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Abstract

A collection of thermostatically controlled loads (TCLs) – such as air conditioners and water heaters – can vary their power
consumption within limits to help the balancing authority of a power grid maintain demand supply balance. Doing so requires
loads to coordinate their on/off decisions so that the aggregate power consumption profile tracks a grid-supplied reference.
At the same time, each consumer’s quality of service (QoS) must be maintained. While there is a large body of work on TCL
coordination, there are several limitations. One is that they do not provide guarantees on the reference tracking performance
and QoS maintenance. A second limitation of past work is that they do not provide a means to compute a suitable reference
signal for power demand of a collection of TCLs. In this work we provide a framework that addresses these weaknesses. The
framework enables coordination of an arbitrary number of TCLs that: (i) is computationally efficient, (ii) is implementable
at the TCLs with local feedback and low communication, and (iii) enables reference tracking by the collection while ensuring
that temperature and cycling constraints are satisfied at every TCL at all times. The framework is based on a Markov model
obtained by discretizing a pair of Fokker-Planck equations derived in earlier work by Malhame and Chong [21]. We then use
this model to design randomized policies for TCLs. The balancing authority broadcasts the same policy to all TCLs, and each
TCL implements this policy which requires only local measurement to make on/off decisions. Simulation results are provided
to support these claims.
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1 Introduction

Many loads are flexible in their power demand: they can
vary their demand around a baseline without adversely
affecting consumers’ quality of service (QoS). The flex-
ibility can be used by a balancing authority (BA) to
balance supply and demand in a power grid. The base-
line demand refers to the power demand under normal
operation, when each load operates only to meet its
consumer’s QoS without any interference from the BA.
Since the rated power of each load is small, it is necessary
to use a collection of loads. To provide grid support, the
collection has to vary its demand from its baseline. It is
envisioned that the BA would supply a reference signal
for power demand and the actions of the loads in a col-
lection would be coordinated so that their total demand
tracks this reference.

Thermostatically controlled loads (TCLs) - such as resi-
dential air conditioners, heat pumps, and water heaters
- are recognized to be valuable sources of flexible de-
mand [4,6,23,18]. For an air conditioner or a heat pump,
baseline demand is largely dictated by ambient weather
conditions. There are at least two QoS requirements: the
indoor temperature must be maintained within a pre-
specified range and compressor short-cycling must be

avoided, meaning, once the compressor turns on it can-
not turn off until a prespecified time period elapses, and
vice versa. Coordination of TCLs involves two conflict-
ing requirements: (i) the TCLs collectively need to track
the reference power demand signal, and (ii) every TCL’s
QoS need to be maintained.

The actuation at each TCL is discrete: it can either be
on or off. Direct load control [7], in which a centralized
controller at the BA directly commands on/off status of
each TCL is not scalable to large populations. A more
scalable idea, that subsequent works on TCL coordina-
tion use, is for the BA to broadcast a low dimensional
control command to all TCLs, which is translated by
each TCL into its actuation command with a local pol-
icy. To avoid confusion between the decision making at
the BA and a TCL, we use the word “policy” to mean
the algorithm at a TCL that makes on/off decisions. The
literature on decentralized coordination of TCLs differ
in their choice of the broadcast signal (i.e., BA’s control
command) and the policy at the TCL that translates
this broadcast to on/off decisions. Coordination archi-
tectures can be divided into two broad categories based
on these choices: (i) thermostat set point change [4,1]
and (ii) probabilistic control [23,20,6,9]. These are dis-
cussed in more detail in Section 1.1.

A framework for coordinating TCLs needs two parts.
The coordination scheme is one part. The other part
is reference computation: the framework must provide
the BA with a method to determine a suitable reference
signal for the TCLs. That is, the reference must be such
that the TCLs can collectively track the signal while
each TCL maintains its QoS. Otherwise, even the best
coordination scheme will fail to meet either the BA’s
need, which is reference tracking, or the consumers’ need,
which is maintaining indoor temperature etc., or both.

This work presents a unified framework for coordination
of a collection of TCLs for providing grid support ser-
vices. The framework enables both of the above men-
tioned components, i.e., (i) planning a suitable reference
for a collection of TCLs and (ii) designing a random-
ized policy for coordination of the individual TCLs, so
that both the BA’s requirement and consumers’ QoS are
satisfied. In the proposed framework, the BA computes
randomized control policies for the TCLs and broadcasts
them to all the TCLs. Each TCL receives the same pol-
icy and implements it using locally measurable informa-
tion. The framework is computationally tractable for an
arbitrary number of TCLs. The communication burden
is low: only a few numbers need to be broadcast by the
BA at every sampling instant. Feedback from TCLs to
the BA can be infrequent.

Underlying the framework is: (i) a Markov chain model
that is derived from partial differential equations devel-
oped in the early work of Malhame and Chong [21], (ii)
state augmentation to incorporate cycling constraints,
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and (iii) convexification of the non-convex problem that
appears in the design of the randomized control policy
for the individual TCL. Additionally, we show that the
assumption made about the effect of weather in earlier
work [3] on randomized control, under certain condi-
tions, is in fact true.

1.1 Literature review and contribution

Before reviewing coordination methods, we discuss two
interrelated modeling approaches that underpin many
of the ideas in the TCL control architectures. These
are the Markov chain and partial differential equation
(PDE) models [16,21,26,17,28,24], which stem from the
early work of Malhame and Chong [21]. In [21] a pair
of coupled Fokker-Planck equations are developed to
model a collection of TCLs under thermostat control.
The Fokker-Planck equations are PDEs that describe the
time evolution of a certain probability density functions
(pdf) over the state space of temperature and on/off
mode. The PDEs can be used to model the entire col-
lection or a single TCL: the probability that a single
TCL is “on” is approximately the fraction of TCLs that
are “on”. Discretizing the PDE yields a Markov chain
model, though some works have obtained Markov mod-
els without using the PDEs. Hence, one set of PDEs can
model a collection of TCLs. Thus, methods that base
control design on the PDE or Markov chain framework
scales well with the number of TCLs.

Due to the lack of scalability of direct load control, we
limit our attention to the two broad classes mentioned
earlier: (i) thermostat set point changes, (ii) probabilis-
tic policy. There are many forms of probabilistic policy,
which can be roughly subdivided into two sub categories:
(ii-A) “bin switching” and (ii-B) “randomized policy”.
We discuss these in detail below.

In the thermostat setpoint change coordination architec-
ture, a time-varying thermostat set point is broadcast to
all TCLs, and each TCL makes on/off decisions based on
this new setpoint [4,1]. This approach may ask for an ex-
tremely small change in thermostat setpoint, far below
the resolution of the temperature sensor at each TCL.
Or it may ask for large changes in thermostat setpoint
which will violate occupant comfort.

In a probabilistic policy architecture, the TCL policy -
the mapping from BA’s broadcast command to a TCL’s
on/off decision - is a non-deterministic mapping. Works
in this category typically first model the population of
TCLs under thermostat control, which is a deterministic
policy, as a Markov chain. The continuous temperature
range is divided into a number of discrete bins. A finite
dimensional state vector, a probability mass function, is
then defined. Each entry of the state vector represents
“the fraction of TCLs that are on (or off) and has tem-
perature in a certain range.”

Since the basic Markov model is derived for the ther-
mostat policy, introduction of the BA’s control to ma-
nipulate TCLs’ on/off state is somewhat ad-hoc. In the
the bin switching literature, the control command from
the BA is chosen so as to affect the fraction of TCLs
in the temperature bins directly. In [23], the BA’s con-
trol command is chosen to be another vector, whose ith

entry represents “the fraction of TCLs in bin i to in-
crease/decrease”. A policy is then proposed to trans-
late this command to on/off action at each TCL, which
requires knowledge of the state of the Markov model.
In [20], BA’s control command is chosen to be a scalar.
The probability of a TCL turning on or off is propor-
tional to this scalar. Subsequent works have proposed
various refinements, such as BA’s command affecting
the rate of fractions to switch instead of fraction to
switch [26]. Providing performance guarantees with bin
switching architecture has proved challenging, either on
reference tracking or on QoS maintenance for individual
TCLs.

An alternative to bin switching that still uses probabilis-
tic on/off decision making is randomized policy [3,6]. A
randomized policy is a specification of the conditional
probability of turning on or off given the current state.
On/off decisions are computed with the help of a random
number generator and the policy. In this architecture it
is envisioned that the thermostat policy at the TCL is
replaced with a randomized policy. In [3,6], the policy is
parameterized by a scalar ζ(t). Coordination of the pop-
ulation is then achieved by appropriate design of ζ(t),
which is computed and broadcast by the BA. This ar-
chitecture also uses a Markov model of the evolution of
binned temperature, but assumes a certain factorization:
the next values of the temperature and mode are condi-
tionally independent given the current joint pair of tem-
perature and mode values under the effects of the ran-
domized policy and exogenous disturbances, especially
weather. That is, the transition matrix of the state pro-
cess is a point wise product of two controlled transition
matrices. In an optimal control setting, computation of
the BA’s control command, ζ(t), for reference tracking
is a non-convex optimization problem [11]. The proba-
bility of turning on when temperature exceeds the up-
per limit, or off when temperature dips below the lower
limit, is set to 1 by design. This will ensure the tem-
perature constraint is maintained. Attempts have been
made to maintain the cycling constraint [9]. But a for-
mal design method to incorporate the cycling constraint
has been lacking.

