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Abstract 
Lane-changing (LC) behavior describes the lateral movement of the vehicle from the 
current-lane to the target-lane while proceeding forward. Among the many research 
directions, LC duration (LCD) measures the total time it takes for a vehicle to travel 
from the current lane to the target lane, which is an indispensable indicator to 
characterize the LC behavior. Although existing research has made some 
achievements, less attention has been paid to the research of heavy vehicles’ LCD. 
Therefore, this paper aims to further explore the LCD between heavy vehicles and 
passenger cars. LC trajectories are extracted from the newly-released HighD dataset, 
which contains of 16.5 hours of measurement and over 11,000 vehicles. The survival 
function of LCD has been estimated, and the characteristic has been analyzed. 
Thereafter, the Accelerated Failure Time model is introduced to explore the 
influencing factors. Results demonstrate that the MST value of passenger cars and 
heavy vehicles is about 5.51s and 6.08s. The heavy vehicles would maintain a longer 
time-headway and distance-headway with preceding vehicle when performing LC. 
Nevertheless, these two factors do not significantly affect the LCD of heavy vehicles. 
Finally, the results and the modeling implications have been discussed. We hope this 
paper could contribute to our further understanding of the LC behaviors for heavy 
vehicles and passenger cars. 
Keywords: Lane-changing behavior, Lane-changing duration, Survival analysis, 
HighD dataset. 
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1 INTRODUCTION 
Along with car following (CF) maneuver, LC maneuver is also very common in real 
traffic environment. Since more interaction with surrounding vehicles are 
simultaneously involved, the impact of LC maneuver on traffic flow is more 
pronounced than that of CF maneuver, which is more likely to cause traffic accidents. 
Numerous researches indicate that the number of traffic accidents caused by LC 
maneuver maintains at a high level. Therefore, it is imperative for us to have a deep 
comprehension of the mechanism of LC maneuver. Over the past decades, 
tremendous efforts have been made on researching the decision-making process of LC 
[1, 2], LC trajectory planning and tracking [3-6], the impacts of LC on surroundings 
[7], the LC duration of the subject vehicle [8-10], etc. This paper focus on the 
research of LC duration, which measures the total time spent of the vehicle in the 
execution of LC (as shown in Figure 1). For the convenience of subsequent research, 
we denote LC duration as LCD. 

 

Figure 1 The schematic diagram of LC behavior (dot curve represents the LC 
trajectory from the starting point to the ending point) 

LCD is a very important indicator for us to comprehend the LC behavior of 
vehicles. Up to now, numerous studies have explored the overall distribution and the 
influencing factors of LCD. Toledo and Zohar [10] employed the multiple linear 
regression model to analyze the LCD of the NGSIM dataset. Results demonstrated 
that traffic density, by the direction of the change, and by other vehicles around the 
subject vehicle may affect the LCD. Wu, Zhang [11] adopted the semi-parametric 
proportional hazard-based model to analyze the mandatory LCD data, which is 
collected from an unmanned aerial vehicle in a freeway maintenance construction 
area. Results demonstrated that there is no significant evidence showing that different 
vehicle types have an effect on LCD, but there is a significant difference in LCD 
during different time periods. Moridpour, Rose [12] investigated the effect of 
surrounding traffic characteristics on the LC behavior between the passenger cars and 
heavy vehicles. Results suggested a substantial difference of LC behaviors exists 
between the passenger cars and heavy vehicles. Aghabayk, Moridpour [13] compared 
the LC maneuvers between the heavy vehicles and passenger cars on arterial roads 
and freeways. Results indicated that the type and the size of vehicles influence the LC 
maneuver, in particular on arterial road. The LC behavior of heavy vehicles has not 
received appropriate attention.  

