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Worst-Case Services and State-Based Scheduling
Yike Xu and Mark S. Andersland

Abstract—In this paper, we shed new light on a classical
problem: given a slot-timed, constant-capacity server, to provide
long-run service guarantees to competing flows of unit-sized
tasks, what short-run scheduling decisions must be made? We
model each flow’s long-run guarantee as a worst-case service that
maps each queued arrival vector recording the flow’s cumulative
task arrivals, including those initially queued, to a worst-case
acceptable departure vector lower-bounding its cumulative task
departures. We show these services to be states that can be
updated as tasks arrive and depart, and introduce state-based
scheduling. We find the schedulability condition that must be
preserved to maintain all flows’ long-run guarantees, and then
use this condition to identify, in each slot, all short-run scheduling
decisions that preserve schedulability.

This framework is general but computationally complex. To
reduce its complexity, we consider three specializations. On the
one hand, we show that when satisfactory short-run scheduling
decisions exist, some special ones can be efficiently identified by
maximizing the server’s capacity slack. On the other hand, we
show that a special class of worst-case services, min-plus services,
can be efficiently specified and updated using properties of the
min-plus algebra, and that this efficiency can be further improved
to verge on practical viability by restricting attention to a further
specialization, dual-curve services, which turn out to be dynamic
extensions of service curves.

Index Terms—Service guarantees, scheduling, cumulative vec-
tors, state-space approach, polymatroid theory, EDF schedules,
min-plus algebra, service curves.

I. INTRODUCTION

A constant-capacity server, shared by multiple task flows, is

a common resource allocation model. Within this model, given

the server’s limited capacity, a classical scheduling problem

can be formulated, namely that of deciding which tasks to

serve and which to defer to meet competing flow service

requests. Generally, service is a long-run concept in that

service guarantees cover, if not entireties, significant portions

of flow lifetimes. In contrast, scheduling is a short-run concept

in that scheduling decisions must be made slot-by-slot as

tasks arrive and depart. The challenge is to determine how

to maintain these long-run service guarantees using short-run

scheduling decisions. In this paper, we shed new light on this

problem by providing novel answers to two key questions:

What to guarantee? and How to guarantee it?

A. A General Framework

What to guarantee? This is foremost a question of service

specification because we can only guarantee what we can

specify. In [1], [2], [3], [4], cumulative curves were introduced
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to characterize long-run flow traffic. They become cumulative

vectors in slot-timed systems. In particular, arrival vectors

can be used to record a flow’s cumulative task arrivals, and

departure vectors, its cumulative task departures. We extend

the definition of arrival vectors to include initially queued

tasks and define a worst-case service to be a map from each

such queued arrival vector to a worst-case acceptable departure

vector. While this definition encompasses a wide spectrum of

guarantees, and leaves open endless intricacies, it is precisely

this generality that underlies our framework’s generality.

How to guarantee it? This is a question of methodology and

our answer is state-based scheduling. Our motivating insight

is that, fundamentally, the worst-case service guaranteed to

each flow is a state that can be updated as tasks arrive and

depart. The key to scheduling is then finding the schedulability

condition on the flows’ aggregate state necessary and sufficient

to ensure that all flows’ long-run guarantees can be met. Once

this condition is found, it can be used, on the one hand,

to admit or deny new service requests, and on the other, to

identify all feasible schedules, that is, all short-run scheduling

decisions that can be made without endangering any long-run

service guarantee, because all such decisions must preserve

schedulability. In this way, state-based scheduling allows us to

systematically identify all scheduling policies that can simul-

taneously guarantee all flows their respective services. This is

quite a contrast to the traditional approach according to which

scheduling policies are first proposed and only thereafter are

their capabilities for guaranteeing services examined, verified

and refined.

To find the schedulability condition, we introduce the con-

cept of the spectrum of a worst-case service. During any

period, the least capacity that must be reserved to guarantee

a worst-case service is specified by a spectral value. If all

guarantees are to be maintained, the total capacity to be

reserved, that is, the sum of the spectral values of all worst-

case services, cannot exceed the server’s capacity during the

given period. This turns out to be the schedulability condition

that we seek, and we use it to identify all feasible schedules.

The principal constraint imposed on the feasible schedules so

identified is determined by a baseline function that specifies

the least number of tasks that must be served from any given

subset of flows if, during every period, the sum of all spectral

values is to remain below the available capacity. The baseline

function is supermodular, so the polymatroid theory can be

applied. In particular, we show that when the total service is

fixed, the feasible schedules form a permutohedron, a special

polytope from polymatroid theory.

B. Three Specializations

A downside of our framework’s generality is its complexity.

This complexity is two-fold. On the one hand, to fully exploit

http://arxiv.org/abs/2108.06062v3
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the flexibility of selecting any feasible schedule, we must fully

determine a feasible permutohedron, which is combinatorially

difficult. On the other hand, worst-case services, as full-blown

maps between cumulative vectors, are challenging to specify

and update. To address these difficulties, but also for their own

merits, we consider three specializations: max-slack schedules,

min-plus services and dual-curve services.

Max-slack schedules maximize the server’s capacity slack,

that is, they leave maximum room for it to admit new service

requests. According to the schedulability condition, this is

achieved by simultaneously minimizing all sums of all spectral

values during all periods. This, with a little reflection, suggests

that the max-slack schedule is feasible if a feasible schedule

ever exists, and that its identification is independent of the

feasible permutohedron that contains it. Both conjectures will

be confirmed. Aggregating flows into classes so that, intra-

class, flows are max-slack scheduled, enables intermediate

tradeoffs of flexibility and efficiency, because when the total

service is fixed, the feasible class schedules form yet another

permutohedron, but with a lower dimension. When all flows’

worst-case services allow static deadlines to be assigned to

all tasks as they arrive, the max-slack schedule becomes the

well-known earliest-deadline-first (EDF) schedule.

Min-plus services are of interest because, using properties

of the min-plus algebra, they can be completely identified by

their spectra. To specify and update these services, instead of

an uncountably infinite full-blown map between cumulative

vectors, we need only specify and update a countably infinite

spectral matrix. Among all worst-case services that share the

same spectrum, there turns out to be one min-plus service

that is maximum in that it maps each queued arrival vector to

the maximum worst-case departure vector possible. Therefore,

every schedulable set of non-min-plus services is dominated

by a schedulable set of min-plus services. By upgrading the

former to the latter, we can then improve the services, simplify

their specification and update, and yet, preserve schedulability.

The efficiency of min-plus services can be further improved

to verge on practical viability by restricting attention to a

further specialization, dual-curve services. To specify and

update these services, instead of a spectral matrix, we need

only specify and update a pair of cumulative vectors, one static

and one dynamic. The reason that we call them dual-curve,

instead of dual-vector, services is to highlight their connection

to service curves. First suggested in [3], [4], service curves

were fully developed in [5]. Each, according to [5], can be

specified by a static cumulative vector. Adding a dynamic

vector, yields its dynamic extension, a dual-curve service. This

extension allows dual-curve services to be updated as tasks

arrive and depart, which is essential for state-based scheduling.

The rest of the paper is organized as follows. In Section

II, we introduce our service model. In Section III, we define

worst-case services and their spectra. In Sections IV and V,

we introduce state-based scheduling, find the schedulability

condition, and then use this condition to identify all feasible

schedules. In Sections VI, VII, and VIII, we introduce, respec-

tively, max-slack schedules, min-plus services and dual-curve

services. In Section IX, we conclude with remarks on possible

extensions. The paper also includes an appendix in which two
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Fig. 1. The service model, composed of a buffer system, a scheduler and a
constant-capacity server.

lemmas from polymatroid theory are proved for completeness.

II. THE SERVICE MODEL

Our service model is discrete in that time is slotted and

all tasks are of unit size. As illustrated in Figure 1, the tasks

arrive from n distinct flows indexed by Ω = {1, 2, . . . , n}.

Each flow’s tasks are buffered separately, either physically

or virtually. They, however, all share a single server with a

constant capacity of serving c tasks per slot, access to which

is controlled by a scheduler.

For each flow, indexed by ω ∈ Ω, at the beginning of slot

t, aω tasks arrive and are immediately queued behind the bω

tasks left unserved after slot t− 1. At this point, there are

qω := aω + bω (1)

tasks queued in flow ω’s buffer. During slot t, the scheduler

determines dω, the number of these tasks to serve. As tasks

cannot be served before they arrive,

dω ≤ qω. (2)

Within each flow, the service order is first-come-first-serve so

that, at the end of slot t, the first dω tasks queued in flow ω’s

buffer are served and depart, which leaves

ḃω = qω − dω (3)

tasks unserved after slot t. Then bω is a state variable that can

be updated using (3). As in the above equations, unless noted

otherwise, all variables are implicitly indexed by current slot

t. To index t+ 1, we add a dot, as in ḃω. To index t+ 2, we

add two dots, and so on.

The scheduler’s choices are constrained. Denoting the en-

semble of flow variables, [x1, x2, . . . , xn], by x[Ω], and the

sum,
∑

ω∈Ω x
ω , by x〈Ω〉, it follows that the selected schedule,

d[Ω], must satisfy the causality constraint,

d[Ω] ≤ q[Ω], (4)

which rewrites (2) in the ensemble form, and the capacity

constraint,

d〈Ω〉 ≤ c, (5)

which says that the total number of tasks served cannot exceed

the server’s capacity. We call d[Ω] that satisfies both (4) and

(5) a valid schedule. The scheduler may only select among

valid schedules.
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III. WORST-CASE SERVICES

In this section, we use cumulative vectors to define worst-

case services and show these services to be states that can be

updated as tasks arrive and depart. We also define the spectrum

of a worst-case service to specify the capacities to be reserved

for it.

A. Definition

A cumulative vector is a semi-infinite, non-decreasing vec-

tor that starts with 0. Let U be the set of cumulative vectors

and N be the set of natural numbers. Then x = [xj ]j∈N =
[x0, x1, x2, . . .] ∈ U if x0 = 0, and for all j ∈ N, xj ≤ xj+1.

For later uses, we also need two subsets of U,

U|x := {x ∈ U|x1 = x}, (6)

and

U〉x := {x ∈ U|x ≥ xδ}, (7)

where δ = [δj ]j∈N := [0, 1, 1, . . .] ∈ U, i.e.,

δj :=

{

0 if j = 0

1 if j > 0
. (8)

For each flow, we use the arrival vector, a = [aj ]j∈N ∈ U,

and the departure vector, d = [dj ]j∈N ∈ U, to record its

cumulative task arrivals and departures respectively. For all

j > 0, aj and dj count the tasks that, respectively, arrive and

depart during period [t, t+ j), that is, from slot t to t+ j− 1.

Here in referencing a generic flow, we suppress its flow index.

Notice that a and d completely characterize flow traffic in that

the arrival and departure slot of each task can be accurately

identified by them. To be precise, for all h > 0, let

τh(x) := max{j ∈ N|xj < h}. (9)

Then the hth task of a arrives in slot t+ τh(a), while that of

d departs in slot t+ τh(d).
Although it is up to the scheduler to determine the specific

relation between a and d, as tasks cannot be served before

they arrive, the number of departures during any given period

cannot exceed that of arrivals during the same period plus that

of remaining unserved tasks. That is to say, for all j ∈ N,

dj ≤ qj :=

{

0 if j = 0

aj + b if j > 0
, (10)

or in the vector form,

d ≤ q := a+ bδ, (11)

which is the vector extension of (2) and (1). By definition,

q ∈ U〉b. As b is entirely fixed by the flow’s past arrivals

and departures, q can be viewed as a bijective function of a

mapping U to U〉b. Comparing to a, it is as if the b tasks left

unserved in the buffer were miscounted by q as new arrivals,

and we call q the queued arrival vector.

A scheduler, through its scheduling decisions, maps each q

to some d. A natural way of service specification is then in

terms of a map from each q to a worst-case acceptable d.

q

d

Number of Tasks

Slot

Backlog Bound

Delay Bound

ψ(q)

O

O′

1 τh(q) τh(ψ(q))

d

q

h

A

Fig. 2. Performance bounds and the update rule of a worst-case service.

Definition 1: For a flow with b tasks left unserved in its

buffer, ψ : U〉b→ U is a worst-case service if

ψ(q) ≤ q for all q ∈ U〉b. (12)

The flow is said to be guaranteed worst-case service ψ if

d ≥ ψ(q) for all q ∈ U〉b. (13)

Since ψ is conditioned on b according to this definition,

whenever we refer to ψ, we implicitly refer to the pair, (ψ, b).
As illustrated in Figure 2, to guarantee ψ, d must lie between

q and ψ(q). This is impossible unless (12) holds because

otherwise, (11) and (13) would contradict each other. Subject

to this rather natural constraint, (12), a worst-case service is

but an arbitrary map between all queued arrival vectors and

their corresponding worst-case departure vectors. In principle,

to specify a worst-case service, we need only create a table

that specifies ψ(q) for each q. This is not practical in general

because such a table would contain an uncountably infinite

number of entries. Nonetheless, the theoretical possibility of

specifying services so broadly itself makes it possible for us to

frame the question of “What to guarantee?” in a most general

way.

In [1], [2], [3], [4], cumulative curves were shown to be

useful tools for performance analysis. The same methods can

be applied here with cumulative vectors. Consider first flow

backlogs. For all j > 0, the number of tasks left unserved

after slot t+ j − 1 is

bj := qj − dj , (14)

according to which, b1 = ḃ, b2 = b̈, and so on. Then, as

illustrated in Figure 2, if the flow is guaranteedψ, this backlog

is bounded by

bj ≤ qj − ψj(q) ≤ max
j>0

(qj − ψj(q)). (15)

Consider next task delays. Recall that, for all h > 0, the hth

task of d departs in slot t+ τh(d). Notice that this departure

corresponds to the hth task of q, instead of a, because the b
tasks left unserved after slot t − 1 have to be served before

any new arrival. One subtlety here is that there is not enough

information to determine when the b tasks arrived. However,
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if we disregard delays experienced prior to slot t and treat the

b tasks as if they were new arrivals, the hth task of d can be

viewed as arriving in t+ τh(q), so its delay is

θh := τh(d)− τh(q). (16)

Then, as illustrated in Figure 2, if the flow is guaranteed ψ,

this delay is bounded by

θh ≤ τh(ψ(q))− τh(q) ≤ max
h>0

(τh(ψ(q))− τh(q)). (17)

Both bounds in (15) and (17) are tied to a specific q, but

they prepare for the case that q is uncertain. In [1], [2], [3],

[4], q is confined to a deterministic subset of U〉b so that the

worst case of the above worst-case bounds can be determined.

Alternatively, if we can endow a probability measure on U〉b,
a probability distribution of the above bounds can be derived.

We can also design worst-case services to meet certain

performance bounds.

Example 2: Given b̄ ∈ N, let

ψUB(q) := (q − b̄δ)+ for all q ∈ U〉b, (18)

where x+ denotes max{x, 0}. We call ψUB a uniform-backlog

service, because by guaranteeing it, flow backlogs are bounded

by b̄ uniformly.

Example 3: Given θ̄ ∈ N, let

ψUD(q) := Rθ̄(q − bδ) + r for all q ∈ U〉b, (19)

where r ∈ U satisfies that

Rθ̄bδ ≤ r ≤ bδ, (20)

and R : U → U|0 is the right-shift operator defined by

[Rx]j+1 := xj . (21)

We call ψUD
a uniform-delay service, because by guarantee-

ing it, task delays are bounded by θ̄ uniformly. Notice that,

for the b tasks left unserved after slot t− 1, (20) ensures their

delays to be bounded between 0 and θ̄.

Using (15) and (17), we can even design worst-case services

to fine-tune the backlog bound for each slot and the delay

bound for each task, though we will not delve into the details

here.

B. The Update Rule

To find ψ(q), we need to know the entire q, but this is

not practical for the scheduler. In this paper, as in practice,

we assume the scheduler to be causal in the sense that it

cannot foresee future arrivals. Therefore, scheduling decisions

must be made when q is only partially known, which implies

that a causal scheduler, always assuming the worst, may, in

hindsight, over-guarantee services.

To be specific, we use x
[j]
= y to denote the relation that

xi = yi for all i ≤ j. Then, as long as q
[j]
= q′, the scheduler

simply cannot tell the difference between q and q′ before slot

t+ j. So it has to ensure

dj ≥ max{ψj(q), ψj(q
′)},

to ensure that worst-case service ψ can be guaranteed no mat-

ter whether q or q′ will realize. Applying this logic repeatedly,

it is easy to verify that to guarantee ψ, the scheduler has to

guarantee a second service, ψC, defined by

ψC
j (q) := max

0<i≤j
max
q′

[i]
=q

ψi(q
′) for all q ∈ U〉b and j > 0.

(22)

Clearly ψC ≥ ψ, i.e., ψC(q) ≥ ψ(q) for all q ∈ U〉b, so ψ

may be over-guaranteed.

By definition, ψC is not any service but one such that

ψC(q)
[j]
= ψC(q′) for all q, q′ ∈ U〉b, j ∈ N and q

[j]
= q′.

(23)

That is to say, ψC
j (q) depends on q1, q2, . . . , qj alone, and we

call ψC causal. For instance, it is easy to verify that both

uniform-backlog and uniform-delay services in Examples 2

and 3 are causal. According to our reasoning, for a causal

scheduler, it would not be restrictive at all to restrict all worst-

case services to be causal, though we will not do so here

because non-causality gives us the flexibility to specify each

ψ(q) independently.

When a tasks arrive in slot t, the possible range of a shrinks

from U to U|a, and consequently, due to (11) and (1), that of

q shrinks from U〉b to U|q. Now, for all q ∈ U|q, according

to (22),

ψC
1 (q) = max

q′
[1]
=q

ψ1(q
′) = max

q′∈U|q
ψ1(q

′).

Then a causal scheduler may only select

d ≥ p := max
q∈U|q

ψ1(q), (24)

to ensure that ψ can be guaranteed no matter which q ∈ U|q
will realize.

The immediate portion of ψ to be met by d is denoted by p
in (24), but what about the remaining portion? As we will see,

it turns out to be yet another worst-case service. Intuitively, as

illustrated in Figure 2, when d tasks depart, this allows a re-

expression of ψ(q) in a translated coordinate frame in which

the origin moves from O to O′ at (1, d) in the original frame.

Discounting the immediate portion met by d, ψ(q) is truncated

in this new frame. A new worst-case departure vector can then,

roughly speaking, be constructed by splicing the line segment

O′A to the truncated ψ(q), that is, replacing OA by O′A.

