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Abstract

Signaling game problems investigate communication scenarios where encoder(s) and decoder(s) have misaligned objectives
due to the fact that they either employ different cost functions or have inconsistent priors. This problem has been studied in
the literature for scalar sources under various setups. In this paper, we consider multi-dimensional sources under quadratic
criteria in the presence of a bias leading to a mismatch in the criteria, where we show that the generalization from the scalar
setup is more than technical. We show that the Nash equilibrium solutions lead to structural richness due to the subtle
geometric analysis the problem entails, with consequences in both system design, the presence of linear Nash equilibria, and an
information theoretic problem formulation. We first provide a set of geometric conditions that must be satisfied in equilibrium
considering any multi-dimensional source. Then, we consider independent and identically distributed sources and characterize
necessary and sufficient conditions under which an informative linear Nash equilibrium exists. These conditions involve the
bias vector that leads to misaligned costs. Depending on certain conditions related to the bias vector, the existence of linear
Nash equilibria requires sources with a Gaussian or a symmetric density. Moreover, in the case of Gaussian sources, our results
have a rate-distortion theoretic implication that achievable rates and distortions in the considered game theoretic setup can
be obtained from its team theoretic counterpart.

Key words: Signaling games, multi-dimensional cheap talk, game theory, information theory, Nash equilibrium,
rate-distortion theory.

1 Introduction

In a team theoretic setup where the decision makers
share a common goal, the decision makers do not wish
to hide information to improve the performance since re-
vealing more information does not lead to a degradation
of system performance. Therefore, in such setups, if there
is no constraint on messages to transmit between the de-
cision makers, such as a power constraint or a limited
bandwidth requirement, a decision maker can always re-
veal more information without causing any performance
loss. On the other hand, in a game theoretic (strategic)
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setup involving decision makers with misaligned goals,
revealing more information may hurt some or even all
of the decision makers (Bassan, Gossner, Scarsini & Za-
mir, 2003). Hence, a decision maker in a strategic set-
ting needs to take misaligned goals into account while
designing what information to reveal to another decision
maker. We may consider two main themes which lead
to misaligned objectives for the decision makers. In the
first theme, the decision makers employ different cost
functions, e.g., a decision maker wishes to mislead an-
other decision maker, see, e.g., (Sarıtaş, Yüksel & Gezici,
2017), (Akyol, Langbort & Başar, 2017) and (Le Treust
& Tomala, 2019). The second theme is concerned with
the case when the decision makers have subjective beliefs
regarding prior probability distributions of unknown pa-
rameters. This subjectivity leads to misaligned objec-
tives for the decision makers even though they employ
the same cost function, see, e.g., (Başar, 1985), (Kazıklı,
Sarıtaş, Gezici & Yüksel, 2022) and (Sarıtaş, Gezici &
Yüksel, 2019). These both lead to a game theoretic setup
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Fig. 1. Communication setting.

where a suitable equilibrium concept, such as the Nash
equilibrium and the Stackelberg equilibrium, is to be
used to analyze the system. These problems fall into the
general class of signaling game problems that investi-
gates communication scenarios between decision mak-
ers with misaligned objectives. In this context, Crawford
and Sobel, in their seminal paper (Crawford & Sobel,
1982), introduce a signaling game problem where a bi-
ased encoder wishes to convey a scalar source to a de-
coder, and a message transmission does not induce a cost
for the encoder. This problem is also referred to as cheap
talk, which emphasizes that communication is costless.
Crawford and Sobel show that under certain technical
conditions regarding cost functions, the encoder must
hide information at a Nash equilibrium by employing
quantization policies, which holds even though there is
no restriction on communication. In an equilibrium with
a quantization policy, referred to as quantized or parti-
tion equilibrium, the encoder partitions the observation
space into intervals and reveals the interval that contains
the encoder’s observation. Crawford and Sobel’s result
implies that at a Nash equilibrium, the encoder cannot
convey its private information completely by employing
a linear encoding policy (i.e., transmitting a scaled ver-
sion of its observation to the decoder). This is a striking
example where providing more information to the de-
coder by employing a linear encoder instead of a quan-
tized encoder breaks the equilibrium in a game theoretic
setup. In this manuscript, we study multi-dimensional
sources under quadratic criteria for the cheap talk setup
of Crawford and Sobel and investigate the properties of
Nash equilibrium solutions.

Our work investigates communication scenarios between
a biased encoder and a decoder, which leads to a sig-
naling game problem. We may encounter biased deci-
sion makers in various applications. For instance, in con-
trol applications, an adversary may wish to inject a bias
into a control system in order to deteriorate the system
performance (Teixeira, Shames, Sandberg & Johansson,
2015). In smart grid applications, a strategic consumer
or electricity producer in a microgrid system may wish
to give false or biased measurement reports to another
decision maker for its own benefit (Larrousse, Beaude &
Lasaulce, 2014). As another application, strategic users
in a cellular network may wish to misreport their chan-
nel conditions to the base station for their own bene-
fit (Kavitha, Altman, El-Azouzi & Sundaresan, 2012).
Moreover, interactions between attackers and defenders
in control applications may be modeled as a cheap talk
problem (Li, Dán & Liu, 2020; Sarıtaş, Dán & Sandberg,
2020). For applications of signaling games and cheap talk
in fields such as economics, finance, biology, and politi-
cal science, the reader is referred to (Sobel, 2020).

1.1 Preliminaries

We consider the following multi-dimensional signaling
game problem where an encoder and a decoder com-
municate. This, in particular, corresponds to a multi-
dimensional cheap talk problem where cheap talk refers
to the fact that a message transmission does not induce
a cost for the encoder. The encoder observes the value of
an n-dimensional random vector M = [M1, . . . ,Mn]T

where M1, . . . ,Mn are M-valued random variables. The
encoder conveys a message Z = [Z1, . . . , Zn]T via an en-
coding policy γe(·), i.e., Z = γe(M), where Z1, . . . , Zn
are Z-valued random variables. The decoder directly ob-
serves Z and takes an action U = [U1, . . . , Un]T via a
decoding policy γd(·), i.e., U = γd(Z), where U1, . . . , Un
are M-valued random variables. In this paper, we con-
sider real valued random variables, i.e., M = Z = R
where R denotes the set of real numbers. The aim of
the encoder is to minimize Je(γe, γd) = E[ce(M ,U)]
where 1

ce(m,u) =

n∑
i=1

(mi − ui − bi)2 = ‖m− u− b‖2. (1)

In (1), b denotes a deterministic bias vector which is
common knowledge among the players and quantifies
the degree of misalignment between the objective func-
tions of the encoder and decoder. In other words, the en-
coder wishes to make biased reports regarding its obser-
vations possibly with different biases for different com-
ponents. On the other hand, the decoder wishes to esti-
mate the random source vector as accurately as possible;
thus, its objective function does not include a bias vec-
tor. In particular, the aim of the decoder is to minimize
Jd(γe, γd) = E[cd(M ,U)] where

cd(m,u) =

n∑
i=1

(mi − ui)2 = ‖m− u‖2. (2)

The communication scenario is depicted in Fig.1. Our
aim is to characterize the Nash equilibrium where the
decision makers announce their policies at the same time.
At a Nash equilibrium, none of the players wishes to
unilaterally deviate from their current strategies as their
cost cannot get better by doing so. In particular, a set
of policies γ∗,e and γ∗,d forms a Nash equilibrium (e.g.,
Başar & Olsder (1999)) if

Je(γ∗,e, γ∗,d) ≤ Je(γe, γ∗,d) for all γe ∈ Γe,

Jd(γ∗,e, γ∗,d) ≤ Jd(γ∗,e, γd) for all γd ∈ Γd,
(3)

where Γe and Γd are the sets of all deterministic (and
Borel measurable) functions from Mn to Zn and from

1 We adopt the convention that random variables are de-
noted by uppercase letters with their realizations denoted
by the corresponding lowercase letters.
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Zn to Mn, respectively.

Remark 1 Under the Nash equilibrium concept, both
players announce their policies at the same time. By
considering the Nash equilibrium concept, we essentially
investigate a non-cooperative communication setup in
terms of policy announcements in the sense that no
player discloses its policy before the other player. This
means that no player commits to a certain announced
policy a priori. This equilibrium concept is appropriate,
for instance, when the players do not have access to pol-
icy announcements of each other or when they do not
trust an announced policy by the other player. In con-
trast, one can also consider the Stackelberg setup (see,
e.g., (Başar & Olsder, 1999) for a definition) where the
encoder announces its policy and commits to this policy,
and the decoder chooses its policy given the encoder’s
announcement. We may view the Stackelberg setup as
a cooperative communication setup as there is a pol-
icy announcement by the encoder. In fact, for the scalar
or multi-dimensional cheap talk setup, the Stackelberg
equilibrium solution leads to full revelation where the
encoder discloses the source completely (Sarıtaş et al.,
2017, Theorem 3.3). In contrast, there does not exist a
Nash equilibrium with full information revelation in gen-
eral. In other words, the encoder must hide information
partially (or even completely in certain cases, see, e.g.,
(Kazıklı, Sarıtaş, Gezici, Linder & Yüksel, 2022, Theo-
rem 3) for the scalar case) in the non-cooperative com-
munication setup whereas it does not hide any informa-
tion in the cooperative communication setup.

Assumption 2 Considering each component Mi of the
source random vector M , every non-empty open set on
its support has a positive measure.

The following is an implication of this assumption. Con-
sider a convex set C with a non-empty interior. Then,
its centroid E[M |M ∈ C] must be in the interior of set
C. 2 We will use this implication later in the paper.

We formally define a quantization policy in the following.
Note that due to results in (Crawford & Sobel, 1982) and
(Sarıtaş et al., 2017), a Nash equilibrium in the scalar
source case must involve quantization policies at the en-
coder with convex bins.

Definition 3 A quantization policy with K bins, q, is
a (Borel) measurable mapping from Mn = Rn to the
set {1, . . . ,K} characterized by a measurable partition
{B1, . . . ,BK} such that Bi = {m | q(m) = i} for i =
1, . . . ,K and that bin probabilities are strictly positive.
The Bi are called the bins of q.