Vlahogianni [14] utilized three AFT (Accelerated Failure Time) models to 
analyze the overtaking duration in two-lane highways. Results demonstrate that the 
Loglogistic distribution exhibits better performance than other models. The speed 
difference relative to the preceding vehicle, the speed of opposing traffic, the spacing 
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from the lead and opposing traffic, and the driver’s gender may influence the LCD. 
Wang, Li [15] found that there is no significance difference between the left-to-right 
LCD. They also conjectured that the duration times will reach a saturation value, 
when the velocity becomes even higher. Cao, Young [16] analyzed the difference of 
LC behaviors between heavy vehicles and passenger cars. A model framework for the 
execution of LC with regard to the emergency status and the impact of surrounding 
traffic for individual drivers is established. Yang, Wang [9] established a three-level 
mixed-effects linear regression model to explore the variables affecting LCD. The 
results are quite consistent with results in Toledo and Zohar [10]. Recently, Li, Li [8] 
presents a comprehensive analysis of LCD from the perspective of survival analysis. 
LC trajectories are extracted from the HighD dataset, which contains four surrounding 
vehicles’ information at the same time. Both comparative univariate and regression 
survival analysis of LCD have been carried out. 

Although existing research have achieved certain progress, the majority of 
them concentrate on studying the LCD of passenger cars, while less attention was 
paid on the heavy vehicles. Nevertheless, heavy vehicles’ LC behavior is significantly 
different from passenger cars, and has more obvious impact on the real traffic flow 
[10, 16]. Such negligence may inevitably lead us to a one-sided understanding of LC 
behavior. Therefore, this paper takes a further step to research LCD of heavy vehicles. 
On the basis of our previous research [8], we also choose the perspective of survival 
analysis to explore the LCD between passenger cars and heavy vehicles. The reason 
why we select this perspective is due to its merit and popularity in mining the 
information behind the traffic data [17]. For the first time, the differences of the 
survival function and the influencing factors of LCD between these two types of 
vehicles have been investigated. At the same time, we first adopt the HighD dataset to 
conduct such kind of analysis, which is a new dataset of naturalistic vehicle 
trajectories [18]. Compared to the NGSIM dataset [10, 13, 15], this dataset is more 
suitable for a system-level validation of highly automated driving systems. More 
importantly, the proportion of trucks in this dataset is up 23% [18], while only 3% of 
the vehicles are trucks in NGSIM.  

The above two points are the main contributions and innovations of this paper. 
The obtained findings and modeling implications may help us have a more 
comprehensive understanding of LC behaviors. The remainder of this paper is 
organized as follows. Section 2 presents the description and processing of the HighD 
dataset, and some preliminary analysis. Section 3 and Section 4 present the analysis 
on the difference of the survival function and the influencing factors of LCD. Finally, 
the conclusion is presented in Section 5. 

 
2 DATA DESCRIPTION AND PROCESSING PROCEDURES 
The HighD dataset is employed in this paper is recorded on German highways during 
2017 and 2018 [18]. This dataset contains of 16.5 hours of measurement, 45,000 
kilometers of total driven distance and over 11,000 vehicles. These trajectories are 
recorded in 4k (4096*2160) resolution from six different locations near Cologne, 
Germany. At the same time, the positioning error of each trajectory is typically less 
than ten centimeters. This dataset is more suitable for analyzing the LC behavior of 
heavy vehicles, since it has a share of 23% of heavy vehicles [18], while only 3% of 
the vehicles are trucks in NGSIM. For more details, please refer to Krajewski, Bock 
[18]. Figure 2 presents the brief introduction of the HighD dataset, including the 
bounding boxes of each other, the bird’s eye view on the highway from a drone, and 
six different highway recording locations in this dataset.  
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We determine the beginning and ending point of LC mainly according to the 
lateral speed of the subject vehicle. It is worth noting that we cannot rely solely on the 
variable speed, but also need to combine acceleration and position information. This 
is because the speed and acceleration in the raw dataset are always vibrating around 
the value of zero [8]. Thereafter, we manually ensure that each LC trajectory is 
continuous and complete. It is worth noting that we only extract the successful LC 
trajectories. Figure 3 presents two examples of LC trajectory, which contains the 
longitudinal position, lateral position, lateral speed of five vehicles. Nevertheless, not 
all trajectories contain the information of four surrounding vehicles at the same time. 