To formalize the above intuition, observe first that since the

counting process of d starts from slot t while that of ḋ starts

from t+1, dj+1 and ḋj count the numbers of tasks that depart

during periods [t, t+ j+1) and [t+1, t+ j+1) respectively.

Therefore, when d tasks depart in slot t, for all j ∈ N,

dj+1 = ḋj + d. (25)

Using (21), this can be rewritten in the vector form as

d = Rḋ+ dδ. (26)

Similar to (25), when a tasks arrive in slot t, aj+1 = ȧj + a,

so using (10), (1) and (3), we have

qj+1 = aj+1 + b = ȧj + q =

{

q if j = 0

q̇j + d if j > 0
. (27)
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Using (21) and (11), this can be rewritten in the vector form

as

q = Rȧ+ qδ = R(q̇ − ḃδ) + qδ. (28)

Observe next that to guarantee ψ, for all q ∈ U|q, there

must be d ≥ ψ(q). Then, as Rḋ ∈ U|0, it is immediate from

(26) that

ḋ ≥ R−1(ψ(q)− dδ)+, (29)

where R−1 : U|0 → U is the inverse of R so that

[R−1x]j = xj+1. (30)

Notice that (28) establishes q as a bijective function of q̇,

mapping U〉ḃ to U|q. This fact, together with (29), leads to

the following update rule.

Theorem 4: When a tasks arrive and d tasks depart in slot

t, if both (2) and (24) hold, that is, if q ≥ d ≥ p, the flow is

guaranteed worst-case service ψ if and only if for all q̇ ∈ U〉ḃ,

ḋ ≥ ψ̇(q̇) := R−1(ψ(q)− dδ)+ (31)

= R−1(ψ(R(q̇ − ḃδ) + qδ)− dδ)+, (32)

where ψ̇ is a worst-case service for the flow in slot t+ 1.

According to this theorem, ψ is a state that can be updated

to ψ̇, which is the remaining portion of ψ to be guaranteed

after slot t. Recall that ψ is conditioned on b, so ψ̇ is

conditioned on ḃ. Accordingly, whenever we update ψ to ψ̇,

we implicitly update (ψ, b) to (ψ̇, ḃ) through (31) and (3).

A class of worst-case services is update invariant if it is

preserved by the update rule, that is, if ψ belongs to the

class, so does ψ̇. For instance, using (18), (19) and (23),

it can be verified that uniform-backlog, uniform-delay and

causal services are all update invariant, which is not surprising

because if a property holds from slot t on, it must also hold

from t+ 1 on.

Proof of Theorem 4: The necessity of (31) follows

directly from the derivation of (29). We need only show its

sufficiency. As d ≥ p, (24) implies that (ψ(q)− dδ)+ ∈ U|0
for all q ∈ U|q, justifying the use of R−1 in (31). Now, if

(31) holds, for all q ∈ U|q, according to (26),

d = Rḋ+ dδ ≥ (ψ(q)− dδ)+ + dδ ≥ ψ(q).

Then ψ must be guaranteed.

It remains for us to show that ψ̇ is a worst-case service.

For all q̇ ∈ U〉ḃ and j > 0, using (31), (30), (12) and (27),

we have

ψ̇j(q̇) = (ψj+1(q)− d)+ ≤ (qj+1 − d)+ = q̇+j
(†)
= q̇j ,

where (†) holds because, according to (3), d ≤ q guarantees

that ḃ ≥ 0 and thus q̇j ≥ 0. It follows that ψ̇(q̇) ≤ q̇, so

according to Definition 1, ψ̇ is indeed a worst-case service.

C. The Spectrum

A full-blown map between cumulative vectors is hard to

comprehend. The concept of its spectrum helps us distill

essential information from it. The motivating question is:

for a causal scheduler, to guarantee ψ, how much capacity

must be reserved during any given period? According to (13),

dj ≥ ψj(q), while according to (10), di ≤ qi. So there has to

be

(dj − di)
+ ≥ (ψj(q)− qi)

+,

where (dj − di)
+ counts the number of tasks served during

period [t + i, t + j), being 0 by default if i ≥ j. Since this

applies to all q ∈ U〉b, it leads to the following definition.

Definition 5: Given worst-case service ψ, for all i, j ∈ N,

the spectral value of ψ indexed by i and j is

λij(ψ) := max
q∈U〉b

(ψj(q)− qi)
+, (33)

and we call the collection of all such values the spectrum of

ψ.

According to our reasoning, λij(ψ) is the least capacity

to be reserved during period [t + i, t + j) to ensure that ψ

can be guaranteed no matter which q ∈ U〉b will realize. If

ψ ≥ ψ′, i.e., ψ(q) ≥ ψ′(q) for all q ∈ U〉b, it is immediate

that λij(ψ) ≥ λij(ψ
′). Therefore, the better service to be

guaranteed, the more capacity to be reserved. Our choice of

the term here, spectrum, is fundamentally arbitrary. Still let us

contextualize it by providing an analogy to the spectrum of a

normal matrix. If N is a normal matrix, i.e., N †N = NN †,

and λmax is its eigenvalue with the maximum magnitude, it is

well known that

|λmax| = max
x 6=0

(||Nx|| ÷ ||x||).

Comparing this to (33), it is discernable that λmax, N and x

loosely corresponds to, respectively, λij(ψ), ψ and q in (33).

There is even a correspondence between operators ÷ and −.

In the so-called min-plus algebra to be introduced later, we use

+ to replace × in the standard algebra, so it is only natural

to replace ÷ by −.

We will denote λij(ψ) by λij when no confusion can be

introduced. For later uses, some basic properties of λij are

listed below.

Theorem 6: For all i, j ∈ N,

λij = 0 if i ≥ j, (34)

λij ≤ λi,j+1, (35)

λij ≥ λi+1,j , (36)

and

λij ≤ (λ0j − bδi)
+. (37)

Proof: Firstly, if i ≥ j, since ψj(q) ≤ ψi(q) ≤ qi,
according to (33), λij = 0. Secondly, since ψj(q) ≤ ψj+1(q)
and qi ≤ qi+1, according to (33), λij ≤ λi,j+1 and λij ≥
λi+1,j . Finally, since q ≥ bδ for all q ∈ U〉b, using (33), we

have

λij ≤ max
q∈U〉b

(ψj(q)− bδi)
+ =

(

max
q∈U〉b

ψj(q)− bδi

)+

.

But we also have

λ0j = max
q∈U〉b

ψj(q),

so (37) must be true.
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According to Theorem 4, we can update ψ to ψ̇. We will

denote λij(ψ̇) by λ̇ij . Then, using (33), (31) and (30), we

have
λ̇ij = max

q̇∈U〉ḃ
(ψ̇j(q̇)− q̇i)

+

(†)
= max
q∈U|q

([R−1(ψ(q)− dδ)+]j − q̇i)
+

= max
q∈U|q

(ψj+1(q)− d− q̇i)
+,

where (†) holds because, according to (28), q̇ ∈ U〉ḃ is

equivalent to q ∈ U|q. This implies that in the case that i = 0,

λ̇0j = max
q∈U|q

(ψj+1(q)−d)
+ =

(

max
q∈U|q

ψj+1(q)− d

)+

, (38)

and in the case that i > 0, according to (27),

λ̇ij = max
q∈U|q

(ψj+1(q)− qi+1)
+. (39)

Let us introduce

λij(ψ|q) := max
q∈U|q

(ψj(q)− qi)
+. (40)

which we will denote by λ̂ij . It allows us to rewrite (38) and

(39) as the next theorem.

Theorem 7: For all i, j ∈ N,

λ̇ij =

{

(λ̂0,j+1 − d)+ if i = 0

λ̂i+1,j+1 if i > 0
. (41)

According to this theorem, we can identify λ̇ij through λ̂ij ,

which is why the latter will play a key role subsequently.

Comparing (40) to (33), the only difference is that the range

of q shrinks from U〉b to U|q. For this reason, we call λ̂ij the

conditional spectral value of ψ and the collection of all such

values the conditional spectrum of ψ. For later uses, some

basic properties of λ̂ij are listed below.

Theorem 8: For all i, j ∈ N,

λ̂ij = 0 if i ≥ j, (42)

λ̂ij ≤ λ̂i,j+1, (43)

λ̂ij ≥ λ̂i+1,j , (44)

λ̂ij ≤ (λ̂0j − qδi)
+, (45)

λ̂1j = (λ̂0j − q)+, (46)

λ̂01 = p, (47)

and

λ̂ij ≤ λij . (48)

Proof: Firstly, (42), (43) and (44) are direct counterparts

of (34), (35) and (36) respectively, and they can be proved in

exactly the same way. Secondly, since qi ≥ qδi and q1 = q
for all q ∈ U|q, using (40), we have

λ̂ij ≤ max
q∈U|q

(ψj(q)− qδi)
+ =

(

max
q∈U|q

ψj(q)− qδi

)+

,

and

λ̂1j = max
q∈U|q

(ψj(q)− q1)
+ =

(

max
q∈U|q

ψj(q)− q

)+

.

But we also have

λ̂0j = max
q∈U|q

ψj(q),

so (45) and (46) must be true. Thirdly, comparing the last

equation above to (24), it is immediate that λ̂01 = p. Finally,

since U|q ⊂ U〉b, comparing (40) to (33), it is immediate that

λ̂ij ≤ λij .

Now let us revisit (41) to give it an intuitive interpretation.

By definition, both λ̇ij and λ̂i+1,j+1 are the least capacity

to be reserved during period [t + i + 1, t + j + 1), so they

should be identical. In the case that i = 0, however, λ̂1,j+1

has to compete with (λ̂0,j+1−d)
+ because λ̂0,j+1 is the least

capacity to be reserved during [t, t+ j+1), it is reduced by d
after slot t, and like λ̂1,j+1, this reduced capacity is also left

to be reserved during [t+ 1, t+ j + 1). It is λ̂1,j+1 that will

lose this competition because, according to (46) and (2),

λ̂1,j+1 = (λ̂0,j+1 − q)+ ≤ (λ̂0,j+1 − d)+,

which explains the curious absence of λ̂1,j+1 in (41). A

corollary is that

λ̇0j ≥ λ̂1,j+1, (49)

the lower bound of which is achieved when d = q.

IV. STATE-BASED SCHEDULING

In our service model, if each flow is guaranteed a worst-

case service, it is called a worst-case system. For all ω ∈ Ω,

let ψω
be the worst-case service guaranteed to flow ω, and

we denote the system by ψ[Ω], which can be viewed as the

aggregate state for all flows in the system. Recall that ψω is

conditioned on bω, so ψ[Ω], on b[Ω]. Accordingly, whenever

we refer to ψ[Ω], we implicitly refer to (ψ[Ω], b[Ω]).

Given ψ[Ω], can the server guarantee all flows their respec-

tive worst-case services simultaneously? If yes, how? There

is no problem if the server’s capacity is infinite, because we

can simply select d[Ω] ≥ p[Ω], ḋ[Ω] ≥ ṗ[Ω], d̈[Ω] ≥ p̈[Ω], and

so on. But since the server’s capacity is inevitably finite, we

need to be more strategic. Given any a[Ω], for d[Ω] ≥ p[Ω]

to be possible, due to capacity constraint (5), there must be

p〈Ω〉 ≤ c. But d[Ω] ≥ p[Ω] is not enough by itself, because to

further ensure the possibility for ḋ[Ω] ≥ ṗ[Ω], d[Ω] must also

induce ψ̇
[Ω]

such that given any ȧ[Ω], ṗ〈Ω〉 ≤ c. Even this

is not enough, because by the same logic, d[Ω] must induce

ψ̇
[Ω]

such that given any ȧ[Ω], there exists ḋ[Ω] ≥ ṗ[Ω] to

induce ψ̈
[Ω]

such that given any ä[Ω], p̈〈Ω〉 ≤ c. This can go

on indefinitely and the problem will soon manifest itself to

be unmanageable. Fortunately there is a neat solution to this

problem and the cornerstone of that solution lies in the idea

of state-based scheduling.

In the rest of this section, we first outline the general idea of

state-based scheduling. We then use the spectrum to formulate

the schedulability condition for a worst-case system, which is

the key to state-based scheduling.
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ψ̇
[Ω]

S1 S2 S3

New Service Requests

One-Slot Delay

a[Ω]

d[Ω]ψ[Ω]

Fig. 3. A basic operating cycle of state-based scheduling.

A. The General Idea

Since the server’s capacity is finite, no matter how smart

the scheduler is, it will not be able to guarantee an arbitrary

worst-case service. For instance, according to (18) and (19), it

is simply impossible to guarantee ψUB if q = (b̄+ c+1)δ or

ψUD if q = (θ̄c + 1)δ. We need some condition to tell what

is guaranteeable from what is not. Such a condition should be

able to perpetuate itself because a guaranteeable ψ[Ω] implies

a guaranteeable ψ̇
[Ω]

, a guaranteeable ψ̈
[Ω]

, and so on. This

motivates the following definition.

Definition 9: Given a condition on ψ[Ω]
, P, a valid sched-

ule, d[Ω], is a perpetuator of P if it meets (24) for all ω ∈ Ω,

i.e., d[Ω] ≥ p[Ω], and through (31), induces ψ̇
[Ω]

that will meet

P. We call P perpetuatable if ψ[Ω] meets P implies that given

any a[Ω], there must exist at least one perpetuator of P.

According to this definition, once perpetuatable conditions

are met, they can always be met. Perpetuatable conditions can

be rather trivial. For instance, it is perpetuatable to require

that ψω(qω) = 0 for all ω ∈ Ω and qω ∈ U|bω, where 0

is the all-zero vector, but this is nothing but a disguised way

to say that there should be no guarantee to any flow at all.

Perpetuatable conditions are also not unique. For instance, any

condition that is perpetuatable for a server with capacity c′ ≤ c
must also be so for that with capacity c. However, there does

exist a unique, non-trivial perpetuatable condition. To see this,

let P1 and P2 both be perpetuatable. By definition, if ψ[Ω]

meets “P1 or P2”, given any a[Ω], there must exist at least

one d[Ω] that is a perpetuator of “P1 or P2”. That is to say,

“P1 or P2” should also be perpetuatable, so the union of two

perpetuatable conditions is still perpetuatable, which leads to

the next definition.

Definition 10: The schedulability condition is the union of

all perpetuatable conditions. We call ψ[Ω] schedulable if it

meets the schedulability condition and call d[Ω] a feasible

schedule if it is a perpetuator of the schedulability condition.

The key to state-based scheduling is finding the schedulabil-

ity condition. Once it is found, state-based scheduling works

iteratively. Figure 3 illustrates a basic operating cycle of it:

S1 existing services together with, if any, newly admitted

services form a schedulable ψ[Ω];

S2 given ψ[Ω] and a[Ω], a feasible schedule, d[Ω], is selected;

and finally,

S3 given a[Ω] and d[Ω], ψ[Ω] is updated to a schedulable ψ̇
[Ω]

which, after a one-slot delay, is fed back to be used in

the next cycle.

B

Pareto Frontier

Schedulable Region

ψ2

ψ1

A

B′

D

D′

C

Fig. 4. A state-space path for a two-flow system.

Here the role of the schedulability condition is two-fold.

On the one hand, it is used to admit or deny new service

requests to ensure ψ[Ω], the current state, to be schedulable.

On the other hand, d[Ω] must be selected only among feasible

schedules to ensure ψ̇
[Ω]

, the next state, to remain schedulable.

It is enlightening to trace state-based scheduling in the state

space. In Figure 4, a path from state A to D is illustrated for

a two-flow system. Notice that all states visited never leave

the schedulable region encircled by the Pareto frontier, on

which we have to reduce the service guarantee to one flow

to improve that to the other. From this perspective, a state-

based scheduler works very much like a state-based regulator

that control engineers use to regulate an uncertain system. In

particular, a[Ω] corresponds to the uncertain noise that perturbs

the system; d[Ω], the control signal that tries to combat the

noise and regulate the state; and the schedulability condition,

the constraint on the state that the regulator tries to enforce

constantly.

One advantage of state-based scheduling is that it is fully

dynamic by its nature. Subject to the schedulability condition,

ψ[Ω] can be configured and reconfigured in each slot, that is,

worst-case services can be negotiated and renegotiated on the

fly. For instance, in Figure 4, the jump from state B to B′ is

due to the admission of a new service request from flow 2.

Another advantage is that through systematically identifying

all feasible schedules, state-based scheduling allows us to

identify, not one ad hoc policy, but all scheduling policies that

can simultaneously guarantee all flows their respective worst-

case services. Notice that although we do have the flexibility

to select any feasible schedule in each slot, different selections

will induce different future states. For instance, in Figure 4,

had a different feasible schedule been selected at C, the path

would have diverged to D′ and thus been entirely different

from that point on.

B. The Schedulability Condition

Whether we can fulfill the promise of state-based scheduling

hinges on whether we can find the schedulability condition.

Unfortunately, despite its central importance, the definition for

the schedulability condition is not constructive. An intelligent
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guess must be made in the first place, and this is where the

spectrum comes to the rescue.

Theorem 11: The schedulability condition for a worst-case

system, ψ[Ω], is that

λ
〈Ω〉
ij ≤ cij := (j − i)+c for all i, j ∈ N, (50)

where λ
〈Ω〉
ij is the short-hand for

∑

ω∈Ω λij(ψ
ω), and cij is

the server’s capacity during period [t + i, t+ j), being 0 by

default if i ≥ j. According to Definitions 10 and 9, this implies

that:

I1 ψ[Ω] is schedulable if λ
〈Ω〉
ij ≤ cij for all i, j ∈ N;

I2 a valid schedule, d[Ω], is a feasible schedule if d[Ω] ≥ p[Ω]

and it induces ψ̇
[Ω]

such that λ̇
〈Ω〉
ij ≤ ċij = ci+1,j+1 for

all i, j ∈ N, where ċij = ci+1,j+1 because both are the

server’s capacity during [t+ i+1, t+ j+1); and finally,

I3 if ψ[Ω]
is schedulable, given any a[Ω], there must exist at

least one d[Ω] that is a feasible schedule.

The first thing to notice here is that (50) is necessary for

ψ[Ω] to be schedulable. Recall that to guarantee ψω, λωij is

the least capacity to be reserved during period [t + i, t + j).
Since cij is the server’s capacity during the same period,

(50) basically says that during any period, the total capacity

to be reserved cannot exceed the server’s capacity, which is

necessary of course. Therefore, to prove the above theorem, we

need only show (50) to be perpetuatable, because according

to Definition 10, the schedulability condition is the weakest

among all perpetuatable conditions, while a necessary, perpet-

uatable condition has to be the weakest. It then all boils down

to establishing I3 in the above theorem, which we will leave

for the next section.