The bins defined in Definition 3 lead to a Nash equi-
librium under certain conditions described later in the

2 This follows from a separating hyperplane argument.

manuscript. If these bins form a Nash equilibrium,
they are referred to as (Nash) equilibrium partitions.
In contrast to the scalar source case, there may exist
a Nash equilibrium with a linear encoder in the multi-
dimensional source case, which is investigated later in
the paper. Accordingly, we make the following defini-
tion.

Definition 4 For the n-dimensional cheap talk prob-
lem, if an encoding policy z = γe(m) = Am where
A ∈ Rm×n with m ≤ n and a decoding policy u = γd(z)
satisfy (3), we say that these policies lead to a linear
Nash equilibrium.

Definition 5 We say that a Nash equilibrium is infor-
mative if the encoder reveals information related to the
source, i.e., the source M and the message Z are not in-
dependent random variables. A Nash equilibrium is re-
ferred to as non-informative when the encoded message
is independent of the source.

We note that there always exists a non-informative Nash
equilibrium for the multi-dimensional cheap talk prob-
lem, which follows from (Crawford & Sobel, 1982). In
this equilibrium, the encoder transmits a message which
is independent of the source. The decoder takes an ac-
tion based on the prior probability distribution of the
source, i.e., its best response u = E[M ]. This is a Nash
equilibrium since both the encoder and the decoder can-
not improve their expected costs by deviating from these
strategies. In contrast, an informative Nash equilibrium
may or may not exist depending on the setup.

At a given Nash equilibrium, all possible realized values
of u are referred to as decoder actions. While investigat-
ing the geometric properties of Nash equilibria, we fre-
quently use the following definition regarding the set of
decoder actions in equilibrium.

Definition 6 We say that a non-empty set of decoder
actions containing more than one element forms a con-
tinuum if it is a closed and connected set (i.e., it can-
not be expressed as a union of two or more disjoint and
closed sets).

An important implication of our results is related to the
information theoretic limits of the cheap talk problem.
In classical communication settings involving decision
makers with aligned goals, information theoretic limits
specify bounds on the rate of communication and sys-
tem performance measured by a common cost criterion
(see, e.g., (Cover & Thomas, 2006)). In such settings, a
bound on the achievable communication rate arises due
to system requirements such as a power constraint at
the encoder and having a noisy channel. On the other
hand, an interesting question arises in a game theoretic
setup: Does an upper bound exist on the achievable rate
of communication due to misaligned cost criteria? In
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certain cases, our analysis gives a conclusive answer to
this question for the multi-dimensional cheap talk setup.
In particular, we show that there exists a Nash equilib-
rium with a linear encoder depending on certain explicit
conditions, in which case there does not exist an upper
bound on the achievable rate of communication. We con-
sider the Nash setup for such an information theoretic
problem. We refer the reader to (Le Treust & Tomala,
2019) for a Stackelberg (Bayesian persuasion) setup.

1.2 Literature Review

The cheap talk and signaling game problems have gained
significant attention in recent control and communica-
tion theory literature. For instance, (Sarıtaş et al., 2017)
investigates signaling game setups with quadratic cost
criteria under Nash and Stackelberg equilibria concepts
where a biased encoder communicates with a decoder.
The work in (Akyol et al., 2017) considers a Gaussian sig-
naling game problem under the Stackelberg equilibrium
concept where the bias term at the encoder is modeled
as a random variable. In (Sayın, Akyol & Başar, 2019), a
multi-stage Gaussian signaling setup is investigated un-
der the Stackelberg equilibrium concept where the pri-
vate state of the encoder is a controlled Gauss–Markov
process. The work in (Le Treust & Tomala, 2019) in-
vestigates information theoretic limits for the Bayesian
persuasion (Stackelberg) setup where there is a commit-
ment assumption for the encoder. The works in (Vora
& Kulkarni, 2020a) and (Vora & Kulkarni, 2020b) con-
sider problems under the Stackelberg equilibrium con-
cept where the decoder has a commitment assumption
and introduce the notion of information extraction ca-
pacity. In (Kazıklı et al., 2022), various properties of
Nash equilibria are analyzed for the one-dimensional
quadratic cheap talk problem. In (Sarıtaş, Yüksel &
Gezici, 2020), multi-stage cheap talk and signaling game
problems are investigated under Nash and Stackelberg
equilibria. In (Kazıklı et al., 2021), some of the prelim-
inary results in this paper were announced, and the re-
sults presented did not include proofs.

Multi-dimensional cheap talk problems have also been
considered in the economics literature (Levy & Razin,
2007; Battaglini, 2002; Miura, 2014; Chakraborty & Har-
baugh, 2007; Ambrus & Takahashi, 2008). For instance,
(Levy & Razin, 2007) investigates a two-dimensional
source setting where an encoder communicates with a
decoder. Different from our work, the encoder’s prefer-
ences over different decoder actions are primarily deter-
mined by preferences in a certain dimension. In partic-
ular, if the encoder prefers one decoder action over the
other in this dimension, then the second dimension does
not matter. In this case, (Levy & Razin, 2007) shows the
existence of an upper bound on the number of decoder
actions. In addition, the work in (Battaglini, 2002) con-
siders a multi-dimensional cheap talk problem with two
encoders and a decoder. While (Battaglini, 2002) stud-

ies conditions on the existence of equilibria with the en-
coders completely revealing their observations, our fo-
cus instead is on the characterization of Nash equilib-
rium partitions in general; as in the case with a single
encoder, we do not have full revelation in general. More
specifically, we focus on a scenario with a single encoder
that jointly encodes its multi-dimensional observation
and employs a single quadratic cost function. More re-
cently, (Sémirat, 2019) investigates a two-dimensional
cheap talk setup between an encoder and a decoder con-
sidering a uniform source where the encoder is restricted
to transmit a binary message. This work proves the ex-
istence of an informative Nash equilibrium for any bias
vector under the considered setup.

1.3 Contributions

The main aim of this paper is to analyze a quadratic
multi-dimensional cheap talk problem, which is a multi-
dimensional extension of Crawford and Sobel’s formula-
tion (Crawford & Sobel, 1982). The main contributions
of this paper can be summarized as follows:

(i) We show that for general source distributions, de-
coder actions in any Nash equilibrium must satisfy
a necessary geometric condition (Lemma 7).

(ii) We derive the necessary conditions that a Nash
equilibrium with a continuum of decoder actions
needs to satisfy in the case of two-dimensional ob-
servations with general distributions (Lemma 11
and Lemma 12).

(iii) We completely characterize necessary and sufficient
conditions under which linear Nash equilibria exist
considering independent and identically distributed
(i.i.d.) two-dimensional observations (Theorem 13).
We also generalize these results to the case when
the encoder makes more than two i.i.d. observations
(Theorem 17 and Theorem 19).

(iv) We take the dimension of the source process to
infinity and provide an information theoretic per-
spective to the cheap talk problem by introducing
a rate-distortion theoretic formulation. We obtain
achievable rates and distortions for the particular
case of i.i.d. Gaussian sources (Theorem 21).

2 Geometric Properties of Nash Equilibria

2.1 A Necessary Geometric Condition for Nash Equi-
libria

In this subsection, we show that the cost structure em-
ployed in the problem imposes certain restrictions on the
actions taken by the decoder at a Nash equilibrium. In
particular, we derive a geometric condition that any two
decoder actions at a Nash equilibrium must satisfy. This
derivation also allows us to specify the general structure
of a Nash equilibrium with a quantization policy at the
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encoder. In addition, while this geometric condition is
important on its own as it provides a necessary condi-
tion for a Nash equilibrium in terms of induced decoder
actions, it is also useful while deriving conditions for the
existence of linear Nash equilibria. It is noted that the
following result holds regardless of the source distribu-
tion and applies to both i.i.d. and non-i.i.d. sources.

Lemma 7 Consider the n-dimensional cheap talk prob-
lem with the source random vector M = [M1, . . . ,Mn]T

where each element of M can have different distribu-
tions and can be dependent or independent. Let Bα and
Bβ be two bins, and let uα = E[M |M ∈ Bα] and uβ =
E[M |M ∈ Bβ ] denote their centroids which are the de-
coder actions taken when the encoder reveals M ∈ Bα
and M ∈ Bβ, respectively.

(i) These decoder actions must satisfy the following
necessary condition at a Nash equilibrium:

2 |(uβ − uα)T b| ≤ ‖uβ − uα‖2. (4)

(ii) At a Nash equilibrium, the encoder decomposes
the complete observation space into two regions
via a hyperplane orthogonal to (uα − uβ) and
intersecting the line connecting uα and uβ, and
Bα and Bβ are subsets of these respective re-
gions. In particular, Bα must be a subset of the
set {m |h(m,uα,uβ) ≥ 0} whereas Bβ must be a
subset of the set {m |h(m,uα,uβ) ≤ 0} where

h(m,uα,uβ) ,(
m−

(
uβ + uα

2
+ b

))T
(uβ − uα), (5)

and h(m,uα,uβ) = 0 defines the hyperplane on
which the encoder is indifferent between either de-
coder actions, i.e., these m values may belong to
both Bα and Bβ.

(iii) At a Nash equilibrium where the encoder uses quan-
tization policies, the quantization bins are always
convex.

See Appendix A for a proof. Fig. 2 illustrates the result
in Lemma 7 for an example setup. In the case of more
than two decoder actions, each pair of decoder actions
must satisfy the condition in (4) at a Nash equilibrium.
In addition, the bins for each decoder action must be
obtained by computing half spaces via (5) for each pair
of decoder actions and then by intersecting these half
spaces. In particular, if the decoder actions {u1, . . . ,uK}
and the corresponding bins {B1, . . . ,BK} form a Nash
equilibrium with K bins, then it must be that

Bi = {m |h(m,ui,uj) ≥ 0 for all j 6= i}, (6)

for i = 1, . . . ,K. Note that the conditions in (6) are
necessary but not sufficient for a Nash equilibrium.