 

Figure 2 The brief introduction of the HighD dataset including the bounding 
boxes of each vehicle, the collecting method and the recording locations 

 

Figure 3 Two examples of LC trajectories 
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Finally, we extracted a total of 746 heavy vehicles trajectories and 7674 
passenger cars trajectories. Table 1 and Figure 4 present the descriptive statistics of 
the LC trajectories for heavy vehicles and passenger cars. It could be found that the 
mean and median LCD of passenger cars is about 5.7s and 5.55s. The mean and 
median LCD of heavy vehicles is about 6.22s and 6.08s. This indicates that the LCD 
of heavy vehicles is slightly higher than of passenger cars (about 0.5s). The median 
value of LCD is lower than the mean value indicates that half of the vehicles pull up 
the mean LCD of all the vehicles. 

 

Figure 4 Time-headway and distance-headway distribution of heavy vehicles and 
passenger cars 
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At the same time, it could be found that the time-headway and distance-
headway of heavy vehicles are all higher than that of passenger cars, while the speed 
of heavy vehicles is much lower than that of passenger cars. The mean time-headway 
of heavy vehicles and passenger cars is about 2.76s and 1.53s. The mean distance-
headway of heavy vehicles and passenger cars is about 69.67m and 45.29m. The 
25%th percent, 50th percent, and 75th percent of the speed of the heavy trucks are 
relatively close (around 25m/s). This indicates that the LC behavior of heavy vehicles 
is significantly different from that of passenger cars. Compared with passenger cars, 
the heavy vehicles would maintain a longer time-headway and distance-headway with 
preceding vehicle. 

Table 1 Descriptive statistics of the LCD of heavy vehicles and passenger cars 

Descriptive statistics mea
n std minimu

m 
25th 

percentile 
50%th 

percentile 
75%th 

percentile 
maximu

m 

Passeng
er 

cars 

LCD 5.70 1.36 2.95 4.73 5.55 6.48 12.90 

Speed 29.0
5 6.34 4.01 26.45 30.26 33.11 47.11 

Time-headway 1.53 1.05 0.21 0.80 1.20 1.93 8.14 
Distance-
headway 

45.2
9 

35.2
0 3.86 20.75 34.90 58.38 267.24 

Heavy 
vehicles 

LCD 6.20 1.20 3.00 5.33 6.08 6.88 10.25 

Speed 25.0
7 3.70 3.63 24.14 25.03 25.88 39.55 

Time-headway 2.76 2.36 0.27 0.99 1.92 3.90 13.08 
Distance-
headway 

69.6
7 

61.3
3 6.28 24.83 46.94 97.72 334.06 

 
 

3 OVERALL DISTRIBUTION DIFFERENCES 
This section presents the research of the characteristic of overall survival function of 
LCD between heavy vehicles and passenger cars. The univariant survival model is 
introduced, and the obtained results are analyzed. 
 
3.1 Univariant survival model 

Same as our previous research, five commonly-used survival distribution 
functions are selected [8]. For basic concepts of survival analysis and detailed formula 
derivation, please refer to [8, 17, 19]. Let T  denotes the continuous non-negative 
random variable representing survival time, and we could transform T  into the 
following form: 

 =logT= + WY α σ   (1) 
The exponential distribution has the constant hazard value, which means the 

conditional probability of an event is constant over time. 
 ( )=h t λ   (2) 

Where λ  is the constant hazard. Then, we could derive ( )( ) expS t tλ= − , 

( )( ) expf t tλ λ= − . 
The Weibull distribution assumes the hazard obeys the Weibull distribution, 

which is capable of allowing for positive, negative, or even no duration dependence. 
 1( ) p ph t p tλ −=   (3) 

Where p  and λ  are the parameters that controls the shape of ( )h t . The hazard is 
rising if 1p > , constant if 1p = , and declining if 1p < . 
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The Lognormal distribution assumes the W  has a standard normal 
distribution. 

