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Finding the stability number of a graph, i.e., the maximum number of vertices
of which no two are adjacent, is a well known NP-hard combinatorial optimization
problem. Since this problem has several applications in real life, there is need
to find efficient algorithms to solve this problem. Recently, Gaar and Rendl
enhanced semidefinite programming approaches to tighten the upper bound
given by the Lovász theta function. This is done by carefully selecting some
so-called exact subgraph constraints (ESC) and adding them to the semidefinite
program of computing the Lovász theta function.
First, we provide two new relaxations that allow to compute the bounds

faster without substantial loss of the quality of the bounds. One of these two
relaxations is based on including violated facets of the polytope representing
the ESCs, the other one adds separating hyperplanes for that polytope.

Furthermore, we implement a branch and bound (B&B) algorithm using these
tightened relaxations in our bounding routine. We compare the efficiency of
our B&B algorithm using the different upper bounds. It turns out that already
the bounds of Gaar and Rendl drastically reduce the number of nodes to be
explored in the B&B tree as compared to the Lovász theta bound. However,
this comes with a high computational cost. Our new relaxations improve the
run time of the overall B&B algorithm, while keeping the number of nodes in
the B&B tree small.
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thank two anonymous referees for their valuable input.

1

ar
X

iv
:2

10
8.

05
71

6v
2 

 [
m

at
h.

O
C

] 
 7

 D
ec

 2
02

1

https://orcid.org/0000-0002-1643-6066
https://orcid.org/0000-0002-9101-834X
https://orcid.org/0000-0003-1670-7951


1 Introduction
The stable set problem is a fundamental combinatorial optimization problem. It is capable
of modeling other combinatorial problems as well as real-world applications and is therefore
widely applied in areas like operations research or computer science. We refer to the
survey [27] for more information and a review of exact and heuristic algorithms. Most of
the exact algorithms are based on branch and bound (B&B) and differ mainly by different
upper and lower bound computations. A recent paper using a MIP solver is e.g. [20]. The
models used in that paper yield computation times from less than a second up to half an
hour on a selection of DIMACS instances.

Outstanding results are obtained by an algorithm of Depolli et. al [9]. They introduced
an algorithm using parallel computing for finding maximum cliques in the context of protein
design. The algorithm consists of carefully implemented algorithmic building blocks such
as an approximate coloring algorithm, an initial vertex ordering algorithm and the use of
bit-strings for encoding the adjacency matrix.

In the 2015 survey [27], no exact algorithms using semidefinite programming (SDP) are
mentioned. One reason for the rare literature on SDP based B&B algorithms is the high
computational cost for computing these bounds. In this work we introduce an SDP based
B&B algorithm. We formulate new SDP relaxations and develop solution algorithms to
compute these bounds with moderate computational expense, making them applicable
within a B&B scheme.

Before introducing the stable set problem, sometimes also referred to as vertex packing
problem, we give the definition of a stable set. Let G = (V,E) be a simple undirected graph
with |V | = n vertices and |E| = m edges. A set S ⊆ V is called stable if no vertices in
S are adjacent. S is called a maximal stable set if it is not possible to add a vertex to S
without losing the stability property. The stability number α (G) denotes the maximum
size of a stable set in G, where size means the cardinality of the set. A stable set S is called
a maximum stable set if it has size α(G).
For convenience, from now on we always label the vertices of a graph with n vertices

from 1 to n. Computing α(G) can be done by solving the following optimization problem.

α(G) = max
n∑
i=1

xi (1)

s. t. xi + xj ≤ 1 ∀{i, j} ∈ E(G)
x ∈ {0, 1}n

For a graph G = (V,E), the set of all stable set vectors S(G) and the stable set polytope
STAB(G) are defined as

S(G) = {s ∈ {0, 1}n : sisj = 0 ∀{i, j} ∈ E} and
STAB(G) = conv {s : s ∈ S(G)} .
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Determining α(G) is NP-complete and the decision problem is among Karp’s 21 NP-
complete problems [18]. Furthermore, Håstad [15] proved that α(G) is not approximable
within n1−ε for any ε > 0 unless P=NP. A well known upper bound on α(G) is the Lovász
theta function ϑ(G). Grötschel, Lovász and Schrijver [14] proved that

ϑ(G) = max 1
T
nx (2)

s. t. diag(X) = x

Xi,j = 0 ∀{i, j} ∈ E(
1 xT

x X

)
< 0

X ∈ Sn, x ∈ Rn

and hence provided a semidefinite program (SDP) to compute ϑ(G). We define the feasible
region of (2) as

TH2(G) = {(x,X) ∈ Rn × Sn : diag(X) = x,

Xi,j = 0 ∀{i, j} ∈ E, X − xxT < 0
}
.

Clearly for each element (x,X) of TH2(G) the projection of X onto its main diagonal is x.
The set of all projections

TH(G) =
{
x ∈ Rn : ∃X ∈ Sn : (x,X) ∈ TH2(G)

}
is called theta body. More information on TH(G) can be found for example in Conforti,
Cornuejols and Zambelli [7]. It is easy to see that STAB(G) ⊆ TH(G) holds for every graph
G, see [14]. Thus ϑ(G) is a relaxation of α(G).

This paper is structured as follows. In Section 2 we introduce two new relaxations using
the concept of exact subgraph constraints. A branch and bound algorithm that uses these
relaxations is described in Section 3, followed by the discussion of numerical results in
Section 4. Section 5 concludes this paper.

2 New Relaxations of the Exact Subgraph Constraints
In this section we present two new approaches to find upper bounds on the stability
number α(G) of a graph G starting from the Lovász theta function ϑ(G) with so-called
exact subgraph constraints, one based on violated facets and one based on separating
hyperplanes. After introducing these approaches, we compare them both theoretically and
practically.
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2.1 Basic Setup for Exact Subgraph Constraints
Our approach is based on the idea of exact subgraph constraints that goes back to Adams,
Anjos, Rendl and Wiegele [1] for combinatorial optimization problems that have an SDP
relaxation and was recently computationally investigated by Gaar and Rendl [12, 13] for the
stable set, the Max-Cut and the coloring problem as a basis. Starting from this, we present
two relaxations of including exact subgraph constraints into the SDP for calculating ϑ(G)
that are computationally more efficient.

