
Synthesis of Static Test Environments for
Observing Sequence-like Behaviors in

Autonomous Systems

Apurva Badithela and Richard M. Murray

California Institute of Technology, Pasadena CA 91106, USA
{apurva, murray}@caltech.edu

Abstract. In this paper, we investigate formal test-case generation for
high-level mission objectives, specifically reachability, of autonomous sys-
tems. We use Kripke structures to represent the high-level decision-
making of the agent under test and the abstraction of the test envi-
ronment. First, we define the notion of a test specification, focusing on
a fragment of linear temporal logic represented by sequence temporal
logic formulas. Second, we formulate the problem of test graph synthe-
sis to find a test configuration for which the agent must satisfy the test
specification to satisfy its mission objectives. We an algorithm, based on
network flows, for synthesizing a test graph by restricting transitions, rep-
resented by edge deletions, on the original graph induced by the Kripke
structures. The algorithm synthesizes the test graph iteratively using an
integer linear program. We prove completeness for our algorithm, and
we show that the edge deletions in each iteration maintain feasibility of
the integer linear program in the subsequent iteration. We formalize the
notion of a minimally constrained test graph in terms of maximum flow,
and prove the synthesized test graph to be minimally constrained. We
demonstrate our algorithm on a simple graph and on gridworlds.

Keywords: Test Synthesis · Linear Temporal Logic · Discrete state sys-
tems

1 Introduction

The 2007 DARPA Urban Challenge ushered interest in autonomous driving in
urban environments [1]. Participating vehicles had to pass three small-scale oper-
ational test-courses designed to evaluate the autonomous car’s ability to satisfy
safety, basic and advanced navigation requirements, and basic and advanced
traffic scenarios [2]. Exhaustive verification for such complex safety-critical sys-
tems is prohibitive, creating a need for a formal operational testing framework
to certify reliability of these systems [13].

Due to robustness metrics from their quantitative semantics, signal temporal
logic (STL) and metric temporal logic (MTL), are natural paradigms for reason-
ing over trajectories of low-level continuous dynamics [11, 9]. In many instances,
the term testing is used inter-changeably with falsification [18]. Falsification is

ar
X

iv
:2

10
8.

05
91

1v
1

 [
ee

ss
.S

Y
]

 1
2

A
ug

 2
02

1

2 A. Badithela and R.M. Murray

the problem of finding initial conditions and input signals that lead to violation
of a temporal logic formula with the goal of finding such failures quickly and
for black-box models [4, 17, 8, 6]. Furthermore, the black-box approaches in the
related topics of falsification of hybrid systems [4], and simulation-based test
generation [19, 12], rely on stochastic optimization algorithms to minimize the
robustness of temporal logic satisfaction. Since dense-time temporal logics bet-
ter encapsulate the range of system behaviors at the with continuous dynamics,
these techniques are successful at falsification at the low-level. However, some of
the complexity can be attributed to the coupling between continuous dynamics
with high-level discrete decision-making behaviors, a hierarchical approach to
test-case generation could be effective.

At higher levels of abstraction comprising of discrete states, LTL specifica-
tions are often used to capture mission objectives. Covering arrays have been
used to initialize discrete parameters of the test configuration at the start of
the falsification procedure in [4, 19, 15]. In this work, we focus on a framework
for testing of high-level specifications in linear temporal logic (LTL). Here we
adopt a different notion of testing – one that is focused on observing the au-
tonomous agent undertake a certain behavior in its mission. The DARPA Urban
Challenge test courses, that mainly comprised of static obstacles and (dynamic)
human-driven cars, were carefully designed to observe the agent undertaking
certain behaviors [2]. For example, a part of the test course was designed for
assessing parking behavior. The static obstacles – barriers blocking the region
in front of the parking lot and other parked cars – were placed such that the
agent had to repeatedly reverse/pull-in to incrementally adjust its heading angle
before successfully parking in the designated spot. The clever placement of static
obstacles in this scenario made it a challenging test for the agent, as opposed
to an environment in which the agent pulls-in straight into the parking spot.
Similarly, carefully designed scenarios with human-driven cars sought to observe
other behaviors of the agent. In many, but not necessarily all, of these scenarios,
the high-level behavior of the agent can be described as a sequence of waypoints.
In the parking lot example, the sequence of waypoints can be characterized as
a sequence of agent states, which can be characterized as a product of position
and heading angle in the high-level abstraction. As a step towards automatically
synthesizing these test scenarios, this paper asks the following question:

Problem (Informal): Given a valid, user-defined sequence of waypoints, a reach-
ability objective for the mission specification, find a set of possible initial con-
ditions for the agent (if not specified by user) and determine a set of static
constraints, characterized by transitions that are blocked/restricted, such that:
i) the agent must visit the sequence of waypoints in order before its goal, and

ii) the test environment is minimally constrained.

Most formal analyses of discrete state systems and temporal logic specifi-
cations are based on the model-checking paradigm of constructing a product
automaton of the system abstraction and the Büchi automaton of the temporal
logic formula [5]. While this is a powerful approach that encapsulates any tem-
poral logic formula, the Büchi automaton has potentially exponential number

Formal Test Environment Synthesis 3

of states in the length of the formula. However, when restricted to a specific
class of temporal logic formulas, it is possible to develop an alternative approach
to analyzing the properties of a discrete-state system. In the paper, we use the
concept of network flows [7] and integer linear programming (ILP) to synthesize
“cuts” or static constraints to characterize the test environment. In particular,
the waypoints and goal state constitute the sources and sinks of these flows, and
we seek to enforce static constraints that maximize the flow between consecutive
waypoints such that the overall flow from the initial waypoint to the final goal
is maximized.

The contributions of this paper are as follows:

1. Formulating the static test synthesis problem, formalizing the notions of a
test specification and a test graph,

2. An algorithm and an ILP subroutine that iteratively synthesizes static con-
straints using fewer variables in each iteration,

3. Proof of completeness and recursive feasibility (feasibility of the ILP con-
straint set is invariant despite static constraints determined in prior itera-
tions) of the aforementioned iterative algorithm,

4. Formalizing the notion of a minimally constrained test graph, and a proof
showing that the synthesized test environment is minimally constrained.

The rest of this paper is organized as follows: In Section 2, we define the test
specification and the test graph, and formally present the static test environment
synthesis problem. The baseline ILP and the iterative algorithm to solve the
static test synthesis problem are detailed in Section 3, and subsequently, we
prove recursive feasibility, completeness, and show that the synthesized static
environment is minimally constrained. In Section 4, we illustrate the algorithms
on parametrized gridworlds. Finally, we present future directions in Section 5.