Even standing alone, (50) can be used as a normative

formula to guide the design of real multiplexing systems very

much like how various capacity formulas in the information

theory have been used to guide the design of real communi-

cation systems. In particular, it is easy to verify that (50) can

be rewritten as

c ≥ ρ(Ω) := max
i<j

λ
〈Ω〉
ij

j − i
, (51)

which implies that, if c < ρ(Ω), no matter how smart the

scheduler is, it is simply impossible to guarantee all flows

their respective worst-case services simultaneously.

We can extend the definition of ρ(Ω) in (51) to all Γ ⊆ Ω
so that

ρ(Γ) := max
i<j

λ
〈Γ〉
ij

j − i
, (52)

where we use x〈Γ〉 to denote
∑

ω∈Γ x
ω, with x〈φ〉 := 0. If

all flows in Γ are served by a single server, ρ(Γ) is the least

capacity to be possessed by this server to guarantee ψω for

all ω ∈ Γ.1 If each flow is served by a separate server, then,

1As ours is a discrete traffic model, ρ(Γ) should be rounded up to ⌈ρ(Γ)⌉.
But we will not do so here. Besides being a good approximation of ⌈ρ(Γ)⌉,
ρ(Γ) is also more tractable analytically. Furthermore, it can be shown that
ρ(Γ) is exactly the least capacity to be possessed, if we slightly tweak our
model so that a task can be fractionally served, though it still needs to arrive
and depart as a whole.

∑

ω∈Ω ρ({ω}) is the least total capacity to be possessed by

all these servers. Let us introduce

η :=

∑

ω∈Ω ρ({ω})

ρ(Ω)
. (53)

Clearly, the larger η is, the greater capacity utilization can

be achieved by multiplexing. For this reason, we call η the

multiplexing gain.

Let us use ΓΓ′ and Γ + Γ′ to denote Γ ∩ Γ′ and Γ ∪ Γ′

respectively. For all Γ,Γ′ ⊆ Ω and ΓΓ′ = φ, we have

ρ(Γ + Γ′) ≤ ρ(Γ) + ρ(Γ′), (54)

because

max
i<j

λ
〈Γ+Γ′〉
ij

j − i
=
λ
〈Γ+Γ′〉
i∗j∗

j∗ − i∗
=

λ
〈Γ〉
i∗j∗

j∗ − i∗
+

λ
〈Γ′〉
i∗j∗

j∗ − i∗

≤ max
i<j

λ
〈Γ〉
ij

j − i
+max

i<j

λ
〈Γ′〉
ij

j − i
,

where i∗ and j∗ maximize
λ
〈Γ+Γ′〉
ij

j−i
. It follows from (53) and

(54) that η ≥ 1. In particular, it is easy to see that η = 1 if for

all ω, ω′ ∈ Ω, λωij ∝ λω
′

ij , while η increases as λωij becomes

less proportional to λω
′

ij . Roughly speaking, the more diverse

ψ[Ω] becomes, the larger η is.

Example 12: Consider the case that for all ω ∈ Ω, bω = 0,

and for all qω ∈ U,

ψω(qω) =

{

Ri+θ̄ω

δ if qω = Riδ for some i ∈ N

0 otherwise
, (55)

which says that, if and only if the arrival traffic of flow ω
consists of a single task, the task will be served with a delay no

more than θ̄ω. Using (33), it is immediate that for all i, j ∈ N,

λωij =

{

1 if j − i > θ̄ω

0 if j − i ≤ θ̄ω
. (56)

Without loss of generality, assume that θ̄1 ≤ θ̄2 ≤ · · · ≤ θ̄n.

Then, using (52), it can be verified that

ρ({ω}) =
1

θ̄ω + 1
and ρ(Ω) = max

ω∈Ω

ω

θ̄ω + 1
. (57)

According to (53), η is now a function of θ̄ω’s. The more

diverse θ̄ω’s become, the larger η is. For instance, if θ̄1 =
θ̄2 = · · · = θ̄n, η = 1, while if θ̄1 + 1 = θ̄2+1

2 = · · · = θ̄n+1
n

,

η = 1 + 1
2 + · · ·+ 1

n
.

The complexity of many scheduling policies grows so fast

as the number of flows grows that, even if η is large enough

to justify multiplexing, a divide-and-conquer strategy remains

attractive. To be precise, let P ⊆ 2Ω be a partition of Ω, i.e.,
⋃

Γ∈P Γ = Ω and ΓΓ′ = φ for all distinct Γ,Γ′ ∈ P . If, for

each Γ ∈ P , all flows in Γ are served by a separate server,

then,
∑

Γ∈P ρ(Γ) is the least total capacity to be possessed by

all these servers. Similar to η, let us introduce

ηP :=

∑

ω∈Ω ρ({ω})
∑

Γ∈P ρ(Γ)
. (58)

Using (54) and (53), it is easy to verify that 1 ≤ ηP ≤ η. Now,

if we can identify some P such that maxΓ∈P |Γ| is sufficiently

small and ηP is sufficiently close to η, we can greatly reduce
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the scheduling complexity without sacrificing too much of the

multiplexing gain.

Example 13: In Example 12, consider the case that n = 3
and θ̄1 + 1 = θ̄2+1

2 = θ̄3+1
2 . Using (57), we have

ρ({1}) = 2ρ({2}) = 2ρ({3}) =
2

3
ρ({1, 2, 3}) =

1

θ̄1 + 1
,

so η = 4
3 . Using (52), we also have

ρ({1, 2}) = ρ({1, 3}) =
1

θ̄1 + 1
,

so ηP = 4
3 if P = {{1, 2}, {3}} or {{1, 3}, {2}}. In this way,

there is no loss of the multiplexing gain.

V. FEASIBLE SCHEDULES

In this section, we not only show that feasible schedules

exist but also identify all of them. To get a flavor of what lies

ahead, let us first look at the single-flow case. In this case, if

ψ is schedulable, (50) requires that

λij ≤ cij = (j − i)+c for all i, j ∈ N. (59)

According to I2 in Theorem 11, we need to identify d that

induces ψ̇ such that λ̇ij ≤ ci+1,j+1 for all i, j ∈ N. If ψ

is schedulable, this is satisfied automatically in the case that

i > 0, because using (41), (48) and (59), we have

λ̇ij = λ̂i+1,j+1 ≤ λi+1,j+1 ≤ ci+1,j+1.

So we need only focus on the case that i = 0. In this case,

according to (41), λ̇0j ≤ c1,j+1 implies that

c1,j+1 ≥ λ̇0j = (λ̂0,j+1 − d)+ ≥ λ̂0,j+1 − d,

which in turn implies that

d ≥ α := max
j∈N

(λ̂0,j+1 − c1,j+1). (60)

If d ≥ α, by reversing the above reasoning, it is easy to verify

that λ̇ij ≤ ci+1,j+1 for all i, j ∈ N. It is also immediate from

(60) and (47) that α ≥ λ̂01 = p. Then, according to I2 in

Theorem 11, d is a feasible schedule if α ≤ d ≤ min{q, c}.

This is impossible unless α ≤ q and α ≤ c. But fortunately,

both are guaranteed if ψ is schedulable because, using (60),

(46), (48) and (59), we have

α = q +max
j∈N

(λ̂0,j+1 − q − c1,j+1)

≤ q +max
j∈N

(λ̂1,j+1 − c1,j+1)

≤ q +max
j∈N

(λ1,j+1 − c1,j+1) ≤ q,

and using (60), (48) and (59), we also have

α ≤ max
j∈N

(λ0,j+1 − c1,j+1) ≤ max
j∈N

(c0,j+1 − c1,j+1) ≤ c.

Although the above single-flow case is highly simplified,

it nonetheless sketches the main skeleton for the general

multiple-flow case. In a certain sense, what we are going to do

next is but adding flesh to this skeleton. Of course, the general

case does pose new technical challenges. In particular, α as

defined in (60) will explode from a scalar to a full-blown set

function over Ω, and it is in dealing with such functions that

the polymatroid theory comes to our attention.

In the rest of this section, we first give a primer for

permutohedra, a special type of polytopes from polymatroid

theory. We then introduce the baseline function and use it to

show the set of feasible schedules to be a polytope that can

be sliced into a series of permutohedra. We also show how

to select a feasible schedule to enforce different priority or

fairness criteria.

A. Supermodular Functions and Permutohedra

The polymatroid theory was first developed in [6] and an

extensive survey can be found in [7]. The standard introduction

usually starts with submodular functions and polymatroids, but

tailored for our application, we will center on supermodular

functions and permutohedra instead.2

Definition 14: χ : 2Ω → N is a supermodular function

over Ω if χ(φ) = 0, and for all Γ,Γ′ ⊆ Ω,

χ(Γ) + χ(Γ′) ≤ χ(Γ + Γ′) + χ(ΓΓ′). (61)

If χ is supermodular, let

P(χ) := {d[Ω]|d〈Ω〉 = χ(Ω) and d〈Γ〉 ≥ χ(Γ) for all Γ ⊆ Ω},
(62)

and we call P(χ) the permutohedron generated by χ.

By definition, P(χ) is an (n − 1)-polytope potentially. To

investigate its faces, for all {φ,Ω} ⊆ S ⊆ 2Ω, let

PS(χ) := {d[Ω] ∈ P(χ)|d〈Γ〉 = χ(Γ) for all Γ ∈ S}.3 (63)

Each S identifies a potential face of P(χ). There are totally

22
n−2 such S’s, but for the vast majority of them, PS(χ) is

actually empty. So what makes it non-empty? To answer this

question, we need the concept of chains. Given {φ,Ω} ⊆ C ⊆
2Ω, we call C a chain if for all distinct Γ,Γ′ ∈ C, Γ ⊂ Γ′ or

Γ′ ⊂ Γ. The next lemma, the proof for which can be found in

the appendix, signifies the importance of this concept.

Lemma 15: For all {φ,Ω} ⊆ S ⊆ 2Ω, if PS(χ) is non-

empty, there must exist a chain, C, such that PS(χ) = PC(χ).
According to this lemma, each non-empty face of P(χ) can

be identified by a chain. Given a chain, C, if |C| = m + 1,

PC(χ) is a potential (n −m)-face of P(χ). Furthermore, we

call C complete if m = n, so each complete chain identifies

a potential 0-face, which is of particular interests because a

0-face is but a vertex.

A complete chain, and thus a potential vertex, can in turn

be identified by a permutation. A permutation over Ω is a

bijective map, π : Ω → {1, 2, . . . , n} ∈ ΠΩ, where ΠΩ is the

set of all such permutations. For all 0 ≤ i ≤ n, let

Γi
π := {ω ∈ Ω|π(ω) ≤ i}. (64)

2In Definition 14, replacing ≤ by ≥ in (61), we get the definition for a
submodular function. If χ is submodular, let

M(χ) := {d[Ω]|d〈Γ〉 ≤ χ(Γ) for all Γ ⊆ Ω},

and we call M(χ) the polymatroid generated by χ.
3If χ is supermodular, by definition, d〈φ〉 = 0 = χ(φ), and if d[Ω] ∈ P(χ),

according to (62), d〈Ω〉 = χ(Ω). Therefore, requiring {φ,Ω} ⊆ S is not
restrictive and we include it here only for completeness.
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Fig. 5. Two low-dimension permutohedra in the cases of n = 3 and n = 4.

Denoting π−1(i) by ωi
π, it is immediate that

Γi
π =

{

φ if i = 0

{ω1
π, ω

2
π, . . . , ω

i
π} if 1 ≤ i ≤ n

. (65)

On the one hand, this naturally leads to a complete chain,

Cπ : φ = Γ0
π ⊂ Γ1

π ⊂ · · · ⊂ Γn
π = Ω. (66)

On the other hand, let v
[Ω]
π (χ) be the unique solution to the

system of linear equations defined by

v
〈Γi

π〉
π (χ) = χ(Γi

π) for all 0 ≤ i ≤ n, (67)

so that

v
ωi

π
π (χ) = χ(Γi

π)− χ(Γi−1
π ) for all 1 ≤ i ≤ n. (68)

Then, according to (63), (66) and (67), either PCπ
(χ) = φ

or PCπ
(χ) = {v

[Ω]
π (χ)}. The latter turns out to be the case

because of the next lemma, the proof for which can also be

found in the appendix.

Lemma 16: For all Γ ⊆ Ω, v
〈Γ〉
π (χ) ≥ χ(Γ).

This lemma guarantees that v
[Ω]
π (χ) is indeed a vertex of

P(χ). Therefore, P(χ) is completely determined by the n! ver-

tices drawn from ΠΩ, which is where the name permutohedron

comes from in the first place.

Now let us turn back to a general chain, C, and define

ΠΩ
C := {π ∈ ΠΩ|C ⊆ Cπ}. (69)

Then, for all π ∈ ΠΩ
C , according to (63), PCπ

(χ) ⊆ PC(χ).

It follows that v
[Ω]
π (χ) is a vertex of PC(χ), so PC(χ) is

completely determined by the |ΠΩ
C | vertices drawn from ΠΩ

C .

A corollary is that PC(χ) is non-empty, so each chain does

identify a non-empty face of P(χ). Two low-dimension per-

mutohedra are illustrated in Figure 5. In the case of n = 3,

it is a hexagon with 6 vertices and 6 edges. In the case of

n = 4, it is a polytope with 24 vertices, 36 edges and 14
facets, among which 6 are rectangles and 8 are hexagons. In

the figure, notice how each vertex is indexed by a permutation

and how they are organized into each face according to these

indexing permutations.

Let us turn to the topology of the face system of P(χ).
Given two chains, C and C′, on the one hand, although C +
C′ might not be a chain, in the case that it is, PC(χ) and

PC′(χ) intersect at PC+C′(χ). On the other hand, CC′ is still a

chain and PCC′(χ) is the minimum face to which both PC(χ)
and PC′(χ) belong. As an application of this principle, let

us consider the neighborhood of a vertex. Two vertices are

neighbors if they belong to the same edge. An edge is but a

1-face, so for v
[Ω]
π (χ) and v

[Ω]
π′ (χ) to be neighbors, there must

be |CπCπ′ | = n. It is then easy to verify that there must exist

1 ≤ i∗ < n such that for all 1 ≤ i ≤ n,

π′(ωi
π) =







i∗ + 1 if i = i∗

i∗ if i = i∗ + 1

i if i 6= i∗, i∗ + 1

.

That is to say, the difference between π and π′ is no more than

a simple transposition, which is reflected by the arrangement

of vertices in Figure 5.

B. The Baseline Function

If ψ[Ω] is schedulable, given any a[Ω], how to identify at

least one d[Ω] that is a feasible schedule? According to I2

in Theorem 11, if d[Ω] is a feasible schedule, it must induce

ψ̇
[Ω]

such that λ̇
〈Ω〉
ij ≤ ci+1,j+1 for all i, j ∈ N. In the case

that i = 0, according to (41), this implies that, for all Γ ⊆ Ω,

c1,j+1 ≥ λ̇
〈Ω〉
0j ≥ λ̇

〈Γ〉
0j =

∑

ω∈Γ

(λ̂ω0,j+1 − dω)+ ≥ λ̂
〈Γ〉
0,j+1 − d〈Γ〉,

which in turn implies that

d〈Γ〉 ≥ α(Γ) := max
j∈N

(λ̂
〈Γ〉
0,j+1 − c1,j+1), (70)

the multiple-flow extension of (60).

In the multiple-flow case, however, we can do better than

(70) because other flows do exist. Let us use Γ to denote Ω\Γ.

Then, according to (49), λ̇
〈Γ〉
0j ≥ λ̂

〈Γ〉
1,j+1, the lower bound of

which is achieved when dω = qω for all ω ∈ Γ, that is, when

all other flows’ buffers are emptied. Therefore, λ̇
〈Ω〉
0j ≤ c1,j+1

implies that

c1,j+1 ≥ λ̇
〈Ω〉
0j = λ̇

〈Γ〉
0j + λ̇

〈Γ〉
0j ≥ λ̂

〈Γ〉
0,j+1 − d〈Γ〉 + λ̂

〈Γ〉
1,j+1,

which in turn implies that

d〈Γ〉 ≥ β(Γ) := max
j∈N

(λ̂
〈Γ〉
0,j+1 + λ̂

〈Γ〉
1,j+1 − c1,j+1). (71)

Comparing this to (70), it is immediate that β ≥ α, i.e.,

β(Γ) ≥ α(Γ) for all Γ ⊆ Ω.4 Since (71) specifies the least

number of tasks that must be served from any given subset of

flows, we call it the baseline constraint and β the baseline

function. Notice that β depends on a[Ω] implicitly because,

according to (40), λ̂ij depends on q, which in turn depends

on a.

Other formulations of β will be useful. For this purpose, let

us introduce pω = [pωj ]j∈N ∈ U, defined by

pωj := λ̂ω0j − λ̂ω1j
(†)
= min{λ̂ω0j , q

ω}, (72)

where (†) holds because, according to (46),

λ̂ω0j − λ̂ω1j = λ̂ω0j −max{λ̂ω0j − qω, 0} = min{λ̂ω0j , q
ω}.

4Although we will not show it here, it can be shown that

β(Γ) = max
Γ′⊆Γ

(α(Γ + Γ′)− q〈Γ
′〉),

which relates α and β directly.
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Here pω is a cumulative vector because, according to (43),

λ̂ω0j is non-decreasing with respect to j. Also our usage of the

same letter to denote scalar pω and vector pω here is justified

by the fact that, using (72), (42) and (47), we have

pω1 = λ̂ω01 − λ̂ω11 = λ̂ω01 = pω. (73)

Now, for all Γ ⊆ Ω, it is immediate from (71) and (72) that

β(Γ) = max
j∈N

(p
〈Γ〉
j+1 + λ̂

〈Ω〉
1,j+1 − c1,j+1) (74)

= p
〈Γ〉

jΓ
β
+1

+ λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1, (75)

where

jΓβ := argmax
j∈N

(p
〈Γ〉
j+1 + λ̂

〈Ω〉
1,j+1 − c1,j+1), (76)

with the understanding that jΓβ should be minimized whenever

there are ties in comparisons. This allows us to rewrite (71)

as

β(Γ) = λ̂
〈Γ〉

0,jΓ
β
+1

+ λ̂
〈Γ〉

1,jΓ
β
+1

− c1,jΓ
β
+1.

5 (77)

A fundamental property of β is then in order.