We first recapitulate the basic concepts of exact subgraph constraints with the notation
from [11]. An upper bound on α(G) is given by the Lovász theta function ϑ(G). Due to
the SDP formulation (2) it can be computed in polynomial time. Adams, Anjos, Rendl
and Wiegele [1] proposed to improve ϑ(G) as an upper bound by adding so-called exact
subgraph constraints. These exact subgraph constraints can be used to strengthen SDP
relaxations of combinatorial optimization problems with a certain property by including
subgraph information. For the stable set problem we need the following definitions in order
to introduce the exact subgraph constraints. For a graph G the squared stable set polytope
STAB2(G) is defined as

STAB2(G) = conv
{
ssT : s ∈ S(G)

}
and matrices of the form ssT for s ∈ S(G) are called stable set matrices. Let GI denote
the subgraph induced by the vertex set I ⊆ V (G) with |I| = kI . With XI we denote the
submatrix of X that results when we delete each row and column corresponding to a vertex
that is not in I. In other words, XI is the submatrix of X where we only choose the rows
and columns corresponding to the vertices in I. Then the constraint that asks the submatrix
XI of (2) for an induced subgraph GI to be in the squared stable set polytope STAB2(GI)
is called exact subgraph constraint (ESC).
The k-th level of the exact subgraph hierarchy introduced in [1] is the Lovász theta

function (2) with additional ESC for each subgraph of order k. In [12, 13] this hierarchy is
exploited computationally by including the ESC only for a set J of subgraphs and then
considering

zJ(G) = max
{
1
T
nx : (x,X) ∈ TH2(G), XI ∈ STAB2(GI) ∀I ∈ J

}
. (3)

Clearly, α(G) 6 zJ(G) holds for every set J of subsets of V (G), so zJ(G) is an upper
bound on α(G). One of the key remaining questions is how to solve (3). We will compare
different implementations and relaxations of this problem in the rest of the paper and start
by considering existing methods.
The most straightforward way to solve (3) is to include the ESCs in a convex hull

formulation as presented in [12, 13, 11]. We now recall the basic features and follow the
presentation from [11]. As the ESC for a subgraph GI makes sure that XI ∈ STAB2(GI)
holds and the polytope STAB2(GI) is defined as the convex hull of the stable set matrices,
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the most intuitive way to formulate the ESC is as a convex combination. Towards that
end, for a subgraph GI of G induced by the subset I ⊆ V , let |S(GI)| = tI and let
S(GI) =

{
sI1, . . . , s

I
tI

}
. Then the i-th stable set matrix SIi of the subgraph GI is defined as

SIi = sIi (sIi )T . As a result, the ESC XI ∈ STAB2(GI) can be rewritten as

XI ∈ conv
{
SIi : 1 6 i 6 tI

}
and it is natural to implement the ESC for the subgraph GI as

XI =
tI∑
i=1

[λI ]iSIi , λI ∈ ∆tI ,

where ∆tI is the tI -dimensional simplex.
This means that when including the ESC for the subgraph GI into (2) we have tI

additional non-negative variables, one additional linear equality constraint for λI and the
matrix equality constraint which couples XI and λI . We denote the number of equality
constraints that are induced by the matrix equality constraint by bI and note that bI 6

(kI+1
2
)

holds. With this formulation (3) can equivalently be written as

zCJ (G) = max
{
1
T
nx : (x,X) ∈ TH2(G), XI =

tI∑
i=1

[λI ]iSIi , λI ∈ ∆tI ∀I ∈ J
}
, (4)

so zJ(G) = zCJ (G) holds. In practice, this SDP can be solved by interior point methods as
long as the number of ESC constraints is of moderate size.

Due to the fact that (4) becomes a huge SDP as soon as the number of ESCs |J | becomes
large, Gaar and Rendl [12, 13] proposed to use the bundle method to solve this SDP. The
bundle method is an iterative procedure to find a global minimum of a non-smooth convex
function and has been adapted for SDPs by Helmberg and Rendl [16]. As we use the bundle
method only as a tool and do not enhance it any further, we refrain from presenting details
here.

2.2 Relaxation Based on Inequalities that Represent Violated Facets
We will see later on that the computational costs of a B&B algorithm are enormous in the
original version with the convex hull formulation (4) and they are still substantial with the
bundle approach from [12, 13]. Therefore, we suggest two alternatives.
First, we present a relaxation of calculating the Lovász theta function with ESCs (3)

that has already been mentioned in [11], but has never been computationally exploited
so far. The key ingredient for this relaxation is the following observation. The polytope
STAB2(GI) is given by its extreme points, which are the stable set matrices of GI . Due to
Weyl’s theorem (see for example [23]) it can also be represented by its facets. This means
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that there are (finitely many) inequalities, such that the constraint XI ∈ STAB2(GI) can
be represented by these inequalities.
However, the facets and hence the inequalities depend on the stable set matrices and

therefore on the subgraph GI . Thus different subgraphs need different calculations that
will lead to different inequalities. Gaar [11, Lemma 3] showed that adding the ESC
XI ∈ STAB2(GI) to the SDP calculating the Lovász theta function (2) is equivalent to
adding the constraint XI ∈ STAB2(G0

kI
) where G0

kI
= (V 0

kI
, E0) with V 0

kI
= {1, . . . , kI} and

E0 = ∅.
This implies that it is enough to calculate the facets of STAB2(G0

kI
) and include these

facets for each subgraph GI on kI vertices, instead of calculating the facets of STAB2(GI)
for each subgraph GI separately. Let rkI

be the number of facets of STAB2(G0
kI

) and let
F kI
i ∈ RkI×kI , fkI

i ∈ R for 1 6 i 6 rkI
such that

STAB2(G0
kI

) =
{
X ∈ RkI×kI :

〈
F kI
i , X

〉
6 fkI

i ∀1 6 i 6 rkI

}
,

so (F kI
i , fkI

i ) is an inequality representing the i-th facet of STAB2(G0
kI

). We obtained rkI
,

F kI
i and fkI

i for kI 6 6 in the way suggested in [11]. For kI > 7 this computation is beyond
reach, as r7 is conjectured to be 217093472 [6].