2 Preliminaries and Problem Statement

In this section, we first introduce the notion of discrete finite state systems. Af-
terwards, we formally describe the specification that such system should satisfy.
Finally, we present basic definitions from flow networks, which we will leverage
later on for test synthesis.

Definition 1 (Kripke Structure [5]). A Kripke structure is a tuple T =
(Q,A,∆, Q0, AP, L), where Q is a finite set of states, A is a finite set of ac-
tions, ∆ : Q → 2Q is a non-deterministic transition function, Q0 is the set of
initial states, and AP is the set of atomic propositions, and L : Q → 2AP is a
labeling function. A directed graph G = (V,E) can be induced from T in which
the vertices represent states Q and the edges represent the transitions, and the
labeling function assigns propositions that are true at each vertex. For a propo-
sition p, and vertex v, v ` p means that p is satisfied at v. A run σ = q0q1 . . . on
the graph is an infinite sequence of its nodes where qi ∈ Q represents the state
at index i.

4 A. Badithela and R.M. Murray

Linear Temporal Logic (LTL) is a formal specification language, originally
developed for software systems, that has also been used for characterizing high-
level specifications of cyber-physical systems [10, 16, 3, 14]. For the syntax and
semantics of LTL, refer to Appendix or [5]. Finally, we present a few definitions
on network flows that will become relevant for the purpose of synthesizing the
test environment.

Definition 2 (Flows [7]). A flow network is a directed graph G = (V,E) with
a non-negative capacity function c : E → R such that each edge (u, v) ∈ E is
assigned a non-negative capacity c(u, v) ≥ 0. The flow network also comprises
of a source s ∈ V and the sink t ∈ V . A flow is a function f : V × V → R that
satisfies the capacity constraint and flow conservation properties (see [7]). The
value of the flow is given as follows,

fG(s, t) =
∑
v∈V

f(s, v)−
∑
v∈V

f(v, s).

See Appendix or [7] for a definition of residual flow networks.

Definition 3 (Augmenting Paths [7]). An augmenting path P is a sim-
ple path, that is, each edge is traversed once, from source s to sink t on the
residual network Gf . Maximizing the flow value fG(s, t) leaves the residual net-
work Gf with no augmenting paths. We say that a set of augmenting paths
S = {P1, . . . , PfG(s,t)} represents an instance of the maximum flow from s to t
in G if the flow network Gf is constructed by identifying the augmenting paths
in S. The set S is said to be the set of shortest augmenting paths if the residual
network is recursively constructed by identifying the smallest length augmenting
path from s to t.

In our formulation, an edge represents a transition the system can make. For
this reason, we assign unit capacities for every edge in the flow network. In unit-
capacity networks, given a set S of augmenting paths characterizing maximum
flow, any two augmenting paths P1, P2 ∈ S are always edge-disjoint with respect
to each other.

Definition 4 (Minimum-cut edge [7]). A minimum-cut edge, given a source
s and sink t, is an edge that belongs to some minimum cut. A minimum-cut
edge can be identified by removing the edge and checking if the max-flow value
decreases. For definition of minimum-cut, refer to Appendix or [7].

Definition 5 (ij-cycle). Given a graph G and propositions characterizing the
sequence specification, p1, . . . , pn, let Pi represent a simple path from vi to vi+1

for all i = 1, . . . , n. The simple path from v1 to vn+1 characterized by (P1, . . . , Pn)
has an ij-cycle if there is an edge (u,w) ∈ Pi and (w, v) ∈ Pj for some i+ 1 ≤
j ≤ n+ 1, except for the case in which both w = vi+1 and j = i+ 1.

Definition 6 (Sequence flow path). Given a graph G and propositions char-
acterizing the sequence specification, p1, . . . , pn, let Pi represent a simple path

Formal Test Environment Synthesis 5

from vi to vi+1 for all i = 1, . . . , n. The simple path from v1 to vn+1 character-
ized by Pf =(P1, . . . , Pn) is a sequence flow path if the subgraph of G induced by
Pf satisfies equation (4). The notation Pf (i) is used to denote the i-th path Pi

in Pf . A sequence flow path has no ij-cycles.

Definition 7 (Sequence flow). A sequence flow Sf = {Pf,1, . . . , Pf,f̃} for
propositions characterizing the sequence specification is a finite set of sequence
flow paths, Pf,1, . . . , Pf,f̃ , such that any two sequence flow paths are edge-disjoint
with respect to each other, and any sequence flow path, (Pf,k1

(1), Pf,k2
(2), . . .,

Pf,kn(n)), where k1, . . . , kn ≤ f̃ , have no ij-cycles.

2.1 Test Specification

In this paper, we consider reachability specifications as mission objectives for the
agent under test. For the test itself, we wish to observe a sequence-like behavior
of the agent in its attempt to satisfy its mission objectives. Formally, this test
behavior can be described by the following temporal logic formula,

ϕtest := ♦(p1 ∧ ♦(p2 ∧ ♦(· · · ∧ ♦pn)))

n−1∧
i=1

(¬pi+1U pi) , (1)

where p1, . . . , pn are propositional formulas. This is a sequence-like formula since
the agent has to eventually visit every vi, but it cannot visit vi+1 before visiting
vi, where vi ` pi, for all i = 1, . . . , n. The agent under test does not have access
to the test specification ϕtest. Since LTL formulae cannot be evaluated on finite
test runs, the length of the test run depends on the time the agent takes to
satisfy its mission objective. Example: Consider a gridworld in Figure 1 on
which the agent can transition between states (up, down, left, right) with the
mission specification of reaching some goal state (formalized as ϕg = ♦g). Of the
many possible paths the agent can take to meet its objective, we’re interested
in observing it navigate to the goal while restricted to a class of paths described
by the test specification ϕtest = ♦(p1 ∧ ♦p2). How would we constrain actions
of the agent in certain states, such that it navigates through the sequence of
waypoints before reaching the goal? Furthermore, is it possible to synthesize
these constraints such that the sequence flow value from p1 to g is maximized?

2.2 Problem Statement

Now, we formalize the test environment synthesis problem. We limit our focus
to static test environments, by which we mean that the test environment does
not react to the actions of the agent during the test, leaving the reactive test
synthesis problem for future work.