A complete framework for coordination of TCL needs
not only a control algorithm to make decisions at TCLs,
but also a method to compute a feasible reference sig-
nal for the collection’s power demand. Feasible means
that no TCL needs to violate local constraints in or-
der for the collection to track the reference. The topic
is sometimes described as “flexibility capacity” and has
been examined in many recent works, with various defi-
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nitions of flexibility [15,25,13,10]. A unified treatment of
reference design and coordination algorithm design that
would provide a complete framework is lacking.

In short, existing work on TCL coordination has a num-
ber of scattered disadvantages. Direct load control suf-
fers from scalability/privacy issues and thermostat set-
point methods have implementation issues. Bin switch-
ing does not provide guarantees on reference tracking
and often requires solving a challenging state estima-
tion problem. Prior work on randomized control requires
non-convex optimization and is based on an assumed
conditional independence. Finally, there is a lack of uni-
fied treatment of the reference design and policy design
problems.

In this work we develop a unified framework for coordi-
nation of TCLs that addresses the weaknesses of prior
work described above. Our major contributions are as
follows.

(1) We provide a complete framework that allows the
BA to compute (a) an optimal reference signal that
is feasible for the collection and (b) optimal ran-
domized policies for the TCLs. When the TCLs im-
plement these policies, their total power demand
collectively tracks the reference signal and the poli-
cies guarantee that temperature and cycling QoS
requirements at each TCL are satisfied. Optimal
reference means it is closest to what the BA wants
while being feasible for the TCLs. Implementation
of the policy at a TCL is easy; it requires only lo-
cal measurements. The communication burden for
coordination is also low. At each sampling time, a
randomized control policy - parameterized by a few
numbers - is broadcast to all TCLs. Feedback from
TCLs to the BA can be infrequent.

(2) Our framework is based on a careful discretization
of the partial differential equation (PDE) model de-
scribed in [21]. This discretization shows that a cer-
tain “conditional independence” that was assumed
in [3] indeed holds. The conditional independence
separates the effects of the policy at the TCL (con-
trol) and weather (disturbance) on the transition
matrix, and greatly facilitates computation of poli-
cies.

(3) Numerical experiments are provided to illustrate
the efficacy of the framework. Simulations show
that TCLs are able to track the optimal reference
collectively while each TCL is able to maintain both
temperature and cycling constraints. Matlab imple-
mentation is made publicly available at [8].

Figure 1 illustrates the two parts of the proposed frame-
work.

The Markov model obtained by discretizing a PDE was
presented in [12]. For completeness, we include the dis-
cretization in this paper as an Appendix.

rBA
k Policy Design Load 2

Load 1

Load Ntcl

+

θak

θak

θak

Supply
Demand
Mismatch

Intermittent feedback

yφk

Balancing
Authority

Fig. 1. Coordination architecture with the proposed frame-
work.

1.2 Notation

The symbol 1 denotes the vector of all ones, ei denotes
the ith canonical basis vector, and 0 denotes the zero ma-
trix or vector, all of appropriate dimension. For a vector
v, diag(v) denotes the diagonal matrix with entries of v,
i.e., diag(v)1 = v. Further, ⊗ denotes matrix Kronecker
product and IA(·) the indicator function of the set A.

2 Modeling: Individual TCL

A thermostatically controlled load (TCL) is an on/off
device that ensures the temperature of a given environ-
ment remains within a specified region, e.g., an air con-
ditioner. During its operation, the TCL must adhere to
certain operational requirements (QoS constraints). We
consider two: the temperature constraint and the cy-
cling constraint. The temperature constraint is that the
TCL’s temperature must remain within a prespecified
deadband, [λmin, λmax]. This is achieved by switching
the TCL on or off when it is too hot or cold. The cy-
cling constraint is that the TCL can only change from
“on” to “off” or vice versa once every τ (discrete) time
instants, where τ is a prespecified constant. The cycling
constraint is to ensure the mechanical hardware is not
damaged. In both cases, ensuring the two constraints
amounts to appropriately deciding when to switch the
TCL on or off.

2.1 Temperature dynamics of TCLs

The typical model for the TCL’s temperature θ(t) in the
literature is the following ordinary differential equation
(ODE),

d

dt
θ(t) = fm(θ, t), with

fm(θ, t) = − 1

RC
(θ − θa(t))−m(t)

ηP0

C
.

(1)

The rated electrical power consumption is denoted P0

with coefficient of performance (COP) η. The parame-
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tersR and C denote thermal resistance and capacitance,
respectively. The signal θa(t) is the ambient tempera-
ture. The quantity m(t) is the on/off mode, and in the
following we identify m(t) = 1 and m(t) = on, as well as
m(t) = 0 and m(t) = off. We denote arbitrary tempera-
ture values through the variable λ, and the thermostat
setpoint as λset. The values λmax and λmin set the upper
and lower limit for the temperature deadband.

A model for the temperature state that accounts for
modeling errors in (1) and will be crucial in developing
the content in Section 2.2 is the following Itô stochastic
differential equation (SDE),

dθ(t) = fm(θ, t)dt+ σdB(t). (2)

The term B(t) is Brownian motion with parameter σ >
0, and the quantity σdB(t) captures modeling errors
in (1). In either model, the baseline power for the TCL
is the value of P so that f1(λset, t) = 0, solving yields:

Baseline Power: P̄ ind(t) =
θa(t)− λset

ηR
. (3)

For Ntcl TCLs the baseline power P̄ (t) and maximum
power Pagg are,

P̄ (t) , NtclP̄
ind(t), and Pagg , NtclP0. (4)

The total electrical power consumption of the collection,
whether with thermostat policy or some other policy, is
denoted by y(t):

y(t) , P0

Ntcl∑
`=1

m`(t) (5)

where m`(t) is the on/off state of the `-th TCL.

2.1.1 Policy (at the TCL)

The mode state of a TCL evolves according to a policy.
The following policy, which we denote as the thermostat
policy, ensures the temperature constraint:

lim
ε→0

m(t+ ε) =


1, θ(t) ≥ λmax.

0, θ(t) ≤ λmin.

m(t), o.w.

(6)

We add the following set of assumptions about the indi-
vidual TCL discussed so far.

A.1 The thermostat policy does not violate the cycling
constraint.

A.2 For all t ≥ 0 and θ ∈ [λmin, λmax], fon(θ, t) ≤ 0 and
foff(θ, t) ≥ 0.

A.3 The TCL’s cycling and temperature constraint are
both simultaneously feasible.

The sizing/design of the TCL is most likely to ensure
that A.1 holds. With A.1 , we depart from discussing the
cycling constraint until Section 5 since up to that point
the mode state is assumed to evolve according to (6).

Assumption A.2 states that when the TCL is on, the
temperature does not increase and when the TCL is off
the temperature does not decrease. All prior works fo-
cusing on cooling TCLs (e.g., air conditioners) implic-
itly make this assumption. Every result that is to follow
is also valid for heating TCLs (e.g., a water heater or a
heat pump) with a sign reversal.

Like A.2, assumption A.3 is also implicit in any work
that considers both the TCLs temperature and cycling
constraint.

2.2 PDE model

We now describe a PDE model of a TCL’s temperature
with thermostat policy originally derived in [21]. Con-
sider the following marginal pdfs µon, µoff:

µon(λ, t)dλ = P ((λ < θ(t) ≤ λ+ dλ), m(t) = on) ,
(7)

µoff(λ, t)dλ = P ((λ < θ(t) ≤ λ+ dλ), m(t) = off) ,
(8)

where P(·) denotes probability, θ(t) evolves according
to (2) and for now m(t) evolves according to (6). It was
shown in [21] that the densities µon and µoff satisfy the
Fokker-Planck equations,

∂

∂t
µon(λ, t) =

σ2

2
∇2
λµon(λ, t)−∇λ

(
fon(λ, t)µon(λ, t)

)
(9)

∂

∂t
µoff(λ, t) =

σ2

2
∇2
λµoff(λ, t)−∇λ

(
foff(λ, t)µoff(λ, t)

)
(10)

that are coupled through their boundary conditions [21].
The boundary conditions are listed in Appendix B.2.

Remark 1. The coupled equations (9)-(10) can be used
to model either: (i) a single TCL or (ii) a collection of
TCLs. For (i) the quantities (7)-(8) represent the proba-
bility that a single TCLs temperature and on/off mode
reside in the respective region. For (ii) the quantities (7)-
(8) represent the fraction of TCLs whose temperature
and on/off mode reside in the respective region. How the
equations (9)-(10) (specifically their discretized form)
can be used to model an ensemble is discussed further
in Section 5.2.
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λ1
off λ2

off λmoff λm+1
off λm+2

off λm+3
off

λ2
on λq−3

on λq−2
on λq−1

on

λN−1
off

λqon λq+1
on λNon

λNoff

λ1
on

On

Offλlow λmax

λmin λhigh

ανon(λ1, t) ανoff(λN , t)

Temperature

Fig. 2. The control volumes (CVs). The colors correspond to the colors found in Figure 3. The values in each CV represent
the nodal temperature for the CV. The arrows describe the sign of the convection of the TCL through the CVs. The values
are such that N = m+ q. The terms involving α model rate of transfer between the corresponding CVs due to the thermostat

policy, where α = γ + σ2

(∆λ)2
. The parameter γ > 0 is a design parameter; see Remark 4.

3 Markov model from PDE Discretization

We use the finite volume method (FVM) to discretize
the PDEs (9) and (10). The discretization of (9) and (10)
yields a finite dimensional probabilistic model for a sin-
gle TCL (equation (16)). We discretize the PDEs (9)
and (10) in a way that a control input for the BA can
then be identified. More on this point will be discussed
in Section 4, however the discretization here will play a
role.

