eqs. (19) – (23), we obtain the virial rela-
tion for the dyon solution

E(E) + E(B) − E(G) − 3E(P ) = 0. (24)

In the important case of the BPS dyon [14], we
have the analytical expressions for the energy com-
ponents and the total energy:

E(E) =
v

2

Q2
E

√

Q2
M +Q2

E

, (25a)

E(B) =
v

2

Q2
M

√

Q2
M +Q2

E

, (25b)

E(G) =
v

2

√

Q2
M +Q2

E, (25c)

E(P ) = 0, (25d)

E = v
√

Q2
M +Q2

E. (25e)

It can easily be checked that Eqs. (25) satisfy
Eq. (18) and virial relation (24).
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3. A differential relation between the energy

and electric charge and its consequences

To obtain the differential relation between the
energy and electric charge, we begin with the con-
sideration of the BPS limit κ = 0. In this case,
there is the analytical solution [14] of system (9) –
(11)

u (ρ) =
τρ

sinh (τρ)
, (26)

j (ρ) = −QE

QM
τ
[

coth (τρ) − (τρ)
−1

]

, (27)

h (ρ) = coth (τρ)− (τρ)−1 , (28)

where the ratio

τ =
QM

√

Q2
M +Q2

E

. (29)

Eq. (27) tells us that in the BPS case

c ≡ j (∞) = − QE
√

Q2
M +Q2

E

. (30)

Using Eqs. (25e) and (30), we obtain successively

dE

dc
= mMc

(

1− c2
)−3/2

, (31a)

dQE

dc
= −mM

v

(

1− c2
)−3/2

, (31b)

dE

dQE
=

dE/dc

dQE/dc
= −vc, (31c)

where mM = vQM = 4πv/e is the mass of the
BPS monopole. We see that in the BPS case, the
derivatives dE/dc and dQE/dc satisfy the condition
dE/dc+ vcdQE/dc = 0.
Now we shall show that this condition is also

valid in the general case κ 6= 0. To do this, we
go from the ansatz function j(ρ) to the new one
J(ρ) = j(ρ)− c satisfying the homogeneous bound-
ary condition J(∞) = 0 at infinity. We consider
ansatz functions (8) as functions of the radial
variable ρ and the parameter c. Next, we calculate
the value dE/dc + vcdQE/dc using Eqs. (12) and
(16) for the energy and the electric charge, respec-
tively. The resulting expression contains, among
others, the two terms: mMρ2 (∂h/∂ρ)

(

∂2h/∂ρ∂c
)

and 2mM (∂u/∂ρ)
(

∂2u/∂ρ∂c
)

. Using bound-
ary conditions (13) and integration by
parts, we transform these two terms to
−mM

[

2ρ (∂h/∂ρ) (∂h/∂c) + ρ2
(

∂2h/∂ρ2
)

(∂h/∂c)
]

and −2mM

(

∂2u/∂ρ2
)

(∂u/∂c), respectively. After

that, the expression dE/dc + vcdQE/dc can be
written in the form

dE

dc
+ vc

dQE

dc
= −mM

∫ ∞

0

(

2
∂u

∂c
e1 (32)

+ρ2J
∂e2
∂c

+ ρ2
∂h

∂c
e3 −

∂

∂ρ

[

ρ2J
∂2J

∂ρ∂c

])

dρ,

where e1, e2, and e3 are the left hand sides of
Eqs. (9), (10), and (11), respectively. It is obvi-
ous that ei and their derivatives with respect to
the parameter c vanish when u(ρ, c), j(ρ, c), and
h(ρ, c) is a solution of system (9) – (11). The last
term mM

∫∞

0
∂
[

ρ2J
(

∂2J/∂ρ∂c
)]

/∂ρdρ also van-

ishes because J
(

∂2J/∂ρ∂c
)