×
uα

×
uβ

uα+uβ

2

b

m̄
H2

H1

Bβ

Bα

Fig. 2. Illustration of half spaces induced by decoder actions
uα and uβ in Lemma 7. The crosses represent the decoder
actions, and the arrow represents the bias vector. These de-
coder actions and the bias vector lead to a line of m̄ values
for which the encoder is indifferent between reporting these
observations as uα and uβ . The shaded areas illustrate ex-
ample bins which satisfy the necessary condition that the
half spaces H1 and H2 cannot intersect with Bα and Bβ ,
respectively.

Fig. 3. Illustration of a Nash equilibrium involving a quanti-
zation policy with three bins for the case when b1 = b2 = 0.1
and the source is two-dimensional i.i.d. with a uniform dis-
tribution. The shaded areas show the quantization bins, the
lines between the areas are the bin edges, and the crosses
represent the decoder actions induced in equilibrium. These
quantization bins and bin edges satisfy (6) and (7), which
leads to a Nash equilibrium.

Due to the equilibrium conditions at the decoder, for
a Nash equilibrium with K bins, the decoder actions
{u1, . . . ,uK} and the corresponding bins {B1, . . . ,BK}
must also satisfy the following centroid conditions:

ui = E[M |M ∈ Bi], (7)

for i = 1, . . . ,K. If the conditions in (6) and (7) are
satisfied, then the corresponding decoder actions and
bins form a Nash equilibrium withK bins. Fig. 3 depicts
a Nash equilibrium involving a quantization policy with
three bins at the encoder.

Remark 8 In the case of scalar cheap talk, it is re-
quired that |uα − uβ | > 2|b| holds for any decoder ac-
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M T γ̃eX
γ̃dZ

T −1
Y

U

Fig. 4. Equivalent formulation where T denotes the lin-
ear transformation specified by X1 = b1M2 − b2M1 and
X2 = b1M1 + b2M2, and T −1 denotes its inverse.

tions uα and uβ at a Nash equilibrium. This directly
implies that a Nash equilibrium must involve quantiza-
tion policies as concluded in (Sarıtaş et al., 2017, Theo-
rem 3.2). In contrast, such a direct conclusion does not
hold for the multi-dimensional cheap talk problem. In
fact, if (uβ − uα) is orthogonal to b, then the neces-
sary condition in (4) is always satisfied regardless of the
distance between these two decoder actions. This per-
mits the existence of linear Nash equilibria when the
source is multi-dimensional, depending on certain con-
ditions investigated later in the paper. Since such an or-
thogonality property does not hold when the source is
one-dimensional, decoder actions cannot get arbitrarily
close. Hence, there does not exist a linear Nash equilib-
rium in this case.

Lemma 7 presents a geometric condition that any two de-
coder actions at a Nash equilibrium must satisfy. It is im-
portant to emphasize that this condition applies to any
joint distribution for multi-dimensional observations. In
particular, Lemma 7 holds even for joint distributions
that are not independent and identically distributed.

2.2 Necessary Conditions for Continuum of Decoder
Actions in Equilibrium

In this subsection, we further investigate the geometric
condition in Lemma 7 to derive conditions that a Nash
equilibrium with a connected set of decoder actions must
satisfy for the particular case of two-dimensional cheap
talk. Since a linear encoding policy induces a connected
set of decoder actions, our results in this subsection are
useful while deriving conditions for the existence of a
linear Nash equilibrium.

Lemma 7 implies that for decoder actions uα and uβ

satisfying (uβ − uα)T b = 0, it is possible to make their
distance ‖uα−uβ‖ arbitrarily small. On the other hand,
for decoder actions uα and uβ with (uβ − uα)T b 6= 0,
since the distance ‖uα−uβ‖ is lower bounded by a pos-
itive value, these decoder actions uα and uβ cannot get
arbitrarily close. This motivates an equivalent formula-
tion by introducing the following transformation of vari-
ables. In particular, we define

X = TM , (8)

U = T −1Y , (9)

where

T =

[
−b2 b1
b1 b2

]
, T −1 =

1

b21 + b22

[
−b2 b1
b1 b2

]
, (10)

and X , [X1, X2]T and Y , [Y1, Y2]T respectively de-
note the observation at the encoder and the decoder ac-
tion in the transformed coordinate system. The proposed
equivalent formulation is depicted in Fig. 4 where the
linear transformation T and its inverse T −1 are fixed,
and the encoder and decoder design γ̃e(·) and γ̃d(·), re-
spectively. In the following lemma, we show that the pro-
posed transformation of variables leads to an equivalent
formulation. See Appendix B for a proof.

Lemma 9 Suppose that the encoder uses a fixed trans-
formation from the source M to an auxiliary variable
X specified by (8) and designs the map γ̃e(·) from X
to the encoded message Z. Suppose that the decoder de-
signs the map γ̃d(·) from its observation Z to an auxil-
iary variable Y and employs a fixed transformation from
Y to the decoder action U specified by (9). Then, de-
signing γ̃e(·) at the encoder and γ̃d(·) at the decoder is
equivalent to the original problem where the encoder de-
signs the map γe(·) from M to Z under the cost crite-
rion (1), and the decoder designs the map γd(·) from Z
to U under the cost criterion (2). In particular, an equi-
librium under the proposed formulation is also an equi-
librium under the problem given in (3) and vice versa. In
this equivalent formulation, the aim of the encoder and
decoder is to minimize J̃e(γ̃e, γ̃d) , E[cet (X,Y )] and

J̃d(γ̃e, γ̃d) , E[cdt (X,Y )], respectively, where

cet (x,y) , (x1 − y1)2 + (x2 − y2 − b̃)2 = ce(m,u)b̃,
(11)

cdt (x,y) , (x1 − y1)2 + (x2 − y2)2 = cd(m,u)b̃, (12)

b̃ , b21 + b22. (13)

Lemma 10 For a fixed encoding policy γ̃e(x), the opti-

mal γ̃d(·) that minimizes J̃d(γ̃e, γ̃d) is given by E[X|Z =
z].

See Appendix C for a proof. Equipped with this equiva-
lent formulation, we are now ready to present our results
on necessary conditions for any Nash equilibrium with
a continuum of decoder actions.

Lemma 11 Consider the two-dimensional cheap talk
problem. Suppose that at a given Nash equilibrium, a set
of decoder actions C forms a continuum. Then, for any

yα ∈ C and yβ ∈ C, it must be that yα2 = yβ2 .

See Appendix D for a proof. Lemma 11 implies that a
continuum of actions is allowed only in a specific direc-
tion that depends on the bias terms in the original co-
ordinate system.
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Lemma 12 Consider the two-dimensional cheap talk
problem. Suppose that at a given Nash equilibrium, a
set of decoder actions with the same second coordinate
forms a continuum, i.e., y2 = κ where κ is in the support
of X2. Then, it must be that there exist decoder actions
for all values of y1 ∈ [xL1 (κ), xU1 (κ)] and y2 = κ where
xL1 (κ) and xU1 (κ) denote lower and upper boundaries
of the support of X1 when X2 = κ, i.e., these decoder
actions must be connected.

See Appendix E for a proof. Lemma 11 states that a
continuum of decoder actions must have a constant y2
coordinate, and Lemma 12 states that this continuum of
decoder actions must be supported for all values of y1 in
the support of X1 given that X2 = y2. This means that
a continuum of decoder actions cannot have a disconti-
nuity. This type of continuum of actions can be attained
by revealing the value of X1 completely. In certain sce-
narios depending on the distribution and the bias vector,
revealing X1 can be a Nash equilibrium, as investigated
in the next section.

3 Linear Nash Equilibria

In this section, we present our main results on the ex-
istence of linear Nash equilibria. Towards that goal, we
employ Lemma 11 and Lemma 12 together with an in-
teresting result from the literature known as Kagan-
Linnik-Rao Theorem (Kagan, Linnik & Rao, 1973, The-
orem 5.3.1). We first consider the two-dimensional case
in the following theorem. See Appendix F for a proof.

Theorem 13 Consider the multi-dimensional cheap
talk problem with sources M1 and M2, which are i.i.d.
with the corresponding bias terms b1 and b2.

(i) For b1 = 0 or b2 = 0, there always exists an in-
formative Nash equilibrium with a linear encoder
where the encoder completely reveals the source cor-
responding to a zero bias.

(ii) For b1 6= 0, b2 6= 0 and |b1| 6= |b2|, there exists an
informative Nash equilibrium with a linear encoder
if and only if the source distribution is Gaussian.

(iii) For b1 = b2 6= 0, there exists an informative Nash
equilibrium with a linear encoder if and only if the
source distribution is symmetric around its mean,
i.e., denoting the density of M1 by f(·), we have
that f(µ + x) = f(µ − x) for almost all x where
E[M1] = µ.

(iv) For b1 = −b2 6= 0, there always exists an informa-
tive Nash equilibrium with a linear encoder regard-
less of the source distribution.

In Figure 5, we depict a linear Nash equilibrium for the
case with a two-dimensional uniform source. This sce-
nario corresponds to the third case in Theorem 13, where
the source distribution is symmetric, and the biases are
the same in each dimension.

Fig. 5. Illustration of a Nash equilibrium with a linear en-
coder γe(m) = m2−m1 for the case when b1 = b2 = 0.1 and
the source is two-dimensional i.i.d. with a uniform distribu-
tion where the solid line illustrates the continuum of decoder
actions induced in equilibrium. The following interpretation
can be made in relation to quantization policies (see also
Fig. 3). When the encoder makes an observation exactly on
the dashed line m2−m1 = 0.4, the encoder only reveals that
its observation is on this dashed line. The decoder takes the
action m1 = 0.3 and m2 = 0.7 as its optimal response.

Remark 14 Lemma 11 and Lemma 12 require that at
a Nash equilibrium, a continuum of decoder actions can
only exist in the direction orthogonal to the bias vector
b without any discontinuity considering the original co-
ordinate system. If the source distribution is such that
E[X2|X1 = x1] = E[b1M1 + b2M2|b1M2− b2M1 = x1] =
0 holds for all x1, then an encoding policy z = γe(m) =
b1m2 − b2m1 leads to a continuum of decoder actions
that satisfies the necessary conditions in Lemma 11 and
Lemma 12. In addition, such an encoding policy leads to
a Nash equilibrium, as the proof of Theorem 13 reveals.