Definition 8 (Test Graph). Given a labeled directed graph G = (V,E), a
mission/agent specification ϕA = ♦pn+1, a test specification ϕtest (equation 1),
a test graph G′ = (V,E\C) is the directed graph obtained by removing set of

6 A. Badithela and R.M. Murray

Fig. 1: Left: Unconstrained gridworld labeled by propositional formulas. Right: A test

environment synthesized by our algorithm where the transitions (2, 1)→ (2, 2), (3, 1)→
(3, 2), (2, 2)→ (3, 2), and (2, 2)→ (2, 3) blocked. Red semi-circle patches illustrate one-

way constraints, that is, transition from state u to state v is restricted, but v to u is

allowed, if arch of the semi-circle is in the grid corresponding to u along the transition

from u to v.

edges, C, from the original graph G. On G′, a run σ starting from state v1 will
satisfy the specification,

σ |= ♦pn+1 ⇐⇒ σ |= ♦(p1 ∧ ♦(p2 ∧ ♦(· · · ∧ ♦pn+1)))

n∧
i=1

(¬pi+1U pi) . (2)

Definition 9 (Minimally Constrained Test Graph). A test graph G′ is
minimally constrained if the sequence flow value from v1 |= p1 to vn+1 |= pn+1

on G′ are maximized.

Problem 1. Given an agent specification ψA = ♦vn+1, a labeled directed graph
G = (V,E) induced by the non-deterministic transition model T of the agent, a
test specification ϕtest = ♦(p1 ∧ ♦(p2 ∧ ♦(· · · ∧ ♦pn))), static constraints C ⊆ E
such that on the resulting graph G′ = (V,E\C) is a minimally-constrained test
graph.

Standard algorithms, such as Edmonds-Karp [7], can find the minimum-cut
of a single source-sink flow problem in a graph G = (V,E) in O(|V ||E|2) time.
However, here we aim to find a cut that maximizes the flow from a waypoint
pi to its consecutive waypoint pi+1, while eliminating any flow to waypoints
pj (j > i + 1) for all i = 1, · · · , n. In other words, some flows need to be cut
while other flows should be maximized. The problem of constructing a minimally
constrained test graph for observing a sequence-like specification can be cast as
the following optimization,

max
C⊂E

G′=(V,E\C)

fG′

s.t. fG′ ≤ fG′(vi, vi+1) ∀i = 1, · · · , n,
fG′(vi, vj) = 0 ∀i = 1, · · · , j − 2,∀j = 3, · · · , n,

(3)

Formal Test Environment Synthesis 7

where the variables are C ⊂ E, the set of edges to be constrained, scalar fG′ ,
scalars fG′(vi, vj) that represent the total flow from source vi to sink vj on a unit-
capacity graph G′, and the problem data is the original graph G = (V,E) and
the nodes v1, . . . , vn. Solving this optimization directly will require constructing
an ILP, for which constructing the constraint set is not straightforward. Fur-
thermore, it would require solving an ILP with |E| number of integer variables.
As a result, we propose Algorithm 1 to iteratively find the optimal f ′G.

3 Algorithm for Synthesizing Test Environment

Let G = (V,E) be a directed graph, with unit capacity on every edge, induced
by the Kripke structure T of the system under test. Assuming that the test
environment has complete freedom to “block” any transition in the graph G,
Algorithm 1 returns a set of edges, C ⊂ E, of the graph G that must be removed
before the test run. Let dG(v1, v2) denote the length of the shortest path from
vertex v1 to vertex v2 on graph G. First, we make following assumptions on G,

Assumption 1. Likewise, for each i ∈ {1, . . . , n + 1}, let vi denote the vertex
v ∈ V s.t v ` pi. Assume |vi|= 1, for all i = {1, . . . , n+ 1}.

Informally, assumption 1 states that every propositional formula, p1, . . . , pn+1,
has a single vertex in G associated with it.

Assumption 2. There exists a set of edges C ⊆ E such that the modified graph
obtained by removing these edges, G′ = (V,E\C), is such that

dG′(v1, vn+1) > · · · > dG′(vn, vn+1) > dG′(vn+1, vn+1) = 0. (4)

The above Assumption 2 is equivalent to the statement that by removing some
edges (or restricting certain transitions) from the original graph G, there exists
some set of initial conditions Q0 for which the only path(s) to the goal g is
through the behavior ϕtest. This assumption is imperative since there might be
instances for which it is impossible to construct a test graph. For example, in
the following simple labeled graph (Figure 2), it is impossible to construct a test
graph for the test specification ϕtest = ♦(p1 ∧ ♦p2). Once the system is in state
v1, it can directly proceed to the goal state vg without visiting v2. For instances
such as this one, a reactive test environment is necessary.

v2

p2

v1

p1
vg

g

Fig. 2: An invalid configuration of propositional formulas for test specification ϕtest =
♦(p1 ∧ ♦p2)

8 A. Badithela and R.M. Murray

3.1 Finding Combinations of Augmenting Paths

In a unit-capacity flow network G = (V,E) with source s and sink t with maxi-
mum flow value f , let S = {P1, . . . , Pf} represent the set of augmenting paths,
or edge-disjoint paths, that characterize an instance of the maximum flow in the
network since there can be multiple flow functions that can achieve maximum
flow on the graph from source s to sink t. For maximum flow from source s
to sink t on G, let maximum flow value be denoted fG(s, t). On a minimally
constrained test graph G′, the maximum sequence flow value will be bounded as
follows,

fG′(v1, vn+1) ≤ min
i=1,...,n

fG′(vi, vi+1). (5)

Let Fi = {S1,i, . . . , Ski,i} denote the set of all sets of augmenting paths that
characterize the maximum flow. Note that Fi is finite since the number of edges
are finite, but can be combinatorial in number of simple paths from vi to vj .
Then, |Fi| denotes the total number of maximum flow realizations from vi to
vi+1. Consequently, the total number of augmenting path combinations from v1
to vn+1 will be Πn

i=1|Fi|. However, not every augmenting path combination might
lead to a valid test graph since there could exist a combination of augmenting
paths that violates the requirement in equation (2) by constructing an ij-cycle.
Consider the simple example of the 3 × 3 grid in Figure 3. The combination of
sequence flows (S11, S22, S13) will give us fG′(v1, vn+1) = 1, but the combination
of (S11, S12, S13) forms an ij-cycle. To avoid this issue, the algorithm searches

Fig. 3: In this 3× 3 grid, the left and right figures illustrate two different augmenting
path combinations. In both figures, the augmenting paths characterizing the flow from
p1 to p2 and p3 to p4 are the same: S11 = {P1, P2} characterizes the maximum flow
from p1 to p2, and S13 = {P5, P6} characterizes the maximum flow from p3 to p4. On
the left, S12 = {P3, P4}, and on the right, S22 = {P ′3, P ′4}. It is possible to form a
sequence flow on the right with (P1, P

′
3, P6), but not on the left.

through all combinations of sequence flows before constructing the input to the
ILP (6). Since this is an expensive computation, a further assumption on the
input graph and set of propositions can ease this bottleneck. This assumption is
as follows,

Formal Test Environment Synthesis 9

Assumption 3. Let Fmin
i = {Smin

i = {P1, . . . , PfG(vi,vi+1)}}, represent the set
of sets of shortest augmenting paths that characterizes the flow from vi to vi+1

on G. Then, there exists a combination (Smin
1 , . . . , Smin

n) on which a maximum
sequence flow can be characterized.