 21 1 log( ) exp ( )
22

tf t
t

µ
σπσ
− = − 

 
  (4) 

The ( )h t  increases from 0 to reach a maximum and then decrease 
monotonically, approaching 0 as t →∞ . 

The Loglogistic distribution assumes the W  has a standard logistic 
distribution. The survival and hazard function are given below. 

 1( )
1 ( ) pS t

tλ
=

+
  (5) 

 
1( )( )

1 ( )

p

p

p th t
t

λ λ
λ

−

=
+

  (6) 

Where the hazard itself monotone decreasing from ∞  if 1p <  , monotone 
decreasing from λ  if 1p = , and similar to lognormal if 1p > . 

The Generalized-Gamma distribution assumes the W  has generalized 
extreme value distribution with parameter k  .The density of the Generalized Gamma 
distribution is formulated as: 

 
1 ( )( )( )

( )

ppk tp t ef t
k

λλ λ − −

=
Γ

  (7) 

Where 1/p σ= . The Generalized Gamma includes the following interesting special 
cases: gamma when 1p = , Weibull when 1k = , Exponential when 1p k= = , 
Lognormal when k →∞ . 

 
3.2 Results and analysis 
Subgraphs (a) and (b) in Figure 5 presents the estimation of the survival function of 
LCD for heavy vehicles and passenger cars. Table 2 presents the corresponding AIC 
(Akaike Information Criterion), BIC (Bayesian Information Criterion), and MST 
(Median Survival Time). The AIC and BIC are both metrics of assessing model fit 
penalized for the number of estimated parameters. BIC penalizes model more for free 
parameters, and the AIC prefers a more complex over a simpler model. AIC has the 
danger of over fitting and BIC has the danger of under fitting. Therefore, both AIC 
and BIC are recommended when choosing the best parameters. It could be found that 
the Exponential distribution exhibits the worst performance, while the Generalized 
Gamma distribution outperforms than other distributions both in AIC and BIC. 
Therefore, we employ the Generalized Gamma distribution to conduct the subsequent 
analysis.  

It could be found that the survival function decreased rapidly in 3s~8s, while 
decreased gently in 8s~12s. This indicates that most vehicles complete LC within 
3s~8s. MST is defined as the time where on average 50% of the duration has expired, 
which indicates that each vehicle has a 50% chance of completing its LC maneuver. It 
could be found that the MST of heavy vehicles is 0.57s higher than that of passenger 
cars. From Subgraphs (c) in Figure 5, it could be found that the survival curves of 
these two types of vehicles are significantly different. The survival probability of 
heavy vehicles at each time is higher than that of passenger cars. Meanwhile, it could 
be found that with the increase of timeline, these two curves show a tendency to move 
away from each other first, and then to approach each other again. Combining with 
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the at-risk percentage difference in subgraphs (d), we could roughly analyze that the 
distance between these two curves is the furthest when timeline equals to 5s. The at-
risk percentage difference value reaches the highest value, roughly around 17%. 

Table 2 Fitting results of five commonly-used distribution form 

Parametric estimator 
AIC BIC MST(s) 
Vehicle Truck Vehicle Truck Vehicle Truck 

Weibull 3772.47 2157.11 26244.56 13932.99 5.697 6.26 
Exponential 5795.27 3649.04 40341.62 23395.64 3.95 4.31 
Lognormal 3514.86 2044.73 24450.76 13206.02 5.54 6.1 
Loglogistic 3529.63 2057.15 24553.63 13286.34 5.54 6.07 
Generalized Gamma 3511.84 2045.72 24417.83 13201.43 5.51 6.08 

 

 

Figure 5 The survival and cumulative hazard function of LCD using the 
parametric method (five commonly used distribution) 

