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Abstract: Quivers, gauge theories and singular geometries are of great interest in

both mathematics and physics. In this note, we collect a few open questions which

have arisen in various recent works at the intersection between gauge theories, repre-

sentation theory, and algebraic geometry. The questions originate from the study of

supersymmetric gauge theories in different dimensions with different supersymmetries.

Although these constitute merely the tip of a vast iceberg, we hope this guide can give

a hint of possible directions in future research.

This is an invited contribution to a special volume of Proyecciones, E. Gasparim,

Ed., and it is the hope that the questions are specific enough for research projects

aimed at PhD students.
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1 Motivation

Quivers, introduced to algebraic geometry in [1] and to theoretical physics in [2], have

been a useful tool in the study of supersymmetric gauge theories. In particular, moduli

spaces have been extensively studied in the past few decades. The explorations of

different branches of the moduli spaces connect various areas in string theory, algebraic

geometry, symplectic geometry, tropical geometry, cluster algebra and representation

theory.

For instance, brane setups and transitions naturally give rise to these symplectic

singularities, especially through affine Grassmannians as shown recently in [3]. The

notion of magnetic quivers [4] and manipulations of quivers have then been introduced,

revealing connections among different theories and geometries. Of late, it has been

discussed that superconformal field theories (SCFTs) in higher dimensions, in particular
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their Higgs branches, can be analyzed via certain spaces of dressed monopole operators.

We should also emphasize that the corresponding spaces of dressed monopole operators

and magnetic quivers, as a feature of the theories, are studied for their own sake, which

in this sense is broader than Coulomb branches of some 3d dual theories.

To analyze the moduli spaces in more details, phase diagrams (aka Hasse dia-

grams) are introduced to determine the structures of the singularities. On the other

hand, Hilbert series (HS) as well as highest weight generating functions (HWGs) have

been standard and helpful concepts to enumerate gauge invariant operators (GIOs).

Following algebraic geometry, the HS counts GIOs at different degrees, and HWGs

provide a more concise notion for HS using highest weight Dynkin labels of the sym-

metry groups. The HS can be refined or unrefined. When we have multivariables, this

gives multi-gradings mathematically and they represent different fugacities for differ-

ent symmetry groups in our supersymmetric theories. When we perform unrefinement,

they would encode less information but have lighter expressions which might be easier

to compute.

As a rational function, the HS can be written as a Taylor expansion in the form

HS =
∞∑
k=0

H(k)tk, (1.1)

where H(k) is known as the Hilbert function. We can also take the Laurent expansion

of the (unrefined) HS as

HS =
∞∑
i=0

γi
(1− t)d−i

, (1.2)

where d is the (Krull) dimension of the ring. It has been a long-standing problem to

understand and determine the Laurent coefficients of the HS. For some special cases,

the leading and sub-leading coefficients can be related to the a-invariant (i.e., the degree

of the numerator minus the degree of the denominator of HS) or even the order and

pseudoreflections for a finite group [5, 6]. These two coefficients are also shown to be

crucial in the study of K-stability [7, 8]. Physically, the Laurent coefficients can have

certain interpretations as well. For instance, γ0 gives the normalized volume of the

Sasaki-Einstein manifold (e.g. in the context of holography), and hence is related to

the study of R-symmetry under RG flows [9, 10]. However, a complete understanding

for HS of any ring/variety is still not clear.

Question 1. What are the mathematical and physical interpretations of all the Laurent

coefficients of any HS?
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2 Theories with 8 Supercharges

Let us begin with rigid theories with 8 supercharges. Such theories have vector multi-

plets and hypermultiplets. The vector multiplets transform under adjoint reps of the

gauge groups while the hypers/matters can transform under any reps. In the context

of quivers, we will restrict to (bi)fundamental reps for the hypers1. In the language of

quivers, we can express the information of the supersymmetric theories with 8 super-

charges using

Round Node © Gauge group and vector multiplet under its adjoint rep

Square Node � Flavour group

Line
Hyper(s) transforming under the bifundamental rep of the

groups the line connecting

.

It is also possible to other types of edges in the quivers such as ones with orientations

in non-simply laced quivers [11–15] and squiggles denoting charge 2 hypers [16].

2.1 The Higgs and Coulomb Branches

In recent years, the 3dN = 4 Coulomb branches, realized as spaces of dressed monopoles

(to be precise), play a key role in the study of quivers and SCFTs in various dimensions.