3.1 Spatial discretization

The FVM bins the continuous temperature into N con-
trol volumes (CV). The layout of the CVs is shown in
Figure 2. TheN CVs for both the on and off mode state,
as shown in Figure 2, are defined through the nodal tem-
perature values (λon and λoff) and their boundaries (λ+

on
and λ+

off) and (λ−on and λ−off):

λon = (λion)Ni=1, λ+
on = λon +

∆λ

2
, λ−on = λon −

∆λ

2
,

λoff = (λioff)Ni=1, λ+
off = λoff +

∆λ

2
, λ−off = λoff −

∆λ

2
,

where ∆λ is the CV width. All intermediate values of
λon and λoff are separated from each other by ∆λ. The
values in λ+

on (respectively, λ+
off) are the right edges of

the CVs and the values λ−on (respectively, λ−off) are the

left edges of the CVs, for example, λ1,−
off = λlow. The

quantities λmin and λmax specify the thermostat dead-
band, and are different from the quantities λhigh and
λlow (see Figure 2).

The steps taken to obtain the spatially discretized PDEs
is detailed in Appendix B. To give an overview, the
discretization is done in two parts: (i) for the internal
CV’s (Appendix B.1) and (ii) for the boundary CV’s

min high

nz = 200

low

min

max

OnOff

Fig. 3. Sparsity pattern of the matrix A(t) for N = 51 CVs
for both the on and off state. The colors correspond to the
colors found in Figure 2.

(Appendix B.2). We describe here the end result of the
derivation in Appendix B. First, define the following
quantities

νoff(λi, t) , µoff(λi, t)∆λ, and (11)

νon(λi, t) , µon(λi, t)∆λ, (12)

then construct the row vector, ν(t) = [νoff(t), νon(t)].
with

νoff(t) , [νoff(λ1, t), . . . , νoff(λN , t)], and (13)

νon(t) , [νon(λ1, t), . . . , νon(λN , t)]. (14)

By combining all the ordinary differential equations
(ODEs) for the νoff(λi, t), νon(λi, t) for all the i’s, we
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obtain the linear time varying system

d

dt
ν(t) = ν(t)A(t). (15)

The sparsity pattern of A(t) is shown in Figure 3. The
system (15) is the spatially discretized version of the
PDEs (9)-(10). The matrix A(t) also satisfies the prop-
erties of a transition rate matrix, described in the fol-
lowing lemma.

Lemma 1. For all t, the matrix A(t) is a transition rate
matrix. That is, for all t

(i): A(t)1 = 0.

(ii): for all i, Ai,i(t) ≤ 0, and for all j 6= i Ai,j(t) ≥ 0.

Proof. See Appendix A.1.

Remark 2. The choice of the FVM and how we dis-
cretize the convection and diffusion terms appearing
in (9)-(10) is important for A(t) to satisfy the conditions
in Lemma 1. This issue is well known in the CFD liter-
ature, and also recognized in the related work [2]. If a
finite difference method had been used with central dif-
ferences for both diffusion and convection terms, the re-
sulting A(t) would require restrictive conditions on both
σ2 and ∆λ to satisfy the properties in Lemma 1 [27].

3.2 Temporal discretization

To temporally integrate the dynamics (15) we use a first
order Euler approximation with time step ∆t > 0. Mak-
ing the identifications νk , ν(tk) and Ak , A(tk) we
have

νk+1 = νkPk, with Pk = I + ∆tAk. (16)

In the continuous time setting elements of the vector ν(t)
were referred to as, for example, νon(λi, t). The coun-
terpart to this, in the discrete time setting, is referring
to elements of νk as, for example, νon[λi, k]. We further
have the following.

Lemma 2. The matrix Pk is a Markov transition prob-
ability matrix if

∀ i, and ∀ k, 0 < ∆t ≤ |[Ak]i,i|−1
.

where [Ak]i,i is the ith diagonal element of the matrix
Ak.

Proof. From Lemma 1 we have that Pk1 = I1 +
∆tAk1 = 1 since Ak1 = 0. Also from Lemma 1, every
element of Ak is non-negative, save for the diagonal ele-
ments. Under the hypothesis on Ak, then every diagonal
element of I + ∆tAk will be in [0, 1].

Remark 3. The bound on the time step ∆t given in
Lemma 2 is O(∆λ), which follows from the PDE dis-

cretization; see Appendix B . Since ∆λ = λhigh−λmin

N , as
the temperature resolution ∆λ becomes finer the time
resolution ∆t must also become finer at the same rate.
See also Remark 4 for a related comment.

4 Discrete space model of a TCL: structure and
grid friendly policies

Recall that the dynamics (16) derived in the previous
section was for the thermostat policy. We now delve into
the structure of these dynamics so to introduce a BA
control input. We first formalize a discrete state space for
the dynamics (16). We will then show that the transition
matrix in (16) can be written as Pk = ΦGk where Φ
depends on the thermostat policy and Gk on the TCL
temperature dynamics and weather. The isolation of the
policy then indicates how a BA could introduce grid
friendly policies in place of the thermostat policy Φ.

4.1 Discrete state space

When the conditions of Lemma 2 are met Pk is a transi-
tion matrix and hence each νk is a marginal pmf if ν0 is
a pmf. The structure of this marginal is given from (7)
for the on state (a similar interpretation holds for the off
state) as,

νon[λi, k] = P (θ(tk) ∈ CV(i), m(tk) = on) , (17)

where θ(tk) is the temperature. Now denote, θk , θ(tk),

mk , m(tk), and

Ik ,
N∑
i=1

iICV(i)(θk,mk). (18)

The quantity Ik indicates which CV the TCLs tempera-
ture resides in at time k. It also is a function of mk since
the CV index for the on mode is different from the index
for the off mode. We then define the following discrete
state space:

Z , {m ∈ {on, off}, I ∈ {1, . . . , N}}, (19)

with cardinality |Z| = 2N . Using the newly defined
quantity Ik we rewrite the marginals νon[λi, k] and
νoff[λi, k] as functions on Z,

νon[λi, k] = P (Ik = i, mk = on) , and (20)

νoff[λi, k] = P (Ik = i, mk = off) . (21)

From the above, the matrix Pk (with the conditions of
Lemma 2 satisfied) is the transition matrix for the joint

7



process (Ik,mk) on the state space Z. The dynamic equa-
tion νk+1 = νkPk is then a probabilistic model for a TCL
with state space Z and operating under the thermostat
policy.

4.2 Conditional independence in Pk

In the following, we refer to the values of Ik with i and j
and the values of mk with u and v. We introduce the fol-
lowing notation to refer to the elements of the transition
matrix Pk:

Pk((i, u), (j, v)) , (22)

P
(
Ik+1 = j, mk+1 = v

∣∣∣ Ik = i, mk = u, θak = wk

)
.

Recall, the matrix Pk is derived for the thermostat pol-
icy. We will now show that the matrix Pk can be written
as the product of two matrices. One depends only on the
thermostat policy (control) and the other depends only
on weather and TCL temperature dynamics. That is, we
show that each entry of Pk factors as

Pk((i, u), (j, v)) = φTS
u (v | i)Puk (i, j) (23)

where, for each given values of θak , Puk (i, j) is a controlled
transition matrix on Z:

Puk (i, j) , P (Ik+1 = j | Ik = i, mk = u, θak = wk)
(24)

and φTS
u (v | i) is an instance of a randomized policy

φu(v | i) on Z:

φu(v | i) , P (mk+1 = v | Ik = i, mk = u) . (25)

We show the factorization (23) through construction
next.

4.2.1 Constructing the factorization

The quantity φTS
u (v | i) in (25) is the thermostat policy

on Z, which is formally defined as follows.

Definition 1. The thermostat policy on Z is spec-
ified by the two vectors, φTS

off, φ
TS
on ∈ RN , where

φTS
off , φTS

off(on | ·) = eN , φTS
on , φTS

on(off | ·) = e1, and

φTS
off(off | ·) , 1− φTS

off, φTS
on(on | ·) , 1− φTS

on .

The quantity Puk (i, j) in (24) represents the policy-free
(open loop) evolution of the TCL on Z. That is, it de-
scribes how the TCLs temperature evolves under a fixed
mode. We define matrices with entries Puk (i, j) next.

Definition 2. Let P off
k , Pon

k ∈ RN×N have (i, j) entries
given by,

P off
k (i, j) = Pwk

((i, off), (j, off)), i 6= N and j 6= N,

P on
k (i, j) = Pwk

((i, on), (j, on)), i 6= 1 and j 6= 1,

with P off
k (N,N) = 1 and P on

k (1, 1) = 1.

The quantities defined in Definition 1 and 2 correspond
to entries of Pk. To construct the promised factorization,
from these definitions, the idea is to construct its four
sub-matrices that correspond to all possible combina-
tions of u, v ∈ {on, off} (see Figure 3). For example, the
off− off quadrant of Pk is given by the matrix product(

I − diag(φTS
off)
)
P off
k .

However, since the temperature associated with the ith

CV for the on mode is not the same temperature asso-
ciated with the ith CV for the off state (see Figure 2) it
is not true that the off − on quadrant of Pk is given as

diag(φTS
off)P off

k . The entries of the matrix P off
k need to

be re-arranged so to correctly account for the difference
in CV index between the on/off mode. We define such
correctly re-arranged matrices next.

Definition 3. Let Ioff = {m, . . . , N}, Ion = {1, . . . , q},
m− = m− 1, and Soff

k , Son
k ∈ RN×N with (i, j) entries

Soff
k (i, j −m−) =

{
P off
k (i, j) i, j ∈ Ioff

0 otherwise.
(26)

Son
k (i, j +m−) =

{
P on
k (i, j) i, j ∈ Ion

0 otherwise.
(27)

The above definition is based on the construction that
N = q + m. The quantities in Definition 3 let us con-

struct, e.g., the off−on quadrant of Pk as diag(φTS
off)Soff

k .