Remark 15 Theorem 13 shows that depending on cer-
tain conditions, there exists an informative Nash equi-
librium with a linear encoder even for large values of
|b1| and |b2|. On the other hand, in the case of one-
dimensional cheap talk, there may exist an upper bound
on the number of bins in equilibrium, e.g., for sources
with a bounded support (Crawford & Sobel, 1982) or
for log-concave sources with a semi-unbounded support
depending on certain conditions (Kazıklı et al., 2022).
In addition, if the bias term is large, this upper bound
may even be equal to one, which means that there does
not exist an informative Nash equilibrium. Hence, even
though the only Nash equilibrium in the case of a one-
dimensional scenario may be non-informative, in the
case of a two-dimensional scenario with the same bias
as in the one-dimensional scenario in both dimensions,
it is possible to obtain an informative Nash equilibrium
when the source distribution is i.i.d. symmetric.

Remark 16 In the case of a Gaussian source, the prob-
lem decouples into two one-dimensional cheap talk prob-
lems. In particular,X1 = b1M2−b2M1 andX2 = b1M1+
b2M2 become independent random variables when M1

and M2 are i.i.d. Gaussian. In fact, due to Darmois-
Skitovich Theorem (Kagan et al., 1973, Theorem 3.1.1),
X1 and X2 are independent only when M1 and M2 are
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Gaussian. As a result, the problem reduces to obtain-
ing Nash equilibria for decoupled two one-dimensional
cheap talk problems where an encoder wishes to convey
X1 with a zero bias and another encoder wishes to con-
vey X2 with a bias of b̃. From (Kazıklı et al., 2022, The-
orem 4), we know that in the case of one-dimensional
cheap talk with a Gaussian source, for any N ≥ 1, there
exists a (unique) Nash equilibrium with N bins. Thus,
for a two-dimensional cheap talk problem with a Gaus-
sian source, there exists a Nash equilibrium where the
encoder reveals X1 completely and applies a quantiza-
tion policy to X2 with an arbitrary number of bins.

We can also consider n-dimensional i.i.d. Gaussian
sources. In this case, one can apply an orthogonal
transformation of variables in a similar manner to the
two-dimensional case where random variables in each
dimension are independent. Under this transformation
of variables, there remains a bias term only for a single
random variable. Due to (Kazıklı et al., 2022, Theo-
rem 4) and the independence of the random variables in
the transformed coordinate system, it follows that there
exists a Nash equilibrium where the encoder applies a
quantization policy to this remaining random variable
with any number of bins.

Theorem 17 Consider the n-dimensional cheap talk
problem with an i.i.d. Gaussian source. Then, there ex-
ists a Nash equilibrium with a linear encoding policy
where the encoder reveals all or a subset of (n−1) dimen-
sions completely (and applies a signaling game policy for
the remaining dimension with any number of bins).

See Appendix G for a proof. Theorem 13 reveals that
for the case with an i.i.d. Gaussian source, there always
exists a linear Nash equilibrium regardless of the value of
the bias vector. One can also consider non-i.i.d. Gaussian
sources. In this case, we show that there may exist a
linear Nash equilibrium depending on the bias vector and
the covariance matrix in the following theorem, whose
proof is presented in Appendix H.

Theorem 18 Consider the multi-dimensional cheap
talk problem with Gaussian sources M1 and M2, and
the corresponding bias terms b1 and b2. Let σ2

1 and
σ2
2 denote the variances of M1 and M2, respectively,

and let ρ denote their covariance. Then, there exists
a Nash equilibrium with a linear encoding policy if
b1b2(σ2

2 − σ2
1) + (b21 − b22)ρ = 0 holds.

Theorem 13 reveals that for the case with an i.i.d. two-
dimensional symmetric source, there always exists an in-
formative linear Nash equilibrium. When n > 2, it is pos-
sible to apply the linear policy in Theorem 13 for pairs
of random variables to obtain a linear Nash equilibrium
as we can obtain decoupled two-dimensional cheap talk
problems. For instance, if n = 2k for some k > 2, then re-
vealing all or a subset of the random variables M2−M1,
M4 −M3, . . . , M2k −M2k−1 yields a Nash equilibrium.

In this case, the encoder reveals at most n/2 dimensions.
In the following theorem, we show that a joint encod-
ing policy can be applied to obtain a Nash equilibrium
where the encoder reveals (n−1) dimensions. The proof
appears in Appendix I.

Theorem 19 Consider the n-dimensional cheap talk
problem involving an i.i.d. source with a symmetric dis-
tribution. Then, there exists a Nash equilibrium with a
linear encoding policy where the encoder reveals all or a
subset of (n−1) dimensions completely in a transformed
coordinate system.

4 Large Dimensions and a Rate-Distortion The-
oretic Formulation of Cheap Talk

We have analyzed the multi-dimensional cheap talk
problem where the bias vector at the encoder can be
arbitrary. The special case when the components of the
bias vector are the same leads to an important problem
from an information theoretic perspective. In this case,
the problem is to convey an i.i.d. source with a certain
bias, and the bias is the same for each source compo-
nent. In other words, the encoder observes independent
copies from a random source and wishes to introduce the
same bias for each independent copy. In such a problem,
one may wish to obtain information theoretic limits of
the communication. In a sense, this problem is a game
theoretic counterpart of rate-distortion theory that is
studied in a classical communication theoretic setup.
Our findings reveal that if the distribution is Gaussian,
then there always exists a linear Nash equilibrium where
the encoder completely reveals (n − 1) dimensions in
a transformed coordinate system. For the remaining
dimension, the encoder has to employ a signaling game
policy with an arbitrary number of bins, including the
case with one bin. This result holds because the problem
can be transformed into decoupled problems consisting
of a team theoretic problem for conveying an (n − 1)-
dimensional i.i.d. source without any bias and a one-
dimensional cheap talk problem with a certain bias in
the remaining dimension. If we increase the number of
observed sources at the encoder, the effect of employed
policy for this remaining dimension becomes negligible.
This implies that the problem of finding achievable rate
and distortion pairs is asymptotically equivalent to ob-
taining achievable rate and distortion pairs for a team
theoretic setup in a transformed coordinate system.

The problem of interest is in fact can be more generally
expressed in a rate-distortion theoretic formulation. The
aim is to find the achievable rate and distortion region.
In particular, we have the following problem:

Problem 20 Consider the n-dimensional cheap talk
problem with i.i.d. sources and b = b1 = · · · = bn. We
say that a tuple of rate and distortion pairs (R,De, Dd)
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is achievable at a Nash equilibrium if there exists a se-
quence of encoders and decoders that leads to a Nash
equilibrium with the following properties:

(i) The encoder is given by γen : Mn → {1, . . . , 2nR}.
(ii) The decoder is given by γdn : {1, . . . , 2nR} → Mn

such that

lim
n→∞

E
[∑n

i=1(Mi − Ui − b)2
]

n
≤ De, (14)

lim
n→∞

E
[∑n

i=1(Mi − Ui)2
]

n
≤ Dd. (15)

Then, the problem is to determine if a given tuple
(R,De, Dd) is achievable at a Nash equilibrium.

If the bias term is zero in this problem, then we obtain a
team theoretic problem since the corresponding distor-
tion values are identical at the encoder and decoder. We
denote the corresponding rate and distortion values by
RT and DT , respectively, where the subscript refers to
the fact that the setup is team theoretic.

While we leave the study of Problem 20 for general
sources for future work, the Gaussian case is completely
solvable. Our result in the previous section shows that
if the source distribution is Gaussian, one can apply a
suitable transformation of variables to obtain an equiva-
lent problem for which the encoder has a bias only for a
single random variable. We use this idea to relate achiev-
able rate and distortion values of the original problem
to that of a team theoretic problem. Before presenting
this result, we note that at a Nash equilibrium we have
E[
∑n
i=1(Mi−Ui−b)2] = E[

∑n
i=1(Mi−Ui)2]+b2n. Thus,

we have the same rate region for any De value satisfy-
ing De ≥ Dd + b2. The following theorem characterizes
achievable rates and distortion values for Problem 20
with Gaussian sources. See Appendix J for a proof.

Theorem 21 Consider the multi-dimensional cheap
talk problem with i.i.d. Gaussian sources where the bias
term b is the same at each dimension. Suppose that a
rate and a distortion pair (RT , DT ) is achievable for
the team theoretic problem with a zero bias. Then, for
the game theoretic problem with a non-zero bias, the
following rate and distortion values are achievable:

R = RT , De ≥ DT + b2, Dd ≥ DT . (16)

Remark 22 The proof of Theorem 17 reveals that
by applying a joint encoding policy that uses multi-
dimensional observations, it is possible to achieve team
theoretic rates and distortions (except that there is still
an additional b2 term for the encoder’s distortion). If we
do not allow for joint encoding, which is equivalent to
considering the scalar cheap talk setup, then the same
rate in the team setup and in the game setup leads
to different distortion values at the decoder, with the
latter being larger.

In rate-distortion theory, an important concept is the
rate-distortion function. In a classical communication
theoretic setup, this is defined as the infimum of rates
R such that (R,D) is achievable. A similar definition of
rate-distortion function in a game theoretic setup yields

R(De, Dd) , inf{R | (R,De, Dd) is achievable}. (17)

By using the result of Theorem 21, we can upper bound
the rate-distortion function for the Gaussian case. To-
wards that goal, we use the following result for the team
theoretic setup where the distortion D is identical at the
encoder and decoder as there is no bias at the encoder.

Lemma 23 (Cover & Thomas, 2006, Theorem 10.3.2)
Suppose that b = 0 in Problem 20. Consider i.i.d. Gaus-
sian sources with a variance of σ2. The rate distortion

function for such a setup is given by R(D) = 1
2 log2

σ2

D if

0 ≤ D ≤ σ2 and R(D) = 0 if D > σ2.

Next, the following theorem, whose proof appears in
Appendix K, presents our result for the game theoretic
setup with a biased encoder.

Theorem 24 Consider the multi-dimensional cheap
talk problem with i.i.d. Gaussian sources where the
bias term b is the same at each dimension. The rate-
distortion function for such a setup satisfiesR(De, Dd) ≤
1
2 log2

σ2

min{Dd,De−b2} if 0 ≤ min{Dd, De− b2} ≤ σ2, and

R(De, Dd) = 0 if min{Dd, De − b2} > σ2.