In particular, various tools have been developed including HS [17, 18] and HWGs [19],

Kraft-Procesi (KP) transitions and transverse slices [20–22], quiver subtractions [23]

and quiver additions [3], discrete gauging and quiver origami [24–27], and magnetic

quivers and phase diagrams [4, 16, 28–33]. There are many interesting perspectives

which can be found in these references. Here we will only pick several examples.

The HS is a generating function of a ring/variety/scheme. Physically, it enumer-

ates the GIOs at each degree for the moduli space (which will mainly be the Higgs

or Coulomb branch here in our discussion). Importantly, magnetic quivers (as fun-

damental properties of the higher dimensional theories) allow us to formally equate

Coulomb branches for certain 3d theories with Higgs branches for higher dimensional

theories as moduli spaces. Therefore, we are able to analyze the moduli spaces in 5d

or 6d using the knowledge of 3d theories2. Since they are symplectic singularities, they

are composed of symplectic leaves and these leaves form a poset by inclusions of their

closures. Every smaller leaf (in the sense of the partial order) has a transverse slice

to it in a larger leaf. Every transverse slice can be viewed as a moduli space for some

theory which can be obtained from (partial) Higgsing from the unbroken theory.

1In 6d with N = (1, 0), there are also tensor multiplets. There are also interesting questions for

6d theories and tensor multiplets, but we will not discuss them here.
2As aforementioned, we should really treat this as a property of the 5d or 6d theory itself.
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On the other hand, it is convenient to use phase diagrams to encode the poset

structure of the symplectic singularities. In a phase diagram, the nodes are often

labelled by the (quaternionic) dimensions of the leaves and the edges have numbers

denoting the dimensions of the neighbouring transverse slices (aka elementary slices).

Going from the bottom of the phase diagram to the top is the process of Higgsing the

theory, where the top corresponds to the fully Higgsed theory at the origin of the full

Higgs branch while each segment starting from the top to some node in the middle

(or at the bottom) corresponds to certain effective theory where the gauge group is

partially (or completely) broken.

With these two powerful tools, it would be natural to ask the following question.

Question 2. Can we compute the phase diagrams from the HS/HWGs?

The phase diagrams for the full moduli spaces (including mixed branches) were

studied in [31], and it was found that certain theories have Higgs and Coulomb branches

which are related by inversion of their phase diagrams. On the other hand, a duality

known as symplectic duality between Higgs and Coulomb branches of a 3d N = 4

theory was conjectured in [34] and has been extensively studied in [35–42]. Therefore,

for phase diagrams, another question could be raised.

Question 3. Can we find any relation between symplectic duality and inversions of

phase diagrams?

All the related questions either mentioned or not mentioned here would help us get

a better understanding of the moduli space. Besides, there is a fundamental question

we should always mention:

Question 4. What is the mathematical definition of Coulomb branches (for 3d N = 4

theories)?

Nakajima and collaborators have quite a few inspiring works on this including [35–

37, 43]. This problem would be of great interest to both mathematicians and physicists.

Recently, Nakajima and Weekes have also generalized this to more general sym-

metrizable theories [44]. In particular, quiver folding allows one to get non-simply laced

quivers from simply-laced ones. This relates Coulomb branches for unfolded and folded

quivers via finite group actions. For these non-simply laced quivers, the HS and HWGs

have been calculated in [27] for unitary quivers and in [15] for orthosymplectic quivers.

However, it is still not clear on how to compute the Higgs branches.

Question 5. Can we compute HS and HWGs for the Higgs branches of folded theories?
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2.2 Canonical Singularities and 5d SCFTs

Besides the techniques introduced above, a parallel study for 5dN = 1 SCFTs appeared

in [45]. In that work, Xie and Yau conjectured that every three dimesional canonical

singularities would give rise to a 5d SCFT with N = 1. In particular, the chamber

structure and prepotential of the Coulomb branch are studied using the Nef cones from

crepant resolutions.

Following the works [46–48], dot diagrams (aka generalized toric polygons) which

were first introduced in [49] were used to study those 5d N = 1 SCFTs. The aforemen-

tioned tools including magnetic quivers and phase diagrams can also be successfully

applied under various manipulations of the dot diagrams. Therefore, one may raise the

following question.