The next result shows that Pk = ΦTSGk under certain
conditions and for appropriate choices of the matrices

ΦTS and Gk.

Lemma 3. Let the time discretization period ∆t and
the parameter α that appears as a design choice in dis-
cretizing the PDEs to ODEs be chosen to satisfy α =
(∆t)−1. Let ΦTS

off = diag(ΦTS
off) and ΦTS

on = diag(ΦTS
on),

and

ΦTS ,

[
I − ΦTS

off ΦTS
off 0 0

0 0 ΦTS
on I − ΦTS

on

]
and (28)

Gk ,

[
0 Soff

k 0 P on
k

P off
k 0 Son

k 0

]T
, (29)

8



then

Pk = ΦTSGk. (30)

Proof. See Appendix A.2.

Remark 4. The condition α = 1/∆t can be satisfied
as long as time and temperature discretization intervals
are chosen to satisfy ∆t < (∆λ)2/σ2. To understand
how, recall that in the discretizing the PDE to the cou-
pled ODEs, a design parameter γ > 0 appears: some
rate of density is transferred out of the control volume
λNoff and into the CV λqon (as depicted in Figure 2) due
to thermostatic control. The rate of the density transfer
is then given as −γνoff(λN , t), where γ > 0 is a model-
ing choice and a constant of appropriate units that de-
scribes the discharge rate. We then define α , D + γ

where D = σ2

(∆λ)2 . Recall that σ2 is the variance in the

Fokker-Planck equation (9)-(10) and ∆λ is the tempera-
ture discretization interval. Thus, as long as 1/∆t > D,
a positive γ can be chosen while meeting the condition
α = 1/∆t. The condition 1/∆t > D is equivalent to
∆t < (∆λ)2/σ2.

Remark 5. The conditional independence factoriza-
tion (30) has been a useful assumption in the design
of algorithms in [3]. In the present it is a byproduct of
our spatial and temporal discretization of the PDEs (9)-
(10). There are other works [2,1,25] that develop Markov
models for TCLs through discretization of PDEs. How-
ever, to our knowledge, our work is the first to uncover
this factorization.

Lemma 3 informs us how to define the dynamics of the
marginals (20) under a different policy than the thermo-
stat policy, which is described next.

4.3 BA control command = policy

In light of the previous section, an arbitrary randomized
policy can replace the thermostat policy to control the

state process on Z. That is equivalent to replacing ΦTS

in (30) with a new matrix Φ that corresponds to a policy
designed for grid support. From the viewpoint of the
BA this randomized policy is the control input that it
must design and broadcast to a TCL. The TCL now
implements this policy to make on/off decisions instead
of using the thermostat policy. As we shall soon see, if
the BA appropriately designs and sends the randomized
policy to multiple TCLs it can achieve coordination of
the TCLs for grid support.

To distinguish from thermostat policy φTS
off and φTS

on in
the prior section that only maintains temperature, we
denote the newly introduced policies for providing grid

support with the superscript ‘GS’. We require the poli-
cies, φGS

on and φGS
off , to have the following structure

φGS
off(on | j) =


κon
j , (m+ 1) ≤ j ≤ (N − 1).

1, j = N.

0, o.w.

(31)

φGS
on (off | j) =


κoff
j , 2 ≤ j ≤ (q − 1).

1, j = 1.

0, o.w.

(32)

with φGS
off(off | ·) = 1 − φGS

off(on | ·) and φGS
on (on | ·) =

1 − φGS
on (off | ·) and κon

j , κoff
j ∈ [0, 1] for all j. The poli-

cies could also be time varying, for example: κoff
j [k] and

κon
j [k]. The dependence of the policies on time is de-

noted as φGS
off [k] and φGS

on [k]. Designing the grid support
control policies is then equivalent to choosing the values

of κon
j [k] and κoff

j [k] for all j and k.

We have required φGS
off(on | j) = 0 for 1 ≤ j ≤ m since

the temperatures corresponding to these indices are be-
low the permitted deadband temperature, λmin. Hence,
turning on at these temperature does not make physical
sense. The arguments for the zero elements in φGS

on are
symmetric.

Remark 6. From the individual TCL’s perspective,
implementing grid support randomized policies of the
form (31)-(32) is straightforward: (i) the TCL measures
its current temperature and on/off status, (ii) the TCL
“bins” this temperature value according to (18) and (iii)
the TCL flips a coin to decide its next on/off state ac-
cording to the probabilities given in (31)-(32). Note that
the thermostat policy is a special case of the grid sup-
port control policy, and both policies enforce the tem-
perature constraint.

5 Proposed framework

We are now in a position to present our unified frame-
work for coordination of TCLs. We first expand the
state of the model (16) so to incorporate cycling, follow-
ing [19,26]. We then shift the viewpoint from a single
TCL to that of a collection of TCLs (recall Remark 1)
to develop our control oriented aggregate model. Using
this model we develop a method for designing both ref-
erence and policy through convex optimization.

5.1 Individual TCL model with cycling

We now augment the model for a TCL’s temperature
evolution with cycling dynamics. Recall the cycling con-
straint: as soon as a TCL switches its mode, the TCL
becomes stuck in that mode for τ time instances. This

9



constraint can be represented as the evolution of a state,
specifically, a counter variable. First defining the binary
variable sk as sk = 1 if the TCL is stuck in the current
mode at time k and 0 if it is not stuck. The counter vari-
able is defined as follows

Lk+1 ,

{
Lk + 1, sk = 1.

0, sk = 0.
(33)

This variable denotes the time spent in the “stuck” mode
(sk = 1). A TCL has flexibility to help the grid only
when Lk = 0, which means it is not stuck in either the
on or off mode. If Lk > 0, it is stuck in either the on or
off mode, and switching the mode to help the grid will
violate the cycling constraint.

Recall, the discrete state space Z for a TCL included
binned temperature and on/off mode. The space Z, the
policies φGS

on and φGS
off , the marginal pmf νk, and the tran-

sition matrix Pk (and consequently its factors Φ and
Gk) now all need to be expanded to be defined over a
state space consisting of (Ik,mk, Lk). This expansion is
described next.

We denote this newly expanded state space as the set of
values: X ,{
m ∈ {on, off}, I ∈ {1, . . . , N}, L ∈ {0, . . . , τ}

}
, (34)

with cardinality |X| = 2N(τ + 1). The policies on the
expanded state space are:

φE
off = I{0}(L)φGS

off + (1− I{0}(L))φTS
off, and (35)

φE
on = I{0}(L)φGS

on + (1− I{0}(L))φTS
on .

To ensure that expanded policy (35) will enforce the cy-
cling constraint, we impose the following restriction at
the design stage: a TCL with Lk > 0 will only imple-
ment the thermostat policy, and a TCL with Lk = 0 will
make on/off decisions based on the grid support policy.
The construction in this way ensures a TCL will not vi-
olate its cycling and temperature constraints under the
conditions in Assumption A.2 and A.3.

Each entry of the expanded policy is denoted as
φE

off(u | j, l) and φE
on(u | j, l). The expanded marginals

are νoff[λj , l, k] and νon[λj , l, k], and νoff,l (resp., νon,l) is

shorthand for νoff[·, l, k] (resp., νon[·, l, k]). In vectorized
form, the expanded marginal is νE = [νE

off, ν
E
on] where

νE
off = [νoff,0, . . . , νoff,τ ] and νE

on = [νon,0, . . . , νon,τ ].
Define

GE
k ,

[
0 Dτ ⊗ Son

k 0 Cτ ⊗ P off
k

Cτ ⊗ P on
k 0 Dτ ⊗ Soff

k 0

]T
,

(36)

Off On
l = 0
l = 1

.

.

.

l = 

Fig. 4. The sparsity pattern of the expanded transition ma-
trix (the dots represent non-zero entries in the matrix) with
τ = 5. Each shaded block is over the entire range of temper-
ature values.

where Dτ , 1T ⊗ e2 ∈ Rτ+1×τ+1 and

Cτ ,


1 0 0Tτ−1

0τ−1 0τ−1 Iτ−1

1 0 0Tτ−1

 ∈ R(τ+1)×(τ+1). (37)

We define the matrix ΦE
k as having the same structure

as (28), but with the expanded policies φE
off and φE

on, i.e.,

ΦE
k ,

[
I − ΦE

off[k] ΦE
off[k] 0 0

0 0 ΦE
on[k] I − ΦE

on[k]

]
, (38)

where ΦE
off[k] , diag(φE

off[k]) and ΦE
on[k] , diag(φE

on[k]).
The model of a TCL with cycling dynamics and grid
support policy becomes

νE
k+1 = νE

k ΦE
kG

E
k . (39)

The structure of the transition matrix ΦE
kG

E
k is shown

in Figure 4. For comparison, the transition matrix with
policy φGS and without the cycle counter variable would
simply be the four red shaded blocks appearing in their
respective quadrant. In the expanded system, an on to
off mode switch forces probability mass from the red
shaded region (l = 0 and m = on) to the green shaded
region (l = 1 and m = off). Mass must then transition
through the chain of τ green blocks until it reaches the
red block again, so to respect the cycling constraint.
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5.2 Aggregate model of a collection of TCLs

We now transition from the viewpoint of a single TCL
to that of a collection of Ntcl TCLs: ` = 1, . . . ,Ntcl. For
example, m`

k and I`k are the mode and binned temper-
ature of the `th TCL at time k. Recall Remark 1, the
model (39) also describes an entire collection of TCLs.
For a single TCL, we view the state νE

k as a marginal
but for a collection of TCLs we expect the marginal pmf
νE
k to approximate the histogram

hk[u, i, l] ,
1

Ntcl

Ntcl∑
`=1

(
I{i}(I

`
k)I{u}(m

`
k)I{l}(L

`
k)
)
, (40)

for each state (u, i, l) ∈ X as Ntcl → ∞. In the same
regard, we define

γE
k , νE

k C
E, where CE , [0T , Pagg1T ]T , (41)

where Pagg is the maximum possible power of the collec-

tion, defined in (4). We expect γE
k to approximate the to-

tal power consumption yk of the collection of Ntcl TCLs:

yk , P

Ntcl∑
`=1

m`
k. (42)

which is the discrete-time equivalent of y(t) defined
in (5). That is, we expect γE

k ≈ yk for large Ntcl, based
on a law of large numbers argument [5]. The control
oriented aggregate model of a TCL collection is the
dynamics (39) together with the output (41):

νE
k+1 = νE

k ΦE
kG

E
k . and γE

k = νE
k C

E. (43)

5.2.1 Evaluating the aggregate model

Before proceeding to policy design with our developed
model (43), we first show that it is effective in modeling a
population of TCLs. We do this by comparing the state
of the model to (40) and (42) obtained from a simulation
of Ntcl= 50,000 air conditioning TCLs.