Theorem 17: If ψ[Ω] is schedulable, β is a supermodular

function over Ω. According to Definition 14, that is to say,

β(Γ) ≥ 0 for all Γ ⊆ Ω, β(φ) = 0, and for all Γ,Γ′ ⊆ Ω,

β(Γ) + β(Γ′) ≤ β(Γ + Γ′) + β(ΓΓ′). (78)

Proof: For all Γ ⊆ Ω, using (71) and (40), we have

β(Γ) ≥ (λ̂
〈Γ〉
0,j+1 + λ̂

〈Γ〉
1,j+1 − c1,j+1)|j=0 = λ̂

〈Γ〉
01 + λ̂

〈Γ〉
11 ≥ 0.

A corollary is that β(φ) ≥ 0. But if ψ[Ω] is schedulable, using

(75), (48) and (50), we also have

β(φ) = λ̂
〈Ω〉

1,jφ
β
+1

− c1,jφ
β
+1 ≤ λ

〈Ω〉

1,jφ
β
+1

− c1,jφ
β
+1 ≤ 0,

so β(φ) = 0.

For all Γ,Γ′ ⊆ Ω, without loss of generality, assume that

jΓβ ≥ jΓ
′

β . It follows that

p
〈Γ〉

jΓ
β
+1

+ p
〈Γ′〉

jΓ
′

β
+1

= p
〈Γ〉

jΓ
β
+1

+ p
〈ΓΓ′〉

jΓ
′

β
+1

+ p
〈ΓΓ′〉

jΓ
′

β
+1

≤ p
〈Γ〉

jΓ
β
+1

+ p
〈ΓΓ′〉

jΓ
β
+1

+ p
〈ΓΓ′〉

jΓ
′

β
+1

= p
〈Γ+Γ′〉

jΓ
β
+1

+ p
〈ΓΓ′〉

jΓ
′

β
+1
.

Then, according to (75) and (74),

β(Γ) + β(Γ′)

= p
〈Γ〉

jΓ
β
+1

+ λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1 + p

〈Γ′〉

jΓ
′

β
+1

+ λ̂
〈Ω〉

1,jΓ
′

β
+1

− c1,jΓ′

β
+1

≤ p
〈Γ+Γ′〉

jΓ
β
+1

+ λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1 + p

〈ΓΓ′〉

jΓ
′

β
+1

+ λ̂
〈Ω〉

1,jΓ
′

β
+1

− c1,jΓ′

β
+1

≤ β(Γ + Γ′) + β(ΓΓ′).

Two more important properties of β are listed below.

5It is also easy to derive two more formulations of β, i.e.,

β(Γ) = max
j∈N

(λ̂
〈Ω〉
0,j+1 − p

〈Γ〉
j+1 − c1,j+1)

= λ̂
〈Ω〉

0,jΓ
β
+1

− p
〈Γ〉

jΓ
β
+1

− c1,jΓ
β
+1.

Theorem 18: For all Γ ⊆ Ω and Γ′ ⊆ Γ,

β(Γ + Γ′)− β(Γ′) ≤ q〈Γ〉. (79)

If ψ[Ω] is schedulable,

β(Ω) ≤ c. (80)

Proof: On the one hand, according to (75),

β(Γ + Γ′) = p
〈Γ+Γ′〉

j
Γ+Γ′

β
+1

+ λ̂
〈Ω〉

1,jΓ+Γ′

β
+1

− c
1,jΓ+Γ′

β
+1
.

On the other hand, according to (74),

β(Γ′) ≥ p
〈Γ′〉

j
Γ+Γ′

β
+1

+ λ̂
〈Ω〉

1,jΓ+Γ′

β
+1

− c
1,jΓ+Γ′

β
+1
.

Therefore, if Γ′ ⊆ Γ, using (72), we have

β(Γ+Γ′)−β(Γ′) ≤ p
〈Γ+Γ′〉

j
Γ+Γ′

β
+1

−p
〈Γ′〉

j
Γ+Γ′

β
+1

= p
〈Γ〉

j
Γ+Γ′

β
+1

≤ q〈Γ〉.

If ψ[Ω] is schedulable, using (77), (48) and (50), we also have

β(Ω) = λ̂
〈Ω〉

0,jΩ
β
+1

− c1,jΩ
β
+1 ≤ λ

〈Ω〉

0,jΩ
β
+1

− c1,jΩ
β
+1

≤ c0,jΩ
β
+1 − c1,jΩ

β
+1 = c.

Finally let us introduce an interesting property of jΓβ .

Theorem 19: For all Γ,Γ′ ⊆ Ω, jΓ
′

β ≤ jΓβ if Γ′ ⊆ Γ.

According to (74), to calculate β(Γ), we need only identify

jΓβ . Then, according to the above theorem, to calculate β
systematically, we can proceed in the following way. Starting

with jΩβ , we identify firstly all jΓβ ’s with |Γ| = n−1, secondly

all those with |Γ| = n− 2, thirdly all those with |Γ| = n− 3,

and so on. This guarantees that all supersets of Γ will be

visited before Γ so that jΓβ is always thoroughly bounded. In

particular, as we proceed, if we find jΓβ = 0, set jΓ
′

β = 0 for

all Γ′ ⊆ Γ.

Proof of Theorem 19: If Γ′ ⊆ Γ, for all j > jΓβ ,

p
〈Γ′〉
j+1 − p

〈Γ′〉

jΓ
β
+1

≤ p
〈Γ′〉
j+1 − p

〈Γ′〉

jΓ
β
+1

+ p
〈ΓΓ′〉
j+1 − p

〈ΓΓ′〉

jΓ
β
+1

= p
〈Γ〉
j+1 − p

〈Γ〉

jΓ
β
+1

(†)

≤ (λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1)− (λ̂

〈Ω〉
1,j+1 − c1,j+1),

where (†) holds because, according to (76),

p
〈Γ〉

jΓ
β
+1

+ λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1 ≥ p

〈Γ〉
j+1 + λ̂

〈Ω〉
1,j+1 − c1,j+1.

Then, for all j > jΓβ ,

p
〈Γ′〉

jΓ
β
+1

+ λ̂
〈Ω〉

1,jΓ
β
+1

− c1,jΓ
β
+1 ≥ p

〈Γ′〉
j+1 + λ̂

〈Ω〉
1,j+1 − c1,j+1,

so jΓ
′

β ≤ jΓβ because, in using (76) to identify jΓ
′

β , jΓ
′

β should

be minimized.
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C. The Feasible Polytope and Feasible Permutohedra

The importance of the baseline constraint, (71), is signified

by the next theorem.

Theorem 20: If ψ[Ω] is schedulable, a valid schedule, d[Ω],

is a feasible schedule if and only if d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω.

Proof: The necessity of this condition follows directly

from the derivation of (71). To show its sufficiency, according

to I2 in Theorem 11, we need only show that it implies that

d[Ω] ≥ p[Ω] and d[Ω] induces ψ̇
[Ω]

such that λ̇
〈Ω〉
ij ≤ ci+1,j+1

for all i, j ∈ N. If d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω, for all ω ∈ Ω,

using (74), (42) and (73), we have

dω ≥ β({ω}) ≥ (pωj+1+λ̂
〈Ω〉
1,j+1−c1,j+1)|j=0 = pω1+λ̂

〈Ω〉
11 = pω,

i.e., d[Ω] ≥ p[Ω].

Let us move on to λ̇
〈Ω〉
ij . In the case that i = 0, on the

one hand, using (41) and repeatedly applying the max-plus

distributive law, i.e., max{x, y}+ z = max{x+ z, y+ z}, we

have

λ̇
〈Ω〉
0j =

∑

ω∈Ω

max{λ̂ω0,j+1 − dω, 0} = max
Γ⊆Ω

(λ̂
〈Γ〉
0,j+1 − d〈Γ〉).

On the other hand, if d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω, using (71)

and (40), we also have

d〈Γ〉 ≥ β(Γ) ≥ λ̂
〈Γ〉
0,j+1 + λ̂

〈Γ〉
1,j+1 − c1,j+1 ≥ λ̂

〈Γ〉
0,j+1 − c1,j+1.

Therefore,

λ̇
〈Ω〉
0j = max

Γ⊆Ω
(λ̂

〈Γ〉
0,j+1 − d〈Γ〉) ≤ c1,j+1.

In the case that i > 0, if ψ[Ω] is schedulable, according to

(41), (48) and (50),

λ̇
〈Ω〉
ij = λ̂

〈Ω〉
i+1,j+1 ≤ λ

〈Ω〉
i+1,j+1 ≤ ci+1,j+1.

It follows that λ̇
〈Ω〉
ij ≤ ci+1,j+1 for all i, j ∈ N.

We use F to denote the set of feasible schedules. If ψ[Ω] is

schedulable, according to the above theorem, F is completely

determined by three linear constraints, (4), (5) and (71). So it is

an n-polytope in general, and we call it the feasible polytope.

For the two-flow case illustrated in Figure 6, F is the pentagon,

ABCDE, for which, intuitively, the causality and capacity

constraints enclose from above, while the baseline constraint

encloses from below. For a three-flow case, it will look like a

diamond. But in general, what is the structure of F?

Our hunch is that somehow F should be related to permu-

tohedra because β is supermodular. The problem is that d〈Ω〉

should remain constant in a permutohedron, which is not the

case for F. This motivates us to intersect F with a hyperplane,

Hµ := {d[Ω]|d〈Ω〉 = µ}. (81)

The intersection, Fµ := F∩Hµ, turns out to be a permutohe-

dron.

For clarity, if d[Ω] ∈ Hµ, we denote it by d
[Ω]
µ so that by

definition, d
〈Ω〉
µ = µ. Now, if d

[Ω]
µ ∈ Fµ, it has to meet (4), (5)

and (71). As a result, for Fµ to be non-empty, there has to be

β(Ω) ≤ µ ≤ min{c, q〈Ω〉}. (82)

d2

d1q1β({1})

β({2})

q2

β({1, 2})

c

µ

A

B C

D

E
A′

B′

Fig. 6. A feasible polytope in the two-flow case.

We call such a µ feasible. If ψ[Ω] is schedulable, it is immedi-

ate from (80) and (79) that β(Ω) ≤ c and β(Ω) ≤ q〈Ω〉, so at

least one feasible µ must exist. Also, if d
[Ω]
µ ∈ Fµ, since (71)

and (4) imply that d
〈Γ〉
µ ≥ β(Γ) and d

〈Γ〉
µ + q〈Γ〉 ≥ d

〈Ω〉
µ = µ,

for all Γ ⊆ Ω,

d〈Γ〉µ ≥ βµ(Γ) := max{β(Γ), µ− q〈Γ〉}. (83)

It is then fundamental that, like β, βµ is supermodular.

Theorem 21: If ψ[Ω] is schedulable and µ is feasible, βµ is

a supermodular function over Ω. According to Definition 14,

that is to say, βµ(Γ) ≥ 0 for all Γ ⊆ Ω, βµ(φ) = 0, and for

all Γ,Γ′ ⊆ Ω,

βµ(Γ) + βµ(Γ
′) ≤ βµ(Γ + Γ′) + βµ(ΓΓ

′). (84)

Proof: If ψ[Ω] is schedulable, according to Theorem 17,

β is supermodular. For all Γ ⊆ Ω, it is immediate from (83)

that βµ(Γ) ≥ β(Γ) ≥ 0. In addition, β(φ) = 0, while if µ is

feasible, µ ≤ q〈Ω〉. Therefore, according to (83),

βµ(φ) = max{β(φ), µ− q〈Ω〉} = 0.

As to (84), we need only consider the following four cases:

C1 if βµ(Γ) = β(Γ) and βµ(Γ
′) = β(Γ′), (84) follows

directly from (78);

C2 if βµ(Γ) = µ− q〈Γ〉 and βµ(Γ
′) = µ− q〈Γ

′〉,

βµ(Γ) + βµ(Γ
′) = µ− q〈Γ〉 + µ− q〈Γ

′〉

= µ− q〈Γ+Γ′〉 + µ− q〈ΓΓ
′〉

≤ βµ(Γ + Γ′) + βµ(ΓΓ
′);

C3 if βµ(Γ) = µ− q〈Γ〉 and βµ(Γ
′) = β(Γ′),

βµ(Γ) + βµ(Γ
′) = µ− q〈Γ〉 + β(Γ′)

(†)

≤ µ− q〈Γ〉 + q〈ΓΓ
′〉 + β(ΓΓ′)

= µ− q〈Γ+Γ′〉 + β(ΓΓ′)

≤ βµ(Γ + Γ′) + βµ(ΓΓ
′),
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where (†) holds because β(Γ′) − β(ΓΓ′) ≤ q〈ΓΓ
′〉

according to (79); and finally,

C4 if βµ(Γ) = β(Γ) and βµ(Γ
′) = µ − q〈Γ

′〉, this is

symmetrical to C3.

In all cases, (84) must hold.

If d
[Ω]
µ ∈ Fµ, (83) implies that

d〈Ω〉
µ = βµ(Ω)

(†)
= µ and d〈Γ〉µ ≥ βµ(Γ) for all Γ ⊆ Ω, (85)

where (†) holds because, according to (83) and (82),

βµ(Ω) = max{β(Ω), µ} = µ. (86)

That is to say, d
[Ω]
µ ∈ P(βµ), so Fµ ⊆ P(βµ). In fact, Fµ is

exactly P(βµ) as shown by the next theorem.

Theorem 22: If ψ[Ω] is schedulable and µ is feasible,

Fµ = P(βµ). (87)

Since P(βµ) is non-empty, by proving this theorem, we will

for the first time establish I3 in Theorem 11, that is, establish

the existence of feasible schedules, and thus finally prove that

theorem. We call P(βµ) the feasible permutohedron under

µ, which is line segment A′B′ in Figure 6. Although each

feasible permutohedron is but one slice of F, by putting all

of them together, we can reassemble the entire F. Notice that

P(βµ) could be highly degenerate. For instance, in the case

that µ = q〈Ω〉 ≤ c, it shrinks to a single point, q[Ω].6

Proof of Theorem 22: We need only show that P(βµ) ⊆
Fµ, so we need only show that (85) implies (4), (5) and (71),

i.e., d
[Ω]
µ ≤ q[Ω], d

〈Ω〉
µ ≤ c, and d

〈Γ〉
µ ≥ β(Γ) for all Γ ⊆ Ω.

Firstly, according to (85) and the definition of βµ in (83),

d
〈Γ〉
µ ≥ βµ(Γ) ≥ β(Γ). Secondly, according to (85) and (82),

d
〈Ω〉
µ = µ ≤ c. Finally, for all ω ∈ Ω, using (85) and the

definition of βµ in (83), we have

dωµ = d〈Ω〉
µ − d〈{ω}〉

µ ≤ µ− βµ({ω})

= µ−max{β({ω}), µ− qω} ≤ qω,

i.e., d
[Ω]
µ ≤ q[Ω].

D. How to Select a Feasible Schedule?

According to Theorem 22, to select a feasible schedule,

we can first select a feasible µ, which fixes the total service,

and then select d
[Ω]
µ from P(βµ). But what does it mean by

selecting different points from P(βµ)? Let us start with its

vertices. Recall that, given π ∈ ΠΩ, the vertex identified by it

is v
[Ω]
π (βµ). It is immediate from (67) and (85) that

v
〈Γi

π〉
π (βµ) = βµ(Γ

i
π) = min

d
[Ω]
µ ∈P(βµ)

d
〈Γi

π〉
µ for all 0 ≤ i ≤ n.

(88)

This, according to (65), essentially says that, by selecting

v
[Ω]
π (βµ), firstly d

ω1
π

µ is minimized, secondly d
ω1

π
µ + d

ω2
π

µ is

minimized, thirdly d
ω1

π
µ + d

ω2
π

µ + d
ω3

π
µ is minimized, and so on.

Then a flow-by-flow priority order is enforced. In particular,

6In general, P(βµ) is degenerate if not all its n! vertices are distinct from
each other. Although we will not show it here, it can be shown that, due to
the constant-capacity nature of our capacity model, P(βµ) is almost always
degenerate to a rather significant degree.

π(ω) can be interpreted as a priority index so that the larger it

is, the higher priority flow ω enjoys. Priorities, however, may

not be our only concerns. For instance, sometimes we may

value fairness more dearly. In that case, let us consider the

vertex centroid of P(βµ), i.e.,

v
[Ω]
F (βµ) :=

1

n!

∑

π∈ΠΩ

v[Ω]
π (βµ). (89)

Intuitively, v
[Ω]
F (βµ) is fair in that it gives each vertex, each en-

forcing a unique flow-by-flow priority order, an equal weight.7

Also worth noting is an alternative approach to selecting

a feasible schedule. In the case that µ = β(Ω), using (83),

it is easy to verify that βµ = β, i.e., βµ(Γ) = β(Γ) for all

Γ ⊆ Ω, because β(Ω) − β(Γ) ≤ q〈Γ〉 according to (79). In

this case, then, P(βµ) = P(β), and we call P(β) the baseline

permutohedron. It is the bottom face of F, which is line

segmentAB in Figure 6. Now, to select a feasible schedule, we

can first select d
[Ω]
∗ from P(β), and then select d[Ω] such that

d
[Ω]
∗ ≤ d[Ω] ≤ q[Ω] and d〈Ω〉 ≤ c. This second step requires

nothing but a simple allocation of the excess capacity that

amounts to c − β(Ω). For instance, the famous generalized-

processor-sharing (GPS) policy, as discussed in [3], [4], can

be applied here to allocate the excess capacity according to

the ratios determined by d
[Ω]
∗ . The validity of this approach is

assured by the next theorem.

Theorem 23: If ψ[Ω] is schedulable, a valid schedule, d[Ω],

is a feasible schedule if and only if there exists d
[Ω]
∗ ∈ P(β)

such that d[Ω] ≥ d
[Ω]
∗ .

Proof: If there exists d
[Ω]
∗ ∈ P(β) such that d[Ω] ≥ d

[Ω]
∗ ,

by definition, d〈Γ〉 ≥ d
〈Γ〉
∗ ≥ β(Γ) for all Γ ⊆ Ω. Therefore,

according to Theorem 20, this condition is sufficient. To show

its necessity, we will show that if d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω,

there is always a direction for d[Ω] to descend until it lands

on P(β).
If d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω, notice that in the case that

d〈Γ〉 = β(Γ) and d〈Γ
′〉 = β(Γ′), according to (78),

d〈Γ+Γ′〉 + d〈ΓΓ
′〉 = d〈Γ〉 + d〈Γ

′〉

= β(Γ) + β(Γ′)

≤ β(Γ + Γ′) + β(ΓΓ′) ≤ d〈Γ+Γ′〉 + d〈ΓΓ
′〉.