∼ ρ−3 as ρ → ∞. We
see that the dyon’s energy and the electric charge
satisfy differential relation (31c) also in the general
case κ 6= 0. Eq. (31c) can be written in the form

dE

dQN
≡ e

dE

dQE
= Ω, (33)

where QN = e−1QE is the Noether charge and the
parameter Ω = −evc = −mV c is some function of
QN .
The differential relation (33) has the same form

as the differential relations for the nontopological
solitons in Refs. [23, 30–32]. In the latter case, the
differential relation results from the fact that the
nontopological soliton is a stationary point of the
total energy functional under the condition that the
Noether charge of field configurations is fixed. A
similar situation takes place for the dyon. To show
this, we give an interpretation of the parameter Ω
in Eq. (33). Using the second line of Eq. (19), which
is a consequence of Gauss’s law (10), we can write
the Lagrangian L = E(E) − E(B) − E(G) − E(P ) in
the form

L = ΩQN − E. (34)

If boundary conditions are fixed then variations of L
must vanish on the dyon solution of field equations.
The fixation of the boundary conditions means that
the parameter Ω = −evc = −evj (∞) remains fixed
when varying the Lagrangian L, and hence

− δL = δE − ΩδQN = 0. (35)

It follows from Eq. (35) that the dyon solution is
a stationary point of the total energy functional
E provided that the Noether (electric) charge QN

(QE) of field configurations is fixed, and the param-
eter Ω plays the role of the Lagrange multiplier in
Eq. (35).
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We now turn to the unitary gauge φ = (0, 0, χ)
and shall use the Hamiltonian formalism. In the
unitary gauge, the canonical fields are

Aa
i , P

a
i = F a

0i = Ea
i , χ, p = ∂tχ, (36)

and the Hamiltonian density is

H =
1

2
P a
i P

a
i +

1

2
p2 +

1

4
F a
ijF

a
ij

+
1

2
e2χ2

(

A1
0A

1
0 +A1

iA
1
i +A2

0A
2
0 +A2

iA
2
i

)

+
1

2
(∇χ)

2
+

λ

4

(

χ2 − v2
)2

. (37)

Gauss’s law (the zeroth component of Eq. (5) writ-
ten in terms of canonical fields (36))

Aa
0 − δa3A

3
0 = −

(

e2χ2
)−1 (

∂iP
a
i − eǫabcAb

iP
c
i

)

= −
(

e2χ2
)−1

DiP
a
i (38)

is used to express A1,2
0 in Eq. (37). Note that the

boundary condition A3
0(∞) = 0, which completely

fixes the unitary gauge, is used to obtain Eq. (38)
within the framework of the Hamiltonian formal-
ism.
In the unitary gauge, the unbroken electromag-

netic U(1) subgroup corresponds to rotations about
the third axis in the isospace. The corresponding
Noether charge

QN = e−1QE =

∫

ǫ3bcAb
iP

c
i d

3x (39)

is consistent with the definition of Eq. (16) because
of the third component of Gauss’s law (38) and the
definition Ei ≡ E3

i = P 3
i following from Eq. (36).

Further, it can be shown that

H =

∫

Hd3x =

∫

T00d
3x = E (40)

for field configurations satisfying Gauss’s law (38).
Now we use the trick used in Refs. [31, 32, 37].
Taking into account Eqs. (35), (39), and (40), the
Hamilton equations can be written in the form

∂tA
a
i =

δH

δP a
i

=
δE

δP a
i

= Ω
δQN

δP a
i

= Ωǫa3bAb
i , (41)

∂tP
a
i = − δH

δAa
i

= − δE

δAa
i

= −Ω
δQN

δAa
i

= Ωǫa3bP b
i . (42)

From Eq. (41) it is easy to obtain the time depen-
dence of the fields W±

µ = 2−1/2
(

A1
µ ∓ iA2

µ

)

corre-
sponding to electrically charged vector bosons:

W±

µ (t,x) = exp (∓iΩt)W±

µ (x) , (43)

whereas the remaining canonical fields do not de-
pend on time in the unitary gauge. Thus, we con-
clude that the parameter Ω entering in Eq. (33) is
the phase frequency of the charged vector boson
fields in the unitary gauge.
Eqs. (25) – (30) tell us that the energy and the