Question 6. Does M-theory on any 3d canonical singularity always define a 5d N = 1

SCFT (conjecture 1 in [45])? Can we use the tools including dot diagrams and magnetic

quivers to verify this conjecture?

Incidentally, the (generalized) s-rule can also be described in terms of dot diagrams

following [47, 49]. It is straightforward to incorporate the s-rule using tessellations of

the polygon, but it is hard to write a more sufficient algorithm in the sense of coding

(and hence there is a strong s-rule in [47]) so that none of the possible tessellations would

be missed. On the other hand, the s-rule can be determined by the self-intersection

number of the holomorphic curve that M2 wraps for irreducible brane junctions [50, 51].

Question 7. Can we write down the criterion of generalized s-rule in terms of self-

intersection numbers for reducible junctions?

Question 8. Is there a faster way/(coding) algorithm to determine generalized s-rule

using dot diagrams?

2.3 Affine Grassmannians

In a recent paper [3], the affine Grassmannian (which is an ind-scheme) has been

introduced to the study of brane setups in string theory, where Coulomb branches (for

framed quivers) are slices in it [52]. The authors worked out the transverse slices and

phase diagrams for different affine Grassmannians by studying the corresponding brane

systems and quivers. Here, we will only give the definition of affine Grassmannians.

See [3] for detailed calculations and examples.

Definition 2.1. Let k be a separably closed field. The ring of formal power series

and the formal Laurent series over it are denoted as k[[t]] and k((t)) respectively.

The affine Grassmannian GrG of a connected reductive group G is the coset space

G(k((t)))/G(k[[t]]).
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In [3], the authors focused on k = C and any finite dimensional Lie group G. In

this case, GrG is the quotient G(C((t)))/G(C[[t]]). Equivalently, it is defined to be the

set of all lattices in k((t))n, where a lattice in k((t))n is a free k[[t]]-module of rank n.

In the language of category theory, the definition can be reformulated as follows

[53]. Let k-Algebra and Grp be the category of commutative k-algebra and the

category of (small) groups. The loop group is the group functor LtG : k-Algebra →
Grp, A 7→ G(k(t)). Likewise, the positive loop group is the group functor L+

t G :

k-Algebra → Grp, A 7→ G(k[[t]]). Then the affine Grassmannian is the (fpqc-

)quotient GrG = LtG/L
+
t G.

Question 9. Study the Coulomb branch for “ugly” and “bad” theories (in the sense of

[54]) as (generalized) affine Grassmannian slices.

As discussed above, besides the Coulomb branches of the quivers, the Higgs branches

can be obtained from inversions of phase diagrams.

Question 10. Can we have some notion of symplectic duals for the affine Grassman-

nians?

The unitary quivers without loops for elementary slices including those in the study

of minimal nilpotent orbits [55–57] and in the study of affine Grassmannian are listed

in [3, Table 1]. Nevertheless, the list is still incomplete. Therefore, a classification of

elementary slices (including those not from affine Grassmannians) is still not known.

Question 11. Classify all the elementary slices.

It is also worth noting that the notion of quiver addition was also introduced in

[3]. Together with quiver subtractions, we may ask:

Question 12. Can we give a rigorous mathematical description of quiver subtractions

and quiver additions?

3 Theories with 4 Supercharges

Next, we move on to theories with fewer supersymmetries, viz, with four supercharges

which exist in dimension less than or equal to 4. In particular, we will mainly focus

on 4d N = 1 theories here whose quivers can be obtained from decomposing N = 2

multiplets using the following rules:
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4d N = 2 4d N = 1

(8 supercharges) (4 supercharges)

Round Node Round Node with Directed Loop

Vector multiplet Vector multiplet & Adjoint Chiral Multiplet

Line Bidirectional Line

Hypers Chiral and Anti-Chiral Multiplets

.

For 3d N = 2 theories, the quivers can be obtained from N = 4 theories with the same

rules. As we can see, the quivers for 4d and 3d theories with 4 supercharges share some

common features. Both of them have R-symmmetry U(1), yet the underlying physics

could still be quite different.