 
4 INFLUENCING FACTORS DIFFERENCE 
This section investigates the influencing factors of LCD for heavy vehicles and 
passenger cars. We introduce the AFT (Accelerated Failure Time) model, and analyze 
the regression results. 
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4.1 Accelerated Failure Time model 
The AFT model directly models the survival time of the duration data, which 

assumes the linear relationship between the survival time and the covariates. Three 
AFT models (LoglogisticAFT, LognormalAFT, WeibullAFT) [8, 14] are employed to 
explore the influencing factors of LCD for heavy vehicles and passenger cars. The 
AFT model can be expressed as: 

 T
i i iY x Wβ= +   (8) 

Where logY T=  , iW  represents the independent residuals, which is an 
error term with different density function. Then, we could rewrite the above Equation 
as: 

 0 exp( )T
i iT T x β=   (9) 

Where 0 exp( )iT W= . When the j th−  dimension changes j∆ , the survival 
time would change exp( )j jβ∆ .  

The distribution assumption of the iW  determine which sort of AFT model 
describes the distribution of the survival time T . The corresponding error term 
distributions of iW  of the above three models are extreme value, normal and logistic 
distribution. 

 
4.2 Results and analysis 
Table 3 and Table 4 presents the regression results of the AFT models. It could be 
found that these three models achieved relatively close regression results. Compared 
with the LognormalAFT and the WeibullAFT model, the LoglogisticAFT model has 
the lowest AIC value. The corresponding MST value of passenger cars and heavy 
vehicles are 5.48s and 6.04s. Therefore, we employ the LoglogisticAFT to conduct 
the following analysis. From the regression results, it could be found that all these 
three variables would significantly affect the LCD of passenger cars (all the p-values 
are under 0.01). As for heavy vehicles, the p-values of distance-headway and time-
headway are all higher than 0.5, while only the p-value of speed is under 0.005.  

Take the time-headway coefficient of passenger cars for example, a unit 
increase of the time-headway would result in 17.4% ( 0.16 -1 1.174-1e = ) increase of 
baseline survival time 0T . For each additional unit increase of these three variables, 
sorted by the degree of impact, the baseline survival time of passenger cars would 
correspondingly increase or decrease by -0.6%, -0.4% and 17.4%. As for heavy 
vehicles, a unit increase of speed would result in the decrease of the baseline survival 
time by 1.6%.  

Figure 6 presents the comparison between the baseline survival curve versus 
the survival curve when some covariates are varied over values. The baseline survival 
is calculated according to the original dataset. This is useful for us to understand 
subject’s survival as we vary specific covariate. From Figure 6, it could be found that 
with the increase of the speed, both passenger cars and heavy vehicles will have 
shorter LCD. With the increase of time-headway, passenger cars are more likely to 
have a longer LCD, which is opposite to the change direction of distance-headway. 
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Table 3 Regression results of LCD of passenger cars 

 

LoglogisticAFT 
(AIC=3356.91, 
MST=5.48s) 

LognormalAFT 
(AIC=3389.19, 
MST=5.46s) 

WeibullAFT 
(AIC=3419.81, 
MST=5.64s) 

coef exp(coef) p coef exp(coef) p coef exp(coef
) p 

Speed -
0.006 0.994 0.01

0 
-
0.007 0.993 0.00

5 
-
0.008 0.992 0.00

5 
Distance- 
headway 

-
0.004 0.996 0.00

5 
-
0.004 0.996 0.00

5 
-
0.006 0.994 0.00

5 
Time- 
headway 0.160 1.174 0.00

5 0.140 1.150 0.00
5 0.210 1.234 0.00

5 

Table 4 Regression results of LCD of heavy vehicles 

 

LoglogisticAFT 
(AIC=1905.16, 
MST=6.04s) 

LognormalAFT 
(AIC=1911.72, 
MST=6.05s) 