In other words, Assumption 3 allows us to reason over combinations of short-
est augmenting path flows, which is combinatorial in all shortest paths, instead
of combinations of all augmenting flows, which is combinatorial in all simple
paths. All shortest paths a subset of all simple paths between two nodes.

3.2 Iterative Synthesis of Constraints

Now we present the ILP used to iteratively compute cuts in Algorithm 1,

max
x∈Bn, f∈Bl

b∈Bm

1T f

s.t. Acutx ≥ 1

Akeepx ≤ Dkeepb

b ≤ Akeepx

Dff ≤ Af (1− b) ,
f ≥ Af (1− b)−Df1+ 1,

(6)

where (x, b, f) are the optimization variables, and Acut ∈ Bk×n, Akeep ∈ Bm×n,
Dkeep ∈ Bm×m, Df ∈ Bl×l, Af ∈ Bl×m are problem data described in more
detail in Appendix 6.3.

The subroutine Find-Cut-Paths, described in the algorithm takes as input a
graph G and list of propositions, p, and uses max-flow algorithms to find a set
of augmenting paths for every source-sink pair (vi, vj) on Gij = G\(Vp\{vj , vi})
such that i + 1 ≤ j ≤ n + 1. All of these augmenting paths are collectively
returned as the output Pcut, and the edges constituting these cuts are denoted
by Ecut. Note that Pcut does not return all simple paths from vi to vj>i+1,
but just a set of edge-disjoint paths. As a result, we need to iteratively restrict
transitions until Pcut is empty. A summary of the Minimum-Cut-Edges and the
Sequence-Flow subroutine is given in the Appendix 6. Finally, the parameters
to ILP (6) are constructed as follows:

1. Parameters: The parameters used to construct the problem data for the
ILP (6) are the set of paths that need to be constrained, Pcut, the set of paths
whose combination constitutes sequence flow and should not be constrained,
Pkeep, and the set of minimum-cut edges, MCkeep, on the paths constituting
Pkeep. The set Pkeep = {(Smi,1, . . . , Smn,n)|Smi,i ∈ Fi, 0 ≤ mi ≤ ki} is a set
of all augmenting path combinations. For a given combination of sets of aug-
menting paths, Pkeep = (Sm1,1, . . . , Smn,n), with the cardinality of Smi,i being
denoted as follows, ni := |Smi,i|, and m := Σn

i=1. Suppose a combination of aug-
menting paths, Sf = {P = (P1, . . . , Pn)|Pi ∈ Smi,i}, represents a sequence flow,

10 A. Badithela and R.M. Murray

Algorithm 1 Restrict Transitions

Input: ϕtest, ϕa, G = (V,E, L).
Output: C ⊆ E.

p← {p1, . . . , pn, pn+1}, Vp ← {v1, . . . , vn, vn+1} . vi ` pi
Pcut ←Find-Cut-Paths(G, p)
C = {}
if Assumption 3 then

flg ← 1

while Pcut 6= ∅ do . Repeat until all cuts are found
E ← Edges in Pcut

A,Pkeep, |A|, f̃ ← Sequence-Flows(G, p, flg = 0) . Combinations of sequence
flows

for all j = 0, . . . , |F| do
Af ← A(j) . Selecting a combination (S1, . . . , Sn)
Pkeep ← Pkeep(j) . Augmenting paths for each vi to vi+1

MCkeep ← Min-Cut-Edges(G, p, Pkeep)
Dkeep ← diag(Akeep1)
for all Af ∈ Af do

Df ← diag(Af1)
Acut, Akeep, Dkeep ← ILP-params(Pcut, Pkeep,MCkeep)
x∗, f∗, b∗ ← ILP(Acut, Akeep, Dkeep, Af , Df) . Call to ILP (6)
if 1T f∗ = f̃ then

Cnew ← {ei|x∗i = 1}
C ← C ∪ Cnew

break . Breaking out of both for loops

G← G\Cnew

Pcut ← Find-Cut-Paths(G, p)

then a matrix Af ∈ B|Sf |×m can be constructed to represent the sequence flow
Sf . This construction is outlined in the descriptions of Constraints of the ILP.
An instance of Pkeep can have several sequence flows, Sf , and correspondingly,
several matrices, Af , all of which are collectively denoted by Af . The set of
all such Af is denoted by A, which has cardinality |A|= |Pkeep|, since each Af

corresponds to an instance of Pkeep. The maximum sequence flow value is given

by f̃ .

2. Variables: The variable x ∈ Bn, where n = |Ecut|, is the Boolean vector
corresponding to edges Ecut such that for some k ≤ n, if xk = 1, then the cor-
responding edge is constrained, and xk = 0 means that it is left in the graph
for future iterations. Given Pkeep = (Sm1,1, . . . , Smn,n) ∈ Pkeep, a combination
of set of augmenting paths, the variable b ∈ Bm keeps track of whether an aug-
menting path in some Smi,i (1 ≤ i ≤ n) is constrained or not. For some k ≤ m, if
bk = 1, then the corresponding augmenting path in some Smi,i has minimum-cut
edge(s) constrained by the ILP, and bk = 0 if none of the minimum-cut edges
of that augmented path have been constrained. The variable, f ∈ Bl, represents
the sequence flow vector for a given sequence flow, Sf , such that l = |Sf | is the

Formal Test Environment Synthesis 11

number of edge-disjoint paths constituting the sequence flow.

3. Constraints: The constraints of ILP (6) are outlined here but futher details
are given in Appendix 6.3. The first constraint of the ILP, Acutx ≥ 1, enforces
the requirement that each path in P ∈ Pcut is constrained. In the second and
third constraints, Akeepx ≤ Dkeepb and b ≤ Akeepx, is used to determine the
variable b from the variable x. These two constraints ensure that for some q ≤ n,
bq = 1 iff at least one minimum-cut edge on the path corresponding to the q-th
row of Akeep is constrained, and bq = 0 iff none of the minimum-cut edges on
the path corresponding to the q-th row of Akeep are constrained.
The fourth and fifth constraints, Dff ≤ Af (1−b) and f ≥ Af (1−b)−Df1+1,
determine the flow value for a given set of sequence flow paths, Sf . The fourth
constraint ensures that if any of the constituent paths, P1, . . . , Pn, in the q-th
sequence flow path P = (P1, . . . , Pn) ∈ Sf (for 1 ≤ q ≤ l), is constrained, then
the flow value, fq = 0. The last constraint ensures that if none of the constituent
paths, P1, . . . , Pn, in the q-th sequence flow path P = (P1, . . . , Pn) ∈ Sf (for
1 ≤ q ≤ l), are constrained, then the flow value, fq = 1.