Remark 25 A related result can be found in (Kazıklı
et al., 2022, Theorem 8). It is shown that having more
bins in the quantized encoding policy leads to reduced
distortion values if the scalar source has a log-concave
distribution. In other words, a large rate leads to smaller
expected costs for both players under a log-concave
source assumption, which holds for the Gaussian case.

Remark 26 For multi-dimensional i.i.d. Gaussian
sources, there exists a Nash equilibrium where the en-
coder reveals (n− 1) dimensions and applies a signaling
game policy for the remaining dimension Xn with an ar-
bitrary number of bins. Since the Gaussian distribution
is log-concave, from (Kazıklı et al., 2022, Theorem 8),
it follows that the expected costs of both players reduce
when the number of bins for the quantization policy ap-
plied to Xn is increased. In addition, it is also possible
to have a Nash equilibrium with infinitely many bins
applied to Xn due to (Kazıklı et al., 2022, Theorem 13).
Hence, a Nash equilibrium where X1, . . . , Xn−1 are re-
vealed and a quantization policy with infinitely many
bins applied to Xn corresponds to a payoff dominant
Nash equilibrium (Harsanyi & Selten, 1988).
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5 Conclusion

We have analyzed a quadratic multi-dimensional cheap
talk problem. First, we have derived the necessary gen-
eral conditions for a Nash equilibrium considering any
joint source distribution. In particular, we have shown
that decoder actions at a Nash equilibrium need to sat-
isfy a geometric condition that essentially prevents any
two decoder actions from being arbitrarily close to each
other depending on their difference as vectors and the
bias vector. Then, we have investigated continuum of de-
coder actions considering two-dimensional sources and
provided a condition that a continuum of decoder ac-
tions must satisfy in any Nash equilibrium. Then, we
have derived necessary and sufficient conditions under
which a linear Nash equilibrium exists considering i.i.d.
sources. These conditions require a Gaussian or a sym-
metric source density. Moreover, we have formulated
a rate-distortion theoretic problem for the cheap talk
setup and have solved the Gaussian case.

Appendix A Proof of Lemma 7

(i) Let there be two bins, Bα and Bβ . Denote
their centroids by uα = E[M |M ∈ Bα] and
uβ = E[M |M ∈ Bβ ]. The encoder is indifferent
between the decoder actions uα and uβ for source
observation values m̄ which satisfy the following:

ce(m̄,uα) = ce(m̄,uβ)

⇔‖m̄− uα − b‖2 = ‖m̄− uβ − b‖2

⇔ (2m̄− (uβ + uα + 2b))T (uβ − uα) = 0. (18)

In other words, if an observation satisfies (18), the
encoder’s costs are the same under the decoder ac-
tions uα and uβ . From (18), it is seen that these m̄
values define a hyperplane orthogonal to (uβ−uα).
Given any source observation m = m̄+∆(uβ−uα)
with ∆ > 0 where m̄ satisfies (18), the encoder
prefers the decoder action uβ over the decoder ac-
tion uα since the following holds:

ce(m̄ + ∆(uβ − uα),uβ)− ce(m̄ + ∆(uβ − uα),uα)

= −2∆‖uβ − uα‖2 < 0. (19)

This implies that Bα andH1 are disjoint sets where

H1 ,{m |m = m̄ + ∆(uβ − uα)

where m̄ satisfies (18) and ∆ > 0}. (20)

Similarly, given any source observation m = m̄ +
∆(uβ − uα) with ∆ < 0, the encoder prefers the
decoder action uα over the decoder action uβ . It
follows that Bβ and H2 are disjoint sets where

H2 ,{m |m = m̄ + ∆(uβ − uα)

where m̄ satisfies (18) and ∆ < 0}. (21)

Furthermore, the plane specified by (18) inter-
sects the affine set λuβ + (1− λ)uα with λ ∈ R at
a single point due to the fact that (uβ − uα) and
the hyperplane specified by (18) are orthogonal. In
order to find the value of λ that gives this intersec-
tion point, we solve (18) and m̄ = λ̄uβ + (1− λ̄)uα

together and obtain an expression for λ̄ in the fol-
lowing:(

2m̄− uβ − uα − 2b
)T (

uβ − uα
)

= 0

⇔(2λ̄− 1) =
2(uβ − uα)T b

‖uβ − uα‖2 . (22)

We know that the centroid conditions require uα =
E[M |M ∈ Bα] and uβ = E[M |M ∈ Bβ ]. Since
Bα and H1 are disjoint sets, and Bβ and H2 are
disjoint sets, we need 0 ≤ λ̄ ≤ 1, which is equivalent
to |2λ̄− 1| ≤ 1. By combining this inequality with
(22), it follows that (4) holds.

(ii) As noted above, Bα and Bβ do not intersect with
H1 and H2, respectively, where H1 and H2 are de-
fined in (20) and (21). These regions lead to the
decomposition specified by the hyperplane in (5),
which is orthogonal to (uβ − uα).

(iii) The decision regions for two decoder actions must
be constructed by computing and intersecting half
spaces. Since a half space is a convex set and inter-
section operation preserves convexity, the quantiza-
tion bins must be convex (Boyd & Vandenberghe,
2004, p. 36).

Appendix B Proof of Lemma 9

For the cost function of the encoder, we can write

ce(m,u) = (m− u− b)T (m− u− b)

=
(
T −1T (m− u− b)

)T (T −1T (m− u− b)
)

=
(
T (m− u− b)

)T
(T −1)T (T −1)

(
T (m− u− b)

)
= b̃−1

(
x− y − [0, b̃]T

)T (
x− y − [0, b̃]T

)
= cet (x,y)b̃−1, (23)

where b̃ is specified in (13), and the fourth equation uses

(T −1)T (T −1) = b̃−1I with I denoting identity matrix,

T b = [0, b̃]T , Tm = x and T u = y. In a similar manner,
the cost function of the decoder can be expressed as

cd(m,u) = (m− u)T (m− u)

=
(
T (m− u)

)T
(T −1)T (T −1)

(
T (m− u)

)
= b̃−1

(
x− y

)T (
x− y

)
= cdt (x,y)b̃−1, (24)

where the third equation uses (T −1)T (T −1) = b̃−1I,

Tm = x and T u = y. Note that the factor of (1/b̃) is
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canceled in the definitions of cet (x,y) and cdt (x,y) for

notational convenience. Since b̃ is a constant and b̃ > 0,
this cancellation does not change the goals of the players.

Note that a fixed and invertible transformation of
observation and action variables independent of
the policies γ̃e(·) and γ̃d(·) is considered. More-
over, since the transformation is invertible, there
is no loss of information at the encoder and the
decoder due to the transformation. If γ∗,e(·) and
γ∗,d(·) satisfy (3), then γ̃∗,e(·) = γ∗,e(T −1(·)) and

γ̃∗,d(·) = T (γ∗,d(·)) satisfy J̃e(γ̃∗,e, γ̃∗,d) ≤ J̃e(γ̃e, γ̃∗,d)
for all γ̃e and J̃d(γ̃∗,e, γ̃∗,d) ≤ J̃d(γ̃∗,e, γ̃d) for all
γ̃d since the cost functions in the transformed and
original formulations are essentially the same as
shown in (23) and (24). Similarly, if γ̃∗,e(·) and

γ̃∗,d(·) satisfy J̃e(γ̃∗,e, γ̃∗,d) ≤ J̃e(γ̃e, γ̃∗,d) for all

γ̃e and J̃d(γ̃∗,e, γ̃∗,d) ≤ J̃d(γ̃∗,e, γ̃d) for all γ̃d, then
γ∗,e(·) = γ̃∗,e(T (·)) and γ∗,d(·) = T −1(γ̃∗,d(·)) sat-
isfy (3). These reveal that an equilibrium under the
proposed (original) formulation is also an equilibrium
under the original (proposed) formulation. This equiv-
alence can be viewed as a special case of the result in
(Sanjari, Başar & Yüksel, 2021, Theorem 3.1) where it
is shown that for a dynamic stochastic game setup one
can equivalently consider its policy-independent static
reduction under the Nash equilibrium concept.

Appendix C Proof of Lemma 10

For a given encoding policy, the aim of the decoder is to
minimize J̃d(γ̃e, γ̃d) = E[cdt (X,Y )] where cdt (·, ·) is as
in (24). Since the expression in (24) involves a sum of
squared error terms, the result immediately follows.

Appendix D Proof of Lemma 11

This result is a consequence of Lemma 7. By using the
cost function of the encoder and the decoder considering
the equivalent formulation, it can be shown that the
condition in (4) translates to the condition that for any

decoder actions yα = [yα1 , y
α
2 ]T and yβ = [yβ1 , y

β
2 ]T , we

have that

0 ≤ (yα1 − yβ1 )2 + (yα2 − yβ2 )2 − 2b̃|yα2 − yβ2 | , g(yα,yβ).
(25)

Let there be a continuum of decoder actions that does
not have a constant y2 coordinate. Since a continuum
of decoder actions with a constant y1 coordinate is not
allowed due to (25), it is possible to partition a contin-
uum of actions so that it consists of representations of
the form y = [y1, hi(y1)]T for some continuous functions
hi(·) with i ∈ {1, . . . , k}. Here, we represent the second
coordinate of the continuum as a function of the first
coordinate. In the following, we take such a continuum

denoted by y = [y1, h(y1)]T for some continuous func-
tion h(·) and prove that it leads to a contradiction when
h(·) is not a constant function.

Suppose, by contradiction, that h(·) is not a constant
function. It follows that we can find two decoder actions
yα = [yα1 , y

α
2 ]T and yβ = [yβ1 , y

β
2 ]T on the continuum

with the property that yα2 6= yβ2 and that yα1 < yβ1 . With-

out loss of generality, take yα2 < yβ2 . In the following, we
first prove the result by making the additional assump-
tion that h(·) is differentiable. By this assumption, we
are able to invoke the standard mean value theorem of
calculus to conclude the result. However, the result holds
also for a non-differentiable h(·). We first prove the re-
sult for a differentiable h(·) since this proof is more intu-
itive. Then, we prove the result in the general case when
h(·) is non-differentiable.