If we would include all facets of STAB2(G0
kI

) for each subgraph GI to replace the ESCs
in (3), then we would include a huge number of inequalities (r5 = 368 and r6 = 116764)
and reach the limits of computing power rather soon. In order to reduce the number of
inequalities, for each subgraph we include only those inequalities that represent facets that
are violated by the current solution X∗. To be more precise, let X∗ be the optimal solution
of (3) for J = ∅, i.e., the optimal solution of calculating the Lovász theta function. Then we
define the indices of significantly violated facets of GI , i.e., facets where the corresponding
inequalities are violated at least by εF , as

V ′I =
{

1 6 i 6 rkI
:
〈
F kI
i , X∗I

〉
> fkI

i + εF
}
,

where εF is a small constant to take care of numerical inaccuracies of calculating X∗.
Now we can further reduce the number of included inequalities in the following way.

Although all (F kI
i , fkI

i ) are different for different values of i, it could happen that for a
subgraph GI there exist 1 6 i 6= i′ 6 rkI

such that (F kI
i , fkI

i ) and (F kI
i′ , f

kI
i′ ) induce the

same inequality. This is possible because they might differ only in positions (j, j′) with
j, j′ ∈ I and {j, j′} ∈ E. Therefore, these different entries are multiplied with zero due to
[X∗I ]j,j′ = 0. Hence, let VI ⊆ V ′I be a set such that only one index among all indices in V ′I
which induce the same inequality is in VI . Then we obtain the following relaxation of (3),
in which we include only inequalities that induce significantly violated facets of GI

zFJ (G) = max
{
1
T
nx : (x,X) ∈ TH2(G),

〈
F kI
i , XI

〉
6 fkI

i ∀i ∈ VI ∀I ∈ J
}
. (5)
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Unfortunately for kI > 7 it is not possible to store and check the facets of STAB2(G0
kI

)
for violation in reasonable memory and time due to the huge number of facets. Hence, we
can perform this relaxation only for subgraphs GI of order kI 6 6.

2.3 Relaxation Based on Separating Hyperplanes
Next we consider another approach to implement a relaxation of (3) which can also be used
for subgraphs GI of order kI > 7 and which is based on including separating hyperplanes.
It uses the following fact. Let X̃ be any matrix in ∈ Sn and let PI be the projection of

X̃I onto STAB2(GI). Then we can calculate the projection distance of X̃ to STAB2(GI) as

∥∥∥PI − X̃I

∥∥∥2

F
= min

λI∈∆tI

∥∥∥∥∥
(

tI∑
i=1

[λI ]iSIi

)
− X̃I

∥∥∥∥∥
2

F

= min
λI∈∆tI

∥∥∥∥∥
tI∑
i=1

[λI ]i(SIi − X̃I)
∥∥∥∥∥

2

F

= min
λI∈∆tI

kI∑
j=1

kI∑
j′=1

(
tI∑
i=1

[λI ]i
[
SIi − X̃I

]
j,j′

)2

= min
λI∈∆tI

kI∑
j=1

kI∑
j′=1

(
tI∑
i=1

tI∑
i′=1

[λI ]i[λI ]i′
[
SIi − X̃I

]
j,j′

[
SIi′ − X̃I

]
j,j′

)

= min
λI∈∆tI

tI∑
i=1

tI∑
i′=1

[λI ]i[λI ]i′

 kI∑
j=1

kI∑
j′=1

[
SIi − X̃I

]
j,j′

[
SIi′ − X̃I

]
j,j′


= min

λI∈∆tI

λTI QIλI , (6)

where QI ∈ RtI×tI and [QI ]i,i′ =
〈
SIi − X̃I , S

I
i′ − X̃I

〉
. QI is symmetric and positive

semidefinite because it is a Gram matrix, so (6) is a convex-quadratic program with tI
variables, a convex-quadratic objective function and one linear equality constraint. With
the optimal solution λI of (6) the projection of X̃I onto STAB2(GI) can be obtained by
PI =

∑tI
i=1[λI ]iSIi . By defining

HI = 1∥∥∥X̃I − PI
∥∥∥
F

(
X̃I − PI

)
and hI = 1∥∥∥X̃I − PI

∥∥∥
F

〈
X̃I − PI , PI

〉
due to the separating hyperplane theorem (see for example Boyd and Vandenberghe [2])

〈HI , XI〉 6 hI (7)

is a hyperplane that separates X̃I from STAB2(GI) such that XI = PI fulfills the inequality
with equality. Obviously (7) is a relaxation of the ESC XI ∈ STAB2(GI), so

zHJ (G) = max
{
1
T
nx : (x,X) ∈ TH2(G), 〈HI , XI〉 6 hI ∀I ∈ J

}
(8)

is another relaxation of (3) that depends on the chosen X̃.
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2.4 Theoretical Comparison of the Relaxations
We briefly comment on some theoretical properties of zCJ (G), zFJ (G) and zHJ (G). We start
by analyzing the upper bounds we obtain. Due to the fact that zFJ (G) and zHJ (G) are
relaxations of zCJ (G), we know that

α(G) 6 zCJ (G) 6 zFJ (G), zHJ (G) 6 ϑ(G)

holds for every graph G and every set J .
Another important observation is the following. Whenever we include the ESC of the

subgraph GI into the SDP computing zCJ (G), the stable set problem is solved exactly on
this subgraph GI . However, when computing zFJ (G) and zHJ (G) we do not include the ESC
but only a relaxed version of it. Hence, in the optimal solutions of these two relaxations, it
could still be the case that the ESC is not fulfilled, i.e., for the subgraph GI we do not have
an exact solution. Hence, it is possible that we still find violated inequalities (representing
facets or hyperplanes) in these cases. As a consequence, for zCJ (G) it does not make sense
to include the ESC for the same subgraph twice, but for zFJ (G) and zHJ (G) it is possible
that we want to include a relaxation of the very same ESC twice with different facets or a
different separating hyperplane.