4. Cost Function: The cost function computes the maximum sequence flow value.

Algorithm 1 does not proceed to the next iteration of Pcut until it finds the set
of static constraints that return the maximum possible sequence flow value, f̃ .
To guarantee completeness of Algorithm 1, we need to prove that the cuts syn-
thesized in prior iterations do not preclude feasibility of further iterations with
regards to assumption 2. See Appendix 6.5 for complexity of the subroutines in
Algorithm 1.

Lemma 1. In a graph G = (V,E), let P represent a maximal set of sequence
flow paths from v1 to vn. Let Pcut be the set of paths that need to constrained,
with the edges constituting the paths in Pcut denoted by Ecut ⊂ E. Then, the set
of constraint edges C ⊆ Ecut can be found such that C does not constrain any
path in P.

Proof. See Appendix 6.4

Proposition 1. Let Gm = (V,Em) denote the graph for which the m-th iter-
ation of the ILP (6) synthesizes new cuts Cm ⊂ Em. Then, Assumption 2 is
satisfied on Gm+1 = (V,Em\Cm).

Proof. In the first iteration, from Assumption 2, we know there exists at least
one test graph G′ = (V,E\C) that satisfies equation (4). Assume that the m-
th iteration graph Gm = (V,Em) also satisfies Assumption 2. We will show by
induction that the graph resulting from the the (m + 1)-th iteration, Gm+1 =
(V,Em\Cm), also satisfies Assumption 2. By construction, Algorithm 1 chooses
a combination of set of augmenting paths (S1, . . . , Sn) such that there exists a
non-empty set of sequence flow paths F = {(P1, . . . , Pn)|Pi ∈ Si} such that the
simple path from v1 to vn characterized by Γ = (P1, . . . , Pn) ∈ F does not form
an ij-cycle for some i < j ≤ n. This implies that on the subgraph comprising of
the edges in Γ, equation (4) is satisfied.

12 A. Badithela and R.M. Murray

If the maximum possible sequence flow in a minimally constrained test graph
is f∗, then we can find a combination (S1, . . . , Sn) such that for each i = 1, . . . , n,
there exists a set S

′

i = {P1,i, . . . , Pf∗,i} ⊆ Si, from which we can construct the
set F ′ = {(Pk1,1, . . . , Pkn,n)|Pki,i ∈ S′i, 0 ≤ ki ≤ f∗} ⊆ F . By construction of
the input variables to the ILP (6), the constraints of ILP (6) require that the
sequence flow variable f has atleast one element that is 1. This is possible only
if there exists a set of edges Cm that constrain Acut,m such that there exists at
least one sequence path P ∈ F that does not have any of its minimum-cut edges
constrained, which is true as shown in Lemma (1). Therefore, the new graph
Gm+1 = (V,E\Cm) satisfies Assumption (2).

Theorem 1. Under Assumption (2), Algorithm 1 is complete and returns a test
graph G′ from Definition 8 that satisfies equation (4).

Proof. Consider iteration m of the outer while loop in Algorithm 1, and let the
graph at the m-th iteration be G = (V,Em. Denote Vp = {vi|vi ` pi, ∀1 ≤
i ≤ n+ 1}. Let (ni,j)m denote the maximum flow value from vi to vj on Gij =
(V \(Vp\{vi, vj}), Em), for some i, j such that 1 ≤ i < j−1 ≤ n. This implies that
there is a set Si,j of (ni,j)m edge-disjoint paths that characterize the maximum
flow from vi to vj on Gij . Let (Pi,j(k))m be the set of all simple paths from vi
to vj that share an edge with the k-th path in Si,j . Let (MCi,j)m be the set of
minimum-cut edges on the paths in Si,j and let (Ei,j)m ⊂ Em be the set of all
edges on some path from vi to vj+1 on Gij . Clearly, (MCi,j)m ⊆ (Ei,j)m.

For every m ≥ 1, we can claim that |(Ei,j)m+1|< |(Ei,j)m| because edges
are removed to constrain Si,j in the m-th iteration. Let m̃ be the number of
iterations for Gij to become disjoint. In the worst-case, edges continue to be
constrained until iteration m̃ at which (Ei,j)m̃ = (MCi,j)m̃, at which point
constraining edges to cut (Si,j)m̃ results in a cut separating vi and vj . Thus, m̃
has to be finite for every such i, j.

At the same time, from Proposition 1, the synthesized cuts are such that
Assumption 2 is maintained as an invariant. Therefore, when the last set of
paths Si,j are constrained, the final test graph G′ is such that dG′(v1, vn+1) >
. . . > dG′(vn, vn+1).

In addition to Assumption 2, if Assumption 3 holds, Algorithm 1 can be
modified by a parameter setting. The proof of Theorem 1 still holds.

Lemma 2. On the test graph G′, any test run σ starting from state v1 will
satisfy the specification (2).

Proof. See Appendix 6.4

From Theorem 1 and Lemma 2, Algorithm 1 synthesizes a test graph G′ for
the test specification (2), solving Problem 1.

Proposition 2. Consider the test graph G′ from Definition 8 for the test spec-
ification σ from (2). If Assumption 2 holds, Algorithm 1 returns a minimally
constrained test graph.

Proof. See Appendix 6.4.

Formal Test Environment Synthesis 13

4 Examples

We illustrate the iterative synthesis of restrictions on a simple graph and a small
gridworld, and then show runtimes of Algorithm 1 on random gridworld in-
stances for both the case for which Assumption 2 is true, and the case for which
Assumptions 2 and 3 are true.

Simple graph: Consider a simple non-deterministic Kripke structure represent-
ing an autonomous agent, shown in Figure 4, with propositional formulas labeled
adjoining the states. The agent mission objective is to reach g while being re-
stricted to start from state q0. The test environment seeks to restrict transitions
such that the agent is prompted to pass through waypoint w in its trajectory to
g.