3.1 Minimized Volumes and Their Bounds

A very-well studied class of 4d theories is the worldvolume theories of D3-branes prob-

ing toric Gorenstein singularities [58–71]3. The forward and inverse algorithms allow

us to go between toric diagrams and quivers as well as brane tilings easily. The holo-

graphic dual of such a theory would live in AdS5 × Y5 where the Sasaki-Einstein (SE)

manifold Y5 (of real dimension 5) is exactly the base of the 3d toric Gorenstein singu-

larity. Even more remarkably, this SE base has a close relation to the determination of

R-symmetry of our 4d theory. Under RG trajectory, the R-symmetry at IR fixed point

may become a linear combination of the original U(1)R and some abelian flavour sym-

mmetries preserved through the flow. To determine the R-charges of the operators in

our theory, Intriligator and Wecht proposed a procedure known as the a-maximization

in [78] where a is one of the central charges in 4d. The idea that a decreases along RG

flow was first conjectured by Cardy in [79] and was proven over two decades later by

Komargodski and Schwimmer in [80].

For the worldvolume theories of D3s discussed here, Gubser showed in [81] that

a = 1
4Vn

where Vn is the volume function of the SE base Y normalized by the volume

of the 5-sphere4. Therefore, a-maximization has now been translated to the problem

of volume minimization for Sasaki-Einstein manifolds. See also [82, 83].

3In literature, this is often referred to as Calabi-Yau (CY) n-folds. However, to be strict, we will

save the name CY for compact (smooth) manifolds and call the unresolved singularities Gorenstein.

For other types of branes probing Gorenstein singularities, see for example [72–77].
4In general for n-dimensional Gorenstein, Vn is the normalized volume for Y2n−1, viz,

vol(Y2n−1)/vol(S2n−1).
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From a lattice polygon, we not only have a non-compact 3d toric Gorenstein sin-

gularity, but can also construct a compact toric variety (which is not necessarily CY)

from the inner normal fan of the polygon. In general, the discussions so far do not

need to be restricted to 3d Gorenstein singularities but any dimension n. Every Y2n−1
still has a minimized volume and we can always construct some compact toric variety

X of complex dimension (n− 1) from the corresponding (n− 1)-tope. Physically, they

may also have some string theory picture in terms of different Dp-branes in certain

dimensions.

In [84, 85], systematic computations of minimized volumes were performed. In

particular, one can relate the minimized volumes to the topological invariants of X̃

where the tilde denotes the complete (crepant) resolution of X, as X may not be

smooth5. In particular, we shall always take fine triangulations, that is, triangulations

involving all the lattice points. The authors conjectured that the minimized volumes

have certain bounds in terms of the Chern numbers of X. This then naturally relates

geometric and topological quantities for different objects. The most updated conjecture

can now be written as follows.

Conjecture 3.1. For an n-dimensional toric Gorenstein singularity associated with a

polytope ∆n−1 (either reflexive or non-reflexive), the minimized volume Vn,min of the SE

base manifold Y is bounded by

1

χ
≤ Vn,min < mn

∫
cn−11 , (3.1)

where χ and c1 are the Euler number and first Chern class of the complete resolution

X̃. Moreover, the left bound is saturated when the Gorenstein singularity is an Abelian

orbifold of Cn.

In particular for reflexive cases, the coefficients mn are conjectured to be positive

and satisfy m3 ∼ 3−3, m4 ∼ 4−4 and mn > mn+1.

It is worth noting that such bounds for 2d lattice polygons in terms of their areas

are obtained in [88]:
1

A
≤ V3,min <

4π2

27A
, (3.2)

where A is the normalized area of the polygon. Moreover, the lower bound is saturated

for triangles while the upper bound is the case for ellipses (as limit shapes of polygons)

and hence can never be saturated. If we compare (3.2) with (3.1) with n = 3, we find

that the lower bounds agree: χ is the Euler number for a complete resolution which

5Following [86, 87], X whose dimension is no less than 4 may not be completely desingularized.

In such cases, we will only focus on toric varieties that admit complete resolutions.
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corresponds to a fine triangulation, and hence χ = A. Furthermore, they take equalities

under the same condition. For the upper bound, (3.1) becomes m3C1 = m3(12 − χ),

which is more subtle to understand its connection to (3.2). This leads to the question

below.

Question 13. Prove or disprove Conjecture 3.1. If the conjecture is true, are these the

best bounds? If the conjecture is not true, find the correct bounds. Also, can we find

the connections between (3.1) and (3.2) (in particular for their upper bounds)?