The comparison results are shown in Figure 5 and Fig-
ure 6. The mode state of each TCL evolves according
to a control policy, where the φGS

off and φGS
on portion are

shown in Figure 6 (bottom). The policy is arbitrary, de-
signed merely to be an example of a non-thermostat pol-
icy. This policy satisfies the structure in (31) and (32) so
that both temperature and cycling constraints are sat-
isfied at each TCL. The temperature evolution evolves
according to (2). We see the state νE

k matches the his-
togram hk of the collection for the devices that are not
stuck (Figure 5 (top)) and for the devices that are stuck
(Figure 5 (bottom)). Additionally, the output of the ag-
gregate model, γE

k , matches it’s empirical counterpart yk
(shown in Figure 6 (top)).
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Fig. 5. (Top): Histogram of the collection for the devices that
are on and not stuck. (Bottom): Histogram of the collection
for the devices that are on and are stuck.
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Fig. 6. (Top): Comparison of the output of the expanded ag-
gregate model γE

k and the ensembles power consumption yk.
(Bottom): The policies φGS

off and φGS
on used for the numerical

experiment in Section 5.2.

11



5.3 Grid support Policy design

The goal of coordinating TCLs is to help the BA balance
supply and demand of electricity in the grid. We denote
rBA
k as the desired demand from all flexible loads and

batteries that will reduce the imbalance to 0. It is un-
reasonable to expect any collection of TCLs to meet the
entire desired demand rBA

k while maintaining their QoS.
Only a portion of rBA

k can be supplied by TCLs, and we
denote this portion by rk. Determining rk becomes an
optimal control problem due to the time coupling pro-
duced by the TCL dynamics. We consider a planning
horizon of Tplan. To simultaneously design grid support
control policies φGS

off [k] and φGS
on [k] and determine a suit-

able reference signal rk over Tplan the BA solves the fol-
lowing optimization problem,

η∗ = min
νE
k
,ΦE

k

η(ν̂) =
∑
k∈T

(
rBA
k − γE

k

)2

(44)

s.t. νE
k+1 = νE

k ΦE
kG

E
k , νE

T(0) = ν̂, (45)

γE
k = νE

k C
E, νE

k ∈ [0, 1], ΦE
k ∈ Φ. (46)

The solution at time k is denoted rk , γE,∗
k , φGS,∗

off [k],

and φGS,∗
on [k]. We have T , {T(0), . . . ,T(0) + Tplan − 1}

is the index set of times, T(0) denotes the initial time
index, ν̂ is the initial condition, and νE

k ∈ [0, 1] holds
elementwise. The set Φ collects all of the constraints on
the policy. This includes the equality constraints set by
the structural requirements in (31)-(32) and (35) as well
as the structural requirement in (38). These constraints
require certain elements of the policy to be either zero
or one. The policy should also be a valid conditional pmf
and its elements in [0, 1]. Hence, the set Φ is the following
convex set

Φ ,
{

Φ ∈ R|X|×2|X|
[0,1]

∣∣ Φ satisfies (38), 1 = Φ1,

φGS
off satisfies (31),

φGS
on satisfies (32), and

φE
off and φE

on satisfy (35)
}
. (47)

Where, e.g., R|X|×|X|[0,1] is the set of |X| × |X| matrices with

elements in [0, 1].

5.3.0.1 QoS + Solution of (44)

(1) The equality constraints in Φ are present to ensure
the individual TCL’s QoS constraints: the struc-
ture (35) ensures the cycling constraint and the
structure (31)-(32) ensures the temperature con-
straint. Recall that this structure guarantees QoS
by requiring the policy to place zero probability on
state transitions that would violate QoS.

(2) A solution to (44) yields, for k ∈ T, two things:

(i) the optimal randomized policies φGS,∗
off [k] and

φGS,∗
on [k] and (ii) an optimal reference for the power

demand of the TCL collection rk(= γE,∗
k ). The ref-

erence is optimal in the following sense: among all
power demand signals the collection can track with-
out requiring any TCL to violate its local QoS con-
straints in so doing, it is the closest to the BA’s
desired demand rBA in 2-norm. The reference is
also the predicted power consumption of the TCLs

whilst using the policies φGS,∗
off [k] and φGS,∗

on [k].

Remark 7. Since the reference rk(= γE,∗
k ) from (44)

is the best the TCLs can do to help the BA without
any TCL having to violate its QoS, Problem (44) there-
fore also provides an answer to the “aggregate flexibil-
ity” question: how much can a collection of TCLs vary
their demand while maintaining their local QoS con-
straints. This question has been investigated by many
works [25,13,10,15].

5.3.1 Convex control synthesis

The problem (44) is non-convex due to the product νE
k ΦE

k
in the constraint. A well known convexification remedy
for (44) is to consider optimizing over the marginal and
joint distribution instead of the marginal and the pol-
icy [22,2]. Using our identified structure from Section 4.2
we construct the following joint distribution (written in
matrix form):

Jk = diag(νE
k )ΦE

k ∈ R|X|×2|X|. (48)

By construction, we have that νE
k+1 = 1TJkGE

k and

(νE
k )T = Jk1 since 1Tdiag(νE

k ) = νE
k and 1 = ΦE

k1. It is
straightforward to convert the constraint set ΦE

k ∈ Φ to
the new decision variables. For the equality constraints
in Φ if we have that φE

off(u | j, l) = κ, then in the deci-

sion variables Jk and νE
k we will have a linear constraint

of the form

P (mk+1 = u, Ik = j, Lk = l, mk = off)

= κνoff[λj , l, k], (49)

where the LHS of the above is some element in the ma-
trix Jk. In addition to the above equality constraints,
requiring both Jk and νE

k to be within [0, 1] and the
constraint (νE

k )T = Jk1 will allow one to reconstruct
a policy ΦE

k ∈ Φ from Jk and νE
k (described shortly in

Lemma 4). We denote the transcription of ΦE
k ∈ Φ to

the new variables as (Jk, ν
E
k ) ∈ Φ̄. Optimizing over Jk
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and νE
k yields the convex program:

η∗ = min
νE
k
,Jk

η(ν̂) =
∑
k∈T

(
rBA
k − γE

k

)2

s.t. νE
k+1 = 1TJkG

E
k , νE

T(0) = ν̂, γE
k = νE

k C
E,

νE
k , Jk ∈ [0, 1], (νE

k )T = Jk1, (Jk, ν
E
k ) ∈ Φ̄.

(50)

Once the convex problem is solved, the grid support con-
trol policies need to be recovered from it by using the
relation (48). If the matrix diag(νE

k ) is invertible, then
the policy can be obtained trivially from inversion of
diag(νE

k ). If diag(νE
k ) is not invertible, then slight care is

required when reconstructing a policy from the solution
of (50). We describe this in the following Lemma.

Lemma 4. Suppose for all k ∈ T that νE
k and Jk sat-

isfy the constraints in problem (50). Then, there exists
matrices Hk = Hk(νE

k ) and Wk = Wk(νE
k ) so that for all

k ∈ T the quantity ΦE
k = HkJk + Wk satisfies (48) and

ΦE
k ∈ Φ.

Proof. See Appendix A.3.

Exact construction of Hk and Wk is given in the proof of
Lemma 4. Hence, the proof of Lemma 4 provides an al-
gorithm for computing grid support control policies that
are feasible for the problem (44) from the solutions of the
convex problem (50). Further the two problems have a
certain equivalence described here in the following The-
orem.

Theorem 1. Denote η∗CVX the optimal cost for (50) and
η∗NCVX the optimal cost for (44) we have that η∗CVX =
η∗NCVX.

Proof. See Appendix A.4.

This result, for a similar problem setup, is also reported
in [2]. While we have no guarantee on the difference
of the argument minimizers (and hence the policies ob-
tained from both), Theorem (1) says that the policies
will produce the same tracking performance. Further,
from Lemma 4, the policies produced from either prob-
lem are guaranteed to ensure TCL QoS.

5.3.2 Computational considerations

The dimension of the program (50) can be quite large,
so that even though it is convex obtaining a solution
requires care. We discuss now some practical considera-
tions that we found necessary to consider when solving
the problem (50).