Finally let us consider the sizes of the SDPs to solve. In all three versions zCJ (G), zFJ (G)
and zHJ (G) we solve the SDP of the Lovász theta function (2) with additional constraints,
so in all three SDPs we have a matrix variable of dimension n+ 1 which has to be positive
semidefinite (psd) and n+m+ 1 linear equality constraints. Additionally to that we have∑
I∈J tI non-negative variables and |J |+

∑
I∈J bI equality constraints for zCJ (G),

∑
I∈J |VI |

inequalities for zFJ (G), and |J | inequalities for zHJ (G). Table 1 gives an overview of the
different sizes of the SDPs.

Table 1: Sizes of the SDPs to compute zCJ (G), zFJ (G) and zHJ (G)

zCJ (G) zFJ (G) zHJ (G)

dimension psd matrix variable n+ 1 n+ 1 n+ 1

# non-negative variables
∑
I∈J tI 0 0

# linear equality constraints n+m+ 1 + |J |+
∑
I∈J bI n+m+ 1 n+m+ 1

# linear inequality constraints 0
∑
I∈J |VI | |J |

2.5 Computational Comparison of the Relaxations
Before we perform a large scale comparison of zCJ (G), zFJ (G) and zHJ (G) within a B&B
algorithm, we investigate a small example.
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Example 2.1. We consider a random graph G = G100,15 from the Erdős-Rényi model
G(n, p) with n = 100 and p = 0.15. A random graph from this model has n vertices and
every edge is present with probability p independently from all other edges. For the chosen
graph, ϑ(G100,15) = 27.2003 and α(G100,15) = 24 holds, so

24 6 zCJ (G) 6 zFJ (G), zHJ (G) 6 27.2003

holds for every set J .
All the computations were performed on an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz

with 32 GB RAM with the MATLAB version R2016b and with MOSEK version 8. In the
computations, we use εF = 0.00005 and we include a separating hyperplane for a subgraph
whenever the projection distance is greater or equal to 0.00005.

We compute zCJ (G), zFJ (G) and zHJ (G) for different sets J , which all consist of subsets of
vertices of size kI = 5 and only differ in the number q = |J | of included ESCs. To be more
precise, we consider five different sets J = Jq with q = |Jq| ∈ {221, 443, 664, 886, 1107}.
These values of q are chosen in such a way that the number of linear equality constraints
which are induced by the matrix equalities from the ESCs in the convex hull formulation,
i.e.,

∑
I∈Jq

bI , is in {3000, 6000, 9000, 12000, 15000}. To choose the subsets in Jq, we
first determine X∗ as the optimal solution of (3) for J = ∅, i.e., the optimal solution of
calculating the Lovász theta function (2). Then we generated 3q subgraphs GI of order
kI randomly and included those q subsets I into Jq, where the corresponding X∗I have the
largest projection distances to STAB2(GI). For computing zHJ (G) we choose X̃ = X∗.

Table 2: The values of zCJ (G), zFJ (G) and zHJ (G) for G = G100,15 for different sets Jq

J221 J443 J664 J886 J1107

zCJ (G) 26.9905 26.9299 26.8684 26.8496 26.8278

zFJ (G) 26.9975 26.9393 26.8807 26.8602 26.8397

zHJ (G) 27.0104 26.9741 26.9215 26.8992 26.8898

If we consider Table 2 with the improved upper bounds then we see that if q increases, all
upper bounds zCJ (G), zFJ (G) and zHJ (G) improve. Furthermore, one can observe that for
a fixed set Jq the obtained bounds of zCJ (G) are best, those of zFJ (G) are a little bit worse
and those of zHJ (G) are even a little bit more worse, i.e., empirically the bounds obtained by
using zFJ (G) are better than those coming from zHJ (G) in our example.

Next we consider the running times for computing zCJ (G), zFJ (G) and zHJ (G) in Table 3.
Here we see that the time it takes so solve zCJ (G) is extremely high and increases drastically
if the number of included ESCs gets larger. Both our relaxations zFJ (G) and zHJ (G) reduce
the running times enormously. The running times for zFJ (G) and zHJ (G) are comparable,
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Table 3: The running times in seconds for computing zCJ (G), zFJ (G) and zHJ (G) of Table 2

J221 J443 J664 J886 J1107

zCJ (G) 8.14 29.30 66.95 139.64 279.11

zFJ (G) 0.61 1.15 1.94 2.72 3.81

zHJ (G) 0.75 1.25 1.93 2.57 3.34

but computing zHJ (G) is slightly faster for including a large number of ESCs as we only
include one additional inequality in zHJ (G) whereas we may include several inequalities that
represent facets in zFJ (G).

Table 4: The average projection distances of XI to STAB2(GI) over all I ∈ Jq before (i.e.,
X = X∗ is the optimal solution of (2)), and after (i.e., X ∈ {XC∗, XF∗, XH∗} is
the optimal solution of zCJ (G), zFJ (G) and zHJ (G)) including the ESCs

J221 J443 J664 J886 J1107

before including ESCs 0.03095 0.03014 0.03057 0.02982 0.03032

after computing zCJ (G) 0.00005 0.00004 0.00004 0.00004 0.00004

after computing zFJ (G) 0.00151 0.00087 0.00115 0.00080 0.00051

after computing zHJ (G) 0.00290 0.00256 0.00252 0.00196 0.00183

As a next step we investigate the projection distances. Recall that X∗ is the optimal
solution of calculating the Lovász theta function (2). Let XC∗, XF∗ and XH∗ be the optimal
solution of calculating zCJ (G), zFJ (G) and zHJ (G), respectively. In Table 4 we see that the
average projection distance of X∗ is significantly larger than 0 before including the ESCs,
so there are several violated ESCs. As soon as the ESCs are included the average projection
distance for XC∗ is almost zero, so the ESCs are almost satisfied. In theory they should all
be zero, but as MOSEK is not an exact solver, the optimal solution is subject to numerical
inaccuracies. If we turn to zFJ (G), then the projection distances of XF∗

I are not as close
to zero as those for XC∗, because zFJ (G) is only a relaxation of zCJ (G). Also the average
projection distance of XH∗

I after solving zHJ (G) is greater than the one obtained with zFJ (G).
This is in tune with the fact that the upper bounds obtained in the latter case are better for
this instance. Furthermore, note that the average projection distances for XF∗

I and XH∗
I

decrease as q increases. This is not surprising, as more ESCs mean that a bigger portion of
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the graph is forced into the stable set structure.