Furthermore, conjecture 5.4 in [84] gives rise to another question for minimized

volumes and Euler numbers. In particular, the authors observed that maximum value

of Vn,minχ is reached at dP3 for n = 3 and some fibrations of dP3 for n = 4 [84, Figure

15]. One may then ask:

Question 14. Is the maximum value for Vn,minχ for reflexive polytopes attained by

various (not necessarily uniquely) dP3 fibrations?

3.2 K-Stability and Chiral Rings

As discussed above, a-maximization is closely related to volume minimization. Fol-

lowing [7, 8], K-stability naturally appears in the study of a-maximization. More

specifically, the authors showed that K-(semi)stability for product test configurations

is equivalent to volume minimization. Therefore, in [89], K-stability for general test

configurations was regarded as some “generalized a-maximization”.

Given a chiral ring I which is a ring composed of chiral operators under operator

product expansions, we can compute the HS of the associated variety X = Spec(I).

Given the (unrefined) HS of some X graded by the one-dimensional symmetry6 ζ, the

strategy is to “perturb” it with some test symmetry η such that the new HS is graded

by ζ + εη for sufficiently small ε > 0. Then one can compute the (Donaldson-)Futaki

invariant for this test symmetry using the (leading and subleading) coefficients in the

Laurent expansions of HS. Now X is said to be K-semistable if F ≥ 0 for any test

symmetry η. For it to be K-stable, F can be zero only when the norm vanishes. For

the expression of Futaki invariants and the definition of norm, one is referred to [90, 91].

More details of defining K-stability along with its calculations can also be found in [91].

In [89], it was then conjectured that a ring is the chiral ring for an SCFT iff X is

K-stable. Indeed, for some theories (such as the worldvolume theory of D3s probing

Gorenstein singularties), one can show that K-stability recovers the unitarity bounds

or irrelevance of superpotential terms [89]. However, a counterexample was found in

[91]. Therefore, it is natural to ask:

6Physically, ζ is treated as our U(1) R-symmetry.

– 9 –



Question 15. Can we give a precise description on how K-stability is related to chiral

rings and SCFTs?

Computationally, it is still not known how to fully determine K-stability for a

general variety as one needs to check infinitely many test symmetries in principle. For

hypersurface singularities, especially for those having U(1)n−1 isometry, not only the

number but also exactly which test symmetries can be determined to compute Futaki

invariants. See [92, 93] for more details. Nevertheless, the problem for a general variety

is still unsolved.

Question 16. How to determine the number of test symmetries one needs to check to

determine K-stability for a general variety? Can we further determine exactly which

test symmetries should be checked?

Of course, it is reasonable to wonder whether there is any analogue in other di-

mensions, such as F -theorem in 3d or c-theorem in 2d etc.

Question 17. Can we also apply K-stability to chiral rings in other dimensions? Can

K-stability cope with accidental symmetries that might appear under RG flow?

Moreover, Benvenuti and Giacomelli introduced another chiral ring stability in [94]

in terms of dropping certain terms in the superpotential.

Question 18. Is there any relation between the two stabilities for chiral rings?

3.3 Graded Quivers: from m = 1 to general m

Now let us relax the restriction of fixed number of supercharges and take a quick look at

graded quivers, aimed at providing a unified mathematical framework for gauge theories

in even dimensions. Graded quivers have been extensively studied in [95–99]. As the

name suggests, the arrows/fields in an m-graded quiver are associated with a grading

by some quiver degree c ∈ {0, 1, . . . ,m}. These different types of fields are denoted

by Φ
(c)
ij for an arrow pointing from node i to node j with c ranging from 0 to bm/2c.

When a field has degree m/2 (for even m), it is unoriented. For those of degree (m−c),
we can use the notion of conjugate arrow with an opposite direction: Φ̄

(m−c)
ji ≡ Φ

(c)
ij .

Physically, such conjugation refers to CPT conjugate fields. Superpotentials, W , are

always crucial for a graded quiver. They are linear combinations of gauge invariant

terms of degree (m− 1) satisfying {W,W} = 0, where {-, -} is the Kontsevich bracket

which is a generalization of the Poisson bracket [95].

In the string theory picture, graded quivers generalize the D3s probing 3d Goren-

stein singularities to D(5 − 2m)-branes transverse to (m + 2)-dimensional Gorenstein
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singularities in Type IIB string theory. Usually, we consider m = 0, 1, 2, 3 whose theory

has 23−m supercharges in dimension (6−2m) (see for example the table in (1.2) in [96]).