Let h(·) be differentiable. By the mean value theorem of

calculus, there exists yγ1 ∈ [yα1 , y
β
1 ] such that h′(yγ1 ) =

(yβ2 − yα2 )/(yβ1 − yα1 ) > 0. In particular, we can find a

decoder action yγ on the continuum with yγ1 ∈ [yα1 , y
β
1 ]

and yγ2 = h(yγ1 ) such that the derivative of h(·) at yγ1 is
strictly positive. Next, we take another decoder action
yη = [yη1 , h(yη1 )]T on the continuum and vary its first co-
ordinate to reach a contradiction to (25). In particular,
if we express the condition imposed by (25) for the de-
coder action yγ and a decoder action on the continuum
denoted by yη, we get

g(yη,yγ) = (yη1 − yγ1 )2

+ (h(yη1 )− h(yγ1 ))2 − 2b̃|h(yη1 )− h(yγ1 )| ≥ 0.

When yη1 > yγ1 , and (yη1 − yγ1 ) is sufficiently small, we
have h(yη1 ) > h(yγ1 ) due to a positive derivative at yγ1 .
For fixed yγ1 , if we take the derivative of g(yη,yγ) with
respect to yη1 , we get

dg(yη,yγ)

dyη1
= 2(yη1 − yγ1 )

+ 2(h(yη1 )− h(yγ1 ))h′(yη1 )− 2b̃h′(yη1 ). (26)

If we take yη1 = yγ1 in (26), then the first two terms are
zero while the third term is negative since h′(yγ1 ) > 0 and

b̃ > 0. Therefore, we have that dg(yη,yγ)
dyη1

∣∣∣
yη1=y

γ
1

< 0. This

is a contradiction to g(yη,yγ) ≥ 0 since g(yγ ,yγ) = 0

and dg(yη,yγ)
dyη1

∣∣∣
yη1=y

γ
1

< 0. Therefore, it must be that h(·)
is a constant function, which means that a continuum of
actions must have a constant y2 coordinate.

Now, consider the general case when h(·) is not differ-
entiable. By the mean value theorem in (Hiriart-Urruty,

1980, Corollary 1), there exists y∗1 ∈ [yα1 , y
β
1 ] such that

either s∗ ∈ ∂h(y∗1) or s∗ ∈ −∂(−h(y∗1)) holds where
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s∗ , (yβ2 − yα2 )/(yβ1 − yα1 ) > 0, and ∂h(y∗1) denotes the
set of subgradients of h(·) at y∗1 . We take two decoder ac-
tions and employ the condition in (25) to reach a contra-
diction. Let yγ and yη denote these two decoder actions,
which are expressed as yγ1 = y1, yγ2 = h(yγ1 ), yη1 = y1+td′

and yη2 = h(yη1 ). If we express the condition imposed by
(25) for the decoder actions yγ and yη, we get

g(yη,yγ)

= (yη1 − yγ1 )2 + (h(yη1 )− h(yγ1 ))2 − 2b̃|h(yη1 )− h(yγ1 )|
= (td′)2 + (h(y1 + td′)− h(y1))2

− 2b̃|h(y1 + td′)− h(y1)| ≥ 0. (27)

If t and d′ are positive and sufficiently small, the inequal-
ity in (27) can be expressed as

|h(y1 + td′)− h(y1)|+
√
b̃2 − (td′)2 − b̃ ≤ 0. (28)

Since t is positive, it follows from (28) that

|h(y1 + td′)− h(y1)|
t

+

√
b̃2 − (td′)2 −

√
b̃2

t
≤ 0. (29)

Thus, (29) implies that

lim sup
y1→y∗1
t↓0

inf
d′→d

|h(y1 + td′)− h(y1)|
t

+

√
b̃2 − (td′)2 −

√
b̃2

t
≤ 0, (30)

where we take d > 0 small so that the assumption of
having a small d′ holds. Since the limit of the second
term in (30) is zero, we get

lim sup
y1→y∗1
t↓0

inf
d′→d

|h(y1 + td′)− h(y1)|
t

= 0. (31)

However, this is a contradiction to the fact that either
s∗ ∈ ∂h(y∗1) or s∗ ∈ −∂(−h(y∗1)) holds.

Appendix E Proof of Lemma 12

In order to prove this result, we assume that there exists
a continuum of decoder actions whose support does not
extend to the boundaries of the support and then reach

a contradiction. Let yα = [yα1 , y
α
2 ]T and yβ = [yβ1 , y

β
2 ]T

be decoder actions on the continuum with yα1 < yβ1 and

yα2 = yβ2 such that there exist decoder actions for all

values of y1 satisfying yα1 ≤ y1 ≤ yβ1 and y2 = yα2 where

xL1 (yα2 ) < yα1 and yβ1 < xU1 (yβ2 ). As mentioned earlier,

xL1 (x2) and xU1 (x2) respectively denote the lower and
upper boundaries of the support for X1 given that X2 =
x2. In addition, suppose that there exists δ > 0 such that

there is no decoder action with yβ1 < y1 < yβ1 + δ and

y2 = yβ2 . Similarly, suppose that there exists δ̃ > 0 such

that there is no decoder action with yα1 − δ̃ < y1 < yα1
and y2 = yα2 . In the following, we focus on the decoder

action yβ and show that the assumption of yβ1 < xU1 (yβ2 )
leads to a contradiction. A similar approach can be taken
for the decoder action yα to prove that the assumption
of xL1 (yα2 ) < yα1 leads to a contradiction.

Let Bβ denote the bin corresponding to the decoder ac-
tion yβ , i.e., yβ = E[X|X ∈ Bβ ]. We will obtain a con-

tradiction that Bβ contains observations with x1 > yβ1 ,
whereas it does not contain any observation with x1 <

yβ1 . This is a contradiction to yβ = E[X|X ∈ Bβ ] since
we assume that every non-empty open set has a positive
probability measure in Assumption 2.

We first show that Bβ does not contain any observations

with x1 < yβ1 . Take an observation x with x1 < yβ1 .
Since the continuum of decoder actions is supported on

y1 ∈ [yα1 , y
β
1 ] and y2 = yβ2 , we can find a decoder action

yν on the continuum with coordinates yν1 = max{x1, yα1 }
and yν2 = yβ2 . For this decoder action, when x1 < yβ1 , we
have that cet (x,y

ν) < cet (x,y
β). This implies that any

observation with x1 < yβ1 cannot be an element of Bβ .

Next, we prove that Bβ must contain observations with

x1 > yβ1 under the assumed configuration, which, how-
ever, contradicts yβ = E[X|X ∈ Bβ ]. While proving

that Bβ must contain observations with x1 > yβ1 , we use
the result from Lemma 7 which imposes the condition in
(25) in the transformed coordinate system considering
any two decoder actions at a Nash equilibrium. In par-
ticular, for any decoder action yη, we need g(yβ ,yη) ≥
0 where g(·, ·) is defined in (25). Note that other de-
coder actions impose additional constraints on the region
where decoder actions can exist at a Nash equilibrium.
Nonetheless, for our purpose, it suffices to use the con-
dition g(yβ ,yη) ≥ 0. Our aim is to show that for all yη

satisfying g(yβ ,yη) ≥ 0, it is possible to find a region of

observations with x1 > yβ1 where cet (x,y
β) < cet (x,y

η).
This implies that the intersection of these observation
regions must be the bin for yβ , i.e., Bβ . To conclude the
result, we will show that this intersection is not empty.
Note that cet (x,y

β) < cet (x,y
η) is equivalent to

(yη1 − yβ1 )(yη1 + yβ1 − 2x1)

+ (yη2 − yβ2 )(yη2 + yβ2 + 2b̃− 2x2) > 0. (32)

We will use this equivalent expression in the remainder
of the proof.

When yη2 = yβ2 , due to the discontinuity assumption at
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yβ , for any observation with yβ1 < x1 < yβ1 + δ/2, the
inequality cet (x,y

β) < cet (x,y
η) holds. Therefore, it is

sufficient to consider decoder actions with yη2 6= yβ2 . We

can express a decoder action yη satisfying yη2 6= yβ2 and
g(yβ ,yη) ≥ 0 as yη = yβ + λ(yγ − yβ) for some λ ≥ 1
where yγ satisfies g(yβ ,yγ) = 0. In particular, we have

(yη1 − yβ1 )2 + (yη2 − yβ2 )2 − 2b̃|yη2 − yβ2 |
= λ2(yγ1 − yβ1 )2 + λ2(yγ2 − yβ2 )2 − 2|λ| |yγ2 − yβ2 |b̃
(a)
= λ2(2b̃|yγ2 − yβ2 |)− 2|λ| |yγ2 − yβ2 |b̃
= (2b̃|yγ2 − yβ2 |)(λ2 − |λ|)

where (a) follows from g(yβ ,yγ) = 0, and the final ex-
pression implies that we can write yη = yβ+λ(yγ−yβ)
with λ ≥ 1 so that g(yβ ,yη) ≥ 0 holds. It is seen
that when λ > 1, for a given observation x satisfying
cet (x,y

β) < cet (x,y
γ), the following holds:

(yη1 − yγ1 )(yη1 + yγ1 − 2x1)

+ (yη2 − yγ2 )(yη2 + yγ2 + 2b̃− 2x2)

= (λ− 1)(yγ1 − yβ1 )
(
(λ+ 1)yγ1 + (1− λ)yβ1 − 2x1

)
+ (λ− 1)(yγ2 − yβ2 )

(
(λ+ 1)yγ2 + (1− λ)yβ2 + 2b̃− 2x2

)
> (λ− 1)(yγ1 − yβ1 )

(
(λ+ 1)yγ1 + (1− λ)yβ1 − yγ1 − yβ1

)
+ (λ− 1)(yγ2 − yβ2 )

(
(λ+ 1)yγ2 + (1− λ)yβ2 − yγ2 − yβ2

)
= λ(λ− 1)

(
(yγ1 − yβ1 )2 + (yγ2 − yβ2 )2

)
> 0,

where the first inequality is due to cet (x,y
β) < cet (x,y

γ)
and λ > 1, and the last inequality follows from yβ 6= yγ

and λ > 1. This shows that cet (x,y
β) < cet (x,y

γ) implies
cet (x,y

γ) < cet (x,y
η). Hence, it is sufficient to consider

decoder actions yγ with g(yβ ,yγ) = 0.