Table 5: The average number of violated facets |VI | over all subgraphs GI with I ∈ Jq
before and after including the ESCs and computing zFJ (G)

J221 J443 J664 J886 J1107

before including ESCs 1.53 1.56 1.57 1.56 1.56

after computing zFJ (G) 0.23 0.14 0.16 0.15 0.09

Finally we present in Table 5 the average number of violated facets. As one can see
the average number of violated facets before including the ESCs is already very low. This
means that we do not include too many inequalities that represent facets in the computation
of zFJ (G). Furthermore, the average number of facets that are violated by XF∗ decreases
significantly compared to the average number of violated facets before including the relaxations
of the ESCs. This is very encouraging because one could imagine a scenario where we
iteratively add violated facets of one subgraph and then the optimal solution violates different
facets. However, the computations suggest that this does not happen too often. Like before
in Table 4 we see that the more ESCs are included, the more stable set structure is captured
and therefore the less facets are violated after including the relaxations of the ESCs. ©

Let us briefly summarize the key points of Example 2.1. Usually the upper bounds
obtained by zFJ (G) are only slightly worse than those of zCJ (G), but the running times are
only a fraction. Unfortunately, this approach works only for subgraphs of order at most 6.
Also zHJ (G) yields good upper bounds in slightly better running time than zFJ (G), but the
bounds are a little bit worse. A major benefit of this approach is that it can be used for
subgraphs of any order.
In a nutshell, both zFJ (G) and zHJ (G) are relaxations of zCJ (G) that reduce the running

times drastically by worsening the bounds only a little bit. As a result these bounds are
very promising for including them into a B&B algorithm for stable set.

3 Branch and Bound for the Stable Set Problem
The aim of this section is to present our implementation of an exact branch and bound
(B&B) algorithm for the stable set problem (1).

3.1 Our Branch and Bound Algorithm
We start by detailing the general setup of our B&B algorithm. Towards this end, keep in
mind that in a solution of (1) the binary variable xi is equal to 1 if vertex i is in the stable
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set, and xi = 0 otherwise.
For our B&B algorithm for the stable set problem we choose a vertex i ∈ V (G) and divide

the optimization problem in a node of the B&B tree into the subproblem where vertex i is
in the stable set (i.e., set the branching variable xi = 1) and a second subproblem where i
is not in the stable set (i.e., set the branching variable xi = 0).
It turns out that in each node of the B&B tree the optimization problem is of the form

P (G, c) = c+ max
∑

i∈V (G)
xi (9)

s. t. xi + xj ≤ 1 ∀{i, j} ∈ E(G)
xi ∈ {0, 1} ∀i ∈ V (G)

for some graph G, so in each node we have to solve a stable set problem and add a constant
term c to the objective function value. Indeed, by fixing a branching variable xi to 0
or 1, we shrink the graph and create subproblems that are again stable set problems of
the form (9) but with a smaller graph and some offset c. To be more precise, for the
subproblem with xi = 1 the objective function value of (1) increases by 1 because there
is one more vertex in the stable set. Furthermore, all neighbors of i can not be in the
maximum stable set because i is already in the stable set. So we can set xj = 0 for all
j ∈ NG(i) if NG(i) = {j ∈ V (G) | {i, j} ∈ E(G)} denotes the set of neighbors of the vertex
i in G. Furthermore, we can delete i and all neighbors of i in the current graph G and
search for a maximum stable set in the new graph G′ of smaller order, where G′ = G[U ′] is
the subgraph of G induced by U ′ = V (G) \

(
{i} ∪NG(i)

)
. Hence, the subproblem to solve

in the new node has the form P (G′, c+ 1).
In the subproblem for xi = 0 the vertex i is not in the stable set. We can remove the

vertex i from the graph and search for a maximum stable set in the induced subgraph
G′′ = G[U ′′] with U ′′ = V (G) \ {i}. This boils down to solving P (G′′, c) in the new node of
the B&B tree.
Note that whenever we delete a vertex i from the graph in the branching process, we

set the according variable xi to a fixed value. Consequently, in every node, all vertices of
the original graph G are either still present, or the value of the variable corresponding to
them is implicitly fixed. Furthermore, we exclude all non-feasible solutions by deleting all
neighbors in case of setting the branching variable to 1. Hence, every time we set a variable
of a vertex to 1 the set of all vertices of which the variable is set to 1 remains stable and we
only obtain feasible solutions of (1). Therefore, from a feasible solution of (9) in any node
we can determine a feasible solution of (1) with the same objective function value.

The order of the graph to consider in a node shrinks whenever we branch. As a consequence
the B&B tree is of finite size. Whenever we reach a node with a suproblem on a graph
with less or equal to 23 vertices, we solve the problem by a fast enumeration procedure
that can be employed whenever the subproblems become sufficiently small. To do so, we
iterate easily – and especially fast – over all subsets of V in descending order with an
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implementation of Hinnant [17] in C++.

Bounds We do not want to solve the subproblems (9) in each node to optimality, but
only compute an upper and a lower bound on the optimal objective function value. This
boils down to obtaining bounds on the stability number of the graph considered in (9). We
present details on lower bounds obtained by heuristics in Section 3.2.

As upper bounds we use the relaxations based on ESCs in four different versions, namely
the convex hull formulation or the bundle method as detailed in Section 2.1, the violated
facets version as described in Section 2.2 or the separating hyperplanes version as presented
in Section 2.3. For choosing the subset J of ESCs, we follow the approach of [13] in our
computations and perform several cycles, i.e., iterations of the repeat until loop, of solving
(a relaxation) of (3) and then adjusting the set J , as illustrated in Algorithm 1.