Since this is impossible unless d〈Γ+Γ′〉 = β(Γ + Γ′) and

d〈ΓΓ
′〉 = β(ΓΓ′), d〈Γ〉 = β(Γ) and d〈Γ

′〉 = β(Γ′) imply that

d〈Γ+Γ′〉 = β(Γ + Γ′). Let Γ∗ be the union of all Γ ⊆ Ω such

that d〈Γ〉 = β(Γ). Then there has to be d〈Γ∗〉 = β(Γ∗). If

d〈Ω〉 > β(Ω), Γ∗ ⊂ Ω, and at least one ω∗ /∈ Γ∗ must exist.

By construction, d〈Γ〉 > β(Γ) for all Γ ∋ ω∗, so dω∗ can

be reduced until d〈Γ〉 = β(Γ) for some Γ ∋ ω∗. If there is

still d〈Ω〉 > β(Ω), we can repeat the above procedure to find

another direction, ω∗∗, for d[Ω] to descend. This descending,

while keeping d〈Γ〉 ≥ β(Γ) for all Γ ⊆ Ω, can continue until

7The definition of v
[Ω]
F (βµ) coincides with that of the Shapley value from

cooperative game theory. In particular, for all ω ∈ Ω, it is easy to verify that

vωF (βµ) =
∑

Γ⊆{ω}

|Γ|!(n− |Γ| − 1)!

n!
(βµ(Γ + {ω}) − βµ(Γ)),

which is the classical formulation of the Shapley value.
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d〈Ω〉 = β(Ω), which, by definition, guarantees d[Ω] to land on

some d
[Ω]
∗ ∈ P(β) eventually.

VI. MAX-SLACK SCHEDULES

So far we have completed the introduction of our general

framework. A downside to its generality is its complexity. One

source of this complexity comes from the fact that, given a

feasible µ, to fully exploit the flexibility of selecting any d
[Ω]
µ

from P(βµ), for instance, of selecting v
[Ω]
F (βµ) as defined in

(89), we need to calculate all 2n values of βµ, which is a

daunting task to say the least and actually combinatorially

forbidden in the higher dimensional case. Much of this cal-

culation, however, can be avoided by introducing max-slack

schedules and their generalization.

According to I2 in Theorem 11, a feasible schedule has to

keep λ̇
〈Ω〉
ij ≤ ċij for all i, j ∈ N. This motivates the following

question:

Q1 Among all valid schedules in Hµ, is there one that

minimizes λ̇
〈Ω〉
ij for all i, j ∈ N simultaneously?

Such a minimizer would be as good a candidate for a feasible

schedule as any, but does it exist? On the surface, given

the dimensionality involved, there seems to be no reason to

believe its existence. Nonetheless we will show its existence

by explicitly constructing a max-slack schedule. We will also

show it to be a feasible schedule if Fµ is non-empty. Since Fµ

is non-empty if µ is feasible, a max-slack schedule is feasible

if µ is feasible.

In constructing a max-slack schedule, as we will see soon,

no calculation of βµ is required. But by thus avoiding all

calculation of βµ, we are also stuck with a very special feasible

schedule and lose all the flexibility promised by our general

framework. So is there a way to explore the full flexibility-

efficiency continuum instead of dwelling on either pole of it?

We start by aggregating flows into classes. Let P be the

partition of Ω according to which flows are aggregated. When

it is used as an index set, following our convention, we

denote the ensemble vector of all xΓ’s by x[P], and the sum,
∑

Γ∈P x
Γ, by x〈P〉. Now, for each Γ ∈ P , let νΓ be the total

service to all flows in class Γ so that, given ν[P], schedules

must only be selected from

H(ν[P]) := {d[Ω]|d〈Γ〉 = νΓ for all Γ ∈ P}. (90)

We call ν[P] a class schedule. Let µ = ν〈P〉, and for clarity,

we denote ν[P] by ν
[P]
µ . It is immediate that H(ν

[P]
µ ) ⊆ Hµ.

A new question is then raised:

Q2 Among all valid schedules in H(ν
[P]
µ ), is there one that

minimizes λ̇
〈Ω〉
ij for all i, j ∈ N simultaneously?

By extending the answer to Q1, we will construct this min-

imizer by generalizing the max-slack schedule so that, intra-

class, flows are max-slack scheduled. We will also show it to

be a feasible schedule if F(ν[P]
µ ) := F∩H(ν

[P]
µ ) is non-empty.

But:

Q3 What makes F(ν[P]
µ ) non-empty?

To answer Q3, let us introduce

βP
µ (S) := βµ(Σ(S)) for all S ⊆ P , (91)

where Σ(S) is the short-hand for
⋃

Γ∈S Γ. By definition, βP
µ

is the sampling of βµ on the σ-algebra generated by P . It is

easy to verify that, like βµ, βP
µ is supermodular, and it turns

out that F(ν[P]
µ ) is non-empty if and only if ν

[P]
µ ∈ P(βP

µ ).
Since P(βP

µ ) is a lower dimensional projection of P(βµ),
by judiciously partitioning Ω to adjust the resolution of this

projection, we will be able to trade off flexibility for efficiency

intermediately.

In the rest of this section, we answer Q1, Q2 and Q3 by

enriching the above outline with rigor and details. We also

interpret max-slack schedules in terms of worst-case deadlines.

This leads us to compare them with EDF schedules, which in

turn motivates the introduction of deadline-rigid services.

A. Answering Q1

To answer Q1, we need only focus on the case that i = 0,

because in the case that i > 0, according to (41), λ̇
〈Ω〉
ij is

constant with respect to d
[Ω]
µ . In the case that i = 0, it is

immediate from (41) that

λ̇
〈Ω〉
0j (d[Ω]

µ ) =
∑

ω∈Ω

(λ̂ω0,j+1 − dωµ)
+ ≥ (λ̂

〈Ω〉
0,j+1 − µ)+, (92)

where we spell λ̇
〈Ω〉
ij as an explicit function of d

[Ω]
µ . It is easy

to verify that the above lower bound can be achieved when

for all ω ∈ Ω and j ∈ N,

{

λ̂ω0,j+1 ≤ dωµ if λ̂
〈Ω〉
0,j+1 ≤ µ

λ̂ω0,j+1 ≥ dωµ if λ̂
〈Ω〉
0,j+1 > µ

, (93)

because when this is satisfied, both ends of (92) equal 0 if

λ̂
〈Ω〉
0,j+1 ≤ µ, and both equal λ̂

〈Ω〉
0,j+1 − µ if λ̂

〈Ω〉
0,j+1 > µ. But

unfortunately, such a minimizer might not be valid because

there is no guarantee that d
[Ω]
µ ≤ q[Ω].

To limit our scope to valid schedules alone, we need to

improve the lower bound in (92). Using (49), (41) and (72),

we have

λ̇ω0j(d
ω
µ) = λ̂ω1,j+1 + (λ̇ω0j(d

ω
µ)− λ̂ω1,j+1)

+

= λ̂ω1,j+1 + (λ̂ω0,j+1 − dωµ − λ̂ω1,j+1)
+

= λ̂ω1,j+1 + (pωj+1 − dωµ)
+.

It follows that

λ̇
〈Ω〉
0j (d[Ω]

µ ) = λ̂
〈Ω〉
1,j+1+

∑

ω∈Ω

(pωj+1−d
ω
µ)

+ ≥ λ̂
〈Ω〉
1,j+1+(p

〈Ω〉
j+1−µ)

+.

(94)

In the same spirit of (93), this improved lower bound can be

achieved if there exists e
[Ω]
µ such that, for all ω ∈ Ω and j ∈ N,

{

pωj+1 ≤ eωµ if p
〈Ω〉
j+1 ≤ µ

pωj+1 ≥ eωµ if p
〈Ω〉
j+1 > µ

, (95)

because when d
[Ω]
µ = e

[Ω]
µ , both ends of (94) equal λ̂

〈Ω〉
1,j+1 if

p
〈Ω〉
j+1 ≤ µ, and both equal λ̂

〈Ω〉
1,j+1 + p

〈Ω〉
j+1 − µ if p

〈Ω〉
j+1 > µ.

This leads to the following definition.
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Definition 24: We call e
[Ω]
µ ∈ Hµ the max-slack schedule

under µ if for all ω ∈ Ω,
{

pωjµ ≤ eωµ ≤ pωjµ+1 if jµ <∞

pω∞ ≤ eωµ ≤ qω if jµ = ∞
, (96)

where

jµ := τµ+1(p
〈Ω〉). (97)

According to (72), pωjµ+1 ≤ qω, so (96), by default, requires

that e
[Ω]
µ ≤ q[Ω]. This is impossible unless µ = e

〈Ω〉
µ ≤ q〈Ω〉.

If µ ≤ q〈Ω〉, however, using (97) and (9), it is easy to verify

that
{

p
〈Ω〉
jµ

≤ µ < p
〈Ω〉
jµ+1 if jµ <∞

p〈Ω〉
∞ ≤ µ ≤ q〈Ω〉 if jµ = ∞

. (98)

Comparing this to (96), it is immediate that the existence

of e
[Ω]
µ is guaranteed if µ ≤ q〈Ω〉. Also guaranteed is (95),

because according to (96) and (98), pωj+1 ≤ eωµ and p
〈Ω〉
j+1 ≤ µ

if j + 1 ≤ jµ, while pωj+1 ≥ eωµ and p
〈Ω〉
j+1 > µ if j + 1 > jµ.

This prepares for us the next fundamental theorem.

Theorem 25: If Fµ is non-empty, e
[Ω]
µ exists, e

[Ω]
µ ∈ Fµ, and

λ̇
〈Ω〉
ij (e[Ω]

µ ) = min
d
[Ω]
µ ∈Fµ

λ̇
〈Ω〉
ij (d[Ω]

µ ) for all i, j ∈ N. (99)

Proof: If Fµ is non-empty, there has to be µ ≤ q〈Ω〉 and

µ ≤ c. This not only guarantees the existence of e
[Ω]
µ , but also

guarantees it to be valid, because by default, e
[Ω]
µ ≤ q[Ω] and

e
〈Ω〉
µ = µ ≤ c. To show that e

[Ω]
µ ∈ Fµ, then, according to

I2 in Theorem 11, we need only show that e
[Ω]
µ ≥ p[Ω] and

λ̇
〈Ω〉
ij (e

[Ω]
µ ) ≤ ċij for all i, j ∈ N.

If Fµ is non-empty, given any d
[Ω]
µ ∈ Fµ, since it is a feasible

schedule, µ = d
〈Ω〉
µ ≥ p〈Ω〉 = p

〈Ω〉
1 according to (73). This,

according to (97) and (9), implies that jµ ≥ 1. So, according

to (96) and (73), eωµ ≥ pω1 = pω for all ω ∈ Ω, i.e., e
[Ω]
µ ≥ p[Ω].

Let us move on to λ̇
〈Ω〉
ij (e

[Ω]
µ ). Again, since d

[Ω]
µ is a feasible

schedule, λ̇
〈Ω〉
ij (d

[Ω]
µ ) ≤ ċij for all i, j ∈ N. In the case that

i = 0, since we have shown that (95) is guaranteed by e
[Ω]
µ ,

the lower bound of (94) can be achieved by e
[Ω]
µ , implying

that λ̇
〈Ω〉
0j (e

[Ω]
µ ) ≤ λ̇

〈Ω〉
0j (d

[Ω]
µ ). In the case that i > 0, according

to (41), λ̇
〈Ω〉
ij (e

[Ω]
µ ) = λ̇

〈Ω〉
ij (d

[Ω]
µ ). It follows that λ̇

〈Ω〉
ij (e

[Ω]
µ ) ≤

λ̇
〈Ω〉
ij (d

[Ω]
µ ) ≤ ċij for all i, j ∈ N. Therefore, e

[Ω]
µ ∈ Fµ, and

(99) must be true.

It follows from the above theorem and Theorem 22 that

e
[Ω]
µ is a feasible schedule if ψ[Ω] is schedulable and µ is

feasible. In fact, to identify such a feasible schedule, all we

need to know is that Fµ is non-empty, while the knowledge of

Fµ = P(βµ) is utterly irrelevant.8 According to Definition 24,

e
[Ω]
µ is confined to a hypercuboid. Since this hypercuboid can

be easily determined by µ, p[Ω] and q[Ω] alone, to construct

e
[Ω]
µ , no calculation of βµ is required. Of course, according to

(82), we still need to calculate β(Ω) to ensure µ to be feasible.

But even this can be saved if we let µ = min{c, q〈Ω〉}, that

8A related observation is that by definition, e
[Ω]
µ is independent of c, so it

will remain the same as c changes. In contrast, according to (83) and (71),
βµ is dependent on c, so P(βµ) will expand as c increases and shrink as c
decreases.

is, let the server be work-conserving so that it always serves

as many tasks as possible.

In addition, (99) also establishes that e
[Ω]
µ indeed maximizes

the server’s capacity slack in the next slot, which is where

the name max-slack schedule comes from in the first place.

An implication is that to select any non-max-slack schedule,

there will be a price to pay in terms of less capacity slack

in the future, which should be carefully weighed against any

potential benefit of such a selection.

B. Answering Q2, and Q3 in a Special Case

Aggregating flows into classes according to P , a partition

of Ω, we can extend Definition 24 and Theorem 25 in the

following way.

Definition 26: We call e[Ω](ν
[P]
µ ) ∈ H(ν

[P]
µ ) the intra-class

max-slack schedule under ν
[P]
µ if for all ω ∈ Γ ∈ P ,

{

pωjΓµ ≤ eω(ν[P]
µ ) ≤ pωjΓµ+1 if jΓµ <∞

pω∞ ≤ eω(ν[P]
µ ) ≤ qω if jΓµ = ∞

, (100)

where

jΓµ := τνΓ
µ+1(p

〈Γ〉). (101)

Theorem 27: If F(ν[P]
µ ) is non-empty, e[Ω](ν

[P]
µ ) exists,

e[Ω](ν
[P]
µ ) ∈ F(ν[P]

µ ), and for all Γ ∈ P ,

λ̇
〈Γ〉
ij (e[Ω](ν[P]

µ )) = min
d
[Ω]
µ ∈F(ν

[P]
µ )

λ̇
〈Γ〉
ij (d[Ω]

µ ) for all i, j ∈ N.

(102)

We can prove this theorem in the exactly same way that

Theorem 25 was proved. The actual proof, however, will be

omitted here to avoid repetitions. We call ν
[P]
µ feasible if

F(ν[P]
µ ) is non-empty. Then, a feasible ν

[P]
µ leads to a feasible

intra-class max-slack schedule, but what makes ν
[P]
µ feasible?

By definition, F(ν[P]
µ ) ⊆ Fµ, while Fµ = P(βµ) according

to Theorem 22. Therefore, if F(ν[P]
µ ) is non-empty, given

any d
[Ω]
µ ∈ F(ν[P]

µ ), d
[Ω]
µ ∈ P(βµ), implying that it has to

satisfy (85). For all S ⊆ P , we use short-hand x〈S〉 to denote
∑

Γ∈S x
Γ. Then, using (90) and (85), we have

ν〈S〉
µ =

∑

Γ∈S

d〈Γ〉µ = d〈Σ(S)〉
µ ≥ βµ(Σ(S)),

and

ν〈P〉
µ = d〈Ω〉

µ = βµ(Ω) = µ.

So, according to (91),

ν〈P〉
µ = βP

µ (P) = µ and ν〈S〉
µ ≥ βP

µ (S) for all S ⊆ P .
(103)

That is to say, a necessary condition for ν
[P]
µ to be feasible is

that ν
[P]
µ ∈ P(βP

µ ), which turns out to be sufficient too.

We start with the special case that ν
[P]
µ is a vertex of

P(βP
µ ). Recall that each vertex of P(βP

µ ) can be identified

by a permutation over P . Let m = |P|. Then, given σ : P →
{1, 2, . . . ,m} ∈ ΠP , where ΠP is the set of all permutations

over P , the vertex identified by it, v
[P]
σ (βP

µ ), is the unique

solution to the system of linear equations defined by

v
〈Sj

σ〉
σ (βP

µ ) = βP
µ (Sj

σ) for all 0 ≤ j ≤ m, (104)
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where

Sj
σ := {Γ ∈ P|σ(Γ) ≤ j}. (105)

The next theorem shows F(v[P]
σ (βP

µ )) to be a non-empty face

of P(βµ).
Theorem 28: If ψ[Ω]

is schedulable and µ is feasible, for

all σ ∈ ΠP ,

F(v[P]
σ (βP

µ )) = PCP
σ
(βµ), (106)

where PCP
σ
(βµ) is the face of P(βµ) identified by a chain,

CP
σ : φ = Σ(S0

σ) ⊂ Σ(S1
σ) ⊂ · · · ⊂ Σ(Sm

σ ) = Ω. (107)

Proof: According to Theorem 22, by definition,

F(v[P]
σ (βP

µ )) = P(βµ) ∩H(v[P]
σ (βP

µ )).

Notice that using (90), (105), (104), (91) and (107) consecu-

tively, we have

H(v[P]
σ (βP

µ )) = {d[Ω]
µ |d〈Γ〉µ = vΓσ (β

P
µ ) for all Γ ∈ P}

(†)
= {d[Ω]

µ |d
〈Σ(Sj

σ)〉
µ = v

〈Sj
σ〉

σ (βP
µ ) for all 0 ≤ j ≤ m}

= {d[Ω]
µ |d

〈Σ(Sj
σ)〉

µ = βP
µ (Sj

σ) for all 0 ≤ j ≤ m}

= {d[Ω]
µ |d

〈Σ(Sj
σ)〉

µ = βµ(Σ(S
j
σ)) for all 0 ≤ j ≤ m}

= {d[Ω]
µ |d〈Γ〉µ = βµ(Γ) for all Γ ∈ CP

σ },

where (†) holds because the linear transformation involved is

invertible. Then, according to (62) and (63), H(v
[P]
σ (βP

µ )) is

exactly what differs PCP
σ
(βµ) from P(βµ), so (106) must be

true.

C. Answering Q3 in the General Case

Theorem 28 prepares us for the general case that ν
[P]
µ can

be anywhere in P(βP
µ ).

Theorem 29: If ψ[Ω] is schedulable and µ is feasible, ν
[P]
µ

is feasible if and only if ν
[P]
µ ∈ P(βP

µ ).
Proof: 9 The necessity of this condition follows directly

from its derivation, so we need only show its sufficiency. If

ν
[P]
µ ∈ P(βP

µ ), it has to be a convex combination of all vertices

of P(βP
µ ), which is to say, there must exist 0 ≤ wσ ≤ 1 such

that
∑

σ∈ΠP

wσ = 1 and ν[P]
µ =

∑

σ∈ΠP

wσv
[P]
σ (βP

µ ).