Noether (electric) charge of the BPS dyon increase
indefinitely as Ω → mV . At the same time, it was
shown numerically in Refs. [16, 38] that in the non-
BPS case, the energy and electric charge of the
dyon cannot exceed the maximum allowable val-
ues, which depend on the model’s parameters. Let
us show the impossibility of arbitrary large values
for the dyon’s energy and electric charge in the non-
BPS case κ 6= 0 using differential relation (33). For
this, we differentiate Eq. (18) with respect to Ω.
Taking into account Eqs. (19) and (33), we obtain
the relation

Ω

2
=

QN

2

dΩ

dQN
+

dE(B)

dQN
+

dE(G)

dQN
+

dE(P )

dQN
. (44)

Let us suppose that in the non-BPS case, the
energy and the Noether charge of the dyon tend
to infinity as Ω → mV . It can be shown that
in this case, the term QN (dΩ/dQN ) must tend to
zero. To do this, we write the differential equation
QN (dΩ/dQN) = F (QN ) and integrate it:

Ω (QN ) = Ω
(

Q̄N

)

+

∫ QN

Q̄N

¯̄Q−1
N F

( ¯̄QN

)

d ¯̄QN . (45)

Because lim
QN→∞

Ω (QN ) = mV , the integral on

the right side of Eq. (45) must remain finite as
QN → ∞. This is only possible if F (QN) =
QN (dΩ/dQN) tends to zero as QN → ∞.
Next, we estimate the derivative dE(B)/dQN as

QN → ∞. By analogy with electrostatics, the en-
ergy of the dyon’s magnetic field can be written in
the form E(B) = Q2

M/ (8πRM ), where QM = 4π/e
is the dyon’s magnetic charge and RM is the dyon’s
effective magnetic radius. With the increase in
the Noether (electric) charge QN (QE), the ef-
fective size of the dyon also increases as in the
BPS case (26) – (29). Hence, the effective mag-
netic radius RM also increases (or, at least, re-
mains bounded from below) when QN → ∞. It fol-
lows that the magnetic field’s energy E(B)(QN ) =
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Q2
M/ (8πRM (QN )) is a bounded function on the in-

tervalQN ∈ [0,∞). But the derivative of a function
bounded on the semi-infinite interval QN ∈ [0,∞)
must tend to zero as QN → ∞. The only exception
is an oscillating function of QN , but it is clear that
this variant cannot be realised. Thus, we conclude
that dE(B)/dQN → 0 as QN → ∞.
Next, we consider the behaviour of the deriva-

tives dE(G)/dQN and dE(P )/dQN as QN → ∞.
For this, we rewrite Eq. (21) integrating by parts
the term h′2/2 and use Eq. (11) to obtain

E(G) = mM
κ

2

∞
∫

0

[(

1− h (ρ)
2
)

h (ρ)
2
]

ρ2dρ. (46)

Note that Eq. (46) is valid only for the non-BPS
case because the integral diverges in the BPS case.
Using Gauss’s law (10), it can easily be shown that
j(ρ) is a monotonic function on the interval ρ ∈
[0,∞). Furthermore, boundary conditions (13a)
tell us that j(ρ) is a bounded function. Then, it

follows from Eq. (16) that the integral
∫∞

0
u (ρ)2 dρ

diverges as QN → ∞. Eq. (9) tells us that this
is only possible if, on the arbitrary large interval
ρ ∈ [0, ̺], the function u(ρ) is in the infinitesimal
neighbourhood of 1 and h(ρ) ≈ j(ρ). It follows from
Eq. (10) that, in this case, the function j (ρ) ≈ c̄ρ,
where c̄ is a constant. For ρ & ̺, the function
u(ρ) ≈ 0 and Eq. (10) together with boundary con-
dition (13a) tell us that j (ρ) ≈ c+ e2QN/(4πρ) in
this case. We estimate the constant c̄ by equating
the two expressions for j (ρ) at ρ = ̺ and obtain
that c̄ = c/ (2̺) = −Ω/(2mV ̺). Using this expres-
sion and Eq. (16), we obtain the leading asymptotic
behaviour of the Noether charge QN = e−1QE

QN ≈ 2π̺Ω

e2mV
. (47)