Due to the structure of ΦE
k , we do not need to declare

every element in the matrix Jk as a decision variable
since many of these elements will be zero. For instance,
we see that diag(νE

k )ΦE
k is a block matrix, where fur-

ther each matrix block is diagonal. We express this as:
diag(νE

k )ΦE
k =[

Boff,off[k] Boff,on[k] 0 0

0 0 Bon,off[k] Bon,on[k]

]
=
O

sparse(Jk), (51)

where, e.g., Boff,off[k] = diag(νE
off[k])(I − ΦE

off[k]). The

other diagonal matrices appearing in (51) can be inferred
by carrying out the matrix multiplication.

If Jk was declared directly as a decision variable the
problem (50) would have (8N2 + 2N(τ + 1))Tplan pri-
mal variables, whereas the problem with sparse(Jk) as
a decision variable only has 2NTplan(τ + 3) primal vari-
ables. As an example, consider N = 12, Tplan = 360,
and τ = 5, which are values used in numerical results
reported later. The problem (50) without the structure
exploited has ≈ 0.5 million decision variables, but only
≈ 75, 000 when the structure is exploited.

We also have found it helpful to include constraints of
the form,

φGS
off(on | j − 1)νoff[λj−1, 0, k] ≤ φGS

off(on | j)νoff[λj , 0, k],
(52)

φGS
on (off | j + 1)νon[λj+1, 0, k] ≤ φGS

on (off | j)νon[λj , 0, k],
(53)

so to suggest that the switching on (resp., switching off)
probability increases as temperature increases (resp., de-
creases). Adding the constraints (52)-(53) to the prob-
lem (50) is straightforward as both the LHS and RHS of
the inequalities are elements in the matrix Jk.

Matlab implementation of (50) and the algorithm to
extract the policies from Jk (described in the proof of
Lemma 4) is available at [8].

5.3.3 Communication burden

Once solved, the policies obtained from (50) need to be
sent to each individual TCL. Many of the policy state
values are constrained to either zero or one, which could
be pre-programmed into each TCL. At each time index,
q − 2 (for the on to off policy) plus N −m − 1 (for the
off to on policy) numbers are not constrained and need
to be sent from the BA to each TCL. Recall that the
numbers m and q are temperature bin indices (see Fig-
ure 2) and N is the number of temperature bins. For
illustrative purposes, consider the values used in numer-
ical experiments reported in the sequel: N = 12 with
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q = 10 and m = 2 and a time discretization ∆t = 1
minute. Since N = q + m, then the BA has to broad-
cast 2(q−1) = 18 numbers every 1 minute to the TCLs.
Each TCL receives the same 18 numbers.

Communication from TCLs to the BA - about their tem-
perature and on/off state - is needed at the beginning of
every planning period so that the BA can determine the
initial condition ν̂ in (50). The frequency of this feedback
is a design choice. In our numerical simulations reported
later, a planning horizon of 6 hours was used, and this
feedback was necessary only once in six hours.More fre-
quent loop closure may be needed for higher robustness
to uncertainty in weather prediction etc., a topic outside
the scope of this paper.

6 Numerical experiments

Simulation involving coordination of Ntcl = 20, 000
TCLs through our proposed framework is presented
here. Recall the two parts of the coordination architec-
ture shown in Figure 1: (i) planning and (ii) real time
control. Planning refers to the solution of the prob-
lem (50) at the BA to compute the following two things
for the planning period T:

(1) rk: the reference power consumption of the TCL
collection, given the problem data rBA

k .

(2) φGS,∗
off [k] and φGS,∗

on [k]: grid support control policies
for each TCL.

This computation is performed at T(0). Real time con-
trol is then the implementation of the grid support poli-
cies by each TCL to make on/off decisions in real time.

We imagine the BA broadcasts the policies φGS,∗
off [k] and

φGS,∗
on [k] at each k, though it can also broadcast all the

policies, for all k ∈ T, at T(0) and not broadcast again
until the beginning of the next planning horizon.

The goal of the numerical simulations of real time control
is to show the following.

(1) When each TCL uses the policies φGS,∗
off [k] and

φGS,∗
on [k] to decide on/off actuation, the collection’s

power demand indeed tracks rk.
(2) Every TCL’s QoS constraints - both temperature

and cycling - are satisfied at all times.

Temperature of each TCL is computed in these simula-
tions with the ODE model (1).

6.1 Planning

The demand needed for demand-supply imbalance at the
BA, rBA

k , is chosen arbitrarily, and shown in Figure 7

Table 1
Simulation Parameters

Par. Unit value Par. Unit value

Ntcl N/A 2×104 η kW-e
kW-th.

2.5

C kWh/◦C 1 P0 kW 5.5

λmin ◦C 20 λmax ◦C 22

(∆t)τ Mins. 5 Pagg MW 110

R ◦C/kW 2 ∆t Mins. 1

q N/A 10 m N/A 2

N N/A 12 Tplan N/A 360

(top). It is infeasible for the collection: sometimes nega-
tive and sometimes far higher than the maximum power
demand of the collection. This is done to simulate a re-
alistic scenario in which many sources of demand and
generation, not just TCLs, are managed by the BA.

The baseline demand trajectory is defined by the equa-
tion (4), which is approximately the power consumption
for this collection of air conditioners under thermostat
control. The ambient air temperature is time varying and
is obtained from wunderground.com for a typical sum-
mer day in Gainesville, Florida, USA. The other param-
eters that affect the Markov model are shown in Table 1.

Planning computations are done with Matlab and
CVX [14] using a desktop Linux machine, with N = 12,
and for a six hour planning horizon with 1 minute
discretization (Tplan = 360). The problem (50) takes
about a minute to solve. The quantity rBA

k , the baseline
power P̄k, and the reference signal rk, obtained from
solving (50), are shown in Figure 7 (top). The optimal
reference for the collection, rk, is as close to rBA

k as the
dynamics of TCLs allows without violating their QoS
constraints; recall Remark 7. Figure 7 (bottom) shows
the two grid support control polices for one time instant.

6.2 Real time control

The power consumption of the collection making on/off
decisions according to the obtained policies is shown in
Figure 8 (top). The figure shows that the TCLs are able
to collectively track the reference signal rk. We empha-
size that the computational effort at each TCL is negligi-
ble. Recall Remark 6: once a TCL receives a grid support
policy (≈ 18 floating point numbers, see Section 5.3.3) it
only has to measure its current state (temperature and
on/off mode) and generate a uniformly distributed ran-
dom number in [0, 1] to implement the policy.

Verification of the grid support policies in ensuring QoS
is shown in Figure 8. The bottom plots shows a his-
togram of the times between switches for 300 randomly
chosen TCLs. The middle plot shows a histogram of

14
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Fig. 7. (Top): The quantity rk obtained from solving (50),
the dashed horizontal lines represent all of the TCLs on (top
line) and off (bottom line). (Bottom): Grid support control
policies, obtained from solving (50), at one time instance.

temperature from 200 randomly chosen TCLs’ tempera-
ture trajectories. The histograms show that the policies
designed with (50) indeed satisfy the QoS constraints,
which is specified by the vertical lines in the figures. Some
TCLs do escape the temperature deadband by a little
bit, which is expected and occurs also in thermostatic
control: the sensor must first register a value outside the
deadband in order decide to switch the on/off state.

7 Conclusion

In this work we present a unified framework for the
distributed control of TCLs. The framework enables:
(i) reference planning for a collection of TCLs and (ii)
design of a randomized control policy for the individ-
ual TCLs, so that both the BA’s requirement and con-
sumers’ QoS are satisfied. The resulting framework is
(i) scalable to an arbitrary number of loads and is im-
plemented through local feedback and minimal commu-
nication, (ii) able to guarantee both temperature and
cycling constraints maintenance in each TCL, and (iii)
based on convex optimization. Matlab/cvx implementa-
tion is publicly available [8].

There are several avenues for future work. The optimal
control problem is solved in an open-loop fashion here.
Feedback from TCLs is used only to compute an initial
condition that is needed as problem data for the off- line
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Fig. 8. (Top): Reference tracking results for the TCLs under
the influence of the grid support control policies obtained by
solving (50). (Middle): Histogram of the 200 TCL’s temper-
ature trajectories over the entire simulation horizon. (Bot-
tom): Histogram of the time between switches over 3000
TCLs with the vertical line representing the minimum al-
lowable time between switches.

planning problem. It is straightforward to close the loop
between the TCL collection and the BA with greater
frequency for robustness to uncertainty in weather fore-
cast and TCL parameters. It will be of interest to iden-
tify scenarios where closing loop, say, by using Model
Predictive Control, is (i) necessary, and (ii) at what fre-
quency should information be communicated from the
TCLs to the BA. Another avenue is to investigate how
the problem (50) could be solved at each TCL, intermit-
tently, instead of at the BA. Since the computational
power of the processor at each TCL is lower than that of
the processor at the BA, online distributed algorithms
for convex optimization could play a role. The Fokker-
Planck equations from [21] we used here are convenient
for modeling TCL populations with a small deegree of
heterogeneity. Distributed computation of optimal poli-
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cies locally at each TCLs may help extend the method
to a highly heterogeneous population of TCLs.
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[5] Yue Chen, Ana Bušić, and Sean P. Meyn. State estimation
for the individual and the population in mean field control
with application to demand dispatch. IEEE Transactions on
Automatic Control, 62(3):1138–1149, 2017.

[6] Yue Chen, Md Umar Hashmi, Joel Mathias, Ana Bušić, and
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A Proofs

A.1 Proof of Lemma 1

See Appendix B before reading this proof. Property (ii)
is a consequence of the upwind difference scheme used.
We see that for the internal CVs we have

off CVs: −
(
F i,+off +D

)
(A.1)

on CVs:
(
F i,−on −D

)
. (A.2)
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From Assumption A.2 we have that F i,−on ≤ 0 and
F i,−off ≥ 0 so that both of the above terms are negative.
The upwind scheme is what ensured appropriate sign
was added to the terms F i,−on and F i,−off so that the above
coefficients are negative. Similar arguments can be ap-
plied for the off diagonal terms of the internal CVs and
the boundary CVs.