For each σ ∈ ΠP , select any d
[Ω]
σ ∈ PCP

σ
(βµ). It is immediate

from (106) that d
[Ω]
σ ∈ Fµ and d

[Ω]
σ ∈ H(v

[P]
σ (βP

µ )). Now let

us construct

d[Ω]
µ =

∑

σ∈ΠP

wσd
[Ω]
σ .

9An alternative proof is to apply Frank’s sandwich theorem, for which the
readers are referred to [8] for the original result and to [7] (p. 799) for a
comprehensive introduction. In particular, let us introduce

γµ(Γ) := min
S⊆P and Σ(S)⊇Γ

ν
〈S〉
µ for all Γ ⊆ Ω.

It can be verified that γµ is a submodular function, that γµ ≥ βµ, and that

d
[Ω]
µ ∈ F(ν[P]

µ ) if and only if γµ(Γ) ≥ d
〈Γ〉
µ ≥ βµ(Γ) for all Γ ⊆ Ω. These

facts, according to Frank’s theorem, guarantee F(ν[P]) to be non-empty. In
comparison, our treatment in the main text not only is self-contained but also

reveals more structural information than the mere non-emptiness of F(ν[P]
µ ).

Then, on the one hand, since d
[Ω]
σ ∈ Fµ, d

[Ω]
µ ∈ Fµ. On the

other hand, since d
[Ω]
σ ∈ H(v

[P]
σ (βP

µ )), for all Γ ∈ P , using

(90), we have

d〈Γ〉µ =
∑

σ∈ΠP

wσd
〈Γ〉
σ =

∑

σ∈ΠP

wσv
Γ
σ (β

P
µ ).

But by the very definition of wσ , we also have

νΓµ =
∑

σ∈ΠP

wσv
Γ
σ(β

P
µ ),

so d
〈Γ〉
µ = νΓµ for all Γ ∈ P , i.e., d

[Ω]
µ ∈ H(ν

[P]
µ ). It follows

that d
[Ω]
µ ∈ F(ν[P]

µ ), F(ν[P]
µ ) is non-empty and ν

[P]
µ must be

feasible.

One subtlety needs to be addressed here. As a close exami-

nation of the above proof would reveal, what we have proved is

that F(ν[P]
µ ) is non-empty in Rn, but we have not proved it to

contain any integral point. This, however, does not constitute

an obstacle to the joint application of the above theorem

and Theorem 27. Reviewing our entire proof of Theorem 25,

nowhere was the integrality of Fµ used. Similarly, in proving

Theorem 27 as its extension, nowhere will the integrality of

F(ν[P]
µ ) be used, implying that the theorem will hold as long

as F(ν[P]
µ ) is non-empty in Rn.10

Then, according to Theorems 29 and 27, to select an intra-

class max-slack schedule, we can first select a feasible µ,

then select a feasible ν
[P]
µ from P(βP

µ ), and finally construct

e[Ω](ν
[P]
µ ), which, according to Definition 26, is confined to

a hypercuboid that can be easily determined. This makes

possible intermediate tradeoffs of flexibility and efficiency.

Given m = |P|, to fully determine P(βP
µ ), according to (91),

2m valuations of βµ are required. As m decreases, P(βP
µ )

becomes a coarser projection of P(βµ) and easier to determine,

but we lose flexibility. In contrast, as m increases, P(βP
µ )

becomes a finer projection of P(βµ) and harder to determine,

but we gain flexibility.

Recall that, by selecting different points from P(βµ), we

can serve all flows according to different priority or fairness

criteria. In the same spirit, we can serve all classes according

to different criteria by selecting different points from P(βP
µ ).

For instance, by selecting vertex v
[P]
σ (βP

µ ), and thus

e[Ω]
σ (βP

µ ) := e[Ω](v[P]
σ (βP

µ )), (108)

a priority order is enforced so that the larger σ(Γ) is, the

higher priority class Γ enjoys. In contrast, by selecting the

vertex centroid,

v
[P]
F (βP

µ ) =
1

m!

∑

σ∈ΠP

v[P]
σ (βP

µ ), (109)

and thus

e
[Ω]
F (βP

µ ) := e[Ω](v
[P]
F (βP

µ )), (110)

10Actually it can rather work the other way around. If F(ν[P]
µ ) is non-empty

in Rn, Theorem 27 guarantees that e[Ω](ν
[P]
µ ) ∈ F(ν[P]

µ ). But e[Ω](ν
[P]
µ ) is

integral by definition, so F(ν[P]
µ ) has to contain at least one integral point.

Of course this can also be established directly. Should we choose to apply
Frank’s sandwich theorem as suggested in the preceding footnote, it would
follow directly from the discrete part of that theorem.
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a fair criterion is enforced.

Example 30: In the simple case that P = {Γ,Γ}, P(βP
µ ) is

but a line segment with two vertices, that is, two endpoints.

At one endpoint, it is easy to verify that

(νΓµ , ν
Γ
µ ) = (µ− βµ(Γ), βµ(Γ)),

which gives class Γ the highest priority possible against class

Γ. At the other endpoint,

(νΓµ , ν
Γ
µ ) = (βµ(Γ), µ− βµ(Γ)),

which reveres the priority order to favor Γ. To be fair, the

vertex centroid, that is, the midpoint, should be selected. Of

course, to fine-tune the balance, any point along the line

segment could be considered.

D. Worst-Case Deadlines

All our discussion so far is flow-centric in that it has always

focused on how many tasks of each flow should be served.

For max-slack schedules, it is also enlightening to take a task-

centric view. Let us consider the hth task of a generic flow.

According to (9), τh(p) is non-decreasing with respect to h.

So, using (96), it is easy to verify that
{

τh(p) ≤ jµ if h ≤ eµ

τh(p) ≥ jµ if h > eµ
. (111)

That is to say, if eµ tasks are served, the hth task must be

served if τh(p) < jµ, but it cannot be served if τh(p) > jµ.

Since jµ is a constant across all flows, a max-slack schedule

has to serve all tasks in a non-decreasing order of τh(p).
Conversely, it can also be verified that serving in such an

order will always result in a max-slack schedule. By the same

reasoning, intra-class, the service order of an intra-class max-

slack schedule has to be dictated by τh(p) too. But what is

the meaning of τh(p)?
For all h > 0, according to (9) and (72),

τh(p) = max{j ∈ N|pj = max{λ̂0j , q} < h}.

In the case that h ≤ q, using (40) and (9), we then have

τh(p) = max{j ∈ N|λ̂0j = maxq∈U|qψj(q) < h}

= max{j ∈ N|ψj(q) < h for all q ∈ U|q}
(†)
= max{j ∈ N|j ≤ τh(ψ(q)) for all q ∈ U|q}

= min
q∈U|q

τh(ψ(q)), (112)

where (†) holds because by definition, ψj(q) < h if and only

if j ≤ τh(ψ(q)). For the hth task, since it should be served

no later than slot t + τh(ψ(q)) to ensure that d ≥ ψ(q), it

should be served no later than t+ τh(p) to ensure that ψ can

be guaranteed no matter which q ∈ U|q will realize. We call

t + τh(p) the worst-case deadline for the hth task. In light

of this, (111) says that a max-slack schedule has to serve all

tasks in a non-decreasing order of their respective worst-case

deadlines.

Worst-case deadlines are dynamic. In general, during a

task’s stay in the queue, its worst-case deadline can only be

relaxed because well, the worst case could not get worse. To

be specific, consider the case that q ≥ h > d ≥ p. In this

case, the hth task in slot t becomes the (h−d)th task in t+1.

Accordingly, its worst-case deadline becomes t+1+τh−d(ṗ).
Using (112), (9) and (31), we have

τh−d(ṗ)

= min
q̇∈U|q̇

τh−d(ψ̇(q̇))

= min
q̇∈U|q̇

max{j ∈ N|ψ̇j(q̇) < h− d}

(†)
= min
q∈U|q and q2=q̇+d

max{j ∈ N|[R−1(ψ(q)− dδ)+]j < h− d},

where (†) holds because, according to (28) and (27), q̇ ∈ U|q̇
is equivalent to q ∈ U|q and q2 = q̇ + d. Using (30) and (9),

we then have

1 + τh−d(ṗ)

= 1 + min
q∈U|q and q2=q̇+d

max{j ∈ N|ψj+1(q)− d < h− d}

= min
q∈U|q and q2=q̇+d

max{j ∈ N \ {0}|ψj(q) < h}

(†)
= min
q∈U|q and q2=q̇+d

τh(ψ(q)), (113)

where (†) holds because, according to (24), h > p implies

that ψ1(q) < h for all q ∈ U|q, which in turn implies that

j ∈ N \ {0}, instead of N, is inconsequential. Comparing

(113) to (112), it is immediate that 1 + τh−d(ṗ) ≥ τh(p), so

the task’s worst-case deadline can only be relaxed.

E. Deadline-Rigid Services

The task-centric interpretation suggests a strong affinity of

max-slack schedules to EDF schedules, according to which,

each task, right upon its arrival, is assigned a static deadline

that will remain constant during its entire stay and all tasks are

then served in a non-decreasing order of these static deadlines.

A comprehensive survey of EDF schedules can be found in [9].

To generate EDF schedules, the EDF scheduler sorts all tasks

in a single queue according to their respective static deadlines,

with the task having the earliest static deadline to be always at

the head and served first. When a new task arrives, it is inserted

into the queue according to its newly assigned static deadline,

without disturbing the relative order of old tasks already there.

This cannot be applied to a general worst-case system because,

as we have seen, worst-case deadlines are dynamic, which

deems it impossible to keep the relative order of old tasks

stable. There is, however, a special class of worst-case services

for which worst-case deadlines become static.

Definition 31: A worst-case service, ψ, is deadline-rigid if

ψ(q)
h
= ψ(q′) for all q, q′ ∈ U〉b, h > 0 and q

h
= q′,

(114)

where we use x
h
= x′ to denote the relation that min{x, h} =

min{x′, h}.

The intuition behind this definition is best illustrated by

Figure 7, according to which, if q and q′ are identical up to

point A, ψ(q) and ψ(q′) have to be identical up to B. Since

causality would only require them to be identical up to C,

a corollary is that deadline-rigid services are causal, but not

vice versa. For instance, it is easy to verify that uniform-delay
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ψ(q)

ψ(q′)

Number of Tasks

SlotO

h BA

C

q q′

τh(ψ(q)) = τh(ψ(q
′))

d

q

1

O′

Fig. 7. Properties of a deadline-rigid service.

services in Example 3 are deadline-rigid but uniform-backlog

services in Example 2 are not, though both are causal.

If ψ is deadline-rigid, on the one hand, using (9) and

(114), it is easy to verify that τh(ψ(q)) = τh(ψ(q
′)) if

q
h
= q′, which is illustrated in Figure 7. On the other hand,

for all q ≥ h > d, by definition, q
h
= qδ for all q ∈ U|q.

Therefore, according to (112) and (113), 1 + τh−d(ṗ) =
τh(p) = τh(ψ(qδ)). That is to say, if ψ is deadline-rigid,

worst-case deadlines do become static. Deadline-rigid services

are also update invariant. Recall that the effect of the update

rule can be explained by a translated coordinate frame. This is

illustrated in Figure 7, where O is translated to O′. Since such

a translation does not change the relative positions of points

A and B, it should preserve the deadline-rigidness of ψ.

A worst-case system is deadline-rigid if every worst-case

service in it is deadline-rigid. In such a system, all worst-

case deadlines become static. Then the EDF scheduler can

be applied, and according to the task-centric interpretation,

the EDF schedules so generated are automatically max-slack

schedules. According to Theorem 25, to further ensure these

schedules to be feasible, we need only ensure µ, the total

service, to be feasible. In light of this, an additional corollary

of Theorem 25 is that, if any scheduler can meet all static

deadlines, so can the EDF scheduler, which is a well-known

fact.11 We can also generalize the EDF scheduler to generate

intra-class max-slack schedules. Such a scheduler keeps a

separate queue for each class and, intra-class, serves tasks

earliest-deadline-first. Of course, to ensure the schedules so

generated to be feasible, we need to first select a feasible class

schedule.

VII. MIN-PLUS SERVICES

Another source of our framework’s complexity comes from

the fact that a general worst-case service, as an uncountably

infinite full-blown map between cumulative vectors, is dif-

ficult to specify and update. For state-based scheduling, on

11An independent proof of this fact can be found in [10]. The key idea is that
when two tasks are not served in the order dictated by their static deadlines,
the order can always be reversed without violating any static deadline. For a
deadline-rigid system, this also provides the basis for an alternative proof of
Theorem 25.

the surface, it seems that we need only keep track of its

spectrum, to admit new service requests, and its conditional

spectrum, to identify feasible schedules, both of which are

countably infinite. But these are not self-contained entities

because, unless a worst-case service is uniquely identified by

its spectrum, which is not the case in general, its conditional

spectrum cannot be identified by its spectrum alone. So are

there worst-case services that can be uniquely identified by

their spectra?

We start with the observation that a worst-case service

is upper bounded by its spectrum. To see this, notice that,

according to (33), ψj(q)− qi ≤ λij(ψ) for all i, j ∈ N, so

ψj(q) ≤ min
i∈N

(qi + λij(ψ)). (115)

This can be rewritten concisely using the min-plus algebra,

in which operators min and + replace, respectively, + and

× in the standard algebra. Let us use ⊗ to denote the min-

plus matrix multiplication and arrange all λij(ψ)’s into the

following matrix,

Λ(ψ) = [λij(ψ)]i,j∈N =











λ00(ψ) λ01(ψ) λ02(ψ) · · ·
λ10(ψ) λ11(ψ) λ12(ψ) · · ·
λ20(ψ) λ21(ψ) λ22(ψ) · · ·

...
...

...
. . .











.

(116)

Then, applying the min-plus matrix multiplication rule, (115)

can be rewritten in the matrix form as

ψ(q) ≤ q ⊗ Λ(ψ). (117)

It is exactly the formulation of this upper bound that motivates

our definition for min-plus services. Interestingly, min-plus

services so defined in turn make this upper bound achievable.

In the rest of this section, we first use spectral matrices to

define min-plus services. We then show that these services are

uniquely identified by their spectra, and that each schedulable

non-min-plus system can be upgraded to a schedulable min-

plus system. We also use cumulative matrices to provide a

second definition for min-plus services. This, among other

things, allows us to introduce the composing rule for min-plus

services.

A. A First Definition through Spectral Matrices

Definition 32: A semi-infinite matrix, S = [sij ]i,j∈N, is a

spectral matrix if for all i, j ∈ N,

sij = 0 if i ≥ j, (118)

sij ≤ si,j+1, (119)

sij ≥ si+1,j , (120)

and

sij ≤ (s0j − bδi)
+. (121)

We call ψS the min-plus service identified by S if

ψS(q) := q ⊗ S for all q ∈ U〉b. (122)

According to this definition, a spectral matrix is triangular

in that all elements in its lower triangle and along its diagonal
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are 0. Also it has non-decreasing rows and non-increasing

columns. For all j ∈ N, using (122), (118) and the min-plus

matrix multiplication rule, we have

ψS
j (q) = [q ⊗ S]j = min

i∈N

(qi + sij) (123)

= min

{

min
i<j

(qi + sij),min
i≥j

qi

}

= min

{

min
i<j

(qi + sij), qj

}

= min
i≤j

(qi + sij). (124)

According to (123) and (119), ψS
j (q) ≤ ψS

j+1(q), so ψS(q)
is a cumulative vector. According to the derivation of (124),

ψS
j (q) ≤ qj , so ψS(q) ≤ q. Then, according to Definition

1, ψS is indeed a worst-case service. In addition, min-plus

services are also deadline-rigid because, using (123), we have

min{ψS
j (q), h} = min

i∈N

min{qi + sij , h}

= min
i∈N

min{min{qi, h}+ sij , h},

implying that ψS(q)
h
= ψS(q′) if q

h
= q′.

Since (118), (119), (120) and (121) are direct counterparts

of (34), (35), (36) and (37) respectively, sij has to behave very

much like λij , the spectral value of some worst-case service.

It is fundamental that this some worst-case service could be

ψS itself.

Theorem 33: Given a spectral matrix, S, for all i, j ∈ N,

λij(ψ
S) = sij . (125)

To prove this and the next theorem, let us introduce ε =
[εj ]j∈N := [0,∞,∞, . . .] ∈ U, i.e.,

εj :=

{

0 if j = 0

∞ if j > 0
. (126)

Intuitively ε models an infinite traffic burst in slot t. Then,

according to (123) and (120),

ψS
j (R

iε+ qδ) = min
k∈N

([Riε]k + qδk + skj)

(†)
= min

k≤i
(qδk + skj)

= min{s0j, qδi + sij}, (127)

where (†) holds because by definition,

[Riε]k =

{

0 if k ≤ i

∞ if k > i
. (128)

Proof of Theorem 33: On the one hand, since by default,

Riε+ bδ ∈ U〉b, using (33), (127), (128) and (121), we have

λij(ψ
S) ≥ (ψS

j (q)− qi)
+|q=Riε+bδ

= (ψS
j (R

iε+ bδ)− [Riε]i − bδi)
+

= (min{s0j , bδi + sij} − bδi)
+

= min{(s0j − bδi)
+, sij} = sij .

On the one hand, using (33) and (123), we have

λij(ψ
S) = max

q∈U〉b
(mink∈N(qk + skj)− qi)

+

≤ max
q∈U〉b

(qi + sij − qi)
+

= sij .

It follows that λij(ψ
S) = sij .

According to the above theorem, sij and λij(ψ
S) are syn-

onymous, which is where the name spectral matrix comes from

in the first place. A corollary is that a min-plus service, through

its spectral matrix, is uniquely identified by its spectrum.

So its conditional spectrum is also uniquely identified by its

spectrum. We will denote λij(ψ
S |q) by ŝij when no confusion

can be introduced. The next theorem shows how to identify

ŝij through sij .

Theorem 34: Given a spectral matrix, S, for all i, j ∈ N,

ŝij =

{

min{s0j , q + s1j} if i = 0

min{(s0j − q)+, sij} if i > 0
. (129)

Proof: In the case that i = 0, on the one hand, since by

default, Rε+ qδ ∈ U|q, using (40) and(127), we have

ŝ0j ≥ ψS
j (q)|q=Rε+qδ = ψS

j (Rε+ qδ) = min{s0j , q + s1j}.

On the other hand, using (40) and (123), we have

ŝ0j = max
q∈U|q

min
k∈N

(qk + skj) ≤ max
q∈U|q

min{s0j , q1 + s1j}

= min{s0j, q + s1j}.

It follows that the first half of (129) must be true.