Next, we show that for any decoder action yγ satisfy-
ing g(yβ ,yγ) = 0, there exists a nonempty region of

observations with cet (x,y
β) < cet (x,y

γ) and x1 > yβ1 .
Towards that goal, we consider different cases and treat
each of these cases separately. In the following, we take

yβ2 < x2 < yβ2 + 2b̃ and specify a nontrivial interval for
x1 so that the resulting observation satisfies the desired
property.

(i) Let yγ satisfy yβ2 < yγ2 < yβ2 + 2b̃ and yγ1 = yβ1 +

((yγ2 − yβ2 )(yβ2 − yγ2 + 2b̃))1/2. Let

yβ1 < x1 < yβ1 +
(yγ2 − yβ2 )(yβ2 − x2 + 2b̃)

(yγ1 − yβ1 )
. (33)

After some manipulations, it can be shown that
(32) and equivalently cet (x,y

β) < cet (x,y
γ) hold for

any observation that satisfies (33) and yβ2 < x2 <

yβ2 + 2b̃. Notice also that if (33) holds for some yγ2 ,

y2

y1

yβ
×

×ỹγ

×ȳγ

Fig. 6. Illustration of the proof technique employed in
Lemma 12. Here, the horizontal solid line represents a con-
tinuum of decoder actions, and the decoder action on this
continuum with the largest y1 coordinate is denoted by yβ .
Inside the dashed circles, there cannot be a decoder action
due to the condition imposed by Lemma 7 that for any y,
we have g(yβ ,y) ≥ 0 where g(·, ·) is defined in (25). If we
place decoder actions ȳγ and ỹγ on the dashed circles, then
the shaded area must be the bin for yβ , i.e., Bβ . However,
the centroid of this shaded area cannot be yβ , which is a
contradiction.

then it automatically holds for any ỹγ2 satisfying

yγ2 < ỹγ2 < yβ2 + 2b̃. Therefore, multiple decoder
actions satisfy the assumptions of this case, it is
sufficient to consider the one with the minimum y2
coordinate.

(ii) Let yγ be such that yβ2 < yγ2 ≤ yβ2 + 2b̃ and yγ1 =

yβ1 − ((yγ2 − yβ2 )(yβ2 − yγ2 + 2b̃))1/2 hold. In this case,

one can show that for any observation with yβ1 < x1
and yβ2 < x2 < yβ2 + 2b̃, the inequality cet (x,y

β) <
cet (x,y

γ) holds.

(iii) Let yγ satisfy yβ2 − 2b̃ < yγ2 < yβ2 and yγ1 = yβ1 +

((yγ2 − yβ2 )(yβ2 − yγ2 − 2b̃))1/2. Let

yβ1 < x1 < yβ1 +
(yβ2 − yγ2 )(x2 − yβ2 )

(yγ1 − yβ1 )
. (34)

After some manipulations, it can be shown that
(32) and equivalently cet (x,y

β) < cet (x,y
γ) hold

for any observation that satisfies (34) and yβ2 <

x2 < yβ2 + 2b̃. In addition, notice that if (34) holds
for some yγ2 , then it automatically holds for any ỹγ2
satisfying yγ2 − 2b̃ < ỹγ2 < yγ2 . Therefore, multiple
decoder actions satisfy the assumptions of this case,
it is sufficient to consider the one with the maximum
y2 coordinate.

(iv) Let yγ be such that yβ2 − 2b̃ ≤ yγ2 < yβ2 and yγ1 =

yβ1 − ((yγ2 − yβ2 )(yβ2 − yγ2 − 2b̃))1/2. In this case, one

can show that for any observation with yβ1 < x1
and yβ2 < x2 < yβ2 + 2b̃, the inequality cet (x,y

β) <
cet (x,y

γ) holds.

As a result, for any decoder action yη satisfying

g(yβ ,yη) ≥ 0 and for a given x2 with yβ2 < x2 < yβ2 +2b̃,

13



a nontrivial interval exists for x1 with x1 > yβ1 such
that cet (x,y

β) < cet (x,y
η) holds. This implies that there

exists a nonempty region of observations with x1 > yβ1
that must belong to Bβ . Fig. 6 illustrates this region of
observations for an example scenario. Note that as long

as yβ1 < xU1 (yβ2 ), a nonempty subset of this observation
region is in the support of the joint distribution. As a
result, we obtain a contradiction to yβ = E[X|X ∈ Bβ ]

since Bβ does not contain any observation with x1 < yβ1 ,
and Bβ contains a nonempty region of observations with

x1 > yβ1 .

Appendix F Proof of Theorem 13

Suppose without loss of generality that E[M1] = 0.
In the proof, we consider the equivalent formulation in
Lemma 9.

(i) Since M1 and M2 are independent random
variables, the problem decouples into two one-
dimensional cheap talk problems where one of
them involves an encoder with a zero bias. Hence,
revealing the source corresponding to a zero bias
leads to a linear Nash equilibrium.

(ii) If the source distribution is Gaussian, X1 and X2

are independent random variables. Thus, we ob-
tain decoupled one-dimensional cheap talk prob-
lems where one of them involves an encoder with a
zero bias. Then, revealing the random variable cor-
responding to a zero bias (i.e., X1) yields an infor-
mative Nash equilibrium where the encoder is lin-
ear.

Now, suppose that the source distribution is not
Gaussian. In this case, we show that there does not
exist a Nash equilibrium with an encoding policy
z = γe(m) = α1m2 − α2m1 for any scalars α1

and α2. From Lemma 11 and Lemma 12, we know
that a continuum of actions must have a constant
y2 coordinate, say κ, and must be supported for all
values of y1 in the support ofX1 given thatX2 = κ.
This implies that a necessary condition for a Nash
equilibrium with an encoding policy z = γe(m) =
α1m2−α2m1 is given by E[X2|X̄ = x̄] = E[b1M1 +

b2M2|α1M2 − α2M1 = x̄] = 0 for all x̄ where X̄ ,
α1M2 − α2M1. If α1 = 0, α2 = 0, or α1

α2
6= b1

b2
,

one can decompose X2 to show that the condition
of E[X2|X̄ = x̄] = 0 for all x̄ is always violated. It
follows that there does not exist a Nash equilibrium
with a linear encoding policy z = γe(m) = α1m2−
α2m1 when α1 = 0, α2 = 0, or α1

α2
6= b1

b2
. It remains

to investigate conditions under which an encoding
policy z = γe(m) = b1m2 − b2m1 leads to a Nash
equilibrium.

If b1 6= 0, b2 6= 0 and |b1| 6= |b2|, the condi-
tion of E[b1M1 + b2M2|b1M2 − b2M1 = x1] =
E[X2|X1 = x1] = 0 for all x1 requires that the

source distribution is Gaussian (Kagan et al.,
1973, Theorem 5.3.1). Hence, if the encoder reveals
X1 = b1M2 − b2M1 completely without giving ad-
ditional information, we obtain a single continuum
that contains decoder actions with different second
coordinates. Since this contradicts with Lemma 11,
there cannot be a Nash equilibrium where the
encoder conveys X1 = b1M2 − b2M1 only. In addi-
tion, having more than one continuum of decoder
actions, each with a constant second coordinate,
implies that E[X2|X1 = x1] = 0 for all x1. Hence,
it is not possible to have a Nash equilibrium with
more than one continuum of decoder actions.

(iii) In the case of b1 = b2, the condition of E[X2|X1 =
x1] = 0 for all x1 requires that the source dis-
tribution is symmetric (almost everywhere) (Ka-
gan et al., 1973, Theorem 5.3.1). It follows that
if the source distribution is not symmetric, there
does not exist an informative linear Nash equilib-
rium. Now, suppose that the source distribution
is symmetric. Let the encoding policy be given by
z = γ̃e(x) = x1. In other words, the encoder re-
veals X1 completely without giving any additional
information. Then, the best response of the de-
coder yields a single continuum of decoder actions.
In particular, there only exist decoder actions for
all values of y1 ∈ [xL1 (0), xU1 (0)] and y2 = 0 where
xL1 (0) and xU1 (0) respectively denote lower and up-
per boundaries of the support for X1 given that
X2 = 0. Now, we suppose that there only exist de-
coder actions for all values of y1 ∈ [xL1 (0), xU1 (0)]
and y2 = 0, and we wish to obtain the best response
of the encoder to these decoder actions. For any
given decoder actions ỹ and ȳ satisfying ỹ 6= ȳ, it
must be that ỹ1 6= ȳ1 as every decoder action is as-
sumed to have y2 = 0. Note also that for any given
observation x in the support of the joint distribu-
tion, there exists a decoder action y = [y1, y2]T with
y1 = x1 and y2 = 0. These imply that if a given
observation x satisfies x1 = ỹ1, it follows that

cet (x, ỹ) = (x1 − ỹ1)2 + (x2 − ỹ2 − b̃)2

< (x1 − ȳ1)2 + (x2 − ȳ2 − b̃)2 = cet (x, ȳ)

for any decoder actions ȳ and ỹ satisfying ȳ 6= ỹ.
Therefore, if we denote the bin corresponding to a
decoder action y by By, we get By = {x |x1 =
y1 and x2 ∈ R}. This means that the best response
of the encoder is to reveal the value of X1 com-
pletely without giving any additional information.
Hence, the encoding policy z = γ̃e(x) = x1 and the
decoding policy y = γ̃d(z) = [z, 0]T form a Nash
equilibrium as they are best response maps of each
other.

(iv) From (Kagan et al., 1973, Theorem 5.3.1), we know
that E[X2|X1 = x1] = 0 for all x1 regardless of the
source distribution when b1 = −b2. In this case,
a similar analysis can be carried out to show that
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there always exists an informative linear Nash equi-
librium for any source distribution when b1 = −b2.