Inputs to Algorithm 1 include the labeled graph G induced by the Kripke
structure, the agent specification ♦p3, the test specification ♦p2, and the initial
condition constraint ♦p1. Algorithm 1 constrains the edges {(v2, v4), (v4, v6)} in
the first iteration, and the edges {(v2, v5), (v5, v6)} in the second iteration. Al-
though in this simple example, searching the set of all augmented paths becomes
searching over all paths, in larger examples discussed below, each augmented
path represents a class of paths that share some edge(s) with it.

q0

p1

v2

w
p2

v4

v5

v6 g p3 q0

p1

v2

w
p2

v4

v5

v6 g p3

Fig. 4: Left: Simple Kripke structure representing states that the agent can occupy.
The waypoint, w, is highlighted in purple to indicate that transitions are restricted
corresponding to propositional formula p2 = L(w). Right: A test graph. Dashed edges in
red illustrate transitions that have been restricted/removed from the Kripke structure
above.

Simple Gridworld: In Figure 5, we illustrate the iterative synthesis of
obstacles in a gridworld instance. Note that this configuration can be synthesized
only by considering all sets of augmenting paths between (p1, p2) and (p2, p3).
Since there is no shortest augmenting path from p2 to p3 that does not form a
cycle with some (in this example, there is only one) shortest augmenting path
flow from p1 to p2, it is imperative to use all sets of augmenting paths in the
Sequence-Flows subroutine.

Random Gridworld Instances: For the case of setting all augmenting
paths in the Sequence-Flows subroutine, we ran 50 random instances each for

14 A. Badithela and R.M. Murray

(a) Initial grid (b) Iteration 1

(c) Iteration 2
(d) Iteration 3. The colored paths high-
light a sequence flow from p1 to g.

Fig. 5: Synthesizing static test environment for ϕtest = ♦(p1 ∧ ♦p2) ∧ ¬p2U p1 and
ϕa = ♦g.

small gridworlds and propositions and plotted the average runtimes in Figure 6a.
The number of propositions are limited by the size of the gridworld instances,
which is restricted by the combinatorial nature of finding all sets of augmenting
paths, and all combinations of sets of augmenting paths.

If we choose initial gridworld instances that satisfy Assumption 3, then Al-
gorithm 1 can synthesize static constraints for slightly larger t× t grid sizes. The
average runtimes for 50 random iterations for various grid sizes t is plotted in
Figure 6b. The small increase to larger grid size is due to the Sequence-Flows
subroutine reasoning over shortest augmenting paths, and not all augmenting
paths.

The average runtimes increase exponentially with the size of the grid. The
number of propositions, denoted by |P |, is labeled n if the test specification
ϕtest (2) is comprised of propositions (p1, . . . , pn). In both Figures 6a and 6b,
the average runtime for fewer propositions is at times higher that the average
runtime for more propositions. This can be attributed to the Sequence-Flows
subroutine taking longer to enumerate all simple paths (or all shortest paths in

Formal Test Environment Synthesis 15

case of Assumption 3) between two nodes, which could be greater in number due
to fewer propositions constraining the graph.

(a) Small gridworld configurations using
all augmenting flows.

(b) Gridworld configurations using only
shortest augmenting flows.

Fig. 6: Average runtime over 50 random instances. The number of propositions in ϕtest

is denoted by |P | in the legend. Error bars represent standard deviation of runtimes.

Another paradigm for the problem of synthesizing static test environments
for sequence behaviors could be multi-commodity network flows, however, that
setting considers multiple source-sink flows simultaneously drawing from the
capacity of each edge, and here we compute separate network flows for every
source-sink pair of nodes.

5 Conclusions and Future Work

In this paper, we proposed an algorithm to synthesize a static test environment
to observe sequence-like behavior in a discrete-transition system. First, we for-
mulated this test environment synthesis problem as a problem of synthesizing
cuts on graphs using concepts of flow networks. Then, we proposed an algorithm
which synthesized the cuts iteratively using an integer linear program. We proved
that this algorithm is complete, and that the edges constrained by the ILP at
each iteration maintain feasibility of the constraint in the next iteration. Finally,
we conducted numerical experiments on random gridworld instances to assess
the runtime of our algorithm. Simulation results preclude this algorithm from
being tractable to larger examples. As future work, we will investigate heuristic
methods to solve this problem, and explore static and reactive test environment
synthesis for other classes of test specifications.

Acknowledgments

The authors would like to acknowledge Professor Mani Chandy, Dr. Shih-Hao
Tseng, and Dr. Ugo Rosolia for insightful discussions. We acknowledge funding
from AFOSR Test and Evaluation Program, grant FA9550-19-1-0302.

16 A. Badithela and R.M. Murray

References

1. DARPA Urban Challenge. https://www.darpa.mil/about-us/timeline/darpa-
urban-challenge.

2. Technical Evaluation Criteria. https://archive.darpa.mil/grandchallenge/rules.html.
3. Rajeev Alur. Principles of cyber-physical systems. MIT Press, 2015.
4. Yashwanth Annpureddy, Che Liu, Georgios Fainekos, and Sriram Sankara-

narayanan. S-taliro: A tool for temporal logic falsification for hybrid systems.
In International Conference on Tools and Algorithms for the Construction and
Analysis of Systems, pages 254–257. Springer, 2011.

5. Christel Baier and Joost-Pieter Katoen. Principles of model checking. MIT press,
2008.

6. Glen Chou, Yunus Emre Sahin, Liren Yang, Kwesi J Rutledge, Petter Nilsson, and
Necmiye Ozay. Using control synthesis to generate corner cases: A case study on
autonomous driving. IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, 37(11):2906–2917, 2018.

7. Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein.
Introduction to algorithms. MIT press, 2009.

8. Alexandre Donzé. Breach, a toolbox for verification and parameter synthesis of
hybrid systems. In International Conference on Computer Aided Verification, pages
167–170. Springer, 2010.

9. Alexandre Donzé and Oded Maler. Robust satisfaction of temporal logic over real-
valued signals. In International Conference on Formal Modeling and Analysis of
Timed Systems, pages 92–106. Springer, 2010.

10. E Allen Emerson. Temporal and modal logic. In Formal Models and Semantics,
pages 995–1072. Elsevier, 1990.

11. Georgios E Fainekos and George J Pappas. Robustness of temporal logic specifi-
cations for continuous-time signals. Theoretical Computer Science, 410(42):4262–
4291, 2009.

12. Georgios E Fainekos, Sriram Sankaranarayanan, Koichi Ueda, and Hakan Yazarel.
Verification of automotive control applications using s-taliro. In 2012 American
Control Conference (ACC), pages 3567–3572. IEEE, 2012.

13. Philip Koopman and Michael Wagner. Challenges in autonomous vehicle testing
and validation. SAE International Journal of Transportation Safety, 4(1):15–24,
2016.

14. Hadas Kress-Gazit, Georgios E Fainekos, and George J Pappas. Temporal-logic-
based reactive mission and motion planning. IEEE transactions on robotics,
25(6):1370–1381, 2009.