In particular, we start with J = ∅, as preliminary computations have shown that carrying
over ESC to subproblems does not pay of, and in each cycle we update J depending on
the current optimal solution X∗ of the SDP solved. We remove all previously added ESCs
where the associated dual variables of the optimal solution have absolute value less than
0.01. For finding violated subgraphs (i.e., subgraphs for which the ESC does not hold in X∗)
we use the methods presented in [13], so we use a local search heuristic to find submatrices
of X∗ that minimize the inner product with some matrices. We let the local search heuristic
run for 9n times and add random subgraphs to obtain 9n subgraphs without duplicates.
From these subgraphs we add the 3n most violated ones (subsets I with largest projection
distance of X∗I to STAB2(GI)) to J .
To reduce computational effort, we stop cycling as soon as we do not expect to be able

to prune within the next 5 cycles assuming that the decrease of the upper bound z∗ in each
future cycle is 0.75 of the average decrease we had in the previous cycles.

For our computations we use the implementation of the bundle method as it is detailed
in [13], in particular with all specifications given in Section 6.3 therein and we let the bundle
method run for at most 15 iterations in each cycle.

Branching Rule An important question in the B&B algorithm is how to choose the
branching variable. In our implementation we follow the approach to first deal with vertices,
for which we know least whether they will be in a maximum stable set or not (“difficult
first”) in order to find an optimal solution soon.
All our upper bounds are based on the Lovász theta function (2), so we can use the

intuition that the closer an entry xi is to 1 in an optimal solution of (2), the more likely
it is that this vertex i is in a maximum stable set. Hence, we choose the variable xi with
value closest to 0.5 as branching variable.

More on branching rules for the stable set problem can for example be found in [10, 28].
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Algorithm 1: Upper bound computation at a B&B node
Input: Graph G at current node, method convex-hull, bundle-method, violated-factes,

or separating-hyperplanes
Output: Upper bound z∗

1 J = ∅
2 repeat
3 if convex-hull then let X∗ be an optimal solution of (4) with objective function

value z∗
4 if bundle-method then let X∗ be the solution of approximately solving (4) using

the bundle method with objective function value z∗
5 if violated-facets then let X∗ be an optimal solution of (5) with objective

function value z∗
6 if separating-hyperplanes then let X∗ be an optimal solution of (8) with

objective function value z∗, where we choose X̃ as X∗ of the last cycle
7 remove ESCs from J if associated dual variables have small absolute value
8 search for ESCs violated by X∗ and add them to J
9 until optimistic forecast does not suggest pruning

10 return z∗

Diving Strategy We implemented a best first search strategy, where we always consider
the open subproblem with the largest upper bound next. We expect that we find a large
stable set in this branch of the B&B tree because the difference between the global lower
bound and the upper bound for this branch is the highest of all.

3.2 Heuristics to Find Large Stable Sets
It is crucial to find a good lower bound on α(G) early in the B&B algorithm to prevent the
growth of the B&B tree and therefore solve the stable set problem more efficiently. In [26]
and [27], for example, one can find references to some heuristics to find a large stable set.
In our implementation we use several different heuristics.

The first heuristic makes use of the vector x from the SDP formulation (2) of ϑ(G), which
is available from the upper bound computation. This vector consists of n elements between
0 and 1. The value xi gives us some intuition about the i-th vertex of the graph, namely
the closer it is to 1, the more likely it is that the vertex is in a maximum stable set. Hence,
we sort the vertices in descending order according to their value in x and then add the
vertices in this order to a set S, such that the vertices of S always remain a stable set. In
the following we refer to this heuristic as (HT).
Furthermore, we use a heuristic introduced by Kahn I., Ahmad and Kahn M. in [19]

based on vertex covers and vertex supports. A subset C of the vertices of a graph is called
vertex cover if for each edge at least one of the two incident vertices is in C. The vertex
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support of a vertex is defined as the sum of the degrees of all vertices in the neighborhood
of this vertex. If C is a vertex cover, then clearly V (G) \ C is a stable set, so instead of
searching for a maximum stable set we can search for a vertex cover of minimum cardinality.
In a nutshell, the heuristic of [19] searches for a vertex with maximum vertex support in
the neighborhood of the vertices with minimum vertex support. If there is more than one
vertex with maximum support, one with maximum degree is chosen. This vertex is added
to the vertex cover C and all incident edges are removed. The above steps are repeated
until there are no edges left in the graph. In the end we obtain a hopefully large stable set
with V (G) \ C. We denote this heuristic by (HVC).

Finally we use a heuristic proposed by Burer, Monteiro and Zhang in [4]. Their heuristic
is based on the SDP formulation of the Lovàsz theta function with additional restriction to
the matrix variable to be of low rank. With rank one, a local maximizer of the problem
yields a maximal stable set, whereas with rank two the stable set corresponding to the
local maximizer does not necessarily have to be maximal, but one can escape to a higher
local maximizer which corresponds to a maximal stable set. The C source code of this
heuristic is online available at [3]. We use this code with the parameters rank set to 2 and
the number of so-called escapes set to 1 in a first version and set to 5 in a second version.
Both parameter settings are among the choices that were tested in [4]. We will refer to this
versions with (H21) and (H25).

In the B&B algorithm we perform the heuristic (H25) in the root node with a time
limit of 20 seconds. Then we only perform the heuristics in every third node of the B&B
tree. (HT) and (HVC) are very fast, so we let them run in each node we run heuristics.
Furthermore, in the first 10 nodes of the B&B tree we perform (H25) with the hope to
find a stable set of cardinality α(G) as soon as possible, but we do not allow the heuristic
to iterate longer than 7 seconds. For graphs with less than 200 vertices we additionally
perform (H21) with the running time limited to 1 second. On graphs with more vertices we
perform with probability 0.05 (H25) and a time limit of 7 seconds and in the other cases
(H21) with a time limit of 3 seconds. In a computational comparison in the master’s thesis
of Siebenhofer [25], this turned out to be the best combination of heuristics.

4 Computational Experiments
In this section we finally compare the B&B algorithms using the different upper bounds
presented so far. In Table 6 and Figure 1 we compare the number of nodes generated in
the B&B algorithm as well as the CPU time and the final gap. The abbreviations refer to
the following bounds used.

(CH) We consider the upper bound obtained by the ESCs in the convex hull formula-
tion (CH) described in Section 2.1,

(BD) solving this formulation with the bundle method (BD) as presented in Section 2.1,

15



(VF) relaxing this formulation by considering only violated facets (VF) as described in
Section 2.2,

(SH) and using only separating hyperplanes (SH) as presented in Section 2.3.