WeibullAFT 
(AIC=2005.59, 
MST=6.22s) 

coef exp(coef) p coef exp(coef) p coef exp(coef
) p 

Speed -
0.016 0.984 0.00

5 
-
0.013 0.987 0.00

5 
-
0.014 0.986 0.00

5 
Distance- 
headway 0.001 1.001 0.56

0 0.000 1.000 0.56
0 0.000 1.000 0.75

0 
Time- 
headway 

-
0.010 0.990 0.78

0 0.000 1.000 0.92
0 0.000 1.000 0.98

0 

 

Figure 6 Partial effects of coefficients on the LCD 
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5 CONCLUSION 
Over the past decades, tremendous efforts have been made on studying the LC 
behaviors of passenger cars, while neglecting the research on heavy vehicles. This 
paper focuses on researching the LCD for heavy vehicles and passenger cars on the 
basis of our previous research [8]. The univariant survival model and AFT model are 
employed to research the overall survival function and the influencing factors of 
LCD. The reason why we choose this approach is due to its capacity in formulating 
the relationships among the influencing factors, survival time and the outcome of each 
observation sample. A total of 746 LC trajectories of heavy vehicles and 7674 LC 
trajectories of passenger cars are extracted from the HighD dataset. The HighD 
dataset indicates that the average LCD of heavy vehicles and passenger cars is about 
6.22s and 5.70s. Through further analysis of other variables, we found that the speed 
of the heavy vehicles is around 25.01m/s. The 25% percent, median, and 75% percent 
of the speed are relatively close to each other. Furthermore, compared with passenger 
cars, the heavy vehicles would maintain a longer time-headway and distance-headway 
with preceding vehicle as shown in Figure 4 and Table 1. 

Thereafter, the characteristics of overall survival function of LCD between 
heavy vehicles and passenger cars are investigated. We found that the whole survival 
function decreased rapidly in 3s~8s, while decreased gradually in 8s~12s. And the 
survival curve of heavy vehicles at each timeline is always above that of passenger 
cars. This also indicates that the heavy vehicles are more likely to have longer 
duration, and the MST difference is around 0.57s. After that, the influencing factors of 
LCD between heavy vehicles and passenger cars are investigated through adopting 
the AFT model. We found that the speed, distance-headway, and time-headway 
significantly affect the LCD of passenger cars, among which the most influencing 
factor is the time-headway. As for the, only the coefficient speed would affect the 
LCD. This indicates that comparted with heavy vehicles, the LC behaviors of 
passenger cars are more susceptible to the influence of the preceding vehicle. The 
LCD of a heavy vehicle is more related to its own speed. In terms of model 
application, the conclusions of this paper are quite consistent with our previous 
research [8].  

This paper presents a comprehensive analysis of LCD for heavy vehicles and 
passenger cars. Some novel findings have been discovered and summarized above. 
These findings may provide certain guidance for traffic modeling in the future. For 
example, these findings may guide us to reproduce the LC behavior, especially for 
heavy vehicles, more realistically in the traffic simulation platform. This is mainly 
because the execution process modeling of vehicles is often simplified or even 
ignored [16]. Meanwhile, these findings may provide preliminary trajectory data 
analysis support for the development of ADAS (Advanced Driving Assistance 
System). Several metrics could be adopted to assist us explore the differences in LC 
behavior between different regions or different time periods or different type of 
drivers. These metrics could be also adopted as the preliminary input variables for the 
LC trajectory prediction model. We hope these findings could contribute to improving 
our further understanding of LCD and LC behaviors. 

Undoubtedly, many aspects of this paper need further research. Given page 
limit, we only carried out some preliminary exploratory analysis of LC behaviors 
between heavy vehicles and passenger cars. One of the important research directions 
of this paper it to collect LC trajectory data containing more variable information, like 
weather, gender, roadway geometry, etc. Meanwhile, future research may try to cover 
a wider range of survival models, and investigate the influencing factors of 
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unsuccessful LC events. 
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