Analogous to Seiberg duality in 4d, graded quivers also enjoy certain dualities

in other dimensions such as triality in 2d and quadrality in 0d [98]. Moreover, the

generalized brane tilings on Tm+1 for m-graded quivers have also been developed in

[97]. More recently, a notion of product of toric diagrams was introduced in [99] which

allows one to produce the quiver theory for an (m + n + 3)-dimensional Gorenstein

singularity from a pair of theories for (m + 2)- and (n + 2)-dimensional Gorenstein

singularities. Here we list some of the questions in the study of graded quivers.

Question 19. Study the dualities for graded quivers involving adjoint fields.

Question 20. For brane tilings on T2, zig-zag paths and perfect matchings are impor-

tant concepts. Can we reveal their further mathematical and physical implications for

general m?

Question 21. Graded quivers can be obtained from the topological B-model. Can we

find any correspondence between the product of toric diagrams and the B-model ap-

proaches?

3.4 Dessins d’Enfants

Dessins d’enfants are bipartite graphs, whose primary role is in the study of Riemann

surfaces X. Specifically they represent the degeneracies and ramifications of so-called

Bely̌ı maps which take X to the Riemann sphere P1 [100]. They received particular

popularity due to the faithful action on them by the absolute Galois group over the

rational numbers: Gal(Q/Q), whereby making them a point d’appui in geometry and

number theory.

Let us begin with the classic theorem of Bely̌ı [101].

Theorem 3.2 (Bely̌ı). A Riemann surface X has an algebraic model over Q IFF there

exists a (surjective) map β : X → P1 which is ramified at exactly 3 points.

In the theorem, β is the Bely̌ı map, and after Möbius transformation on the P1,

the three ramification points can be mapped to: {0, 1,∞}. The surface together with

the map, (X, β), is called the Bely̌ı pair.

The components of the dessin d’enfant are then identified with these points via:

β−1(0) 7−→ ◦ , β−1(1) 7−→ • , β−1((0, 1)) 7−→ − (3.3)

such that the preimages of the [0, 1] interval on the Riemann surface, X, form the dessin

d’enfant, and in addition the preimages of ∞ are associated to the dessin d’enfant’s

faces.
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3.4.1 Brane Tilings and Modular Parameters

The bipartite nature of dessin d’enfants allows for a natural association to brane tilings

(a.k.a. dimer models). Brane tilings encode quiver gauge theories with toric moduli

spaces as bipartite graphs drawn on the torus, T2 [62, 63, 71, 102]; the bipartite nature

of these theories are considered in [103–106] and the relation to amoebae and tropical

geometry, where the dual of the toric diagrams are so-called brane webs [107] are

considered in [102].

Brane tilings are an alternative graphical method of representing the information of

a quiver gauge theory with superpotential. They are related to the quiver dual graph,

whereby tiling faces associate to U(N) gauge groups, tiling edges to chiral multiplets,

and tiling vertices to superpotential terms. The bipartite nature of the tiling identi-

fies the orientation about which to write the vertex’s incident edges for the vertex’s

monomial term in the superpotential. Interpreting genus 1 dessins d’enfants as brane

tiling bipartite graphs, and vice versa, lead to a series of intriguing questions about the

connections between them.

Quite interestingly a specific limit of the brane tiling’s field theory can be graphi-

cally represented in a specific drawing of the brane tiling [108]. In the SCFT, performing

a-maximisation for the central charge a as a function of the fields’ R-charges, fixes the

latter. These R-charge values are encoded in the tiling through isoradial embedding;

which draws all nodes as lying on a unit circle centred on the face they border, whilst

at the centre the angle subtended by a bordering edge corresponding to R-charge Ri, is

π(1−Ri). The field theory maximisation is performed under the following conditions:

(i) all superpotential terms maintain an R-charge of 2 (s.t. Lagrangian in superspace

is well-defined) corresponding geometrically to the face centre’s total angle equaling

2π; and (ii) β-functions vanishing (to ensure conformality) corresponding to the faces

forming a rhombus tiling [109]. There is a notion of “consistency” of whether these

conditions suffice physically and mathematically [67, 77, 110], and a question emerges

as to

Question 22. Given an inconsistent tiling, what is the infra-red physics, and the ge-

ometry of the moduli space? On the other hand, for consistent theories, it would be

important to check that the renormalization group flow in the field theory takes one to

the correct geometry.