In the case that i > 0, on the one hand, since by default,

Riε+ qδ ∈ U|q, using (40), (127) and (128), we have

ŝij ≥ (ψS
j (q)− qi)

+|q=Riε+qδ

= (ψS
j (R

iε+ qδ)− [Riε]i − q)+

= (min{s0j, q + sij} − q)+ = min{(s0j − q)+, sij}.

On the other hand, using (40) and (123), we have

ŝij = max
q∈U|q

(mink∈N(qk + skj)− qi)
+

≤ max
q∈U|q

(min{s0j , qi + sij} − qi)
+

= max
q∈U|q

min{(s0j − qi)
+, sij}

(†)

≤ min{(s0j − q)+, sij},

where (†) holds because by definition, qi ≥ q1 = q for all

q ∈ U|q. It follows that the second half of (129) must be true.

Finally the next theorem shows that min-plus services are

update invariant.

Theorem 35: In Theorem 4, let ψ be a min-plus service,

identified by a spectral matrix, S, i.e., ψ = ψS . Then ψ̇ is

also a min-plus service that can be identified by a spectral

matrix, Ṡ = [ṡij ]i,j∈N, i.e., ψ̇ = ψṠ , where

ṡij =

{

(min{s0,j+1, q + s1,j+1} − d)+ if i = 0

min{(s0,j+1 − q)+, si+1,j+1} if i > 0
. (130)

The proof for this theorem will be skipped here because

we will prove its alternative formulation later. It is, however,

worth noting that, comparing (130) to (129), it is immediate

that

ṡij =

{

(ŝ0,j+1 − d)+ if i = 0

ŝi+1,j+1 if i > 0
. (131)

Now this relation between ṡij and ŝij exactly replicates that

between λ̇ij and λ̂ij in (41), which is not a coincidence,

because according to Theorem 33, ṡij = λij(ψ
Ṡ).
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B. The Spectral Hull

A min-plus system is a worst-case system in which every

worst-case service is a min-plus service. For all ω ∈ Ω, let

the min-plus service guaranteed to flow ω be identified by

a spectral matrix, Sω, and we denote the system by S[Ω].

Quite impressive is its efficiency in comparison to a general

worst-case system. Besides that S[Ω] can be more efficiently

identified, according to Theorem 35, it can also be more

efficiently updated. In addition, according to Theorems 33

and 34, it is straightforward to keep track of all spectra

and conditional spectra for S[Ω]. In particular, for S[Ω], the

schedulability condition, (50), can be rewritten in the matrix

form as

S〈Ω〉 ≤ C = [cij ]i,j∈N = [(j − i)+c]i,j∈N. (132)

A worst-case system, ψ[Ω], is dominated by another, ψ̄
[Ω]

,

if for all ω ∈ Ω, ψ̄
ω

≥ ψω, i.e., ψ̄
ω
(qω) ≥ ψω(qω) for

all qω ∈ U〉bω. If both are also schedulable, we can then,

by upgrading ψ[Ω] to ψ̄
[Ω]

, improve the service to each flow,

and yet, preserve schedulability. Within this broader context,

as we will see, the efficiency of min-plus systems is no longer

of isolated interests only, but assumes a broader significance

in that any schedulable non-min-plus system can be upgraded

to a schedulable min-plus system.

Given a worst-case service, ψ, let S = Λ(ψ), where Λ(ψ)
is specified by (116). Then S is a spectral matrix because

(118), (119), (120) and (121) are direct counterparts of (34),

(35), (36) and (37) respectively. Also, according to (125),

Λ(ψS) = S, so according to (122), ψS(q) = q ⊗ Λ(ψS).
Comparing this to (117), it is immediate that ψS ≥ ψ. That

is to say, among all worst-case services that share the same

spectrum, there is a min-plus service that turns out to be the

maximum. Notice that ≥ only defines a partial order among

worst-case services, so the existence of such a maximizer is

not self-evident.

Given a worst-case system, ψ[Ω], let us construct a min-plus

system, S[Ω], such that for all ω ∈ Ω, Sω = Λ(ψω). It follows

from our reasoning above that S[Ω] dominates ψ[Ω], and that

they share the same system of spectra, implying that if ψ[Ω]

is schedulable, so is S[Ω]. We call S[Ω] the spectral hull of

ψ[Ω]. Then we can always upgrade a schedulable non-min-

plus system to its spectral hull. A corollary is that, in Figure

4, the Pareto frontier encircling the schedulable region must

consist of min-plus systems exclusively.

Example 36: For ψ[Ω]
in Example 12, according to (56),

S[Ω] is its spectral hull if for all ω ∈ Ω and i, j ∈ N,

sωij =

{

1 if j − i > θ̄ω

0 if j − i ≤ θ̄ω
. (133)

Then, using (123), it can be verified that for all qω ∈ U,

ψSω

(qω) =

{

Ri+θ̄ω

δ if Riδ ≤ qω ≤ Riε for some i ∈ N

0 if qω = 0

,

(134)

which says that the first task of flow ω will be served with a

delay no more than θ̄ω . Comparing this to (55), it is immediate

that ψSω

≥ ψω, so the guarantees of S[Ω] are much stronger

than those of ψ[Ω], though they do share the same system of

spectra. 12

By upgrading ψ[Ω] to its spectral hull, S[Ω], since they share

the same system of spectra, the server’s capacity slack in the

current slot is kept intact. There is, however, still a price to

pay. Imagine runningψ[Ω]
and S[Ω] side by side. For all ω ∈ Ω

and i, j ∈ N, using (48), (46) and (45), it is easy to verify that

λ̂ωij ≤

{

min{λω0j , q
ω + λω1j} if i = 0

min{(λω0j − qω)+, λωij} if i > 0
, (135)

where λωij and λ̂ωij are the short-hands for λij(ψ
ω) and

λij(ψ
ω|qω) respectively. Comparing this to (129), it is im-

mediate that λ̂ωij ≤ ŝωij because, by construction, λωij = sωij .

So, according to (71), βS ≥ βψ , i.e., βS(Γ) ≥ βψ(Γ) for

all Γ ⊆ Ω, where we use βS and βψ to denote the baseline

functions for S[Ω] and ψ[Ω]
respectively. This, according to

Theorem 20, in turn implies that FS ⊆ Fψ, where we use

FS and Fψ to denote the feasible polytopes for S[Ω] and ψ[Ω]

respectively. Therefore, by upgrading ψ[Ω] to S[Ω], we might

reduce the feasible polytope and thus reduce our flexibility to

select any feasible schedule from it.

Furthermore, imagine selecting the same feasible schedule,

d[Ω] ∈ FS ⊆ Fψ, for both ψ[Ω] and S[Ω]. Comparing (41)

to (131), it is immediate that λ̇ωij ≤ ṡωij , where λ̇ωij is the

short-hand for λij(ψ̇
ω
), because, as we have seen, λ̂ωij ≤ ŝωij .

That is to say, although Ṡ[Ω] still dominates ψ̇
[Ω]

, they might

no longer share the same system of spectra. Therefore, by

upgrading ψ[Ω] to S[Ω], we might reduce the server’s capacity

slack in the future.

Example 37: For ψ[Ω] in Example 12, consider the case

that qω = 2δ for all ω ∈ Ω. According to (55), no task need

be served in this case. In contrast, for the spectral hull of

ψ[Ω], S[Ω], in Example 36, according to (134), the first task

of each flow needs to be served either immediately, to reduce

the feasible polytope, or later, to reduce the server’s capacity

slack in the future.

C. A Second Definition through Cumulative Matrices

Examining our derivation of (123) and (124), nowhere were

(120) and (121) used, so neither is necessary for ψS to be a

worst-case service. This motivates a second definition for min-

plus services.

Definition 38: A semi-infinite matrix, M = [mij ]i,j∈N , is

a cumulative matrix if for all i, j ∈ N,

mij = 0 if i ≥ j, (136)

and

mij ≤ mi,j+1. (137)

12According to (55), ψω is clearly not causal. Then, to guarantee ψω , a
causal scheduler has to guarantee ψC, where, using (22), it can be verified
that for all qω ∈ U,

ψC(qω) =

{

Ri+θ̄ωδ if Riδ ≤ qω ≤ Riδ +Ri+θ̄ω+1ε for some i ∈ N

0 otherwise
.

Comparing this to (134), it is immediate that ψSω
≥ ψC, so the guarantee

of ψSω
is not only stronger than that of ψω but also stronger than that of

ψC.
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We call ψM the min-plus service identified by M if

ψM (q) := q ⊗M for all q ∈ U〉b. (138)

Then, for all j ∈ N, we can replicate (123) and (124) with

ψM
j (q) = [q ⊗M ]j = min

i∈N

(qi +mij) (139)

= min
i≤j

(qi +mij), (140)

because no counterpart of (120) or (121) is needed here. But

by leaving out the counterparts of (120) and (121) in the

above definition, would not we unduly enlarge the concept

for min-plus services? This worry turns out to be unwarranted

according to the next theorem.

Theorem 39: Given cumulative matrix M , let us introduce

a semi-infinite matrix, S = [sij ]i,j∈N, such that

sij = min

{

(m0j − bδi)
+,min

k≤i
mkj

}

. (141)

Then S is a spectral matrix and ψS = ψM .

Proof: It is easy to verify that S is indeed a spectral

matrix. Then, according to (123) and (141),

ψS
j (q) = min

{

min
i∈N

[qi + (m0j − bδi)
+],min

i∈N

min
k≤i

(qi +mkj)

}

.

On the one hand, for the first term above, using (11) and (139),

we have

min
i∈N

[qi + (m0j − bδi)
+] ≥ min

i∈N

(qi − bδi) +m0j

= min
i∈N

ai +m0j

= m0j

(†)

≥ ψM
j (q),

where (†) holds because m0j = q0 +m0j ≥ ψM
j (q). On the

other hand, for the second term above, changing the order of

the two min operators and then using (139), we have

min
i∈N

min
k≤i

(qi +mkj) = min
k∈N

min
i≥k

(qi +mkj)

(†)
= min

k∈N

(qk +mkj) = ψM
j (q),

where (†) holds because qi ≥ qk for all i ≥ k. It follows that

ψS
j (q) = ψM

j (q) for all q ∈ U〉b, i.e., ψS = ψM .

According to Theorem 33, each unique spectral matrix

identifies a unique min-plus service with a unique spectrum.

In contrast, according to the above theorem, the same min-

plus service can be identified by different cumulative matrices.

Is not this redundant? But it is exactly this redundancy that

affords us additional maneuvering room in treating several sub-

jects subsequently. Let us start with an alternative formulation

of Theorem 35.

Theorem 40: In Theorem 4, let ψ be a min-plus service,

identified by a cumulative matrix, M , i.e., ψ = ψM . Then ψ̇

is also a min-plus service that can be identified by a cumulative

matrix, Ṁ = [ṁij ]i,j∈N, i.e., ψ̇ = ψṀ , where

ṁij =

{

(min{m0,j+1, q +m1,j+1} − d)+ if i = 0

mi+1,j+1 if i > 0
.

(142)

Once this theorem is proved, Theorem 35 is but a corollary.

In particular, to derive (130), we can first treat S as a general

cumulative matrix and then use (142) to find Ṁ . Although the

Ṁ so found might not be a spectral matrix, we can always use

(141) to turn it into Ṡ. This is quite straightforward concep-

tually, but it does require a bit of derivation. There is actually

a shortcut. Once the update invariance of min-plus services is

established, according to Theorem 33, ṡij = λij(ψ
Ṡ). Then

we can replicate (41) with (131), which, through (129), leads

to (130) directly. Also observe that the second half of (142)

is much simpler than that of (130), which prepares us for the

introduction of dual-curve services later.

Proof of Theorem 40: We first show Ṁ to be a cumula-

tive matrix. Using (142), (137) and (136), it is easy to verify

that ṁij ≤ ṁi,j+1, and ṁij = 0 if i ≥ j > 0. Then it all

hinges on whether ṁ00 = 0. Since d ≥ p, using (24), (140)

and (136), we have

d ≥ max
q∈U|q

ψM
1 (q) = max

q∈U|q
min{m01, q1+m11} = min{m01, q}.

So, according to (142) and (136),

ṁ00 = (min{m01, q+m11}−d)
+ = (min{m01, q}−d)

+ = 0.

It follows that Ṁ is indeed a cumulative matrix.

It remains for us to show that ψ̇ can be identified by Ṁ .

For all q̇ ∈ U〉ḃ and j ∈ N, using (31), (30), (139), (27) and

(142) consecutively, we have

ψ̇j(q̇)

= [R−1(ψM (q)− dδ)+]j

= (ψM
j+1(q)− d)+

=

(

min
i∈N

(qi +mi,j+1)− d

)+

=

(

min

{

m0,j+1, q1 +m1,j+1,min
i>1

(qi +mi,j+1)

}

− d

)+

=

(

min

{

m0,j+1, q1 +m1,j+1,min
i>0

(qi+1 +mi+1,j+1)

}

− d

)+

=

(

min

{

m0,j+1, q +m1,j+1,min
i>0

(q̇i + d+mi+1,j+1)

}

− d

)+

= min

{

(min{m0,j+1, q +m1,j+1} − d)+,min
i>0

(q̇i +mi+1,j+1)

}

= min
i∈N

(q̇i + ṁij).

That is to say, ψ̇(q̇) = q̇⊗ Ṁ for all q̇ ∈ U〉ḃ, i.e., ψ̇ = ψṀ .

D. Monotonicity and Composability

A worst-case service, ψ, is monotone if q ≥ q′ implies

that ψ(q) ≥ ψ(q′). Intuitively it says that there should be no

punishment for feeding the server too many tasks. The next

theorem shows that monotone services are composable.

Theorem 41: As illustrated in Figure 8, when a flow is

guaranteed monotone services, ψI and ψII, by two servers in

tandem, the overall effect can be modeled by a single server,

with a = aI, b = bI + bII and d = dII, that guarantees the

flow a monotone service, ψ = ψII ⋆ψI, defined by

ψ(q) = ψII⋆ψI(q) := ψII(ψI(q−bIIδ)+bIIδ) for all q ∈ U〉b.
(143)
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d = dII

aI dII
bII

dI = aII
bI

ψI ψII

a = aI
b = bI + bII

ψ = ψII ⋆ψI

Fig. 8. Composing two monotone services into one.

Proof: Since ψII is monotone, using (12) twice, we have

ψII(ψI(q− bIIδ)+ bIIδ) ≤ ψII(q− bIIδ+ bIIδ) = ψII(q) ≤ q.

That is to say, ψ(q) ≤ q, so according to Definition 1, ψ is

a worst-case service. If q ≥ q′, since both ψI and ψII are

monotone, it is immediate that

ψII(ψI(q − bIIδ) + bIIδ) ≥ ψII(ψI(q′ − bIIδ) + bIIδ).

That is to say,ψ(q) ≥ ψ(q′) if q ≥ q′, so ψ is also monotone.

To show that the flow is guaranteed ψ, it is convenient to

recast a worst-case service as a map of a instead of q. To be

specific, let us introduce ϕI and ϕII such that

ϕI(aI) := ψI(qI) = ψI(aI + bIδ) for all aI ∈ U,

and

ϕII(aII) := ψII(qII) = ψI(aII + bIIδ) for all aII ∈ U.

Since ϕII is also monotone,

d = dII ≥ ϕII(aII) = ϕII(dI) ≥ ϕII(ϕI(aI)) = ϕII(ϕI(a)).

But by definition,

ϕII(ϕI(a)) = ψII(ψI(aI+bIδ)+bIIδ)
(†)
= ψII(ψI(q−bIIδ)+bIIδ),

where (†) holds because, according to (11),

q = a+ bδ = aI + bIδ + bIIδ.

Therefore, according to (143), d ≥ ψ(q) for all q ∈ U〉b, and

ψ must be guaranteed.

Using (139), it is easy to verify that min-plus services

are monotone. The next theorem shows that they are also

composable.

Theorem 42: In Theorem 41, let ψI
and ψII

both be min-

plus services, identified by cumulative matrices, M I and M II,

respectively, i.e., ψI = ψM I

and ψII = ψM II

. Then ψ =
ψII ⋆ψI is also a min-plus service that can be identified by a

cumulative matrix,

M = (M I + bII∆)⊗M II, (144)

where ∆ = [δij ]i,j∈N is a cumulative matrix defined by

δij := (δj − δi)
+ =

{

1 if i = 0 and j > 0

0 otherwise
. (145)

According to this theorem, if a flow passes through a

network of servers and is guaranteed a min-plus service by

each server along its path, the end-to-end service to it can

be modeled by a single min-plus service. This makes min-

plus services amenable to network performance analysis. In

addition, notice that, in (144), even if M I and M II are both

spectral matrices, M is not guaranteed to be one. Of course,

we can always use (141) to turn M into S, but we will thus

lose the simplicity of (144).

Proof of Theorem 42: For all q ∈ U〉b and j > 0,

[(q − bIIδ)⊗M I + bIIδ]j = min
i∈N

(qi − bIIδi +mI
ij) + bIIδj

(†)
= min

i∈N

(qi +mI
ij + bIIδij)

= [q ⊗ (M I + bII∆)]j ,

where (†) holds because, according to (145), δij = δj − δi if

j > 0. While by default, both ends above equal 0 if j = 0, so

(q − bIIδ)⊗M I + bIIδ = q ⊗ (M I + bII∆).

Then, using (143), (138), (144) and the associativity of ⊗, we

have

ψ(q) = ψM II

⋆ψM I

(q)

= [(q − bIIδ)⊗M I + bIIδ]⊗M II

= q ⊗ (M I + bII∆)⊗M II = q ⊗M,

i.e., ψ = ψM .

VIII. DUAL-CURVE SERVICES

A key observation from (142) is that if mij = mi+1,j+1

for all i > 0, ṁij = mij for all i > 0. In this case, while

the 0th row of M , by definition, is a cumulative vector that is

dynamic, the part of M below the 0th row is static. Since the

elements in this static part remain constant along its diagonal

and along each off-diagonal, they can be compressed into a

cumulative vector that is also static. Such is the motivation

for dual-curve services. Their relation to some other services

that we have investigated is illustrated in Figure 9. Being the

most specialized, these services exhibit the greatest efficiency,

which verges on practical viability.

In the rest of this section, we summarize main results

regarding dual-curve services and then relate these results to

service curves. We also comment on practical issues regarding

implementation.

A. A Summary

Definition 43: Given a cumulative matrix, M , if there exist

u,v ∈ U such that for all i, j ∈ N,

mij =

{

uj if i = 0

v(j−i)+ if i > 0
, (146)

we call ψM the dual-curve service identified by the pair,

(u,v), and denote it by ψ(u,v).