Appendix G Proof of Theorem 17

By applying a suitable linear transformation of variables,
one can obtain an equivalent problem. In this equivalent
problem, the aim is to convey a sequence of independent
Gaussian sources, and the bias is zero for all sources
except one. Due to the independence of these sources, the
problem decouples. By using the result of (Kazıklı et al.,
2022, Theorem 4), it follows that there exists a Nash
equilibrium where the encoder uses a quantization policy
with any number of bins for the source corresponding to
a non-zero bias. On the other hand, since the bias is zero
for all other sources, revealing these sources leads to a
Nash equilibrium.

While it is possible to apply a transformation of vari-
ables for any n ≥ 2, we specify a transformation of vari-
ables for n = 3 dimensional scenario as an example. In
particular, consider X = TM and U = T −1Y where

T ,
1√

b21 + b22 + b23

×


b2
√
b21+b

2
2+b

2
3√

b21+b
2
2

−b1
√
b21+b

2
2+b

2
3√

b21+b
2
2

0

b1b3√
b21+b

2
2

b2b3√
b21+b

2
2

−
√
b21 + b22

b1 b2 b3

 = (T −1)T .

Under this transformation of variables, the objective
function of the encoder becomes

ce(m,u) =(x1 − y1)2 + (x2 − y2)2

+ (x3 − y3 − (b21 + b22 + b23)1/2)2 , cet (x,y).

For the objective function of the decoder, we get
cd(m,u) = ‖m − u‖2 = ‖x − y‖2 , cdt (x,y). Since
X1, X2, X3 are independent random variables, we obtain
decoupled one-dimensional cheap talk problems where
the biases for X1 and X2 are zero, and the bias for X3 is
non-zero. Thus, revealing X1 and/or X2 and applying a
signaling game policy for X3 yield a Nash equilibrium.

Appendix H Proof of Theorem 18

If the condition in the statement of the theorem holds,
the sources X1 = b1M2 − b2M1 and X2 = b1M1 + b2M2

in the equivalent problem become independent. There-
fore, in the equivalent problem, we get decoupled one-
dimensional cheap talk problems where there is a zero
bias for X1 and a non-zero bias for X2. Thus, revealing
X1 yields an informative linear Nash equilibrium.

Appendix I Proof of Theorem 19

If the encoder uses M1, . . . ,Mñ with ñ < n in construct-
ing its linear policy as described below and gives no in-
formation related to Mñ+1, . . . ,Mn, we obtain a linear
Nash equilibrium where the encoder reveals (ñ − 1) di-
mensions completely. Suppose without loss of generality
that E[M1] = 0. We first apply a linear transformation
of variables. In a similar manner to the two-dimensional
case, we obtain an equivalent problem in a transformed
coordinate system. In particular, let

T ,



1√
2

−1√
2

0 . . .

1√
2×3

1√
2×3

−2√
2×3 0 . . .
...

1√
(n−1)×n

. . . 1√
(n−1)×n

−(n−1)√
(n−1)×n

1√
n

. . . 1√
n


.

(35)

Since T −1 = T T and T b = [0, . . . , 0,
√
nb]T , the cost

function of the encoder for the equivalent problem be-
comes

ce(m,u) =

n∑
k=1

(mk − uk − b)2

=

n−1∑
k=1

(xk − yk)2 + (xn − yn −
√
nb)2 , cet (x,y).

The cost function of the decoder in this transformed co-
ordinate system is given by cd(m,u) = ‖m − u‖2 =

‖x − y‖2 , cdt (x,y). It is seen that there is no bias for
X1, . . . , Xn−1, and there is a non-zero bias for Xn con-
sidering the cost function of the encoder in this trans-
formed coordinate system.

We note that revealing X1, . . . , Xn−1 is equivalent to re-
vealing M1−M2, M2−M3, . . . , Mn−1−Mn. In the fol-
lowing, we show that if the encoder reveals these random
variables, the optimal estimate for Xn at the decoder
becomes zero. Towards that goal, let M̃1 , −Mn, M̃2 ,
−Mn−1, . . . , M̃n , −M1 and observe that M̃1, . . . , M̃n

have the same distribution as M1, . . . ,Mn due to the
symmetry of the source distribution. Hence, we get

E[M1 + · · ·+Mn|M1 −M2, . . . ,Mn−1 −Mn]

= −E[M̃n + · · ·+ M̃1|M̃n−1 − M̃n, . . . , M̃1 − M̃2].

This proves that the conditional mean of Xn given that
X1, . . . , Xn−1 are revealed is zero. We know that in the
transformed coordinate system, there is a non-zero bias
only for Xn. If the encoder reveals X1, . . . , Xn−1 com-
pletely, the best response of the decoder is to use these
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revealed parameters as the corresponding estimates, and
the action taken forXn is zero. In other words, if we have
z = γ̃e(x) = [x1, . . . , xn−1]T as the encoding policy,
the best response of the decoder becomes y = γ̃d(z) =
[z1, . . . , zn−1, 0]T . Since we consider the Nash equilib-
rium concept, it is required to take the best response
of the encoder into account, as well. Towards that goal,
one can construct quantization bins as in the proof of
Theorem 13 to prove the result. In fact, it is also possi-
ble to see the result by only looking at the policies. In
particular, suppose that the decoder uses the policy y =
γ̃d(z) = [z1, . . . , zn−1, 0]T . This means that the decoder
uses y1, . . . , yn−1 as its estimates for X1, . . . , Xn−1, and
the estimate for Xn is zero regardless of the transmit-
ted message. Since the encoder wishes accurate estima-
tions of X1, . . . , Xn−1 at the decoder without any bias,
the best response of the encoder to the decoding policy
y = γ̃d(z) = [z1, . . . , zn−1, 0]T becomes z = γ̃e(x) =
[x1, . . . , xn−1]T . Although the encoder has a bias regard-
ing Xn, the encoder cannot affect the corresponding es-
timate at the decoder since the decoder action yn is zero
regardless of the encoded message. This implies that the
encoding policy z = γ̃e(x) = [x1, . . . , xn−1]T and the
decoding policy y = γ̃d(z) = [z1, . . . , zn−1, 0]T are best
response maps of each other. Hence, an encoding policy
that completely reveals X1, . . . , Xn−1 leads to a Nash
equilibrium.

Appendix J Proof of Theorem 21

Suppose without loss of generality that E[M1] = 0. Con-
sider the transformation of variables in (35). We obtain
an equivalent problem as in Lemma 9 where the linear
transformation T is fixed as in (35), and the encoder and
decoder design γ̃e(·) and γ̃d(·), respectively. The random
variables X1, . . . , Xn defined by (35) are i.i.d. and follow
the same distribution as M1, . . . ,Mn. Thus, the prob-
lem decouples to n one-dimensional cheap talk problems
where there is a non-zero bias only for one of the prob-
lems. Suppose that the encoder does not reveal informa-
tion related to Xn, which is the source corresponding to
a non-zero bias. In this case, the rate of the original prob-
lem is identical to that of a team theoretic problem with
(n− 1) i.i.d. sources. Since the term that contributes to
the objective of the encoder is E[(Xn−Yn−

√
nb)2] = nb2

in the case that no information is conveyed related to
Xn, we obtain an additional b2 term for the encoder’s
distortion bound. As a result, we get

E[
∑n
i=1(Mi − Ui − b)2]

n
=

E[
∑n−1
i=1 (Xi − Yi)2]

n
+ b2.

By taking the limit of both sides, we have

lim
n→∞

E[
∑n
i=1(Mi − Ui − b)2]

n

= lim
n→∞

E[
∑n−1
i=1 (Xi − Yi)2]

n
+ b2

= lim
n→∞

E[
∑n−1
i=1 (Xi − Yi)2]

n− 1
+ b2,

where the last equality follows since n→∞. Hence, we
obtain a reduced team theoretic problem where the en-
coder wishes to convey an i.i.d. sourceX1, . . . , Xn−1 with
a zero bias. Therefore, if the pair (RT , DT ) is achievable
in a team theoretic setup, R = RT and De ≥ DT + b2

are achievable for the original game theoretic setup. For
the distortion bound of the decoder, we use the relation
E[
∑n
i=1(Mi − Ui − b)2] = E[

∑n
i=1(Mi − Ui)2] + b2n.

Appendix K Proof of Theorem 24

If we take DT = min{De − b2, Dd} for the team theo-
retic setup in Theorem 21, the corresponding rate RT is
achievable for the game theoretic setup. Thus, we get

inf{R | (R,De, Dd) is achievable}
≤ inf{R | (R,min{De − b2, Dd}) is achievable},

which leads to the bound in the statement of the theorem
via Lemma 23.
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Kazıklı, E., Gezici, S. & Yüksel, S. (2021). Signaling games
in higher dimensions: Geometric properties of equilibrium
partitions, International Symposium on Modeling and Op-
timization in Mobile, Ad Hoc, and Wireless Networks
(WiOpt), pp. 256–263.
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S. (2022). Signaling games for log-concave distributions:
Number of bins and properties of equilibria, IEEE Trans-
actions on Information Theory 68(3): 1731–1757.

Larrousse, B., Beaude, O. & Lasaulce, S. (2014). Crawford-
Sobel meet Lloyd-Max on the grid, IEEE International
Conference on Acoustics, Speech and Signal Processing
(ICASSP), pp. 6127–6131.

Le Treust, M. & Tomala, T. (2019). Persuasion with lim-
ited communication capacity, Journal of Economic The-
ory 184: 104940.

Levy, G. & Razin, R. (2007). On the limits of communication
in multidimensional cheap talk: A comment, Econometrica
75(3): 885–893.

Li, Z., Dán, G. & Liu, D. (2020). A game theoretic analysis
of lqg control under adversarial attack, IEEE Conference
on Decision and Control (CDC), pp. 1632–1639.

Miura, S. (2014). Multidimensional cheap talk with sequen-
tial messages, Games and Economic Behavior 87: 419–
441.
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Sarıtaş, S., Yüksel, S. & Gezici, S. (2017). Quadratic multi-
dimensional signaling games and affine equilibria, IEEE
Transactions on Automatic Control 62(2): 605–619.

Sayın, M. O., Akyol, E. & Başar, T. (2019). Hierarchical
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