To show property (i) we consider solely an internal CV
for the off state as the arguments for all other CVs are
identical in structure. Note that showing A(t)1 = 0 is
equivalent to 1TA(t) = 0T . Hence we need to show, for
an arbitrary i that all coefficients acting on νoff(λi, t)
sum to 0. We collect the coefficients corresponding to
νoff(λi, t):

From CV(i) : − F i,+off (t)−D.

From CV(i− 1) :
D

2
.

From CV(i+ 1) :
D

2
+ F i+1,−

off (t).

We then require the sum of these coefficients to be zero
for all t and any index i for the internal off CVs, adding
yields

F i+1,−
off (t)− F i,+off (t) =

foff(λi+1,−, t)− foff(λi,+, t)

∆λ
= 0

since by construction λi+1,− = λi,+ for the off CV’s.
This procedure can be repeated for νoff(λi, t) with i ∈
{1,m,N}, i.e., the boundary CVs in the off state and all
of the on CVs in a similar fashion.

A.2 Proof of Lemma 3

If α = (∆t)−1, the diagonal elements of Ak with α in
them will go to zero and the non diagonal elements will
go to 1. These non-diagonal elements with value 1 are
the red dots in Figure 3 and encapsulate the thermo-

stat control law. Thus the construction of ΦTS with the
canonical basis vectors. Now, multiplying out the matrix
we have,

ΦTSGk =

[(
I − ΦTS

off

)
P off
k ΦTS

off S
off
k

ΦTS
on S

on
k

(
I − ΦTS

on
)
P on
k

]
(A.3)

where
(
I−ΦTS

off

)
P off
k (respectively,

(
I−ΦTS

on
)
P on
k ) is the

matrixP off
k (respectively,P on

k ) but with the last (respec-
tively, first) row zeroed out. The exact opposite state-

ment is true for ΦTS
off P

on
k and ΦTS

on P
off
k . Hence, by defi-

nition of the matrices inGk we have Pk = ΦTSGk where
each non-zero element holds the interpretation (23).

A.3 Proof of Lemma 4

We define the following transformation for l ∈ {0, . . . , τ}
and j ∈ {1, . . . , N} as

T (j, l) = lN + j (A.4)

that maps the integers j and l that label the state values
to the absolute index of either of the vectors νE

off and

νE
on. Now consider the following two sets

Woff ,
{

(u, j, l) ∈ X
∣∣∣ φE

off(u | j, l) = βoff(u, j, l)
}

(A.5)

Won ,
{

(u, j, l) ∈ X
∣∣∣ φE

on(u | j, l) = βon(u, j, l)
}
.

(A.6)

The values βoff and βon are chosen to ensure the struc-
tural requirements in (31)-(32) and (35). For example,
for l = 1 and u = on we have that βoff(on, ·, 1) =
φTS

off(on|·) (and hence βoff(off, ·, 1) = 1 − φTS
off(on|·)) so

to enforce the structural requirement in (35). Define
for each k ∈ T , u, v ∈ {on, off}, j ∈ {1, . . . , N}, and
l ∈ {0, . . . , τ} the following vectors

huk [T (j, l)] ,

{
(νE
u [λj , l, k])−1 if νE

u [λj , l, k] > 0.

0 otherwise.

wu,vk [T (j, l)] ,



βv(u, j, l) if (u, j, l) ∈ Wv and

νE
v [λj , l, k] = 0.

0.5 if (u, j, l) /∈ Wv and

νE
v [λj , l, k] = 0.

0 otherwise.

where T (·, ·) is defined in (A.4),Woff in (A.5), andWon
in (A.6). Let Wu,v

k = diag(wu,vk ) and Hu,v
k = diag(hu,vk ),

and construct the following matrices

Hk =

[
Hoff
k 0

0 Hon
k

]
, and (A.7)

Wk =

[
W off,off
k W off,on

k 0 0

0 0 W on,off
k W on,on

k

]
. (A.8)

We first show that ΦE
k = HkJk +Wk satisfies (48). Note

that diag(νE
k )Wk = 0 since by construction if the ith

row of Wk has a non zero entry then the ith diagonal
entry of diag(νE

k ) is zero. The product diag(νE
k )Hk is a

diagonal matrix with with entries of either zero or one.
The zero entries also correspond to the zero entries of
νE
k . In this case, the respective entry in Jk is also zero so

that diag(νE
k )HkJk = Jk as desired.
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We now show that φE
k = HkJk +Wk ∈ Φ. First consider

an arbitrary state indexed by (off, j, l) at time k, if the
corresponding value in νoff[λj , l, k] > 0 then the two
policy values are defined as

P (mk+1 = on, Ik = j, Lk = l, mk = off)

νoff[λj , l, k]
(A.9)

P (mk+1 = off, Ik = j, Lk = l, mk = off)

νoff[λj , l, k]
. (A.10)

If either of the above values are fixed in the constraint
set Φ, then the constraint (49) will ensure this. Further,
since we have that νE

k , Jk ∈ [0, 1] and that (νE
k )T = Jk1

this ensures that the above policy values are within [0, 1]
and sum to 1. The above argument is valid for any pair
of state values such that the corresponding value of νE

k

is non-zero. If the corresponding value of νoff[λj , l, k] =
0 and the policy (conditioned on this state value) has
a constraint, the first if case in the definition of wu,vk
ensures this constraint. Further, the constraint values
must also be chosen to ensure the respective policy values
are in [0, 1] and sum to one. Lastly, if νoff[λj , l, k] = 0
and there is no constraint for the policy conditioned on
this state value the second if case in the definition ofwu,vk
ensures the policy value sums to 1 and the respective
elements are in [0, 1]. Thus ΦE

k ∈ Φ for all k ∈ T.

A.4 Proof of Theorem 1

The proof structure is similar to the one in [2]. The idea
is to exploit the fact that: (i) νE

k is a decision variable
for both optimization problems (50) and (44) and (ii)
the objective function is the same for both problems and
solely a function of the marginal νE

k . We rewrite these
problem compactly below,

η∗CVX = min
(νE,J)∈X

η(νE), (A.11)

η∗NCVX = min
(νE,ΦE)∈Y

η(νE), (A.12)

where the sets X and Y collect all of the relevant con-
straints for the problems. The variables νE, ΦE, and J
are concatenated over the considered finite time hori-
zon and hence are not sub-scripted by k. We proceed by
showing that η∗CVX ≤ η∗NCVX and η∗NCVX ≤ η∗CVX to give
the desired result.

A.4.1 η∗CVX ≤ η∗NCVX

Pick any argument minimizer that achieves value η∗NCVX

and denote the pair as (νE
NCVX,Φ

E
NCVX). Trivially con-

struct J through the relation (48) so that this con-
structed J and νE

NCVX (that is optimal for (44)) are
also feasible for (50), i.e., (νE

NCVX, J) ∈ X. This is since

1Tdiag(νE
k ) = νE

k and 1 = ΦE
k1. Hence we have that

η∗CVX = min
(νE,J)∈X

η(νE) ≤ η(νE
NCVX) = η∗NCVX (A.13)

since by definition η∗CVX is the minimum value over the
set of feasible solutions.

A.4.2 η∗NCVX ≤ η∗CVX

We take a pair (νE
CVX, JCVX) that achieve optimal cost

η∗CVX and construct a feasible solution for (44), denoted
(ηE

NCVX,Φ
E
NCVX), as follows (for each k)

ΦE
k,NCVX = HkJk +Wk, and (A.14)

νE
k,NCVX = νE

k,CVX. (A.15)

Where Hk and Wk are defined in Lemma 4. This con-
structed solution is then feasible for (44) as the con-
straint ΦE

NCVX ∈ Φ is part of the result in Lemma 4 and

νE
k,NCVXΦE

k,NCVXG
E
k = νE

k,NCVX

(
HkJk +Wk

)
GE
k

(A.16)

= 1TJkG
E
k = νE

k+1,NCVX. (A.17)

The fact that νE
k,NCVX

(
HkJk + Wk

)
= 1TJk is since

νE
k,NCVXWk = 0 and νE

k,NCVXHkJk = 1TJk. The matrix
Wk only has non zero entries for row indices where the
index of the row vector νE

k,NCVX is zero so that the result-

ing product is the zero vector. The product νE
k,NCVXHk

is a vector of ones and zeros, specifically, if the ith ele-
ment of this vector is zero then the entire ith column of
the matrix Jk will be the zero vector. Thus the equiv-
alence between νE

k,NCVX

(
HkJk + Wk

)
and 1TJk. Since

the constructed solution is feasible we have that

η∗NCVX = min
(νE,ΦE)∈Y

η(νE) ≤ η(νE
CVX) = η∗CVX (A.18)

since by definition η∗NCVX is the minimum value over the
set of feasible solutions.

B PDE discretization

We denote the ith CV as CV(i) and further adopt the
following notational simplifications,

µoff(λi, t) , µoff(λioff, t), and µon(λi, t) , µon(λion, t).