We now have everything we need to find the
leading asymptotic behaviour of E(G) and E(P ) as
QN → ∞. Using Eqs. (22), (46), and (47) and con-
sidering that h(ρ) ≈ j(ρ) when ρ ∈ [0, ̺], we obtain
the expressions:

E(P ) ≈ 2.95E(G) ≈ 0.000244mMκe6Q3
N . (48)

We see that both E(P ) and E(G) are ∝ Q3
N in

the limit of large QN . It follows that the deriva-
tives dE(P )/dQN and dE(G)/dQN are ∝ Q2

N , and
hence diverge as QN → ∞. But this is incompat-
ible with Eq. (44) (and therefore with differential

relation (33)), which implies that the derivatives
dE(P )/dQN and dE(G)/dQN must be finite because
Ω ∈ (−mV ,mV ). It is obvious that virial relation
(24) also cannot be satisfied in this case. It fol-
lows that the energy and Noether (electric) charge
of the dyon cannot be arbitrarily large in the non-
BPS case.
In the BPS case, the potential part E(P ) of the

dyon’s energy is absent and Eq. (46) becomes inap-
plicable along with our conclusion that E(G) ∝ Q3

N

in the limit of large QN . Here we need to use
Eq. (21) in order to find that E(G) → mV QN/2
as QN → ∞ in accordance with Eq. (25c). Fur-
thermore, using Eqs. (25) it can be shown that the
combination (QN/2) (dΩ/dQN )+ dE(B)/dQN van-
ishes in the BPS case and Eq. (44) takes the form

dE(G)

dQN
=

Ω

2
. (49)

The correctness of Eq. (49) can be easily verified
using Eqs. (25). It follows that Eqs. (33) and (44)
do not impose any restrictions in the BPS case, and
therefore the energy and Noether (electric) charge
of the BPS dyon can be arbitrarily large as Ω →
mV .

4. Numerical results

Now we present some numerical results concern-
ing the dyon. For numerical calculations, we use
the natural units c = 1 and ~ = 1. It follows
from Eqs. (9) – (11) and (13) that the ansatz
functions u(ρ), j(ρ), and h(ρ) depend only on the
two dimensionless parameters κ = e−2λ and c =
−m−1

V Ω ≡ −Ω̃. Further, Eqs. (12) and (16) tell

us that the dimensionless combinations Q̃E = eQE

and Ẽ = e2Em−1
V also depend only on κ = e−2λ

and Ω̃ = m−1
V Ω.

Figure 1 presents the dependence of Q̃E on the
dimensionless phase frequency Ω̃ for different val-
ues of the parameter κ = e−2λ. We see that for
any κ, the dyon’s electric charge increases mono-
tonically with an increase in Ω. The electric charge
of the BPS dyon (κ = 0) tends to infinity as

QE ∼ 2
√
2πe−1m

1/2
V (mV − Ω)

−1/2
when Ω → mV ,

in accordance with Eq. (30). At the same time, the
electric charge of the non-BPS dyon remains finite
as Ω → mV . For any fixed Ω, the dyon’s electric
charge decreases monotonically with an increase in
κ and tends to some limiting value as κ → ∞.

6



Κ=0

Κ=10-3

Κ=10-2

Κ=10-1

Κ=1

Κ=10

Κ=102

Κ=103

0.0 0.2 0.4 0.6 0.8 1.0
0

10

20

30

40

W
�

Q�
E

Fig. 1. Dependence of the dimensionless combination Q̃E =
eQE on Ω̃ = m−1

V
Ω for different values of the parameter

κ = e−2λ.