15. Rupak Majumdar, Aman Mathur, Marcus Pirron, Laura Stegner, and Damien
Zufferey. Paracosm: A language and tool for testing autonomous driving systems.
arXiv preprint arXiv:1902.01084, 2019.

16. Zohar Manna and Amir Pnueli. The temporal logic of reactive and concurrent
systems: Specification. Springer Science & Business Media, 2012.

17. Erion Plaku, Lydia E Kavraki, and Moshe Y Vardi. Falsification of ltl safety prop-
erties in hybrid systems. International Journal on Software Tools for Technology
Transfer, 15(4):305–320, 2013.

18. Sriram Sankaranarayanan and Georgios Fainekos. Falsification of temporal prop-
erties of hybrid systems using the cross-entropy method. In Proceedings of the
15th ACM international conference on Hybrid Systems: Computation and Control,
pages 125–134, 2012.

Formal Test Environment Synthesis 17

19. Cumhur Erkan Tuncali, Georgios Fainekos, Hisahiro Ito, and James Kapinski.
Simulation-based adversarial test generation for autonomous vehicles with ma-
chine learning components. In 2018 IEEE Intelligent Vehicles Symposium (IV),
pages 1555–1562. IEEE, 2018.

6 Appendix

6.1 Definitions

Definition 10. A Linear Temporal Logic (LTL) specification is inductively de-
fined over a set of atomic propositions AP by the following syntax:

ϕ ::= p | ¬ϕ |ϕ1 ∧ ϕ2 |©ϕ |ϕ1Uϕ2 ,

where p ∈ AP is an atomic proposition, ∧ (“and”) and ¬ (“not”) are logical
operators, and© (“next”) and U (“until”) are temporal operators. Other logical
connectives such as ∨ (“or”) and ⇒ can be defined: 1) ϕ1 ∨ϕ2:= ¬(¬ϕ1 ∧¬ϕ2),
and 2) ϕ1 ⇒ ϕ2 := ¬ϕ1∨ϕ2. Other temporal operators such as ♦ (“eventually”)
and � (“always”) can also be defined: 1) ♦ϕ := trueUϕ, and 2) �ϕ := ¬♦¬ϕ. A
propositional formula p comprises only of logical connectives over atomic propo-
sitions. If a propositional formula, p, is true at state q ∈ Q, we denote it as
q ` p.

Semantics: An LTL formula ϕ is evaluated over a run σ = q0q1 . . . of the
system. We denote ϕ holds at position j ≥ 0 of the run σ = q0q1 . . . by qj |= ϕ.
For a given set of atomic propositions AP and a run σ, the satisfaction of an
LTL formula ϕ is defined inductively: 1) for an atomic proposition p, qj |= p if
qj ` p, 2) qj |= ¬ϕ if it is not true that qj |= ϕ, 3) qj |= ϕ1 ∧ ϕ2 if both qj |= ϕ1

and qj |= ϕ2, 4) qj |= ©ϕ if qj+1 |= ϕ, and 5) qj |= ϕ1Uϕ2 if ∃k ≥ j such that
qk |= ϕ2 and ∀i, j ≤ i < k, qi |= ϕ1. Similarly, qj |= ♦ϕ if ∃k ≥ j such that
qk |= ϕ, and qj |= �ϕ if ∀k ≥ j, qk |= ϕ. A run σ satisfies ϕ, denoted by σ |= ϕ
if q0 |= ϕ.

Definition 11 (Minimum cut). Given a flow network G = (V,E), a source
node s ∈ V and a sink node t ∈ V , a cut (S, T) of G is such that s ∈ S and
t ∈ T , and S ∩ T = ∅ and S ∪ T = V . Cut edges are edges (u, v) ∈ E such that
u ∈ S and v ∈ T , and denote the sum of capacities of the cut edges as the cut
capacity: c(S, T) = Σu∈SΣv∈T c(u, v).

Definition 12 (Residual Network [7]). Given a flow network G = (V,E)
and a flow function f and capacity c, a residual network Gf is one that has
residual capacity function cf defined as follows,

cf (u, v) =


c(u, v)− f(u, v) if (u, v) ∈ E,
f(u, v) if(v, u) ∈ E,
0 otherwise.

(7)

18 A. Badithela and R.M. Murray

6.2 Descriptions of Subroutines of Algorithm 1

The Min-Cut-Edges subroutine takes as input a graph G, a list of propositions
p, and a non-empty set of augmenting paths for every source-sink pair (vi, vi+1)
such that 1 ≤ i ≤ n + 1, and returns as output the set of minimum-cut edges
on those augmenting paths. This information is then used in constructing the
problem data for the ILP. The Sequence-Flows subroutine takes as input a graph
G, a list of propositions p, and a parameter to indicate if Assumption 3 holds,
computes the combination of all augmenting flows (or all shortest augmenting
flows) that can result in a non-zero sequence flow from v1 to vn+1. It returns as
output the set of all sets of matrices that capture sequence-flow paths, A, a set
of Pkeep = {(Smi,1, . . . , Smn,n)|Smi,i ∈ Fi, 0 ≤ mi ≤ ki}, the total number of

combinations, |A|, and the maximum possible sequence flow value, f̃ , which is
determined when A is constructed.

6.3 Constraints of the Integer Linear Program (6)

The first constraint of the ILP, Acutx ≥ 1, enforces the requirement that each
path in P ∈ Pcut is constrained. Each row of Acut corresponds to a path P ∈ Pcut.
The q-th row of Acut is constructed as follows,

(Acut)q,r =

{
1 if Ecut(r) ∈ P = Pcut(q)

0 otherwise.
(8)

In the second and third constraints, Akeepx ≤ Dkeepb and b ≤ Akeepx, is used
to determine the variable b from the variable x. Each row of Akeep ∈ Bm×n

corresponds to some path P ∈ Smi,i, and Dkeep ∈ Bm×m is a diagonal matrix.
Suppose the q-th row of Akeep corresponds to a path P ∈ Smi,i for Pkeep =
(Sm1,1, . . . , Smn,n), and MCkeep(i) is the set of minimum-cut edges on some
path in Smi,i, then the q-th row is constructed as follows,

(Akeep)q,r :=

{
1, if Ecut(r) ∈ P ∩MCkeep(i).

0, otherwise.
(9)

The q-th diagonal entry of Dkeep stores the total number of minimum-cut edges
in the path corresponding to the q-th row of Akeep.