Highlighted red in Figure 2 are the two control volumes
to assist in enforcing boundary conditions that coincide
with the thermostat policy (6). This is discussed further
in Appendix B.2 when the boundary conditions CVs are
discretized.
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B.1 Internal CV’s

Consider the RHS of the pde (9) integrated over CV(i):∫
CV(i)

(
σ2

2

∂2

∂λ2

(
µon(λ, t)

)
− ∂

∂λ

(
fon(λ, t)µon(λ, t)

))
dλ

=

(
σ2

2

∂

∂λ
µon(λ, t)− fon(λ, t)µon(λ, t)

)∣∣∣∣λi,+

λi,−
, (B.1)

where equality is by the divergence theorem [27]. Note,
the points λi,− and λi,+ are not control volume vari-
ables, but rather the boundaries of a single control vol-
ume. Hence, quantities in (B.1) need to be approximated
in terms of the nodal points of the neighboring control
volumes. The approximations for the partial derivative
are,

∂

∂λ
µon(λi,+, t) ≈ µon(λi+1, t)− µon(λi, t)

∆λ
, and

(B.2)

∂

∂λ
µon(λi,−, t) ≈ µon(λi, t)− µon(λi−1, t)

∆λ
. (B.3)

For the integrated convective term, we use the so-called
upwind scheme [27]. This scheme elects the FVM equiv-
alent of a forward or backward difference based on the
sign of the convective velocity fon(λ, t). By assumption
A.2, fon(λ, t) ≤ 0 and the upwind scheme prescribes:

fon(λi,−, t)µon(λi,−, t) = fon(λi,−, t)µon(λi, t), and

fon(λi,+, t)µon(λi,+, t) = fon(λi,+, t)µon(λi+1, t).
(B.4)

When the TCL is off foff(λ, t) ≥ 0 (also by Assumption
A.2) the upwind scheme prescribes:

foff(λi,−, t)µoff(λi,−, t) = foff(λi,−, t)µoff(λi−1, t), and

foff(λi,+, t)µoff(λi,+, t) = foff(λi,+, t)µoff(λi, t). (B.5)

Now returning to the discretization of the PDE (9) over
an arbitrary internal CV. We approximate the LHS
of (9) integrated over the control volume as,∫

CV(i)

∂

∂t
µon(λ, t)dλ ≈ d

dt
µon(λi, t)∆λ =

d

dt
νon(λi, t),

where we have defined

νon(λi, t) , µon(λi, t)∆λ. (B.6)

Now, denote the following

D ,
σ2

(∆λ)2
, and F ion(t) ,

fon(λi, t)

∆λ
, (B.7)

where the quantities F ioff(t), F i,+on (t)/F i,+off (t), and

F i,−on (t)/F i,−off (t) are defined similarly to F ion(t), e.g.,

F i,+off (t) , foff(λi,+, t)/∆λ. Now equating the approx-

imation of the RHS (9) with the approximation of the
LHS of (9) we have,

d

dt
νon(λi, t) =

(
F i,−on (t)−D

)
νon(λi, t) +

D

2
νon(λi−1, t)

+
(D

2
− F i,+on (t)

)
νon(λi+1, t). (B.8)

The spatial discretization for the PDE (10) is similar
and yields,

d

dt
νoff(λi, t) =

D

2
νoff(λi+1, t)−

(
F i,+off (t) +D

)
νoff(λi, t)

+
(D

2
+ F i,−off (t)

)
νoff(λi−1, t), (B.9)

where νoff(λi, t) , µoff(λi, t)∆λ.

B.2 Boundary CV’s

The boundary CVs are the CVs associated with the
nodal values: λ1

on, λqon, λNon, λ1
off, λmoff, and λNoff. The

superscript, for example the integer q in λqon represents
the CV index. All boundary CVs can be seen in Fig-
ure 2. Discretization of the boundary CVs requires care
for atleast two reasons. First, this is typically where
one introduces the BCs of the PDE into the numeri-
cal approximation. Secondly, on finite domains the end-
points present challenges, for example, there is no vari-
able µon(λN+1, t) for computation of the derivative val-
ues for node λNon.

The BC’s for the coupled PDEs (9)-(10) are [21]:

Absorbing Boundaries:

µon(λmin, t) = µoff(λmax, t) = 0. (B.10)

Conditions at Infinity:

µon(+∞, t) = µoff(−∞, t) = 0. (B.11)

Conservation of Probability:

∂

∂λ

[
µon(λq,−, t)− µon(λq−1,+, t)− µoff(λN−1,+, t)

]
= 0.

(B.12)

∂

∂λ

[
µoff(λm,+, t)− µon(λ2,−, t)− µoff(λm+1,−, t)

]
= 0.

(B.13)

Continuity:

µon(λq,−, t) = µon(λq−1,+, t). (B.14)

µoff(λm,+, t) = µoff(λm+1,−, t). (B.15)

As we will see, implementation of some of the above con-
ditions will require a bit of care. However, some are quite
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trivial to enforce. For example, by default, the continu-
ity conditions (B.14) and (B.15) are satisfied due to our
choice of CV structure, since, for example, for any i we
have λi,−off = λi−1,+

off and λi,+off = λi+1,−
off .

Now focusing on the conditions at infinity BC (B.11),
we enforce instead the following conditions:

∂

∂λ
µoff(λ1,−, t) = 0, and

∂

∂λ
µon(λN,+, t) = 0.

(B.16)

Our computational domain cannot extend to infinity,
where the BC (B.11) is required to hold, but the tem-
perature values λ1

off and λNon are quite far away from the
deadband and so the density here will be near zero.

Now, consider the spatial discretization of the CVs asso-
ciated with the BC at infinity. First considering the CV
associated with the temperature λ1

off, we have that the
differential equation is

d

dt
νoff(λ1, t) =

(
− F 1,+

off (t)− D

2

)
νoff(λ1, t) (B.17)

+
(D

2
+ F 2,−

off (t)
)
νoff(λ2, t).

Considering the CV associated with the temperature
λNon, we have

d

dt
νon(λN , t) =

(
FN,+on (t)− D

2

)
νon(λN , t) (B.18)

+
(D

2
− FN,+on (t)

)
νon(λN−1, t).

In the above we make the assumption that νoff(λ1,− −
∆λ, t) = 0 and νon(λN,+ + ∆λ, t) = 0.

Now focus on the absorbing boundary (B.10) and con-
servation of probability (B.12)-(B.13) boundary condi-
tions. These BCs have the following meaning. The con-
dition (B.10) clamps the density at the end of the dead-
band to zero. BC (B.12) reads: the net-flux across the
temperature value λqon is equal to the flux of density go-
ing from off to on. In order to enforce both (B.12) and
(B.13) we will model the flux of density due to the ther-
mostat control policy as a source/sink. Before doing this,
we mention some issues with enforcing the BC (B.10).

A TCL’s temperature trajectory will not satisfy the
BC (B.10) since to switch its mode the TCL’s temper-
ature sensor will have to register a value outside the
deadband. Therfore, we introduce two additional CV’s
associated with the temperatures λ1

on and λNoff, which
are shown in red in Figure 2. We then transfer the
BC (B.10) to one on the added CVs, which becomes:

µon(λ1,−, t) = µoff(λN,+, t) = 0. (B.19)

As mentioned, to enforce the conservation of probability
BC we use a source/sink type argument, which we also
enforce on the added CVs. To see what we mean by
source/sink argument, consider the following: some rate
of density is transferred out of the CV λNoff and into the

CV λqon (as depicted in Figure 2) due to thermostatic
control. We model the sink as simply −νoff(λN , t). The
rate of the sink is then given as −γνoff(λN , t), where
γ > 0 is a modeling choice and a constant of appropriate
units that describes the discharge rate. We shortly give
insight on how to select a value for γ. Now discretizing
the CV corresponding to the nodal value λNoff subject to

the BC (B.19) and the sink −νoff(λN , t) we obtain,

d

dt
νoff(λN , t) =

(D
2

+ FN,−off (t)
)
νoff(λN−1, t) (B.20)

− ανoff(λN , t),

where α ,
(
γ + D

)
. In obtaining the above, we have

made the reasonable assumption that νoff(λN,+ +
∆λ, t) = 0. The quantity ανoff(λN , t) represents the
rate of change of density from the CV λNoff to the CV

λqon, as depicted in Figure 2. Consequently, to conserve
probability, we must add this quantity as a source to
the ode for the CV λqon, i.e.,

d

dt
νon(λq, t) = · · ·+ ανoff(λN , t). (B.21)

The dots in equation (B.21) represent the portion of the
dynamics for the standard internal CV (i.e., the RHS
of (B.8)) for the temperature node λqon. A similar argu-
ment is used for the BC (B.13) with the CV’s λ1

on and
λmoff, and the corresponding differential equations are,

d

dt
νon(λ1, t) =

(D
2
− F 1,+

on (t)
)
νon(λ2, t)− ανon(λ1, t),

(B.22)

d

dt
νoff(λm, t) = · · ·+ ανon(λ1, t). (B.23)

To better understand the role of γ consider the following
example. Electing γ in the above so that α = (∆t)−1,
where ∆t is a time increment, has the following interpre-
tation: all mass starting in state νoff(λN , ·) at time t is
transferred out by time t+ ∆t into the state νon(λq, ·).

B.2.1 Additional conditions

Two additional conditions are enforced, namely that
once mass is transferred to the nodes λNoff or λ1

on it can-
not “travel backwards.” For example, mass is transferred
from λNoff entirely to the corresponding on temperature

bin and no mass is transferred backwards to λN−1
off . This

corresponds to setting: (i) the coefficient on νoff(λN , t)
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in the ode for νoff(λN−1, t) to zero and (ii) the coefficient
on νon(λ1, t) in the ode for νon(λ2, t) to zero.

B.3 Overall system

Now, combining the odes–(B.8) and (B.9) for all of the
internal CVs and (B.17), (B.18), (B.20), (B.21), (B.22),
(B.23) for the BC CVs–we obtain the linear time varying
system,

d

dt
ν(t) = ν(t)A(t). (B.24)
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