(TH) For better comparability we also consider our B&B algorithm with only the Lovász
theta function (2) as an upper bound and denote this version with (TH). Note that
this boils down to solving (3) with J = ∅.

If we are not able to solve an instance within the timelimit, we indicate this in Table 6
by a cell that is colored . Whenever a cell is colored it means that the run did
not finish correctly, for example because MOSEK produced an error or ran out of memory.
Before discussing the results, we give the details on the instances as well as on the soft- and
hardware.

4.1 Benchmark Set and Experimental Setup
We consider several different instances. First, we consider the instances used in [13], i.e.,
torus graphs, random near-r-regular graphs and random graphs from the Erdős-Rényi
model and also several instances from the literature. Additionally we consider all instances
from the DIMACS challenge for which the gap between ϑ(G) and α(G) is larger than one
(i.e., all instances which are not solved in the root node of our B&B algorithm) and that
have at most 500 vertices. Moreover, we consider spin graphs, which are produced with
the command ./rudy -spinglass3pm x x x 50 xxx1 (for x ∈ {5, 7, 9, 11}) by the graph
generator rudy, which was written by Giovanni Rinaldi.1

We implemented our B&B algorithm with different upper bounds in C++. All computations
were performed on an Intel(R) Core(TM) i7-7700 CPU @ 3.60GHz with 32 GB RAM.
All programs were compiled with gcc version 5.4.0 with the optimization level -O3 and
the CPU time was measured with std::clock. We set the random seed to zero. We use
MOSEK [22] 8.1 in the methods (CH), (VF), and (SH) to solve the SDPs (4), (5), and (8),
respectively. Furthermore, we use it within the method (BD) for solving the subproblems
within the bundle method for computing an approximate solution of (4). Moreover, we use
it to solve the QP (6) to compute the projection distance in (SH) and when updating J ,
i.e., while searching for subgraphs with violated ESCs and adding these subgraphs to J .
The execution time of our B&B algorithm is limited to 4 hours, i.e., after this computation
time we allow the B&B to finish solving the SDP of the already started node in the B&B
tree and then stop.

1Available at www-user.tu-chemnitz.de/~helmberg/rudy.tar.gz
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Table 6: The number of nodes in our B&B algorithm
Graphs n m α (TH) (CH) (BD) (VF) (SH)
ER_100_15 100 737 24 25 19 19 19 19
ER_100_25 100 1262 17 27 49 23 21 23
ER_100_50 100 2501 9 23 21 21 21 21
ER_125_15 125 1123 27 243 22 173 139 149
ER_125_25 125 1928 20 29 21 25 23 21
ER_125_50 125 3904 9 69 63 63 63 63
ER_150_15 150 1664 28 1469 41 - 835 871
ER_150_25 150 2810 19 543 47 417 401 429
ER_150_50 150 5608 10 79 58 77 77 77
ER_175_15 175 2213 30 4633 35 - 1856 2488
ER_175_25 175 3777 20 1191 32 818 985 995
ER_175_50 175 7578 11 91 24 87 87 87
ER_200_15 200 2917 33 3149 21 479 1342 1771
ER_200_25 200 4924 21 2883 18 274 1196 1861
ER_200_50 200 9913 11 135 12 52 131 131
torus5 25 50 10 3 1 1 1 1
torus7 49 98 21 11 1 1 1 1
torus9 81 162 36 33 1 7 1 1
torus11 121 242 55 79 1 19 1 3
torus13 169 338 78 211 6 59 5 5
torus15 225 450 105 551 3 - 11 21
torus17 289 578 136 1453 2 - 23 47
torus19 361 722 171 - - - 31 98
torus21 441 882 210 2956 - - 23 105
torus23 529 1058 253 1750 2 59 16 89
torus25 625 1250 300 1140 - 47 10 61
torus27 729 1458 351 774 - 33 7 41
torus29 841 1682 406 520 - 23 5 28
torus31 961 1922 465 369 12 17 4 20
torus33 1089 2178 528 261 - 12 2 14
torus35 1225 2450 595 188 - 9 2 10
torus37 1369 2738 666 134 - 6 2 7
reg_n100_r4 100 195 40 145 8 71 11 15
reg_n100_r6 100 294 34 251 32 123 47 51
reg_n100_r8 100 377 31 141 18 85 37 39
reg_n100_r10 100 474 28 147 45 95 51 55
reg_n200_r4 200 400 81 9873 24 - 417 647
reg_n200_r6 200 593 69 6 α 6 72 28221 24 642 1023 1447
reg_n200_r8 200 792 60 6 α 6 63 27441 24 630 1242 1663
reg_n200_r10 200 980 57 6 α 6 59 26591 24 606 1257 1657
rand_n100_p004 100 212 45 3 1 1 1 1
rand_n100_p006 100 303 38 23 11 13 5 9
rand_n100_p008 100 443 32 35 11 19 11 11
rand_n100_p010 100 489 32 15 2 9 3 3
rand_n200_p003 200 631 81 39 6 29 9 11
rand_n200_p004 200 816 67 6165 23 - 423 999
rand_n200_p005 200 991 64 879 19 - 279 295
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Table 6: The number of nodes in our B&B algorithm (cont.)
Graphs n m α (TH) (CH) (BD) (VF) (SH)
CubicVT26_5 26 39 10 7 1 3 1 1
HoG_6575 45 225 10 189 79 105 77 77
Circulant47_030 47 282 13 5 1 1 1 1
PaleyGraph61 61 915 5 49 47 47 47 47
spin5 125 375 50 325 1 1 1 1
spin7 343 1029 147 6 α 6 151 5992 - - 79 181
spin9 729 2187 324 6 α 6 333 670 - 23 4 41
spin11 1331 3993 605 6 α 6 625 126 - 4 1 8
MANN_a9 45 72 16 7 3 5 3 3
MANN_a27 378 702 126 - 4 188 131 580
hamming6_4 64 1312 4 17 1 1 1 1
MANN_a45 1035 1980 345 280 - 14 17 43
sanr200_0_9 200 2037 42 5623 22 475 1102 1693
brock200_1 200 5066 21 1691 18 296 1073 1379
keller4 171 5100 11 167 24 103 119 129
sanr200_0_7 200 6032 18 1099 18 254 905 935
brock200_4 200 6811 17 709 16 185 619 627
brock200_3 200 7852 15 469 14 122 403 409
brock200_2 200 10024 12 127 14 54 123 123
c_fat200_5 200 11427 58 11 1 7 7 7
p_hat300_3 300 11460 36 622 4 - 58 102
brock400_2 400 20014 29 34 - 4 10 14
brock400_4 400 20035 33 34 - 4 10 13
brock400_1 400 20077 27 36 - 2 9 12
brock400_3 400 20119 31 35 - 2 10 12
p_hat300_2 300 22922 25 24 1 - 8 10
sanr400_0_7 400 23931 21 22 - 2 6 8
san400_0_7_3 400 23940 22 65 - 3 1 14
p_hat500_3 500 30950 49 8 - 1 2 4
p_hat300_1 300 33917 8 6 1 - 2 2
sanr400_0_5 400 39816 13 5 4 1 2 2