An isoradial brane tiling dictates a specific form of the underlying torus. Its modu-

lar parameter, and hence, complex structure, can be extracted. We denote it as τR (to

emphasize the R-charge origin). On the other hand, the Bely̌ı pair fixes the complex

structure of X, which we denoted as τB (to emphasize the Bely̌ı origin).
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The equality of these two complex structures was first conjectured in [103], and

further work has found an array of examples where this equality holds (C3, conifolds,

and their orbifolds). However, a counter-example in [108], viz., L2,2,2, showed that these

two complex structures need not be equal in general.

Now, Seiberg duality preserves τR from a physical point of view, as shown in [111].

However, its action on τB, and indeed on the dessin, is not clear. These discussions nat-

urally lead to questions about the scope of the equality and the parameters’ respective

interpretations.

Question 23. In what scenarios does τB = τR hold?

Question 24. What is the physical interpretation of τB in the brane tiling’s SCFT?

Question 25. Does τR have use in the theory of dessins d’enfants, or further in Galois

theory?

Another modular parameter also appears in this context, this time associated to a

torus arising directly from the geometry. In the cases where the quiver gauge theory’s

toric vacuum moduli space is Gorenstein in nature, this Gorenstein singularity can be

reformulated as a torus fibration. From there, the action of the 3d mirror symmetry

acts alike a T-duality with U(1)3 symmetry [102, 112], however only a U(1)2 subgroup

preserves the Kähler form and holomorphic 3-form. This U(1)2 may be used to define

an invariant part of the Gorenstein’s SLag (special Lagrangian), such that this part will

be a torus. Finally, pulling-back the metric to this torus where the brane tiling exists

provides a metric. This torus’ metric’s complex structure is then another modular

parameter, denoted τG to emphasise the geometric motivation [113].

It is then instinctive to ask where this τG fits in with the other modular parameters.

Computations in [113] showed that τG = τR in some simple cases (C3, conifold); whilst

also that this equality holds only approximately in more complicated scenarios (L1,2,1).

Question 26. What is the precise relation between τG, τR and τB?

3.4.2 Galois Orbits and Seiberg Duality

The dessin d’enfant Bely̌ı maps, through Bely̌ı’s theorem, may be defined using alge-

braic numbers exclusively. However which specific field extension of the rationals is

sufficient to describe them depends on the Bely̌ı pair in question. The roots used in

the Galois extension can be considered as roots of some minimal separable polynomial

over the rationals. Changing which of these roots is used in the field extension for

the Bely̌ı map takes the Bely̌ı map, and respective dessin, through its Galois orbit.
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Through Galois orbits dessins manifestly group themselves, and how these orbits find

use physically is an area of particular interest.

Contrastingly, on the physical side quiver gauge theories naturally sort themselves

into duality classes, based on the action of Seiberg duality [114–117]. Seiberg duality

is an IR equivalence between 4d N = 1 theories, in our case this importantly also

applies to toric quiver gauge theories. The brane tilings for these theories thus form

groupings as bipartite graphs within the same duality trees, alike the groupings of

dessins d’enfants under Galois conjugation. How these two groupings arise in each

others fields is suggested to have some interesting significance.

Question 27. Is there physical significance to the relation between brane tiling theories

whose bipartite graphs as dessins d’enfants are in the same Galois orbit?

Question 28. How does Seiberg duality between brane tilings relate dessins d’enfants,

and what Galois invariants (if any) can be inspired by these duality trees?

Since a primary goal within Galois theory is identifying Galois invariants that

can be used as tools in calculation, perhaps Seiberg duality trees may reveal some

physically-inspired invariants with use on the mathematical side.

3.4.3 Seiberg-Witten Curves and Modular Surfaces

Seiberg-Witten curves are exact descriptions of the Coulomb branch for the IR limit of

N = 2 gauge theories. Deforming these theories with tree-level superpotentials causes

symmetry breaking to N = 1 theories, where vacua produced are connected in phases

based on the deforming superpotential’s parameters [118].

Through tuning the deforming superpotential’s parameters, the roots of the com-

ponents of the N = 2 hyperelliptic curve can be shown to coalesce, such that a drawing

of the roots connected by the relevant branch cuts forms a bipartite graph. These

bipartite graphs occur in the moduli space exclusively at the points the Seiberg-Witten

curve develops isolated singularities, considered special points of the N = 1 phases.