Most results regarding dual-curve services are straightfor-

ward specializations of those regarding min-plus services.

Here we will sample some important ones without derivation.

For all q ∈ U〉b and j ∈ N, using (140), it is easy to verify

that

ψ
(u,v)
j (q) = min

{

uj, min
0<i≤j

(qi + vj−i)

}

. (147)
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Worst-Case Services

Deadlin-Rigid Services Monotone Services

Min-Plus Services

Dual-Curve Services

Fig. 9. Relating dual-curve services to some other services.

Dual-curve services are update invariant. In Theorem 40, if

M can be identified by (u,v), it can be shown that Ṁ can

be identified (u̇,v) so that v, being static, remains the same,

and u, being dynamic, is updated to u̇ = [u̇j]j∈N ∈ U, where

u̇j = (min{uj+1, q + vj} − d)+, (148)

or in the vector form,

u̇ = R−1(min{u, qδ +Rv} − dδ)+. (149)

Dual-curve services are also composable. In Theorem 42,

if M I and M II can be identified by (uI,vI) and (uII,vII)
respectively, it can be shown that M can be identified by (u,v)
such that for all j ∈ N,











uj = min

{

min
0<i≤j

(uI
i + bII + vII

j−i), u
II
j

}

vj = min
0≤i≤j

(vI
i + vII

j−i)
. (150)

Let us move on to the spectrum. For all i, j ∈ N, according

to (146), and Theorems 39 and 33,

λ
(u,v)
ij =

{

uj if i = 0

min
{

(uj − b)+, v(j−i)+
}

if i > 0
, (151)

where λ
(u,v)
ij is the short-hand for λij(ψ

(u,v)). As to the

conditional spectrum, according to (146), and Theorems 39

and 34,

λ̂
(u,v)
ij =

{

min{uj, q + v(j−1)+} if i = 0

min{(uj − q)+, v(j−i)+} if i > 0
, (152)

where λ̂
(u,v)
ij is the short-hand for λij(ψ

(u,v)|q).
A dual-curve system is a min-plus system in which every

min-plus service is a dual-curve service. For all ω ∈ Ω, let

the dual-curve service guaranteed to flow ω be identified by

(uω,vω), and we denote the system by (u[Ω],v[Ω]). If it is

schedulable, according to (151), the schedulability condition,

(50), requires that for all j ∈ N,










u
〈Ω〉
j ≤ jc

∑

ω∈Ω

min
{

(uω∞ − bω)+, vωj
}

≤ jc . (153)

We call (u[Ω],v[Ω]) non-degenerate if for all ω ∈ Ω, uω∞ = ∞
and vω∞ = ∞, in which case, (153) can be rewritten in the

vector form as
{

u〈Ω〉 ≤ c

u〈Ω〉 ≤ c
, (154)

where

c = [cj ]j∈N := [jc]j∈N. (155)

Notice that, for (154) to hold, vω∞ = ∞ is in fact not

necessary. The reason that it is required here is to ensure that

if (u[Ω],v[Ω]) is non-degenerate, so is (u̇[Ω],v[Ω]).
For all j ∈ N, it is immediate from (72) and (152) that

pωj = min{uωj , q
ω}, (156)

or in the vector form,

pω = min{uω, qωδ}. (157)

Then, for all Γ ⊆ Ω, according to (74), (156) and (152),

β(Γ) = max
j∈N















∑

ω∈Γ

min{uωj+1, q
ω}

+
∑

ω∈Ω

min{(uωj+1 − qω)+, vωj } − jc















.

(158)

The above results allow us to check schedulability, determine

the feasible polytope, and identify max-slack schedules as well

as intra-class max-slack schedules.

B. Relation to Service Curves

In the case that b = 0, if u = v, ψ(v,v) is equivalent to the

service curve specified by v, because in this case, it is easy to

verify that (147) and (150) recover the well-known min-plus

convolution rules of service curves, for which a comprehensive

survey can be found in [11]. Since neither b = 0 nor u = v

can be preserved by, respectively, (3) or (149), service curves

are not update invariant, and thus only by introducing dual-

curve services, they are extended to their dynamic closure. In

light of this, what we have done with dual-curve services is

to incorporate the case that b > 0, but such an extension is

essential for state-based scheduling because we cannot update

a state to something that has not been defined.

According to [12], service curves can be viewed as time-

invariant min-plus filters, whose time-invariant nature is re-

flected by the fact that, in the case that b = 0, according to

(147),

ψ(v,v)(Riε) = Riv for all i ∈ N. (159)

This leads to the introduction of time-varying min-plus filters

in [13]. The relation of these filters to min-plus services

exactly parallels that of service curves to dual-curve services.

In particular, in the case that b = 0, min-plus services

are equivalent to these filters, whose time-varying nature is

reflected by the fact that, in this case, according to (123),

ψS(Riε) = Si· for all i ∈ N, (160)

where Si· is the ith row of S.

Since min-plus services are deadline-rigid, so are dual-curve

services and thus service curves. By taking advantage of this

fact, the service-curve-earliest-deadline (SCED) scheduler was

proposed in [14] to guarantee service curves. At its core, it

is but a work-conserving EDF scheduler that automatically

generates feasible max-slack schedules. Interestingly, it was

realized in [15] that such a scheduler need not be always
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work-conserving. Recall that being work-conserving implies

that µ = min{c, q〈Ω〉}. Instead, it was proposed in [15], to

rephrase in our terminology, to estimate β(Ω), set µ = β(Ω),
and then allocate the excess capacity, up to c − β(Ω), in the

spirit of the GPS policy. Also worth noting in [14], [15] is that

some dynamic features of dual-curve services were explored

implicitly, though service specification there was still tied to

the case that b = 0.

C. Practical Issues

We expect a state-based scheduler, if ever implemented,

to be first implemented for a dual-curve system because of

its efficiency, which is on display in every preceding result

regarding dual-curve services. We further speculate that, for

early adoptions, logistic systems and data centers would be

particularly promising areas. In the former case, since a natural

slot in typical logistic systems can often last for hours, days,

or even weeks, there should be enough time to carry out

a significant amount of computation during each slot. In

the latter case, since modern data centers concentrate huge

capacities for data storage, processing and distribution, there

should exist strong incentives to improve capacity utilization

even by a tiny fraction.

As we have seen, a schedulable worst-case system, ψ[Ω],

can always be upgraded to its spectral hull, S[Ω]. Now S[Ω]

can in turn be dominated by a dual-curve system, (u[Ω],v[Ω]),
if for all ω ∈ Ω and j ∈ N,

{

uωj = sω0j

vωj = max
i>0

sωi,i+j
. (161)

We call (u[Ω],v[Ω]) the dual-curve hull of S[Ω]. Notice that

it might not be schedulable even if S[Ω] is schedulable. But

when it is, S[Ω] can be upgraded to its dual-curve hull, which

endows the efficiency of dual-curve systems with a broader

significance.

It is nonetheless impossible to implement a state-based

scheduler for a dual-curve system in its most general form

despite its efficiency, because well, countably infinite is still

infinite. We need to further reduce the system’s dimensionality.

One approach is to restrict dual-curve services to be piece-

linear. According to (149), if both u and v are piece-linear, so

is u̇. As time goes by, however, u could still grow unwieldy.

So how to contain this growth? In [14], [15], problems of

a similar nature were encountered and additional restrictions

were imposed on service curves to cap the number of their

linear pieces. We can certainly borrow the technique, but we

will not delve into the details here. Instead, let us outline a

couple of techniques unique to our framework.13

The idea is to take advantage of the dynamic nature of state-

based scheduling. On the one hand, given that (u[Ω],v[Ω])
is schedulable, we can upgrade (u[Ω],v[Ω]) to (ū[Ω],v[Ω])
if there exists ū[Ω] ≥ u[Ω] such that (ū[Ω],v[Ω]) is also

13These techniques, we believe, can make piece-linear dual-curve systems
manageable in most practical cases. Of course, the final arbiter of this matter
can only be simulation and implementation, which are out of the scope of
this paper.

schedulable, implying that ū〈Ω〉 ≤ c if (u[Ω],v[Ω]) is non-

degenerate. Of course, this upgrade could reduce the server’s

capacity slack, but it may be well worth it if the number of

linear pieces can become much smaller. On the other hand,

according to (149), the larger dω is, the simpler u̇ω tends to

be, because more linear pieces of uω tend to be buried below

0. Then, in selecting a feasible schedule, the more unwieldy

uω is, the higher priority should be given to flow ω.

Example 44: The above techniques can be applied to any

dual-curve system, not necessarily piece-linear. Given any

(u[Ω],v[Ω]) that is schedulable, when d[Ω] = q[Ω] so that

ḃω = 0 for all ω ∈ Ω, according to (149), u̇[Ω] ≤ v[Ω].

So (u̇[Ω],v[Ω]) can be upgraded to (v[Ω],v[Ω]) if (u[Ω],v[Ω])
is non-degenerate. That is to say, whenever all buffers are

emptied, a non-degenerate dual-curve system can be upgraded

to a system of non-degenerate service curves. A corollary is

that, if we start with a system of non-degenerate service curves,

we can always return to it whenever all buffers are emptied,

which is a well-known fact in [14].

Another approach to reduce the system’s dimensionality

is to restrict services to be finite. This is only of limited

applicability, because although in reality all flow lifetimes

are finite, in most cases, they are long enough to be taken

as infinite. That being said, there are still cases for which

flow lifetimes become meaningfully finite, for instance, file

transfers through a communication link or sporadic jobs in a

real-time system. In these cases, their finiteness can be taken

advantage of.

In general, a worst-case service, ψ, is finite if there exists

g ∈ N such that ψj(q) = ψg(q) for all q ∈ U〉b and j ≥ g,

thus limiting its guarantee to period [t, t + g). A min-plus

service, ψM , is then finite if mij = mig for all j ≥ g,

implying that mij = 0 for all i ≥ g. Therefore, what really

matters is M[0≤i,j≤g], the (g + 1) × (g + 1) submatrix at

the upper-left corner of M . But unless v = 0, a dual-curve

service, ψ(u,v), cannot be finite because, according to (146),

there simply cannot be mij = 0 for all i ≥ g. To get around

this difficulty, we can limit the applicable range of (146) to

0 ≤ i, j ≤ g so that M[0≤i,j≤g] alone can be identified by

a pair of finite vectors, (u[0≤j≤g],v[0≤j≤g−1]). More results

along this line, paralleling those regarding original dual-curve

services, can be developed, and we can even develop the finite

counterparts of piece-linear dual-curve services, though we

will not delve into the details here.

IX. CONCLUDING REMARKS

In this paper, we have shed new light on the classical

problem of using short-run scheduling decisions to provide

long-run service guarantees. We have drawn our inspiration

from cumulative vectors, the state-space approach, the polyma-

troid theory, EDF schedules, the min-plus algebra, and service

curves. Although individually none of these is new, it is our

contribution to weave all of them into a general framework of

worst-case services and state-based scheduling that provides

novel solutions to the classical problem.

Among possible extensions, the most interesting ones, in

our view, are suggested by generalizing the capacity model.
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For instance, comparing the definition of cij in (50) to that of

c in (155), it is immediate that

cij = (cj − ci)
+ for all i, j ∈ N. (162)

Now, with this formulation, if we allow c to be an arbitrary

cumulative vector, then, the server’s capacity is cj+1 − cj in

slot t + j, and we obtain a time-varying capacity model. It

is straightforward to extend our results to this model with

minimal modifications.

Alternatively, the capacity constraint, (5), can be generalized

to d[Ω] ∈ C. To circumvent the nuances caused by integrality,

let us also switch to a continuous traffic model so that d[Ω]

takes its value in Rn and C is a subset of Rn.14 In a basic

case, let
∑

ω∈Ω

dω

cω
≤ 1, (163)

and we obtain a linear capacity model. It is easy to extend our

results to this model by scaling the worst-case service guaran-

teed to each flow accordingly. For instance, the schedulability

condition, (50), in this case morphs into

∑

ω∈Ω

λωij
cω

≤ (j − i)+ for all i, j ∈ N. (164)

Any violation of linearity in the specification of C, however,

will pose a great challenge. Even in the simple case that

C is determined by only two linear constraints, which, for

instance, is the case for a switching network with two effective

bottlenecks and no internal buffer or delay, it is not clear how

our results can be extended.15

The heart of the problem lies in the fact that in the non-

linear case, there seems to be no obvious counterpart of the

spectrum, which, as we have seen in the linear case, helps us

distill all essential information inherent in a worst-case service

that is relevant to schedulability. Therefore, a key bridge to

schedulability is lost. This situation is not unlike that in the

traditional system theory, where frequency-domain analysis,

though powerful in the linear case, has no obvious counterpart

in the non-linear case. We leave further study of this issue to

future work.

APPENDIX

In this appendix, we prove two lemmas from Section V-A.

Proof of Lemma 15: We denote PS(χ) by PS . If PS is

non-empty, given any d[Ω] ∈ PS , for all Γ,Γ′ ∈ S, using (63)

and (62), we have

χ(Γ) + χ(Γ′) = d〈Γ〉 + d〈Γ
′〉

= d〈Γ+Γ′〉 + d〈ΓΓ
′〉 ≥ χ(Γ + Γ′) + χ(ΓΓ′).

But χ is supermodular, so (61) must hold with equality. This

equality embodies a special relation between Γ and Γ′, and

14We have got a flavor of these nuances in our discussion following the
proof of Theorem 29. As shown in that case, they could be subtle, but not
insurmountable.

15This case can be viewed as the intersection of two linear models. Then
a naive guess is that it would be schedulable should (164) hold for both
models. This is certainly necessary, but it is not perpetuatable because there
is no guarantee that the two feasible polytopes thus determined would always
intersect.

we denote it by Γ ≃ Γ′. Then PS’s non-emptiness implies

that Γ ≃ Γ′ for all Γ,Γ′ ∈ S. By default, Γ ≃ Γ′ if Γ ⊆ Γ′

or Γ′ ⊆ Γ. Conversely, in the case that Γ ⊆ Γ′ or Γ′ ⊆ Γ if

Γ ≃ Γ′, we call χ strictly supermodular. In this case, PS’s

non-emptiness implies that S has to be a chain.

Let us move on to the case that χ is not strictly supermod-

ular.16 We use Γ ∼ Γ′ to denote the relation that Γ ≃ Γ′ but

Γ * Γ′ and Γ′ * Γ. If χ is not strictly supermodular, then,

there might exist Γ,Γ′ ∈ S such that Γ ∼ Γ′. In this case, we

can replace Γ and Γ′ by Γ+Γ′ and ΓΓ′ to get S ′, and it turns

out that PS′ = PS . To see this, notice that since Γ ∼ Γ′, for

all d[Ω] ∈ PS , using (63), we have

d〈Γ+Γ′〉 + d〈ΓΓ
′〉 = d〈Γ〉 + d〈Γ

′〉

= χ(Γ) + χ(Γ′) = χ(Γ + Γ′) + χ(ΓΓ′).

But according to (62), d〈Γ+Γ′〉 ≥ χ(Γ + Γ′) and d〈ΓΓ
′〉 ≥

χ(ΓΓ′), so the equalities must hold in both cases, implying

that d[Ω] ∈ PS′ . Conversely, for all d[Ω] ∈ PS′ , by the same

logic, d[Ω] ∈ PS , because

d〈Γ〉 + d〈Γ
′〉 = d〈Γ+Γ′〉 + d〈ΓΓ

′〉

= χ(Γ + Γ′) + χ(ΓΓ′) = χ(Γ) + χ(Γ′).

If S ′ still contains ∼ relations, it can be replaced by S ′′

in the same way that S is replaced by S ′, and so on. The

question is whether through this process, all ∼ relations can

be eliminated to arrive at a chain. The answer is yes, because

S ′ is guaranteed to contain less ∼ relations than S. To see this,

on the one hand, notice that at least one ∼ relation, Γ ∼ Γ′,

is eliminated when S is replaced by S ′. On the other hand,

for all Γ′′ ∈ S with Γ′′ 6= Γ,Γ′, we need only consider the

following four cases:

C1 if Γ′′ ⊂ Γ and Γ′′ ⊂ Γ′, there must be Γ′′ ⊂ Γ + Γ′ and

Γ′′ ⊆ ΓΓ′;

C2 if Γ ⊂ Γ′′ and Γ′ ⊂ Γ′′, there must be Γ + Γ′ ⊆ Γ′′ and

ΓΓ′ ⊂ Γ′′;

C3 if Γ′′ ⊂ Γ and Γ′′ ∼ Γ′, or if Γ′′ ∼ Γ and Γ′′ ⊂ Γ′, there

must be Γ′′ ⊂ Γ + Γ′; and finally,

C4 if Γ ⊂ Γ′′ and Γ′ ∼ Γ′′, or if Γ ∼ Γ′′ and Γ′ ⊂ Γ′′, there

must be ΓΓ′ ⊂ Γ′′.

In all cases, the number of ∼ relations cannot increase. It

follows that S ′ must contain at least one less ∼ relation than

S.

Proof of Lemma 16: For all Γ ⊆ Ω and 1 ≤ i ≤ n, it is

immediate from (64) that

ΓΓi
πΓ

i−1
π = ΓΓi−1

π .

If ωi
π ∈ Γ, using (65), it is also easy to verify that

ΓΓi
π + Γi−1

π = Γi
π.

so according to (61),

χ(ΓΓi
π) + χ(Γi−1

π ) ≤ χ(Γi
π) + χ(ΓΓi−1

π ).

16Although we will not show it here, it can be shown that P(χ) is degenerate
if and only if χ is not strictly supermodular.
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Let Γ = {ωi1
π , ω

i2
π , . . . , ω

il
π }, with i1 < i2 < · · · < il. Then,

on the one hand, using (68) and the above inequality, we have

v〈Γ〉π (χ)

=

l
∑

k=1

(χ(Γik
π )− χ(Γik−1

π ))

≥

l
∑

k=1

(χ(ΓΓik
π )− χ(ΓΓik−1

π ))

= χ(ΓΓil
π ) +

l−1
∑

k=1

(χ(ΓΓik
π )− χ(ΓΓik+1−1

π ))− χ(ΓΓi1−1
π ).

On the other hand, using (65), it is also easy to verify that

ΓΓil
π = {ωi1

π , ω
i2
π , . . . , ω

il
π } = Γ,

ΓΓik
π = {ωi1

π , ω
i2
π , . . . , ω

ik
π } = ΓΓik+1−1

π ,

and

ΓΓi1−1
π = φ.

It follows that v
〈Γ〉
π (χ) ≥ χ(Γ).
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