4.2 First Computational Experiments
We first want to compare the two different versions of the B&B algorithm that use (CH)
and (BD) to compute upper bounds, i.e., we compare those versions that have already been
established as upper bounds in the literature, but are now for the first time used within a
B&B algorithm.

First, by looking at Table 6 we observe that 20 instances were not solved correctly with
(CH), which is due to the fact that the SDPs to solve are huge and therefore MOSEK runs
out of memory very often. Indeed, by using (BD) and hence not having to solve that large
SDPs only 10 instances are not solved correctly, most of them due to other MOSEK errors.
When we compare the number of B&B nodes for the instances where both (CH) and (BD)
finished we see that typically the number is the same, or there are slightly more nodes for
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Figure 1: The performance comparison of the bounds (CH), (BD), (VF) and (SH)

(BD). This is plausible, as we only have an approximate solution of (3) when using (BD),
but an exact solution of (3) with (CH).

We next take a closer look on the lines labeled (CH) and (BD) in the performance profiles
in Figure 1. The B&B code using (BD) as bounding routine can solve much more instances
within a given time than when (CH) is used. Once the time limit is reached, the gap is
typically much lower for (BD) than it is for (CH).
In a nutshell, even though (BD) solves only a relaxation of (3), using it is much faster

than using (CH) while it does not increase the number of B&B nodes a lot. This justifies
considering only a relaxation of (3).

4.3 Computational Experiments with New Relaxations
Up to now we have used the exact subgraph approach of [1] with the implementation
proposed by Gaar and Rendl [12, 13] in order to get tight upper bounds on the stability
number within a B&B algorithm for solving the stable set problem. So far we have proven
the strength of the bounds by showing that the number of nodes in a B&B algorithm
reduces drastically by using these bounds, however the computational costs are enormous
in the original version with the convex hull formulation (CH) and they are still substantial
with the bundle approach (BD) from [12, 13]. Therefore, we now discuss the numerical
results of the B&B algorithm using the new relaxations (VF) and (SH).
Looking at Table 6, the first thing we observe is that both (VF) and (SH) never lead

to a MOSEK error, hence they are more robust than the other versions, presumably due
to their smaller size of the SDPs to solve in the B&B nodes. For 9 instances both (VF)
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and (SH) and in 13 instances at least one of (VF) and (SH) is able to finish within the time
limit for an instance where both (CH) and (BD) were not able to finish.
If we compare the number of B&B nodes in Table 6 for the finished instances, then we

see that typically the number of B&B nodes for (VF) is smaller than those of (BD), which
makes sense because in (BD) we only approximately solve (3) whereas in (VF) we solve a
possibly very tight relaxation of (3) exactly. The number of B&B nodes needed by (SH)
is typically a little bit larger than the one of (VF), which is in tune with the empirical
finding that (5) gives better bounds than (8) in the small example considered in Section 2.5.
In a nutshell, for finished runs typically (CH) and (VF) need roughly the same number of
nodes, (SH) needs a little bit and (BD) needs many more nodes in the B&B tree.
As for the running times, in Figure 1 we see that both (VF) and (SH) are faster than

(BD) and considerably faster than (CH). (VF) is a little bit slower than (SH). For those
instances that cannot be solved to optimality, the gap when the time limit is reached is
roughly the same for (VF) and (SH), and it is considerably tighter than for (BD).

We have demonstrated that within a B&B algorithm both our relaxations (VF) and (SH)
work better than already existing SDP based methods. In particular using (SH) allows
to keep the majority of the strength of the upper bound (3) (i.e., keeping the number of
vertices in the B&B tree low) by reducing the running time so that within the time limit
almost 60% of the instances are solved, as compared to (CH) that only manages to solve a
bit more than 20%.

5 Conclusions
We introduced an algorithm for computing the stability number of a graph using semidefinite
programming. While there exist several exact solution methods for finding the stability
number, those based on semidefinite programming are rather rare.
We implemented a B&B algorithm using the SDP relaxations introduced in [12, 13]

together with heuristics from the literature. Moreover, we further relaxed the SDPs, getting
more tractable SDPs still producing high-quality upper bounds. This is confirmed by the
numerical experiments where we compare the number of nodes to be explored in the B&B
tree as well as the CPU times.

While SDPs produce strong bounds, the computational expense for solving the SDPs is
sometimes huge. In particular, there is potential for improvement of the running time for
solving SDPs with many constraints. We use MOSEK as a solver, which uses the interior
point method to solve an SDP. For large instances it would be beneficial to use a solver based
on the boundary point method [24, 21] or DADAL [8]. Moreover, the solver computing ϑ+

as an upper bound [5] combined with the relaxations above, may push the performance of
the B&B solver even further. Also, these other solvers are capable of doing warm starts,
that can have big advantages within a B&B framework. Since all these implementations
are available as MATLAB source code only, they need to be translated to C or C++ first.
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This will be part of our future work.
Another line of future research is working out different strategies for identifying violated

subgraphs, that should also lead to a more efficient overall algorithm.
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