Dkeep := diag(Akeep1) (10)

These two constraints ensure that for some q ≤ n, bq = 1 iff at least one
minimum-cut edge on the path corresponding to the q-th row of Akeep is con-
strained, and bq = 0 iff none of the minimum-cut edges on the path corresponding
to the q-th row of Akeep are constrained.
The fourth and fifth constraints, Dff ≤ Af (1−b) and f ≥ Af (1−b)−Df1+1,
determine the flow value for a given set of sequence flow paths, Sf . Suppose
the q-th row of the matrix Af ∈ Bl×m corresponds to some sequence flow path

Formal Test Environment Synthesis 19

P = (P1, . . . , Pn) ∈ Sf . Let R = (r1, . . . , rn) denote the indices of the paths
P1, . . . , Pn according to the ordering of the paths constituting all Smi,i that is
consistent with the construction of Akeep and Dkeep. Then, the q-th row of Af

is defined as follows,

(Af)q,r :=

{
1, if r = ri for some 1 ≤ i ≤ n.
0, otherwise.

(11)

The q-th diagonal entry of matrix Df ∈ Bl×l stores the total number of ones in
the q-th row of Af , which is always n.

Df := diag(Af1). (12)

The first constraint of the ILP, Acutx ≥ 1, enforces the requirement that each
path in P ∈ Pcut is constrained. Each row of Acut corresponds to a path P ∈ Pcut.
The q-th row of Acut is constructed as follows,

(Acut)q,r =

{
1 if Ecut(r) ∈ P = Pcut(q)

0 otherwise.
(13)

In the second and third constraints, Akeepx ≤ Dkeepb and b ≤ Akeepx, is used
to determine the variable b from the variable x. Each row of Akeep ∈ Bm×n

corresponds to some path P ∈ Smi,i, and Dkeep ∈ Bm×m is a diagonal matrix.
Suppose the q-th row of Akeep corresponds to a path P ∈ Smi,i for Pkeep =
(Sm1,1, . . . , Smn,n), and MCkeep(i) is the set of minimum-cut edges on some
path in Smi,i, then the q-th row is constructed as follows,

(Akeep)q,r :=

{
1, if Ecut(r) ∈ P ∩MCkeep(i).

0, otherwise.
(14)

The q-th diagonal entry of Dkeep stores the total number of minimum-cut edges
in the path corresponding to the q-th row of Akeep.

Dkeep := diag(Akeep1) (15)

These two constraints ensure that for some q ≤ n, bq = 1 iff at least one
minimum-cut edge on the path corresponding to the q-th row of Akeep is con-
strained, and bq = 0 iff none of the minimum-cut edges on the path corresponding
to the q-th row of Akeep are constrained.
The fourth and fifth constraints, Dff ≤ Af (1−b) and f ≥ Af (1−b)−Df1+1,
determine the flow value for a given set of sequence flow paths, Sf . Suppose
the q-th row of the matrix Af ∈ Bl×m corresponds to some sequence flow path
P = (P1, . . . , Pn) ∈ Sf . Let R = (r1, . . . , rn) denote the indices of the paths
P1, . . . , Pn according to the ordering of the paths constituting all Smi,i that is

20 A. Badithela and R.M. Murray

consistent with the construction of Akeep and Dkeep. Then, the q-th row of Af

is defined as follows,

(Af)q,r :=

{
1, if r = ri for some 1 ≤ i ≤ n.
0, otherwise.

(16)

The q-th diagonal entry of matrix Df ∈ Bl×l stores the total number of ones in
the q-th row of Af , which is always n.

Df := diag(Af1). (17)

The fourth constraint ensures that if any of the constituent paths, P1, . . . , Pn,
in the q-th sequence flow path P = (P1, . . . , Pn) ∈ Sf (for 1 ≤ q ≤ l), is
constrained, then the flow value, fq = 0. The last constraint ensures that if
none of the constituent paths, P1, . . . , Pn, in the q-th sequence flow path P =
(P1, . . . , Pn) ∈ Sf (for 1 ≤ q ≤ l), are constrained, then the flow value, fq = 1.

6.4 Proofs

Proof of Lemma 1

Proof. A path Pcut ∈ Pcut can be constrained by removing at least one of its
constituent edges. The number of edges of Pcut that are not in some path P ∈ P
is non-zero, since otherwise it would imply that Pcut,i ∈ P, and would not need
to be constrained. The set C can simply be chosen by selecting one or more
edges on every Pcut ∈ Pcut that are not a part of some path in P.

Proof of Lemma 2

Proof. From Assumption 1, there is only one node in G′ for each proposi-
tion in characterizing the test specification (2), and node satisfying proposi-
tion pi is labeled as vi. For every i ∈ {1, · · · , n}, vi is the only state in test
graph G′ that is successor to all states v on paths Paths(vj<i, vn+1) for which
dG′(v, vn+1) = dG′(vi, vn+1) + 1. This is true by construction of the ILP con-
straints; all Paths(pj<i, g) on the test graph G′ pass through vi.
Let σ denote the test run of the agent starting at v1. We define a metric on
the test graph G′: mt := mint dG′(σt, vn+1) to be the closest distance to node
vn+1 in the first t steps of the test run. Note three properties of this met-
ric mt: (a) mt ≥ 0, (b) mt decreases: mt+1 := min{σt+1,mt} ≤ mt, and (c)
there exists a successor qt+1 to σt = qt on G′ such that dG′(qt+1, vn+1) =
dG′(qt, vn+1)− 1 that decreases mt. The metric mt starts at m0 ≥ dG′(v1, vn+1)
and decreases to 0 at the end of the test run. Thus, we can observe that
σ |= ♦(p1 ∧ ♦(p2 · · · ∧ ♦pn+1)) ∧ni=1 (¬pi+1U pi) ⇐⇒ σ |= ♦vn+1 .

Proof of proposition 2

Formal Test Environment Synthesis 21

Proof. By construction, the inputs to the ILP (6) are constructed based on a
maximal set of sequence flow paths from v1 to vn. By Lemma 1, at each iteration
of the ILP (6) from which constraint edges are chosen, the maximum sequence
flow value does not decrease at each iteration. Since there are a finite number of
edges there are a finite number of iterations until test graph is found. Therefore,
the Algorithm 1 returns a minimally constrained test graph.

6.5 Complexity of Subroutines in Algorithm 1

Since Find-Cut-Paths is determining a set of augmenting paths for a single
source-sink flow, it has a complexity of Edmonds-Karp algorithm, O(|V ||E|2)
time for graph G = (V,E) [7]. The complexity of Min-cut-Edges is O(|V ||E|3)
time since it runs a max-flow algorithm for each edge in the worst-case. The main
computational bottleneck is in the Sequence-Flows subroutine, which constructs
sets of augmenting flows by computing combinations of all simple paths and
all shortest paths. In the worst-case, enumerating all simple paths between two
nodes is O|V ! |, and enumerating all shortest paths is slightly better in several
cases.