Figure 2 presents the dependence of the dimen-
sionless scaled energy Ẽ on the scaled electric
charge Q̃E for different values of the parameter
κ = e−2λ. It follows from Fig. 2 that for any
fixed κ, the dyon’s energy increases monotonically
with an increase in the electric charge QE. Fur-
ther, for any nonzero κ, there exist the maximum
permissible values for the dyon’s energy E and elec-
tric charge QE. They correspond to the rightmost
points on the curves in Fig. 2, where the derivative
dẼ/dQ̃E = 1 according to Eq. (33). For any fixed
QE, the dyon’s energy increases monotonically with
an increase in κ, but the maximum allowable energy
depends on QE. As κ → ∞, the curves Ẽ(Q̃E) tend
to the limiting curve. Note that the dyon’s energy
E is an even function of the electric charge QE due
to the C-invariance of model (1).
It follows from Fig. 2 that for any fixed κ, the

function E(QE) is a convex downward, and there-
fore the second derivative d2E/dQ2

N is positive.
Hence, the function E(QE) satisfies the inequality

E (QE) ≤ E (Q′

E) +mV e
−1 (QE −Q′

E) . (50)

It follows that the dyon having the electric charge
QE is stable against decay into the the dyon with
the smaller electric charge Q′

E and the massive
gauge bosons with the total electric chargeQE−Q′

E

and mass mV e
−1(QE −Q′

E) = mV (QN −Q′
N ).
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Κ=103

Κ=104

0 10 20 30 40
0
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30

40

Q
�

E

E�

Fig. 2. Dependence of the dimensionless combination Ẽ =
e2Em

−1

V
on Q̃E = eQE for different values of the parameter

κ = e−2λ.

In Fig. 3, we can see the dependence of the max-
imum possible values of the dimensionless scaled
energy Ẽ and the scaled electric charge Q̃E on the
parameter κ = e−2λ. For better visualisation of
the κ-dependences, we show them on the log-linear
plot. It follows from Fig. 3 that the maximum al-
lowable value of Q̃E decreases monotonically with
an increase in κ in accordance with Ref. [16]. At
the same time, the maximum allowable value of Ẽ
also decreases with an increase in κ until it reaches
the minimum point with (κ, Ẽ) = (0.418, 22.532);
after this, it increases with an increase in κ. As
κ → 0, the maximum allowable values of Ẽ and Q̃E

increase indefinitely according to the power law:

Ẽ ∼ Q̃E ∼ ακ−β , (51)

where α is a positive constant and β ≈ 0.165.
When κ → ∞, these maximum allowable values
tend asymptotically to the finite limits:

Ẽ −→
κ→∞

Ẽ(∞) ≈ 27.704, (52)

Q̃E −→
κ→∞

Q̃E(∞) ≈ 9.546. (53)

Let us consider the limit in which the self-
interaction constant λ is fixed and the gauge cou-
pling constant e tends to zero. It follows that the
combination κ = e−2λ increases indefinitely in this
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Fig. 3. Dependence of the maximum possible values of Ẽ

(upper line) and Q̃E (lower line) on the parameter κ = e−2λ.

limit. Recalling the definition of Ẽ and Q̃E and
taking into account limiting values (52) and (53),
we obtain the leading asymptotic behaviour of the
dyon’s energy E and electric charge QE in the limit
e → 0:

E ∼ Ẽ(∞)ve−1, (54)

QE ∼ Q̃E(∞)e−1. (55)

It follows that the dyon’s energy and electric charge
increase indefinitely when λ is fixed and e → 0.

5. Conclusions

In the present paper, we have obtained the differ-
ential relation (33) between the energy E and elec-
tric chargeQE of the dyon solution. The differential
relation expresses the derivative dE/dQE in terms
of the boundary value for the temporal component
of the dyon’s electromagnetic potential. Using the
Hamiltonian formalism, it is shown that, in the uni-
tary gauge, the derivative dE/dQE is proportional
to the phase rotation frequency of the electrically
charged boson fields of the dyon. It follows from
the differential relation that the dyon is a stationary
point of the total energy functional provided that
the Noether (electric) charge of field configurations
is fixed. The latter property is a characteristic fea-
ture of the nontopological solitons, and we therefore

conclude that the dyon possesses the properties of
both topological and nontopological solitons.
The differential relation (33) results in the

boundedness of the derivative dE/dQE . It follows
that the energy and the electric charge of the non-
BPS dyon cannot be arbitrarily large. The numer-
ical study reveals that the dyon is stable against
decay into the dyon of smaller electric charge and
massive electrically charged gauge bosons. It also
shows that the dyon’s energy and electric charge
increase indefinitely when the gauge coupling con-
stant tends to zero.
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