These bipartite graphs are dessins d’enfants, and it was shown in [119] that order

parameters separating different branches of the N = 1 vacua may be considered as

Galois invariants. This surprisingly link between the vacua phases of this symmetry

breaking and dessins d’enfants inspires curiosity into the deeper connection between

these objects.

Question 29. How are N = 1 vacua from Seiberg-Witten curves and dessins d’enfants

explicitly linked?
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Their association would lead to powerful insight on both sides, identifying further

Galois invariants, as well as deeper physical meaning. In addition to the relation to

Seiberg-Witten hyperelliptic curves, dessins d’enfants also arise in relation to elliptic

curves in another way.

Modular curves are formed through quotient action on the upper half plane, H, by

subgroups of the modular group, PSL(2,Z). After extension of this modular action to

H × C, the ‘modular surfaces’ formed for the index 24 subgroups are surprisingly K3

surfaces, and those for index 36 subgroups are Calabi-Yau 3-folds [120].

Examining the elliptic j-invariants for these surfaces in elliptic Weierstraß form, the

fibration over C from the modular action extension turns these invariants into maps.

These maps astoundingly turn out to be Bely̌ı in nature, and thus these elliptic surfaces

are related to dessins d’enfants quite naturally. Moreover, the same dessins can be seen

to arise from these subgroups more directly through their Schreier coset graphs [121].

This unexpected connection between modular surfaces and dessins d’enfants through

the modular group stimulates further questions about its scope for other modular sub-

groups.

Question 30. To what extent do modular subgroups connect modular surfaces to dessins

d’enfants?

4 A Digression: Machine Learning

In recent years string and gauge theories have capitalised on a modern computational

tool: machine-learning (ML). Its use initiated in this field with the examination of

string landscapes [122–125], and has since quickly developed these techniques to a wide

range of subfields related to gauge theories. In particular, ML has seen great success in

topics discussed in this paper, examining: plethystics [126, 127], amoebae [128], Seiberg

duality [129], and dessins d’enfants [130].

ML finds its use within this field in two primary scenarios. The first being for speed

in computation, since many problems have beyond polynomial time complexity to solve.

Where these problems require minimal computation to check a solution, ML tools can

quickly, and computationally cheaply, provide an array of predicted solutions which can

easily be confirmed if valid or not. The second scenario is in conjecture formulation,

the complexity of many ML tools makes them excellent at higher-dimensional pattern

recognition, particularly useful when examining large datasets to spot relations and aid

in forming conjectures.

The field of study of ML separates itself into 3 styles of problem: supervised, un-

supervised, and reinforcement. Supervised learning uses tools such as neural networks,
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support vector machines, random forests to perform non-linear function fitting between

known inputs and outputs. These tools are used with the aim that the function will

have predictive power for both interpolation and extrapolation beyond the training

dataset. Unsupervised learning uses tools such as clustering and autoencoders to iden-

tify patterns in data, and isolate degrees of freedom. Finally reinforcement learning

trains an agent to efficiently search for optimum/desired solutions within a known state

space, in a Markov Decision Process style.

Neural networks often use the ReLU function as the non-linear component, s.t.

ReLU(x) := max(x, 0). The linear combination of these functions between neural net-

work neurons makes the full function used to approximate the supervised data piecewise

linear in nature. Interestingly, and surprisingly developed independently, the combi-

nation of linear action and maximisation finds itself at the heart of another field also,

tropical geometry. Only recently has work been initiated to examine the interrelation

between these areas [131], and calls for further exploration.

Question 31. Can we establish a complete correspondence between tropical geometry

and neural networks?

Since there is a natural connection between tropical geometries through amoebae

and quiver gauge theories, the previous question would link into our primary topic:

Question 32. Can the tropical functions describing ReLU NNs be redescribed as quiver

gauge theories?

The action of neural network training has recently drawn inspiration from tradi-

tional quantum field theory techniques. The non-gaussianity of the training process has

been related to renormalisation group flow, with different trained networks acting alike

fixed points in the flow [132, 133] (q.v. [134]). Cementing these ideas is an interesting

topic for further work.

Question 33. Can the success of machine learning methods be explained through quan-

tum field theory techniques?
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[51] O. Bergman and D. Rodŕıguez-Gómez, “The Cat’s Cradle: deforming the higher rank
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